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Preface to the second edition

Since the first edition, four years ago, some new developments have been
published which have led to a few modifications in our book. The section con-
cerning the distribution of weighted Poisson events has been modified and the
compound Poisson distribution has been included. The sections on parameter
estimation by comparison of data with simulation and the unfolding section
have been revised. The denotations have been unified and minor corrections
and extensions have been applied to many parts of the book.

June 2014,
Gerhard Bohm, Günter Zech

Preface

There is a large number of excellent statistic books. Nevertheless, we think
that it is justified to complement them by another textbook with the focus
on modern applications in nuclear and particle physics. To this end we have
included a large number of related examples and figures in the text. We em-
phasize less the mathematical foundations but appeal to the intuition of the
reader.

Data analysis in modern experiments is unthinkable without simulation
techniques. We discuss in some detail how to apply Monte Carlo simulation
to parameter estimation, deconvolution, goodness-of-fit tests. We sketch also
modern developments like artificial neural nets, bootstrap methods, boosted
decision trees and support vector machines.

Likelihood is a central concept of statistical analysis and its foundation
is the likelihood principle. We discuss this concept in more detail than usu-
ally done in textbooks and base the treatment of inference problems as far as
possible on the likelihood function only, as is common in the majority of the
nuclear and particle physics community. In this way point and interval estima-
tion, error propagation, combining results, inference of discrete and continuous
parameters are consistently treated. We apply Bayesian methods where the
likelihood function is not sufficient to proceed to sensible results, for instance
in handling systematic errors, deconvolution problems and in some cases when
nuisance parameters have to be eliminated, but we avoid improper prior densi-
ties. Goodness-of-fit and significance tests, where no likelihood function exists,
are based on standard frequentist methods.

Our textbook is based on lecture notes from a course given to master
physics students at the University of Siegen, Germany, a few years ago. The
content has been considerably extended since then. A preliminary German
version is published as an electronic book at the DESY library. The present
book is addressed mainly to master and Ph.D. students but also to physicists
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who are interested to get an introduction into recent developments in statisti-
cal methods of data analysis in particle physics. When reading the book, some
parts can be skipped, especially in the first five chapters. Where necessary,
back references are included.

We welcome comments, suggestions and indications of mistakes and typing
errors. We are prepared to discuss or answer questions to specific statistical
problems.

We acknowledge the technical support provided by DESY and the Univer-
sity of Siegen.

February 2010,
Gerhard Bohm, Günter Zech
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1

Introduction: Probability and Statistics

Though it is exaggerated to pretend that in our life only the taxes and the
death are certain, it is true that the majority of all predictions suffer from
uncertainties. Thus the occupation with probabilities and statistics is use-
ful for everybody, for scientists of experimental and empirical sciences it is
indispensable.

1.1 The Purpose of Statistics

Whenever we perform an experiment and want to interpret the collected data,
we need statistical tools. The accuracy of measurements is limited by the
precision of the equipment which we use, and thus the results emerge from
a random process. In many cases also the processes under investigation are
of stochastic nature, i.e. not predictable with arbitrary precision, such that
we are forced to present the results in form of estimates with error intervals.
Estimates accompanied by an uncertainty interval allow us to test scientific
hypotheses and by averaging the results of different experiments to improve
continuously the accuracy. It is by this procedure that a constant progress in
experimental sciences and their applications was made possible.

Inferential statistics provides mathematical methods to infer the properties
of a population from a randomly selected sample taken from it. A population
is an arbitrary collection of elements, a sample just a subset of it.

A trivial, qualitative case of an application of statistics in every day life
is the following: To test whether a soup is too salted, we taste it with a
spoon. To obtain a reliable result, we have to stir the soup thoroughly and
the sample contained in the spoon has to be large enough: Samples have to
be representative and large enough to achieve a sufficiently precise estimate
of the properties of the population.

Scientific measurements are subject to the same scheme. Let us look at a
few statistical problems:
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1. From the results of an exit poll the allocation of seats among the different
parties in the parliament is predicted. The population is the total of the
votes of all electors, the sample a representative selection from it. It is
relatively simple to compute the distribution of the seats from the results
of the poll, but one wants to know in addition the accuracy of the prog-
nosis, respectively how many electors have to be asked in order to issue a
reasonably precise statement.

2. In an experiment we record the lifetimes of 100 decays of an unstable
nucleus. To determine the mean life of the nucleus, we take the average
of the observed times. Here the uncertainty has its origin in the quantum
mechanical random process. The laws of physics tell us, that the lifetimes
follow a random exponential distribution. The sample is assumed to be
representative of the total of the infinitely many decay times that could
have occurred.

3. From 10 observations the period of a pendulum is to be determined. We
will take as estimate the mean value of the replicates. Its uncertainty has
to be evaluated from the dispersion of the individual observations. The
actual observations form a sample from the infinite number of all possible
observations.

These examples are related to parameter inference. Further statistical top-
ics are testing, deconvolution, and classification.

4. A bump is observed in a mass distribution. Is it a resonance or just a
background fluctuation?

5. An angular distribution is predicted to be linear in the cosine of the polar
angle. Are the observed data compatible with this hypothesis?

6. It is to be tested whether two experimental setups perform identically. To
this end, measurement samples from both are compared to each other. It
is tested whether the samples belong to the same population, while the
populations themselves are not identified explicitly.

7. A frequency spectrum is distorted by the finite resolution of the detector.
We want to reconstruct the true distribution.

8. In a test beam the development of shower cascades produced by electrons
and pions is investigated. The test samples are characterized by several
variables like penetration depth and shower width. The test samples are
used to develop procedures which predict the identity of unknown particles
from their shower parameters.

A further, very important part of statistics is decision theory. We shall not
cover this topic.

1.2 Event, Observation and Measurement

Each discipline has its own terminology. The notations used in statistics are
somewhat different from those used by physicists, and even physicists from
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different fields do not always use the same language. To avoid confusion, we
will fix the meaning of some terms which we need in the following.

We will distinguish between event, observation and measurement . A ran-
dom event1 or in short an event is the possible outcome of an experiment
governed by some stochastic process. This could be the decay of a nucleus
in a certain time interval or the coincidence that two pupils of a class have
their birthdays the same day. An observation is the element of a sample, the
realization of an event.

As indicated above, a population is the set of all possible events, i.e. all
potential observations. In the natural sciences, ideally experiments can be
repeated infinitely often, thus we usually deal with infinite populations.

When we infer properties, i.e. parameters characterizing the population,
from the sample, we talk about an estimate or a measurement. The decay
times of 10 pion decays correspond to a sample of observations from the pop-
ulation of all possible events, the decay times. The estimation of the mean
life of pions from the sample is a measurement. An observation as such – the
reading of a meter, a decay time, the number of detected cosmic muons –
has no error associated with it. Its value is fixed by a random process. On
the contrary, the measurement which corresponds to parameter inference is
afflicted with an uncertainty. In many simple situations, observation and mea-
surement coincide numerically, in other cases the measurement is the result
of an extensive analysis based on a large amount of observations.

1.3 How to Define Probability?

Statistics is at least partially based on experience which is manifest in fields
like deconvolution and pattern recognition. It applies probability theory but
should not be confounded with it. Probability theory, contrary to statistics,
is a purely mathematical discipline and based on simple axioms. On the other
hand, all statistical methods use probability theory. Therefore, we will deal
in the first part of this book with simple concepts and computational rules of
this field.

In statistics, there exist several different notions on what probability
means. In the Dictionary of Statistical Terms of Kendall and Buckland [1]
we find the following definition:

“probability, a basic concept which may be taken as undefinable,
expressing in some way a degree of belief, or as the limiting frequency
in an infinite random series. Both approaches have their difficulties and
the most convenient axiomatization of probability theory is a matter
of personal taste. Fortunately both lead to much the same calculus of
probability.”

1At some occasions we will use the term event in the way physicists do. This will
become clear from the context.
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We will try to extend this short explanation:
In the frequentist statistics, sometimes also called classical statistics, the

probability of an event, the possible outcome of an experiment, is defined
as the frequency with which it occurs in the limit of an infinite number of
repetitions of the experiment. If in throwing dice the result five occurs with
frequency 1/6 in an infinite number of trials, the probability to obtain five is
defined to be 1/6.

In the more modern, so-called Bayesian statistics2 this narrow notion of
probability is extended. Probability is also ascribed to fixed but incompletely
known facts and to processes that cannot be repeated. It may be assigned
to deterministic physical phenomena when we lack sufficient information. We
may roll a dice and before looking at the result, state that the result is “5” with
probability 1/6. Similarly, a probability can be attributed to the fact that the
electron mass is located within a certain mass interval. That in the context of
a constant like the electron mass probability statements are applied, is due to
our limited knowledge of the true facts. It would be more correct, but rather
clumsy, to formulate: “The probability that we are right with the proposition
that the electron mass is located in that error interval is such and such.” The
assignment of probabilities sometimes relies on assumptions which cannot be
proved but usually they are well founded on symmetry arguments, physical
laws or on experience3. The results obviously depend on these assumptions
and can be interpreted only together with those.

The frequentist concept as compared to the Bayesian one has the ad-
vantage that additional not provable assumptions are obsolete but the dis-
advantages that its field of application is rather restricted. Important parts
of statistics, like deconvolution, pattern recognition and decision theory are
outside its reach. The Bayesian statistics exists in different variants. Its ex-
treme version permits very subjective assignments of probabilities and thus its
results are sometimes vulnerable and useless for scientific applications. Any-
way, these very speculative probabilities do not play a significant role in the
scientific practice.

Both schools, the classical frequentist oriented and the modern Bayesian
have developed important statistical concepts. In most applications the results
are quite similar. A short comparison of the two approaches will be presented
in the appendix. A very instructive and at the same time amusing article com-
paring the Bayesian and the frequentist statistical philosophies is presented
in Ref. [2].

2Thomas Bayes was a mathematician and theologian who lived in the 18th cen-
tury.

3Remark, also probability assignments based on experience have a frequency
background.
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For completeness we mention a third classical interpretation of probability
which is appreciated by mathematicians4: If an experiment has N equally
likely and mutually exclusive outcomes, and if the event A can occur in P of
them, then the probability of event A is equal to P/N . It has the difficulty that
it can hardly be translated into real situations and a slight logical problem in
that the term equally likely already presumes some idea of what probability
means.

Independent of the statistical approach, in order to be able to apply the
results of probability theory, it is necessary that the statistical probability fol-
lows the axioms of the mathematical probability theory, i.e. it has to obey Kol-
mogorov’s axioms. For example, probabilities have to be positive and smaller
or equal to one. We will discuss these axioms below.

In this book we will adopt a moderately Bayesian point of view. This
means that in some cases we will introduce sensible assumptions without
being able to prove their validity. However, we will establish fixed, simple
rules that have to be applied in data analysis. In this way we achieve an
objective parametrization of the data. This does not exclude that in some
occasions as in goodness-of-fit tests we favor methods of frequentist statistics.

1.4 Assignment of Probabilities to Events

The mathematician assumes that the assignment of probabilities to events
exists. To achieve practical, useful results in the natural sciences, in sociol-
ogy, economics or medicine, statistical methods are required and a sensible
assignment has to be made.

There are various possibilities to do so:

• Symmetry properties are frequently used to assign equal probabilities to
events. This is done in gambling, examples are rolling dice, roulette and
card games. The isotropy of space predicts equal probabilities for radiation
from a point source into different directions.

• Laws of nature like the Boltzmann’s law of thermodynamics, the exponen-
tial decay law of quantum mechanics or Mendel’s laws allow us to calculate
the probabilities for certain events.

• From the observed frequencies of certain events in empirical studies we can
estimate their probabilities, like those of female and male births, of muons
in cosmic rays, or of measurement errors in certain repeatable experiments.
Here we derive frequencies from a large sample of observations from which
we then derive with sufficient accuracy the probability of future events.

4For two reasons: The proof that the Kolmogorov’s axioms are fulfilled is rather
easy, and the calculation of the probability for complex events is possible by straight
forward combinatorics.
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• In some situations we are left with educated guesses or we rely on the
opinion of experts, when for example the weather is to be predicted or the
risk of an accident of a new oil-ship has to be evaluated.

• In case of absolute ignorance often a uniform probability distribution is
assumed. This is known as Bayes’ postulate. When we watch a tennis
game and do not know the players, we will assign equal probabilities of
winning to both players.

To illustrate the last point in a more scientific situation, let us look at a
common example in particle physics:

Example 1. Uniform prior for a particle mass
Before a precise measurement of a particle mass is performed, we only

know that a particle mass m lies between the values m1 and m2. We may
assume initially that all values of the mass inside the interval are equally
likely. Then the a priori probability P{m0 ≤ m < m2} (or prior probability)
that m it is larger than m0, with m0 located between m1 and m2, is equal to:

P{m0 ≤ m < m2} =
m2 −m0

m2 −m1
.

This assertion relies on the assumption of a uniform distribution of the mass
within the limits and is obviously assailable, because, had we assumed – with
equal right – a uniform distribution for the mass squared, we had obtained a
different result:

P{m2
0 ≤ m2 < m2

2} =
m2

2 −m2
0

m2
2 −m2

1

6= P{m0 ≤ m < m2} .

Of course, the difference is small, if the interval is small, m2 −m1 ≪ m, for
then we have:

m2
2 −m2

0

m2
2 −m2

1

=
m2 −m0

m2 −m1
× m2 +m0

m2 +m1

=
m2 −m0

m2 −m1

(
1 +

m0 −m1

m2 +m1

)

≈ m2 −m0

m2 −m1
.

When the Z0 mass and its error were determined, a uniform prior proba-
bility in the mass was assumed. If instead a uniform probability in the mass
squared had been used, the result had changed only by about 10−3 times the
uncertainty of the mass determination. This means that applying Bayes’ as-
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sumption to either the mass or the mass squared makes no difference within
the precision of the measurement in this specific case.

In other situations prior probabilities which we will discuss in detail in
Chap. 6 can have a considerable influence on a result.

1.5 Outline of this Book

After a short chapter on probability axioms and theorems we present prop-
erties of probability distributions in Chapter 3, and its application to simple
error calculus and Monte Carlo simulation in Chapters 4 and 5.

The statistics part starts in Chapters 6 and 7 with point estimation fol-
lowed by interval estimation, Chapter 8.

Chapter 9 deals with deconvolution problems.
In Chapter 10 significance and goodness-of-fit tests are discussed.
Chapter 11 with the title Statistical Learning summarizes some approxi-

mation and classification techniques.
In Chapter 12 a short introduction into probability density estimation and

bootstrap techniques is given.
Finally, the Appendix contains some useful mathematical or technical ob-

jects, introduces important frequentist concepts and theorems and presents a
short comparison of the different statistical approaches.

Recommendations for Ancillary Literature

- The standard book of Kendall and Stuart “The Advanced Theory of Statis-
tics” [3], consisting of several volumes provides a excellent and rather com-
plete presentation of classical statistics with all necessary proofs and many
references. It is a sort of Bible of conservative statistics, well suited to look
up specific topics. Modern techniques, like Monte Carlo methods are not in-
cluded.

- The books of Brandt “Data Analysis” [4] and Frodesen et. al. “ Probability
and Statistics in Particle Physics” [5] give a pretty complete overview of the
standard statistical methods as used by physicists.

- For a introduction into statistics for physicists we highly recommend the
book by Barlow [6].

- Very intuitive and also well suited for beginners is the book by Lyons [7],
“Statistics for Nuclear and Particle Physicists”. It reflects the large practical
experience of the author.

- Larger, very professional and more ambitious is the book of Eadie et al.
“Statistical Methods in Experimental Physics” [8], also intended mainly for
particle and nuclear physicists and written by particle physicists and statis-
ticians. A new edition has appeared recently [9]. Modern techniques of data
analysis are not discussed.
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- Recently a practical guide to data analysis in high energy physics [10] has
been published. The chapters are written by different experienced physicists
and reflect the present state of the art. As is common in statistics publications,
some parts are slightly biased by the personal preferences of the authors. More
specialized is [11] which emphasizes particularly probability density estimation
and machine learning.

- Very useful especially for the solution of numerical problems is a book
by Blobel and Lohrman “Statistische und numerische Methoden der Daten-
analyse” [12] written in German.

- Other useful books written by particle physicists are found in Refs. [13,
14, 15]. The book by Roe is more conventional while Cowan and D’Agostini
favor a moderate Bayesian view.

- Modern techniques of statistical data analysis are presented in a book
written by professional statisticians for non-professional users, Hastie et al.
“The Elements of Statistical Learning”[16]

- A modern professional treatment of Bayesian statistics is the textbook
by Box and Tiao “Bayesian Inference in Statistical Analysis” [17].

The interested reader will find work on the foundations of statistics, on
basic principles and on the standard theory in the following books:

- Fisher’s book [18] “Statistical Method, Experimental Design and Scien-
tific Inference” provides an interesting overview of his complete work.

- Edward’s book “Likelihood” [19] stresses the importance of the likelihood
function, contains many useful references and the history of the Likelihood
Principle.

- Many basic considerations and a collection of personal contributions from
a moderate Bayesian view are contained in the book “Good Thinking” by Good
[20]. A collection of work by Savage [21], presents a more extreme Baysian
point of view.

- Somewhat old fashioned textbooks of Bayesian statistic which are of
historical interest are the books of Jeffreys [22] and Savage [23].

Recent statistical work by particle physicists and astrophysicists can be
found in the proceedings of the PHYSTAT Conferences [24] held during the
past few years. Many interesting and well written articles can be found also
in the internet.

This personal selection of literature is obviously in no way exhaustive.
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Basic Probability Relations

2.1 Random Events and Variables

Events are processes or facts that are characterized by a specific property, like
obtaining a “3” with a dice. A goal in a soccer play or the existence of fish in a
lake are events. Events can also be complex facts like rolling two times a dice
with the results three and five or the occurrence of a certain mean value in
a series of measurements or the estimate of the parameter of a theory. There
are elementary events, which mutually exclude each other but also events that
correspond to a class of elementary events, like the result greater than three
when throwing a dice. We are concerned with random events which emerge
from a stochastic process as already introduced above.

When we consider several events, then there are events which exclude each
other and events which are compatible. We stick to our standard example dice.
The elementary events three and five exclude each other, the events greater
than two and five are of course compatible. An other common example: We
select an object from a bag containing blue and red cubes and spheres. Here
the events sphere and cube exclude each other, the events sphere and red may
be compatible.

The event A is called the complement of event A if either event A or event
A applies, but not both at the same time (exclusive or). Complementary to
the event three in the dice example is the event less than three or larger than
three (inclusive or). Complementary to the event red sphere is the event cube
or blue sphere.

The event consisting of the fact that an arbitrary event out of all possible
events applies, is called the certain event. We denote it with Ω. The com-
plementary event is the impossible event, that none of all considered events
applies: It is denoted with ∅, thus ∅ = Ω.

Some further definitions are useful:
Definition 1: A ∪B means A or B.
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The event A ∪ B has the attributes of event A or event B or those of
both A and B (inclusive or). (The attribute cube ∪ red corresponds to the
complementary event blue sphere.)

Definition 2: A ∩B means A and B.
The event A ∩ B has the attributes of event A as well as those of event

B. (The attribute cube ∩ red corresponds to red cube.) If A ∩B = ∅, then A,
B mutually exclude each other.

Definition 3: A ⊂ B means that A implies B.
It is equivalent to both A ∪B = B and A ∩B = A.
From these definitions follow the trivial relations

A ∪ A = Ω , A ∩ A = ∅ ,

and
∅ ⊂ A ⊂ Ω . (2.1)

For any A, B we have

A ∪B = A ∩B , A ∩B = A ∪B .

To the random event A we associate the probability P{A} as discussed
above. In all practical cases random events can be identified with a variable,
the random variable or variate. Examples for variates are the decay time
in particle decay, the number of cosmic muons penetrating a body in a fixed
time interval and measurement errors. When the random events involve values
that cannot be ordered, like shapes or colors, then they can be associated with
classes or categorical variates.

2.2 Probability Axioms and Theorems

2.2.1 Axioms

The assignment of probabilities P{A} to members A, B, C, ... of a set of
events has to satisfy the following axioms1. Only then the rules of probability
theory are applicable.

• Axiom 1 0 ≤ P{A}
The probability of an event is a positive real number.

• Axiom 2 P{Ω} = 1
The probability of the certain event is one.

• Axiom 3 P{A ∪B} = P{A}+ P{B} if A ∩B = ∅
The probability that A or B applies is equal to the sum of the probabilities
that A or that B applies, if the events A and B are mutually exclusive.

1They are called Kolmogorov axioms, after the Russian mathematician A. N. Kol-
mogorov (1903-1987).
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These axioms and definitions imply the following theorems whose validity
is rather obvious. They can be illustrated with so-called Venn diagrams, Fig.
2.1. There the areas of the ellipses and their intersection are proportional to
the probabilities.

P{A} = 1− P{A} , P{∅} = 0 ,

P{A ∪B} = P{A}+ P{B} − P{A ∩B} ,
if A ⊂ B ⇒ P{A} ≤ P{B} . (2.2)

Relation (2.1) together with (2.2) and axioms 1, 2 imply 0 ≤ P{A} ≤ 1. For
arbitrary events we have

P{A ∪B} ≥ P{A} , P{B} ; P{A ∩B} ≤ P{A} , P{B} .

If all events with the attribute A possess also the attribute B, A ⊂ B, then
we have P{A ∩B} = P{A}, and P{A ∪B} = P{B}.

2.2.2 Conditional Probability, Independence, and Bayes’ Theorem

In the following we need two further definitions:
Definition: P{A | B} is the conditional probability of event A under the

condition that B applies. It is given, as is obvious from Fig. 2.1, by:

P{A | B} =
P{A ∩B}
P{B} , P{B} 6= 0 . (2.3)

A conditional probability is, for example, the probability to find a sphere
among the red objects. The notation A | B expresses that B is considered as
fixed, while A is the random event to which the probability refers. Contrary
to P{A}, which refers to arbitrary events A, we require that also B is valid
and therefore P{A ∩B} is normalized to P{B}.

Among the events A | B the event A = B is the certain event, thus
P{B | B} = 1. More generally, from definition 3 of the last section and (2.3)
follows P{A|B} = 1 if B implies A:

B ⊂ A⇒ A ∩B = B ⇒ P{A|B} = 1 .

Definition: If P{A ∩ B} = P{A} × P{B}, the events A and B (more
precisely: the probabilities for their occurrence) are independent.

From (2.3) then follows P{A | B} = P{A}, i.e. the conditioning on B is
irrelevant for the probability of A. Likewise P{B | A} = P{B}.

In Relation (2.3) we can exchange A and B and thus P{A | B}P{B} =
P{A ∩B} = P{B | A}P{A} and we obtain the famous Bayes’ theorem:

P{A | B}P{B} = P{B | A}P{A} . (2.4)
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Fig. 2.1. Venn diagram.

Bayes’ theorem is frequently used to relate the conditional probabilities
P{A | B} and P{B | A}, and, as we will see, is of some relevance in parameter
inference.

The following simple example illustrates some of our definitions. It as-
sumes that each of the considered events is composed of a certain number of
elementary events which mutually exclude each other and which because of
symmetry arguments all have the same probability.

Example 2. Card game, independent events
The following table summarizes some probabilities for randomly selected

cards from a card set consisting of 32 cards and 4 colors.

P{king}: 4/32 = 1/8 (prob. for king)
P{heart}: 1/4 (prob. for heart)
P{heart ∩ king}: 1/8 · 1/4 = 1/32 (prob. for heart king)
P{heart ∪ king}: 1/8 + 1/4− 1/32 = 11/32 (prob. for heart or king)
P{heart | king}: 1/4 (prob. for heart if king)

The probabilities P{heart} and P{heart | king} are equal as required from
the independence of the events A and B.

The following example illustrates how we make use of independence.
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Example 3. Random coincidences, measuring the efficiency of a counter
When we want to measure the efficiency of a particle counter (1), we

combine it with a second counter (2) in such a way that a particle beam
crosses both detectors. We record the number of events n1, n2 in the two
counters and in addition the number of coincidences n1∩2. The corresponding
efficiencies relate these numbers, ignoring the statistical fluctuations of the
observations, to the unknown number of particles n crossing the detectors.

n1 = ε1n , n2 = ε2n , n1∩2 = ε1∩2n .

For independent counting efficiencies we have ε1∩2 = ε1ε2 and we get

ε1 =
n1∩2

n2
, ε2 =

n1∩2

n1
, n =

n1n2

n1∩2
.

This scheme is used in many analog situations.

Bayes’ theorem is applied in the next two examples, where the attributes
are not independent.

Example 4. Bayes’ theorem, fraction of women among students
From the proportion of students and women in the population and the

fraction of students among women we compute the fraction of women among
students:

P{A} = 0.02 (fraction of students in the population)
P{B} = 0.5 (fraction of women in the population)
P{A | B} = 0.018 (fraction of students among women)
P{B | A} =? (fraction of women among students)

The dependence of the events A and B manifests itself in the difference of
P{A} and P{A | B}. Applying Bayes’ theorem we obtain

P{B | A} =
P{A | B}P{B}

P{A}

=
0.018 · 0.5

0.02
= 0.45 .

About 45% of the students are women.
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Example 5. Bayes’ theorem, beauty filter
The probability P{A} that beauty quark production occurs in a colliding

beam reaction be 0.0001. A filter program selects beauty reactions A with
efficiency P{b | A} = 0.98 and the probability that it falsely assumes that
beauty is present if it is not, be P{b | A} = 0.01. What is the probability
P{A | b} to have genuine beauty production in a selected event? To solve the
problem, first the probability P{b} that a random event is selected has to be
evaluated,

P{b} = P{b}
[
P{A | b}+ P{A | b}

]

= P{b | A}P{A}+ P{b | A}P{A}

where the bracket in the first line is equal to 1. In the second line Bayes’
theorem is applied. Applying it once more, we get

P{A | b} =
P{b | A}P{A}

P{b}

=
P{b | A}P{A}

P{b | A}P{A}+ P{b | A}P{A}

=
0.98 · 0.0001

0.98 · 0.0001 + 0.01 · 0.9999 = 0.0097 .

About 1% of the selected events corresponds to b quark production.

Bayes’ theorem is rather trivial, thus the results of the last two examples
could have easily been written down without referring to it.
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Probability Distributions and their Properties

A probability distribution assigns probabilities to random variables. As an ex-
ample we show in Fig. 3.1 the distribution of the sum s of the points obtained
by throwing three ideal dice. Altogether there are 63 = 216 different combi-
nations. The random variable s takes values between 3 and 18 with different
probabilities. The sum s = 6, for instance, can be realized in 10 different
ways, all of which are equally probable. Therefore the probability for s = 6
is P {s = 6} = 10/216 ≈ 4.6%. The distribution is symmetric with respect
to its mean value 10.5. It is restricted to discrete values of s, namely natural
numbers.

In our example the variate is discrete. In other cases the random variables
are continuous. Then the probability for any fixed value is zero, we have
to describe the distribution by a probability density and we obtain a finite
probability when we integrate the density over a certain interval.

3.1 Definition of Probability Distributions

We define a distribution function, also called cumulative or integral distri-
bution function, F (t), which specifies the probability P to find a value of x
smaller than t:

F (t) = P {x < t} , with −∞ < t <∞ .

The probability axioms require the following properties of the distribution
function:

a) F (t) is a non-decreasing function of t ,
b) F (−∞) = 0 ,
c) F (∞) = 1 .

We distinguish between

• Discrete distributions (Fig. 3.2)
• Continuous distributions (Fig. 3.3)
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Fig. 3.1. Probability distribution of the sum of the points of three dice.

3.1.1 Discrete Distributions

If not specified differently, we assume in the following that discrete distribu-
tions assign probabilities to an enumerable set of different events, which are
characterized by an ordered, real variate xi, with i = 1, . . . , N , where N may
be finite or infinite. The probabilities p(xi) to observe the values xi satisfy
the normalization condition:

N∑

i=1

p(xi) = 1 .

It is defined by

p(xi) = P {x = xi} = F (xi + ǫ)− F (xi − ǫ) ,

with ǫ positive and smaller than the distance to neighboring variate values.

Example 6. Discrete probability distribution (dice)
For a fair die, the probability to throw a certain number k is just one-sixth:

p(k) = 1/6 for k = 1, 2, 3, 4, 5, 6.

It is possible to treat discrete distributions with the help of Dirac’s δ-
function like continuous ones. Therefore we will often consider only the case
of continuous variates.
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Fig. 3.2. Discrete probability distribution and distribution function.

3.1.2 Continuous Distributions

We replace the discrete probability distribution by a probability density1 f(x),
abbreviated as p.d.f. (probability density function). It is defined as follows:

f(x) =
dF (x)

dx
. (3.1)

Remark that the p.d.f. is defined in the full range −∞ < x < ∞. It may
be zero in certain regions.

It has the following properties:
a) f(−∞) = f(+∞) = 0 ,
b)
∫∞
−∞ f(x)dx = 1 .

1We will, however, use the notations probability distribution and distribution for
discrete as well as for continuous distributions.
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Fig. 3.3. Probility density and distribution function of a continuous distribution.

The probability P {x1 ≤ x ≤ x2} to find the random variable x in the
interval [x1, x2] is given by

P {x1 ≤ x ≤ x2} = F (x2)− F (x1) =

∫ x2

x1

f(x)dx .

We will discuss specific distributions in Sect. 3.6 but we introduce two common
distributions already here. They will serve us as examples in the following
sections.

Example 7. Probability density of an exponential distribution
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The decay time t of an instable particles follows an exponential distribution
with the p.d.f.

f(t) ≡ f(t|λ) = λe−λt for t ≥ 0 , (3.2)

where the parameter2 λ > 0, the decay constant, is the inverse of the mean
lifetime τ = 1/λ. The probability density and the distribution function

F (t) =

∫ t

−∞
f(t′)dt′ = 1− e−λt

are shown in Fig. 3.4. The probability of observing a lifetime longer than τ is

P {t > τ} = F (∞)− F (τ) = e−1 .

Example 8. Probability density of the normal distribution
An oxygen atom is drifting in argon gas, driven by thermal scattering. It

starts at the origin. After a certain time its position is (x, y, z). Each projec-
tion, for instance x, has approximately a normal distribution (see Fig. 3.5),
also called Gauss distribution.

f(x) = N (x|0, s) ,

N (x|x0, s) =
1√
2πs

e−(x−x0)
2/(2s2) . (3.3)

The width constant s is, as will be shown later, proportional to the square
root of the number of scattering processes or the square root of time. When
we descent by the factor 1/

√
e from the maximum, the full width is just 2s. A

statistical drift motion, or more generally a random walk, is met frequently in
science and also in every day life. The normal distribution also describes ap-
proximately the motion of snow flakes or the erratic movements of a drunkard
in the streets.

3.1.3 Empirical Distributions

Many processes are too complex or not well enough understood to be described
by a distribution in form of a simple algebraic formula. In these cases it may
be useful to approximate the underlying distribution using an experimental
data sample. The simplest way to do this, is to histogram the observations
and to normalize the frequency histogram. More sophisticated methods of
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Fig. 3.4. Probability density and distribution function of an exponential distribu-
tion.

probability density estimation will be sketched in Chap. 12. The quality of
the approximation depends of course on the available number of observations.

3.2 Expected Values

In this section we will consider some general characteristic quantities of dis-
tributions, like mean value, width, and asymmetry or skewness. Before intro-
ducing the calculation methods, we turn to the general concept of the expected
value.
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Fig. 3.5. Normal distribution.

The expected value E(u) of a quantity u(x), which depends on the random
variable x, can be obtained by collecting infinitely many random values xi from
the distribution f(x), calculating ui = u(xi), and then averaging over these
values. Obviously, we have to assume the existence of such a limiting value.

In quantum mechanics, expected values of physical quantities are the main
results of theoretical calculations and experimental investigations, and provide
the connection to classical mechanics. Also in statistical mechanics and ther-
modynamics the calculation of expected values is frequently needed. We can,
for instance, calculate from the velocity distribution of gas molecules the ex-
pected value of their kinetic energy, that means essentially their temperature.
In probability theory and statistics expected values play a central role.

3.2.1 Definition and Properties of the Expected Value

Definition:

E(u(x)) =

∞∑

i=1

u(xi)p(xi) (discrete distribution) , (3.4)
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E(u(x)) =

∫ ∞

−∞
u(x)f(x) dx (continuous distribution) . (3.5)

Here and in what follows, we assume the existence of integrals and sums.
This condition restricts the choice of the allowed functions u, p, f .

From the definition of the expected value follow the relations (c is a con-
stant, u, v are functions of x):

E(c) = c, (3.6)

E(E(u)) = E(u), (3.7)

E(u+ v) = E(u) + E(v), (3.8)

E(cu) = cE(u) . (3.9)

They characterize E as a linear functional.
For independent (see also Chap. 2 and Sect. 3.5) variates x, y the following

important relation holds:

E (u(x)v(y)) = E(u)E(v) . (3.10)

Often expected values are denoted by angular brackets:

E(u) ≡ 〈u〉 .

Sometimes this simplifies the appearance of the formulas. We will use both
notations.

3.2.2 Mean Value

The expected value of the variate x is also called the mean value. It can be
visualized as the center of gravity of the distribution. Usually it is denoted
by the Greek letter µ. Both names, mean value, and expected value3 of the
corresponding distribution are used synonymously.

Definition:

E(x) ≡ 〈x〉 = µ =
∑∞

i=1 xip(xi) (discrete distribution) ,

E(x) ≡ 〈x〉 = µ =
∫∞
−∞ x f(x) dx (continuous distribution) .

The mean value of the exponential distribution (3.2) is

〈t〉 =
∫ ∞

0

λte−λt dt = 1/λ = τ .

We will distinguish 〈x〉 from the average value of a sample, consisting of a
finite number N of variate values, x1, . . . , xN , which will be denoted by x:

3The notation expected value may be somewhat misleading, as the probability
to obtain it can be zero (see the example “dice” in Sect. 3.2.7).
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x =
1

N

∑

i

xi .

It is called sample mean. It is a random variable and has the expected value

〈x〉 = 1

N

∑

i

〈xi〉 = 〈x〉 ,

as follows from (3.8), (3.9).

3.2.3 Variance

The variance σ2 measures the spread of a distribution, defined as the mean
quadratic deviation of the variate from its mean value. Usually, we want to
know not only the mean value of a stochastic quantity, but require also infor-
mation on the dispersion of the individual random values relative to it. When
we buy a laser, we are of course interested in its mean energy per pulse, but
also in the variation of the single energies around that mean value. The mean
value alone does not provide information about the shape of a distribution.
The mean height with respect to sea level of Switzerland is about 700 m, but
this alone does not say much about the beauty of that country, which, to a
large degree, depends on the spread of the height distribution.

The square root σ of the variance is called standard deviation, and is the
standard measure of stochastic uncertainties.

A mechanical analogy to the variance is the moment of inertia for a mass
distribution along the x-axis for a total mass equal to unity.

Definition:
var(x) = σ2 = E

[
(x− µ)2

]
.

From this definition follows immediately

var(cx) = c2var(x) ,

and σ/µ is independent of the scale of x.
Very useful is the following expression for the variance which is easily

derived from its definition and (3.8), (3.9):

σ2 = E(x2 − 2xµ+ µ2)

= E(x2)− 2µ2 + µ2

= E(x2)− µ2.

Sometimes this is written more conveniently as

σ2 = 〈x2〉 − 〈x〉2 = 〈x2〉 − µ2 . (3.11)

In analogy to Steiner’s theorem for moments of inertia, we have
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〈(x− a)2〉 = 〈(x − µ)2〉+ 〈(µ− a)2〉
= σ2 + (µ− a)2 ,

implying (3.11) for a = 0.
The variance is invariant against a translation of the distribution by a:

x→ x+ a , µ→ µ+ a⇒ σ2 → σ2 .

Variance of a Sum of Random Numbers

Let us calculate the variance σ2 for the distribution of the sum x of two
independent random numbers x1 and x2, which follow different distributions
with mean values µ1, µ2 and variances σ2

1 , σ
2
2 :

x = x1 + x2,

σ2 = 〈(x− 〈x〉)2〉
= 〈((x1 − µ1) + (x2 − µ2))

2〉
= 〈(x1 − µ1)

2 + (x2 − µ2)
2 + 2(x1 − µ1)(x2 − µ2)〉

= 〈(x1 − µ1)
2〉+ 〈(x2 − µ2)

2〉+ 2〈x1 − µ1〉〈x2 − µ2〉
= σ2

1 + σ2
2 .

In the fourth step the independence of the variates (3.10) was used.
This result is important for all kinds of error estimation. For a sum of

two independent measurements, their standard deviations add quadratically.
We can generalize the last relation to a sum x =

∑
xi of N variates or

measurements:

σ2 =

N∑

i=1

σ2
i . (3.12)

Example 9. Variance of the convolution of two distributions
We consider a quantity x with the p.d.f. g(x) with variance σ2

g which is
measured with a device which produces a smearing with a p.d.f. h(y) with
variance σ2

h. We want to know the variance of the “smeared” value x′ = x+ y.
According to 3.12, this is the sum of the variances of the two p.d.f.s:

σ2 = σ2
g + σ2

h .
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Variance of the Sample Mean of Independent Identically
Distributed Variates

From the last relation we obtain the variance σ2
x of the sample mean x from

N independent random numbers xi, which all follow the same distribution4

f(x), with expected value µ and variance σ2:

x =
N∑

i=1

xi/N ,

var(Nx) = N2 var(x) = Nσ2 ,

σx =
σ√
N

. (3.13)

The last two relations (3.12), (3.13) have many applications, for instance in
random walk, diffusion, and error propagation. The root mean square distance
reached by a diffusing molecule after N scatters is proportional to

√
N and

therefore also to
√
t, t being the diffusion time. The total length of 100 aligned

objects, all having the same standard deviation σ of their nominal length,
will have a standard deviation of only 10 σ. To a certain degree, random
fluctuations compensate each other.

Width v of a Sample and Variance of the Distribution

Often, as we will see in Chap. 6, a sample is used to estimate the variance σ2

of the underlying distribution. In case the mean value µ is known, we calculate
the quantity

v2µ =
1

N

∑

i

(xi − µ)
2

which has the correct expected value 〈v2µ〉 = σ2. Usually, however, the true
mean value µ is unknown – except perhaps in calibration measurements –
and must be estimated from the same sample as is used to derive v2µ. We then
are obliged to use the sample mean x instead of µ and calculate the mean
quadratic deviation v2 of the sample values relative to x. In this case the
expected value of v2 will depend not only on σ, but also on N . In a first step
we find

v2 =
1

N

∑

i

(xi − x)
2

=
1

N

∑

i

(
x2i − 2xix+ x2

)

=
1

N

∑

i

x2i − x2 . (3.14)

4The usual abbreviation is i.i.d. variates for independent identically distributed.
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To calculate the expected value, we use (3.11) and (3.13),

〈x2〉 = σ2 + µ2 ,

〈x2〉 = var(x) + 〈x〉2

=
σ2

N
+ µ2

and get with (3.14)

〈v2〉 = 〈x2〉 − 〈x2〉 = σ2

(
1− 1

N

)
,

σ2 =
N

N − 1
〈v2〉 = 〈∑i (xi − x)

2〉
N − 1

. (3.15)

The expected value of the mean squared deviation is smaller than the variance
of the distribution by a factor of (N − 1)/N .

The relation (3.15) is widely used for the estimation of measurement errors,
when several independent measurements are available. The variance σ2

x of the
sample mean x itself is approximated, according to (3.13), by

v2

N − 1
=

∑
i (xi − x)2

N(N − 1)
.

Mean Value and Variance of a Superposition of two Distributions

Frequently a distribution consists of a superposition of elementary distribu-
tions. Let us compute the mean µ and variance σ2 of a linear superposition
of two distributions

f(x) = αf1(x) + βf2(x) , α+ β = 1 ,

where f1, f2 may have different mean values µ1, µ2 and variances σ2
1 , σ

2
2 :

µ = αµ1 + βµ2 ,

σ2 = E
(
(x− E(x))2

)

= E(x2)− µ2

= αE1(x
2) + βE2(x

2)− µ2

= α(µ2
1 + σ2

1) + β(µ2
2 + σ2

2)− µ2

= ασ2
1 + βσ2

2 + αβ(µ1 − µ2)
2 .

Here, E, E1, E2 denote expected values related to the p.d.f.s f , f1, f2. In
the last step the relation α + β = 1 has been used. Of course, the width
increases with the distance of the mean values. The result for σ2 could have
been guessed by considering the limiting cases (µ1 = µ2, σ1 = σ2 = 0).
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3.2.4 Skewness

The skewness coefficient γ1 measures the asymmetry of a distribution with
respect to its mean. It is zero for the normal distribution, but quite sizable
for the exponential distribution. There it has the value γ1 = 2, see Sect. 3.3.4
below.

Definition:
γ1 = E

[
(x− µ)

3
]
/σ3 .

Similarly to the variance, γ1 can be expressed by expected values of powers
of the variate x:

γ1 = E
[
(x− µ)3

]
/σ3

= E
[
x3 − 3µx2 + 3µ2x− µ3

]
/σ3

=
{
E(x3)− 3µ

[
E(x2)− µE(x)

]
− µ3

}
/σ3

=
E(x3)− 3µσ2 − µ3

σ3
.

The skewness coefficient is defined in such a way that it satisfies the re-
quirement of invariance under translation and dilatation of the distribution.
Its square is usually denoted by β1 = γ21 .

3.2.5 Kurtosis (Excess)

A fourth parameter, the kurtosis β2, measures the tails of a distribution.
Definition:

β2 = E
[
(x − µ)4

]
/σ4 .

A kurtosis coefficient or excess γ2,

γ2 = β2 − 3 ,

is defined such that it is equal to zero for the normal distribution which is
used as a reference. (see Sect. 3.6.5).

3.2.6 Discussion

The mean value of a distribution is a so-called position or location parameter,
the standard deviation is a scale parameter . A translation of the variate x→
y = x + a changes the mean value correspondingly, 〈y〉 = 〈x〉 + a. This
parameter is therefore sensitive to the location of the distribution (like the
center of gravity for a mass distribution). The variance (corresponding to the
moment of inertia for a mass distribution), respectively the standard deviation
remain unchanged. A change of the scale (dilatation) x → y = cx entails,
besides 〈y〉 = c〈x〉 also σ(y) = cσ(x). Skewness and kurtosis remain unchanged
under both transformations. They are shape parameters .
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Fig. 3.6. Three distribution with equal mean and variance but different skewness
and kurtosis.

The four parameters mean, variance, skewness, and kurtosis, or equiva-
lently the expected values of x, x2, x3and x4, fix a distribution quite well if in
addition the range of the variates and the behavior of the distribution at the
limits is given. Then the distribution can be reconstructed quite accurately.

Fig. 3.6 shows three probability densities, all with the same mean µ =
0 and standard deviation σ = 1, but different skewness and kurtosis. The
apparently narrower curve has clearly longer tails, as seen in the lower graph
with logarithmic scale.

Mainly in cases, where the type of the distribution is not well known, i.e.
for empirical distributions, other location and scale parameters are common.
These are the mode xmod, the variate value, at which the distribution has
its maximum, and the median, defined as the variate value x0.5, at which
P{x < x0.5} = F (x0.5) = 0.5, i.e. the median subdivides the domain of the
variate into two regions with equal probability of 50%. More generally, we
define a quantile xa of order a by the requirement F (xa) = a.
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A well known example for a median is the half-life t0.5 which is the time
at which 50% of the nuclei of an unstable isotope have decayed. From the
exponential distribution (3.2) follows the relation between the half-life and
the mean lifetime τ

t0.5 = τ ln 2 ≈ 0.693 τ .

The median is invariant under non-linear transformations y = y(x) of the
variate, y0.5 = y(x0.5) while for the mean value µ and the mode xmod this
is usually not the case, µy 6= y(µx), ymod 6= y(xmod). The reason for these
properties is that probabilities but not probability densities are invariant un-
der variate transformations. Thus the mode should not be considered as the
“most probable value”. The probability to obtain exactly the mode value is
zero. To obtain finite probabilities, we have to integrate the p.d.f. over some
range of the variate as is the case for the median.

In statistical analyses of data contaminated by background the sample
median is more “robust” than the sample mean as estimator of the distribution
mean. (see Appendix, Sect. 13.16). Instead of the sample width v, often the
full width at half maximum (f.w.h.m.) is used to characterize the spread of
a distribution. It ignores the tails of the distribution. This makes sense for
empirical distributions, e.g. in the investigation of spectral lines over a sizable
background. For a normal distribution the f.w.h.m. is related to the standard
deviation by

f.w.h.m.gauss ≈ 2.36 σgauss .

This relation is often used to estimate quickly the standard deviation σ for an
empirical distribution given in form of a histogram. As seen from the examples
in Fig.3.6, which, for the same variance, differ widely in their f.w.h.m., this
procedure may lead to wrong results for non-Gaussian distributions.

3.2.7 Examples

In this section we compute expected values of some quantities for different
distributions.

Example 10. Expected values, dice
We have p(k) = 1/6, k = 1, . . . , 6.

〈x〉 = (1 + 2 + 3 + 4 + 5 + 6) 1/6 = 7/2 ,

〈x2〉 = (1 + 4 + 9 + 16 + 25 + 36) 1/6 = 91/6 ,

σ2 = 91/6− (7/2)2 = 35/12 ,

σ ≈ 1.71 ,

γ1 = 0 .

The expected value has probability zero.
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Example 11. Expected values, lifetime distribution f(t) = 1
τ e−t/τ , t ≥ 0,

〈tn〉 =
∫ ∞

0

tn

τ
e−t/τ dt = n! τn ,

〈t〉 = τ ,

〈t2〉 = 2τ2 ,

〈t3〉 = 6τ3 ,

σ = τ ,

γ1 = 2 .

Example 12. Mean value of the volume of a sphere with a normally distributed
radius

The normal distribution is given by

f(x) =
1√
2πs

e−(x−x0)
2/(2s2) .

It is symmetric with respect to x0. Thus the mean value is µ = x0, and the
skewness is zero. For the variance we obtain

σ2 =
1√
2πs

∫ ∞

−∞
dx(x− x0)

2 e−(x−x0)
2/(2s2)

= s2 .

The parameters x0, s of the normal distribution are simply the mean value
and the standard deviation µ, σ, and the p.d.f. with these parameters is abbre-
viated as N (x|µ, σ). We now assume that the radius r0 of a sphere is smeared
according to a normal distribution around the mean value r0 with standard
deviation s. This assumption is certainly only approximately valid for r0 ≫ s,
since negative radii are of course impossible. Let us calculate the expected
value of the volume V (r) = 4/3 πr3:

〈V 〉 =
∫ ∞

−∞
dr V (r)f(r)

=
4

3

π√
2πs

∫ ∞

−∞
dr r3e−

(r−r0)2

2 s2

=
4

3

π√
2πs

∫ ∞

−∞
dz (z + r0)

3e−
z2

2 s2
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=
4

3

π√
2πs

∫ ∞

−∞
dz (z3 + 3z2r0 + 3zr20 + r30)e

− z2

2 s2

=
4

3
π(r30 + 3s2r0) .

The mean volume is larger than the volume calculated using the mean radius.

Example 13. Playing poker until the bitter end
Two players are equally clever, but dispose of different capital K1, respec-

tivelyK2 . They play, until one of the players is left without money. We denote
the probabilities for player 1, (2) to win finally with w1 (w2). The probability,
that one of the two players wins, is unity5:

w1 + w2 = 1 .

Player 1 gains the capital K2 with probability w1 and looses K1 with proba-
bility w2. Thus his mean gain is w1K2 − w2K1. The same is valid for player
two, only with reversed sign. As both players play equally well, the expected
gain should be zero for both

w1K2 − w2K1 = 0 .

From the two relation follows:

w1 =
K1

K1 +K2
; w2 =

K2

K1 +K2
.

The probability to win is proportional to the capital disposed of. However,
the greater risk of the player with the smaller capital comes along with the
possibility of a higher gain.

Example 14. Diffusion (random walk)
A particle is moving stochastically according to the Brownian motion,

where every step is independent of the previous ones (Fig. 3.7). The starting
point has a distance d1 from the wall 1 and d2 from the opposite wall 2. We
want to know the probabilities w1, w2 to hit wall 1 or 2. The direct calculation
of w1 and w2 is a quite involved problem. However, using the properties of
expected values, it can be solved quite simply, without even knowing the
probability density. The problem here is completely analogous to the previous
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Fig. 3.7. Brownian motion.

one:
w1 =

d2
d1 + d2

, w2 =
d1

d1 + d2
.

Example 15. Mean kinetic energy of a gas molecule
The velocity of a particle in x-direction vx is given by a normal distribution

f(vx) =
1

s
√
2π

e−v2
x/(2s

2) ,

with
s2 =

kT

m
,

where k, T , m are the Boltzmann constant, the temperature, and the mass of
the molecule. The kinetic energy is

ǫkin =
m

2
(v2x + v2y + v2z)

with the expected value
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E(ǫkin) =
m

2

(
E(v2x) + E(v2y) + E(v2z)

)
=

3m

2
E(v2x),

where in the last step the velocity distribution was assumed to be isotropic.
It follows:

E(v2x) =
1

s
√
2π

∫ ∞

−∞
dvxv

2
xe

−v2
x/(2s

2) = s2 = kT/m,

E(ǫkin) =
3

2
kT.

Example 16. Reading accuracy of a digital clock
For an accurate digital clock which displays the time in seconds, the devi-

ation of the reading from the true time is maximally ± 0.5 seconds. After the
reading, we may associate to the true time a uniform distribution with the
actual reading as its central value. To simplify the calculation of the variance,
we set the reading equal to zero. We thus have

f(t) =

{
1 if − 0.5 < t < 0.5
0 else

and

σ2 =

∫ 0.5

−0.5

t2 dt =
1

12
. (3.16)

The root mean square measurement uncertainty (standard deviation) is
σ = 1 s/

√
12 ≈ 0.29 s. The variance of a uniform distribution, which cov-

ers a range of a, is accordingly σ2 = a2/12. This result is widely used for
the error estimation of digital measurements. A typical example from particle
physics is the position measurement of ionizing particles with wire chambers.

Example 17. Efficiency fluctuations of a detector
A counter registers on average the fraction ε = 0.9 of all traversing elec-

trons. How large is the relative fluctuation σ of the the registered number N1

for N particles passing the detector? The exact solution of this problem re-
quires the knowledge of the probability distribution, in this case the binomial
distribution. But also without this knowledge we can derive the dependence
on N with the help of relation (3.13):
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σ

(
N1

N

)
∼ 1√

N
.

The whole process can be split into single processes, each being associated
with the passing of a single particle. Averaging over all processes leads to the
above result. (The binomial distribution gives σ(N1/N) =

√
ε(1− ε)/N , see

Sect. 3.6.1).

All stochastic processes, which can be split into N identical, independent
elementary processes, show the typical 1/

√
N behavior of their relative fluc-

tuations.

3.3 Moments and Characteristic Functions

The characteristic quantities of distributions considered up to now, mean
value, variance, skewness, and kurtosis, have been calculated from expected
values of the lower four powers of the variate. Now we will investigate the
expected value of arbitrary powers of the random variable x for discrete and
continuous probability distributions p(x), f(x), respectively. They are called
moments of the distribution. Their calculation is particularly simple, if the
characteristic function of the distribution is known. The latter is just the
Fourier transform of the distribution.

3.3.1 Moments

Definition: The n-th moments of f(x), respectively p(x) are

µn = E(xn) =

∫ ∞

−∞
xnf(x) dx ,

and

µn = E(xn) =
∞∑

k=1

xnkp(xk)

where n is a natural number6.
Apart from these moments, called moments about the origin, we consider

also the moments about an arbitrary point a where xn is replaced by (x −
a)n. Of special importance are the moments about the expected value of the
distribution. They are called central moments.

Definition: The n-th central moment about µ = µ1 of f(x), p(x) is:

6In one dimension the zeroth moment is irrelevant. Formally, it is equal to one.
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µ′
n = E ((x− µ)n) =

∫ ∞

−∞
(x− µ)nf(x) dx ,

respectively

µ′
n = E ((x− µ)n) =

∞∑

k=1

(xk − µ)np(xk) .

Accordingly, the first central moment is zero: µ′
1 = 0. Generally, the moments

are related to the expected values introduced before as follows:
First central moment: µ′

1 = 0
Second central moment: µ′

2 = σ2

Third central moment: µ′
3 = γ1σ

3

Fourth central moment: µ′
4 = β2σ

4

Under conditions usually met in practise, a distribution is uniquely fixed
by its moments. This means, if two distributions have the same moments in
all orders, they are identical. We will present below plausibility arguments for
the validity of this important assertion.

3.3.2 Characteristic Function

We define the characteristic function φ(t) of a distribution as follows:
Definition: The characteristic function φ(t) of a probability density f(x)

is

φ(t) = E(eitx) =

∫ ∞

−∞
eitxf(x) dx , (3.17)

and, respectively for a discrete distribution p(xk)

φ(t) = E(eitx) =
∞∑

k=1

eitxkp(xk) . (3.18)

For continuous distributions, φ(t) is the Fourier transform of the p.d.f..
From the definition of the characteristic function follow several useful prop-

erties.
φ(t) is a continuous, in general complex-valued function of t, −∞ < t <∞

with |φ(t)| ≤ 1, φ(0) = 1 and φ(−t) = φ∗(t). φ(t) is a real function, if and
only if the distribution is symmetric, f(x) = f(−x). Especially for continuous
distributions there is limt→∞ φ(t) = 0. A linear transformation of the variate
x→ y = ax+ b induces a transformation of the characteristic function of the
form

φx(t) → φy(t) = eibtφx(at) . (3.19)

Further properties are found in handbooks on the Fourier transform.
The transformation is invertible: With (3.17) it is
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∫ ∞

−∞
φ(t)e−itx dt =

∫ ∞

−∞
e−itx

∫ ∞

−∞
eitx

′

f(x′) dx′ dt

=

∫ ∞

−∞
f(x′)

(∫ ∞

−∞
eit(x

′−x) dt

)
dx′

= 2π

∫ ∞

−∞
f(x′) δ(x′ − x) dx′

= 2πf(x) ,

f(x) =
1

2π

∫ ∞

−∞
φ(t)e−itx dt .

The same is true for discrete distributions, as may be verified by substituting
(3.18):

p(xk) = lim
T→∞

1

2T

∫ T

−T

φ(t)e−itxk dt .

In all cases of practical relevance, the probability distribution is uniquely
determined by its characteristic function.

Knowing the characteristic functions simplifies considerably the calcula-
tion of moments and of the distributions of sums or linear combinations of
variates. For continuous distributions moments are found by n-fold derivation
of φ(t):

dnφ(t)

dtn
=

∫ ∞

−∞
(ix)neitxf(x) dx .

With t = 0 follows

dnφ(0)

dtn
=

∫ ∞

−∞
(ix)nf(x) dx = inµn . (3.20)

The Taylor expansion of φ(t),

φ(t) =

∞∑

n=0

1

n!
tn

dnφ(0)

dtn
=

∞∑

n=0

1

n!
(it)nµn , (3.21)

generates the moments of the distribution.
The characteristic function φ(t) is closely related to the moment generating

function which is defined throughM(t) = E(etx). In some textbooksM is used
instead of φ for the evaluation of the moments.

We realize that the moments determine φ uniquely, and, since the Fourier
transform is uniquely invertible, the moments also determine the probability
density, as stated above.

In the same way we obtain the central moments:

φ′(t) = E(eit(x−µ)) =

∫ ∞

−∞
eit(x−µ)f(x) dx = e−itµφ(t) , (3.22)
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dnφ′(0)

dtn
= inµ′

n . (3.23)

The Taylor expansion is

φ′(t) =
∞∑

n=0

1

n!
(it)nµ′

n. (3.24)

The results (3.20), (3.21), (3.23), (3.24) remain valid also for discrete distri-
butions. The Taylor expansion of the right hand side of relation (3.22) allows
us to calculate the central moments from the moments about the origin and
vice versa:

µ′
n =

n∑

k=0

(−1)k
(
n

k

)
µn−kµ

k , µn =

n∑

k=0

(
n

k

)
µ′
n−kµ

k .

Note, that for n = 0 , µ0 = µ′
0 = 1.

In some applications we have to compute the distribution f(z) where z
is the sum z = x + y of two independent random variables x and y with the
probability densities g(x) and h(y). The result is given by the convolution
integral, see Sect. 3.5.4,

f(z) =

∫
g(x)h(z − x) dx =

∫
h(y)g(z − y) dy

which often is difficult to evaluate analytically. It is simpler in most situations
to proceed indirectly via the characteristic functions φg(t), φh(t) and φf (t) of
the three p.d.f.s which obey the simple relation

φf (t) = φg(t)φh(t) . (3.25)

Proof:
Because of (3.10) we find for expected values

φf (t) = E(eit(x+y))

= E(eitxeity)

= E(eitx)E(eity)

= φg(t)φh(t) .

The third step requires the independence of the two variates. Applying the
inverse Fourier transform to φf (t), we get

f(z) =
1

2π

∫
e−itzφf (t) dt .

The solution of this integral is not always simple. For some functions it can
be found in tables of the Fourier transform.

In the general case where x is a linear combination of independent random
variables, x =

∑
cjxj , we find in an analogous way:

φ(t) =
∏

φj(cjt) .
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3.3.3 Cumulants

As we have seen, the characteristic function simplifies in many cases the cal-
culation of moments and the convolution of two distributions. Interesting re-
lations between the moments of the three distributions g(x), h(y) and f(z)
with z = x+ y are obtained from the expansion of the logarithm K(t) of the
characteristic functions into powers of it:

K(t) = lnφ(t) = ln 〈exp(itx)〉 = κ1(it) + κ2
(it)2

2!
+ κ3

(it)3

3!
+ · · · .

Since φ(0) = 1 there is no constant term. The coefficients κi, defined in this
way, are called cumulants or semiinvariants. The denotation semiinvariant
indicates that the cumulants κi, with the exception of κ1, remain invariant
under the translations x→ x+ b of the variate x. Of course, the cumulant of
order i can be expressed by moments about the origin or by central moments
µk, µ

′
k up to the order i. We do not present the general analytic expressions

for the cumulants which can be derived from the power expansion of expK(t)
and give only the remarkably simple relations for i ≤ 6 as a function of the
central moments:

κ1 = µ1 ≡ µ = 〈x〉 ,
κ2 = µ′

2 ≡ σ2 = var(x) ,

κ3 = µ′
3 ,

κ4 = µ′
4 − 3µ′

2
2 ,

κ5 = µ′
5 − 10µ′

2µ
′
3 ,

κ6 = µ′
6 − 15µ′

2µ
′
4 − 10µ′

3
2 + 30µ′

2
3 . (3.26)

Besides expected value and variance, also skewness and excess are easily ex-
pressed by cumulants:

γ1 =
κ3

κ
3/2
2

, γ2 =
κ4
κ22

. (3.27)

Since the product of the characteristic functions φ(t) = φ(1)(t)φ(2)(t) turns
into the sum K(t) = K(1)(t) + K(2)(t), the cumulants are additive, κi =

κ
(1)
i +κ

(2)
i . In the general case, where x is a linear combination of independent

variates, x =
∑
cjx

(j), the cumulants of the resulting x-distribution, κi, are
derived from those of the various x(j) distributions according to

κi =
∑

j

cijκ
(j)
i . (3.28)

We have met examples for this useful relation already in Sect. 3.2.3 where
we have computed the variance of the distribution of a sum of variates. We
will use it again in the discussion of the Poisson distribution in the following
example and in Sect. 3.6.3.
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3.3.4 Examples

Example 18. Characteristic function of the Poisson distribution
The Poisson distribution

Pλ(k) =
λk

k!
e−λ

has the characteristic function

φ(t) =
∞∑

k=0

eitk
λk

k!
e−λ

which can be simplified to

φ(t) =

∞∑

k=0

1

k!
(eitλ)ke−λ

= exp(eitλ)e−λ

= exp
(
λ(eit − 1)

)
,

from which we derive the moments:

dφ

dt
= exp

(
λ(eit − 1)

)
λieit ,

dφ(0)

dt
= iλ ,

d2φ

dt2
= exp

(
λ(eit − 1)

) (
(λieit)2 − λeit

)
,

d2φ(0)

dt2
= −(λ2 + λ) .

Thus, the two lowest moments are

µ = 〈k〉 = λ ,

µ2 = 〈k2〉 = λ2 + λ

and the mean value and the standard deviation are given by

〈k〉 = λ ,

σ =
√
λ .

Expanding

K(t) = lnφ(t) = λ(eit − 1) = λ[(it) +
1

2!
(it)2 +

1

3!
(it)3 + · · ·] ,
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we find for the cumulants the simple result

κ1 = κ2 = κ3 = · · · = λ .

The calculation of the lower central moments is then trivial. For example,
skewness and excess are simply given by

γ1 = κ3/κ
3/2
2 = 1/

√
λ , γ2 = κ4/κ

2
2 = 1/λ .

Example 19. Distribution of a sum of independent, Poisson distributed vari-
ates

We start from the distributions

P1(k1) = Pλ1(k1),

P2(k2) = Pλ2(k2)

and calculate the probability distribution P(k) for k = k1+k2. When we write
down the characteristic function for P(k),

φ(t) = φ1(t)φ2(t)

= exp
(
λ1(e

it − 1)
)
exp

(
λ2(e

it − 1)
)

= exp
(
(λ1 + λ2)(e

it − 1)
)
,

we observe that φ(t) is just the characteristic function of the Poisson distribu-
tion Pλ1+λ2(k). The sum of two Poisson distributed variates is again Poisson
distributed, the mean value being the sum of the mean values of the two
original distributions. This property is sometimes called stability.

Example 20. Characteristic function and moments of the exponential distri-
bution

For the p.d.f.
f(x) = λe−λx

we obtain the characteristic function

φ(t) =

∫ ∞

0

eitx λe−λx dx

=
λ

−λ+ it
e(−λ+it)x

∣∣∞
0
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=
λ

λ− it

and deriving it with respect to t, we get from

dφ(t)

dt
=

iλ

(λ− it)2
,

dnφ(t)

dtn
=

n! inλ

(λ− it)n+1
,

dnφ(0)

dtn
=
n! in

λn

the moments of the distribution:

µn = n!λ−n .

From these we obtain the mean value

µ = 1/λ ,

the standard deviation
σ =

√
µ2 − µ2 = 1/λ ,

and the skewness
γ1 = (µ3 − 3σ2µ− µ3)/σ3 = 2 .

Contrary to the Poisson example, here we do not gain in using the character-
istic function, since the moments can be calculated directly:

∫ ∞

0

xnλe−λxdx = n!λ−n .

3.4 Transformation of Variables

In one of the examples of Sect. 3.2.7 we had calculated the expected value
of the energy from the distribution of velocity. Of course, for certain appli-
cations it may be necessary to know not only the mean value of the energy
but its complete distribution. To derive it, we have to perform a variable
transformation.

For discrete distributions, this is a trivial exercise: The probability that
the event “u has the value u(xk)” occurs, where u is an uniquely invertible
function of x, is of course the same as for “x has the value xk”:

P {u = u(xk)} = P {x = xk} .
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For continuous distributions, the probability densities are transformed ac-
cording to the usual rules as applied for example for mass or charge densities.

3.4.1 Calculation of the Transformed Density

We consider a probability density f(x) and a monotone, i.e. uniquely invertible
function u(x). We we are interested in the p.d.f. of u, g(u) (Fig. 3.8).

The relation P {x1 < x < x2} = P {u1 < u < u2} with u1 = u(x1), u2 =
u(x2) has to hold, and therefore

P {x1 < x < x2} =

∫ x2

x1

f(x′) dx′

=

∫ u2

u1

g(u′) du′ .

This may be written in differential form as

|g(u)du| = |f(x)dx| , (3.29)

g(u) = f(x)

∣∣∣∣
dx

du

∣∣∣∣ .

Taking the absolute value guarantees the positivity of the probability density.
Integrating (3.29), we find numerical equality of the cumulative distribution
functions,F (x) = G(u(x)).

If u(x) is not a monotone function, then, contrary to the above assump-
tion, x(u) is not a unique function (Fig. 3.9) and we have to sum over the
contributions of the various branches of the inverse function:

g(u) =

{
f(x)

∣∣∣∣
dx

du

∣∣∣∣
}

branch1

+

{
f(x)

∣∣∣∣
dx

du

∣∣∣∣
}

branch2

+ · · · . (3.30)

Example 21. Calculation of the p.d.f. for the volume of a sphere from the p.d.f.
of the radius

Given a uniform distribution for the radius r

f(r) =

{
1/(r2 − r1) if r1 < r < r2
0 else .

we ask for the distribution g(V ) of the volume V (r). With

g(V ) = f(r)

∣∣∣∣
dr

dV

∣∣∣∣ ,
dV

dr
= 4πr2

we get

g(V ) =
1

r2 − r1

1

4π r2
=

1

V
1/3
2 − V

1/3
1

1

3
V −2/3.
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Fig. 3.8. Transformation of a probability density f(x) into g(u) via u(x). The
shaded areas are equal.
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Fig. 3.9. Transformation of a p.d.f. f(x) into g(u) with u = x2. The sum of the
shaded areas below f(x) is equal to the shaded area below g(u).
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Fig. 3.10. Transformation of a uniform distribution of the radius into the distribu-
tion of the volume of a sphere.

Example 22. Distribution of the quadratic deviation
For a normal distributed variate x with mean value x0 and variance s2 we

ask for the distribution g(u), where

u = (x − x0)
2/s2

is the normalized quadratic deviation. The expected value of u is unity, since
the expected value of (x − µ)2 per definition equals σ2 for any distribution.
The function x(u) has two branches. With

f(x) =
1

s
√
2π

e−(x−x0)
2/(2s2)

and
dx

du
=

s

2
√
u

we find

g(u) =

{
1

2
√
2πu

e−u/2

}

branch1

+

{
· · ·
}

branch2

.

The contributions from both branches are the same, thus

g(u) =
1√
2πu

e−u/2 . (3.31)

The function g(u) is the so-called χ2 - distribution (chi-square distribution)
for one degree of freedom.
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Example 23. Distribution of kinetic energy in the one-dimensional ideal gas
Be v the velocity of a particle in x direction with probability density

f(v) =

√
m

2πkT
e−mv2/(2kT ).

Its kinetic energy is E = v2/(2m), for which we want to know the distribution
g(E). The function v(E) has again two branches. We get, in complete analogy
to the example above,

dv

dE
=

1√
2mE

,

g(E) =

{
1

2
√
πkTE

e−E/kT

}

branch1

+

{
· · ·
}

branch2

.

The contributions of both branches are the same, hence

g(E) =
1√

πkTE
e−E/kT .

3.4.2 Determination of the Transformation Relating two
Distributions

In the computer simulation of stochastic processes we are frequently con-
fronted with the problem that we have to transform the uniform distribution
of a random number generator into a desired distribution, e.g. a normal or
exponential distribution. More generally, we want to obtain for two given dis-
tributions f(x) and g(u) the transformation u(x) connecting them.

We have ∫ x

−∞
f(x′) dx′ =

∫ u

−∞
g(u′) du′ .

Integrating, we get F (x) and G(u):

F (x) = G(u) ,

u(x) = G−1 (F (x)) .

G−1 is the inverse function of G. The problem can be solved analytically, only
if f and g can be integrated analytically and if the inverse function of G can
be derived.

Let us consider now the special case mentioned above, where the primary
distribution f(x) is uniform, f(x) = 1 for 0 ≤ x ≤ 1. This implies F (x) = x
and
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G(u) = x,

u = G−1(x) . (3.32)

Example 24. Generation of an exponential distribution starting from a uni-
form distribution

Given are the p.d.f.s

f(x) =

{
1 for 0 < x < 1
0 else ,

g(u) =

{
λe−λu for 0 < u
0 else .

The desired transformation u(x), as demonstrated above in the general case,
is obtained by integration and inversion:

∫ u

0

g(u′) du′ =

∫ x

0

f(x′) dx′ ,

∫ u

0

λe−λu′

du′ =

∫ x

0

f(x′) dx′ ,

1− e−λu = x ,

u = − ln(1− x)/λ .

We could have used, of course, also the relation (3.32) directly. Obviously in
the last relation we could substitute 1 − x by x, since both quantities are
uniformly distributed. When we transform the uniformly distributed random
numbers x delivered by our computer according to the last relation into the
variable u, the latter will be exponentially distributed. This is the usual way
to simulate the lifetime distribution of instable particles and other decay pro-
cesses (see Chap. 5).

3.5 Multivariate Probability Densities

The results of the last sections are easily extended to multivariate distribu-
tions. We restrict ourself here to the case of continuous distributions7.

7An example of a multivariate discrete distribution will be presented in Sect.
3.6.2.
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3.5.1 Probability Density of two Variables

Definitions

As in the one-dimensional case we define an integral distribution function
F (x, y), now taken to be the probability to find values of the variates x′, y′

smaller than x, respectively y

F (x, y) = P {(x′ < x) ∩ (y′ < y)} . (3.33)

The following properties of this distribution function are satisfied:

F (∞,∞) = 1,

F (−∞, y) = F (x,−∞) = 0 .

In addition, F has to be a monotone increasing function of both variables. We
define a two-dimensional probability density, the so-called joined probability
density, as the partial derivation of f with respect to the variables x, y:

f(x, y) =
∂2F

∂x ∂y
.

From these definitions follows the normalization condition
∫ ∞

−∞

∫ ∞

−∞
f(x, y) dxdy = 1 .

The projections fx(x) respectively fy(y) of the joined probability density onto
the coordinate axes are called marginal distributions :

fx(x) =

∫ ∞

−∞
f(x, y) dy ,

fy(y) =

∫ ∞

−∞
f(x, y) dx .

The marginal distributions are one-dimensional (univariate) probability den-
sities.

The conditional probability densities for fixed values of the second variate
and normalized with respect to the first one are denoted by fx(x|y) and fy(y|x)
for given values of y or x, respectively. We have the following relations:

fx(x|y) =
f(x, y)∫∞

−∞ f(x, y) dx

=
f(x, y)

fy(y)
, (3.34)

fy(y|x) =
f(x, y)∫∞

−∞ f(x, y) dy

=
f(x, y)

fx(x)
. (3.35)
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Together, (3.34) and (3.35) express again Bayes’ theorem:

fx(x|y)fy(y) = fy(y|x)fx(x) = f(x, y) . (3.36)

Example 25. Superposition of two two-dimensional normal distributions8

The marginal distributions fx(x), fy(y) and the conditional p.d.f.

fy(y|x = 1)

for the joined two-dimensional p.d.f.

f(x, y) =
1

2π

[
0.6 exp

(
−x

2

2
− y2

2

)
+

0.4√
3
exp

(
− (x− 2)2

3
− (y − 2.5)2

4

)]

are

fx(x) =
1√
2π

[
0.6 exp

(
−x

2

2

)
+

0.4√
1.5

exp

(
− (x− 2)2

3

)]
,

fy(y) =
1√
2π

[
0.6 exp

(
−y

2

2

)
+

0.4√
2
exp

(
− (y − 2.5)2

4

)]
,

f(y, x = 1) =
1

2π

[
0.6 exp

(
−1

2
− y2

2

)
+

0.4√
3
exp

(
−1

3
− (y − 2.5)2

4

)]
,

fy(y|x = 1) = 0.667

[
0.6 exp

(
−1

2
− y2

2

)
+

0.4√
3
exp

(
−1

3
− (y − 2.5)2

4

)]
.

fy(y|1) and f(y, 1) differ in the normalization factor, which results from the
requirement

∫
fy(y|1) dy = 1.

Graphical Presentation

Fig. 3.11 shows a similar superposition of two Gaussians together with its
marginal distributions and one conditional distribution. The chosen form of
the graphical representation as a contour plot for two-dimensional distribu-
tions is usually to be favored over three-dimensional surface plots.

3.5.2 Moments

Analogously to the one-dimensional case we define moments of two-dimensional
distributions:

µx = E(x) ,

µy = E(y) ,
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Fig. 3.11. Two-dimensional probability density. The lower left-hand plot shows the
conditional p.d.f. of y for x = 2. The lower curve is the p.d.f. f(y, 2). It corresponds
to the dashed line in the upper plot. The right-hand side displays the marginal
distributions.

σ2
x = E

[
(x− µx)

2
]
,

σ2
y = E

[
(y − µy)

2
]
,

σxy = E [(x− µx)(y − µy)] ,

µlm = E(xlym),

µ′
lm = E

[
(x− µx)

l(y − µy)
m
]
.

Explicitly,

µx =

∫ ∞

−∞

∫ ∞

−∞
xf(x, y) dxdy =

∫ ∞

−∞
xfx(x) dx ,

µy =

∫ ∞

−∞

∫ ∞

−∞
yf(x, y) dxdy =

∫ ∞

−∞
yfy(y) dy ,

µlm =

∫ ∞

−∞

∫ ∞

−∞
xlymf(x, y) dxdy ,
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Fig. 3.12. Curves f(x, y) = const. with different correlation coefficients.

µ′
lm =

∫ ∞

−∞

∫ ∞

−∞
(x− µx)

l(y − µy)
mf(x, y) dxdy .

Obviously, µ′
x, µ′

y (= µ′
10, µ

′
01) are zero.

Correlations, Covariance, Independence

The mixed moment σxy is called covariance of x and y, and sometimes also
denoted as cov(x, y). If σxy is different from zero, the variables x and y are
said to be correlated. The mean value of y depends on the value chosen for x
and vice versa. Thus, for instance, the weight of a man is positively correlated
with its height.

The degree of correlation is quantified by the dimensionless quantity

ρxy =
σxy
σxσy

,

the correlation coefficient. Schwarz’ inequality insures |ρxy| ≤ 1.
Figure 3.12 shows lines of constant probability for various kinds of cor-

related distributions. In the extreme case |ρ| = 1 the variates are linearly
related.

If the correlation coefficient is zero, this does not necessarily mean sta-
tistical independence of the variates. The dependence may be more subtle,
as we will see shortly. As defined in Chap. 2, two random variables x, y are
called independent or orthogonal, if the probability to observe one of the two
variates x, y is independent from the value of the other one, i.e. the condi-
tional distributions are equal to the marginal distributions, fx(x|y) = fx(x),
fy(y|x) = fy(y). Independence is realized only if the joined distribution f(x, y)
factorizes into its marginal distributions (see Chap. 2):

f(x, y) = fx(x)fy(y) .

Clearly, correlated variates cannot be independent.
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Example 26. Correlated variates
A measurement uncertainty of a point in the xy-plane follows independent

normal distributions in the polar coordinates r, ϕ (the errors are assumed
small enough to neglect the regions r < 0 and |ϕ| > π ). A line of constant
probability in the xy-plane would look similar to the second graph of Fig.
3.12. The cartesian coordinates are negatively correlated, although the original
polar coordinates have been chosen as uncorrelated, in fact they are even
independent.

Example 27. Dependent variates with correlation coefficient zero
For the probability density

f(x, y) =
1

2π
√
x2 + y2

e−
√

x2+y2

we find σxy = 0. The curves f = const. are circles, but x and y are not
independent, the conditional distribution fy(y|x) of y depends on x.

3.5.3 Transformation of Variables

The probability densities f(x, y) and g(u, v) are transformed via the transfor-
mation functions u(x, y), v(x, y), analogously to the univariate case

g(u, v) du dv = f(x, y) dxdy ,

g(u, v) = f(x, y)

∣∣∣∣
∂(x, y)

∂(u, v)

∣∣∣∣ ,

with the Jacobian determinant replacing the differential quotient dx/du.

Example 28. Transformation of a normal distribution from cartesian into polar
coordinates

A two-dimensional normal distribution

f(x, y) =
1

2π
e−(x2+y2)/2

is to be transformed into polar coordinates
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x = r cosϕ ,

y = r sinϕ .

The Jacobian is
∂(x, y)

∂(r, ϕ)
= r .

We get

g(r, ϕ) =
1

2π
re−r2/2

with the marginal distributions

gr =

∫ 2π

0

g(r, ϕ) dϕ = re−r2/2 ,

gϕ =

∫ ∞

0

g(r, ϕ) dr =
1

2π
.

The joined distribution factorizes into its marginal distributions (Fig. 3.13).
Not only x, y, but also r, ϕ are independent.

3.5.4 Reduction of the Number of Variables

Frequently, we are faced with the problem to find from a given joined distri-
bution f(x, y) the distribution g(u) of a dependent random variable u(x, y).
We can reduce it to that of a usual transformation, by inventing a second
variable v = v(x, y), performing the transformation f(x, y) −→ h(u, v) and,
finally, by calculating the marginal distribution in u,

g(u) =

∫ ∞

−∞
h(u, v) dv .

In most cases, the choice v = x is suitable. More formally, we might use the
equivalent reduction formula

g(u) =

∫ ∞

−∞
f(x, y)δ (u− u(x, y)) dxdy . (3.37)

For the distribution of a sum u = x+ y of two independent variates x, y,
i.e. f(x, y) = fx(x)fy(y), after integration over y follows

g(u) =

∫
f(x, u− x) dx =

∫
fx(x)fy(u− x) dx .

This is called the convolution integral or convolution product of fx and fy.
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Example 29. Distribution of the difference of two digitally measured times
The true times t1, t2 are taken to follow a uniform distribution

f(t1, t2) =

{
1/∆2 for |t1 − T1| , |t2 − T2| < ∆/2
0 else

around the readings T1, T2. We are interested in the probability density of the
difference t = t1−t2. To simplify the notation, we choose the case T1 = T2 = 0
and ∆ = 2 (Fig. 3.14). First we transform the variables according to

t = t1 − t2 ,

t1 = t1

with the Jacobian
∂(t1, t2)

∂(t1, t)
= 1 .

The new distribution is also uniform:

h(t1, t) = f(t1, t2) = 1/∆2 ,

and has the boundaries shown in Fig. 3.14. The form of the marginal distri-
bution is found by integration over t1, or directly by reading it off from the
figure:

g(t) =





( t− T +∆)/∆2 for t− T < 0
(−t+ T +∆)/∆2 for 0 < t− T
0 else .

where T = T1 − T2 now for arbitrary values of T1 and T2.

Example 30. Distribution of the transverse momentum squared of particle
tracks

The projections of the momenta are assumed to be independently normally
distributed,

f(px, py) =
1

2πs2
e−(p2

x+p2
y)/(2s

2) ,

with equal variances
〈
p2x
〉
=
〈
p2y
〉
= s2. For the transverse momentum squared

we set q = p2 and calculate its distribution. We transform the distributions
into polar coordinates

px =
√
q cosϕ ,

py =
√
q sinϕ
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with
∂(px, py)

∂(q, ϕ)
=

1

2

and obtain
h(q, ϕ) =

1

4πs2
e−q/(2s2)

with the marginal distribution

hq(q) =

∫ 2π

0

1

4πs2
e−q/(2s2) dϕ

=
1

2s2
e−q/(2s2) ,

g(p2) =
1

〈p2〉e
−p2/〈p2〉 .

The result is an exponential distribution in p2 with mean
〈
p2
〉
=
〈
p2x
〉
+
〈
p2y
〉
.

Example 31. Quotient of two normally distributed variates
For variates x, y, independently and identically normally distributed, i.e.

f(x, y) = f(x)f(y) =
1

2π
exp(−x

2 + y2

2
) ,

we want to find the distribution g(u) of the quotient u = y/x. Again, we
transform first into new variates u = y/x , v = x, or, inverted, x = v , y = uv
and get

h(u, v) = f(x(u, v), y(u, v))
∂(x, y)

∂(u, v)
,

with the Jacobian
∂(x, y)

∂(u, v)
= −v ,

hence

g(u) =

∫
h(u, v) dv

=
1

2π

∫ ∞

−∞
exp(−v

2 + u2v2

2
)|v| dv

=
1

π

∫ ∞

0

e−(1+u2)z dz

=
1

π

1

1 + u2
,
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where the substitution z = v2/2 has been used. The result g(u) is the Cauchy
distribution (see Sect. 3.6.9). Its long tails are caused here by the finite proba-
bility of arbitrary small values in the denominator. This effect is quite impor-
tant in experimental situations when we estimate the uncertainty of quantities
which are the quotients of normally distributed variates in cases, where the
p.d.f. in the denominator is not negligible at the value zero.

The few examples given above should not lead to the impression that trans-
formations of variates always yield more or less simple analytical expressions
for the resulting distributions. This is not the rule, but rather the exception.
However, as we will learn in Chap. 5, a simple, straight forward numerical
solution is provided by Monte Carlo methods.

3.5.5 Determination of the Transformation between two
Distributions

As in the one-dimensional case, for the purpose of simulation, we frequently
need to generate some required distribution from the uniformly distributed
random numbers delivered by the computer. The general method of integra-
tion and inversion of the cumulative distribution can be used directly, only if
we deal with independent variates. Often, a transformation of the variates is
helpful. We consider here a special example, which we need later in Chap. 5.

Example 32. Generation of a two-dimensional normal distribution starting
from uniform distributions

We use the result from example 28 and start with the representation of
the two-dimensional Gaussian in polar coordinates

g(ρ, ϕ) dρ dϕ =
1

2π
dϕρ e−ρ2/2 dρ ,

which factorizes in ϕ and ρ. With two in the interval [0, 1] uniformly dis-
tributed variates r1, r2, we obtain the function ρ(r1):

∫ ρ

0

ρ′e−ρ′2/2 dρ′ = r1 ,

−e−ρ′2/2
∣∣∣
ρ

0
= r1 ,

1− e−ρ2/2 = r1 ,

ρ =
√
−2 ln(1− r1) .

In the same way we get ϕ(r2):
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ϕ = 2πr2 .

Finally we find x and y:

x = ρ cosϕ =
√
−2 ln(1− r1) cos(2πr2) , (3.38)

y = ρ sinϕ =
√
−2 ln(1− r1) sin(2πr2) . (3.39)

These variables are independent and distributed normally about the origin
with variance unity:

f(x, y) =
1

2π
e−(x2+y2)/2 .

(We could replace 1− r1 by r1, since 1− r1 is uniformly distributed as well.)

3.5.6 Distributions of more than two Variables

It is not difficult to generalize the relations just derived for two variables to
multivariate distributions, of N variables. We define the distribution function
F (x1, . . . , xN ) as the probability to find values of the variates smaller than
x1, . . . , xN ,

F (x1, . . . , xN ) = P {(x′1 < x) ∩ · · · ∩ (x′N < xN )} ,

and the p.d.f.

f(x1, . . . , xN ) =
∂NF

∂x1, . . . , ∂xN
.

Often it is convenient to use the vector notation, F (x), f(x) with

x = {x1, x2, . . . , xN} .

These variate vectors can be represented as points in an N -dimensional space.
The p.d.f. f(x) can also be defined directly, without reference to the dis-

tribution function F (x), as the density of points at the location x, by setting

f(x1, . . . xN )dx1 · · · dxN = dP{(x1 −
dx1
2

≤ x′1 ≤ x1 +
dx1
2

) ∩ · · ·

· · · ∩ (xN − dxN
2

≤ x′N ≤ xN +
dxN
2

)}

Expected Values and Correlation Matrix

The expected value of a function u(x) is

E(u) =

∫ ∞

−∞
· · ·
∫ ∞

−∞
u(x)f(x)

N∏

i=1

dxi .
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Because of the additivity of expected values this relation also holds for vector
functions u(x).

The dispersion of multivariate distributions is now described by the so-
called covariance matrix C:

Cij = 〈(xi − 〈xi〉)(xj − 〈xj〉)〉 = 〈xixj〉 − 〈xi〉〈xj〉 .
The correlation matrix is given by

ρij =
Cij√
CiiCjj

.

Transformation of Variables

We multiply with the absolute value of the N -dimensional Jacobian

g(y) = f(x)

∣∣∣∣
∂(x1, . . . , xN )

∂(y1, . . . , yN )

∣∣∣∣ .

Correlation and Independence

As in the two-dimensional case two variables xi, xj are called uncorrelated if
their correlation coefficient ρij is equal to zero. The two variates xi, xj are
independent if the conditional p.d.f. of xi conditioned on all other variates
does not depend on xj . The combined density f then has to factorize into
two factors where one of them is independent of xi and the other one is
independent of xj9. All variates are independent of each other, if

f(x1, x2, . . . , xN ) =

N∏

i=1

fxi(xi) .

3.5.7 Independent, Identically Distributed Variables

One of the main topics of statistics is the estimation of free parameters of a
distribution from a random sample of observations all drawn from the same
population. For example, we might want to estimate the mean lifetime τ of a
particle from N independent measurements ti where t follows an exponential
distribution depending on τ . The probability density f̃ for N independent
and identically distributed variates (abbreviated as i.i.d. variates) xi, each
distributed according to f(x), is, according to the definition of independence,

f̃(x1, . . . , xN ) =

N∏

i=1

f(xi) .

The covariance matrix of i.i.d. variables is diagonal, with Cii = var(xi) =
var(x1).

9we omit the formulas because they are very clumsy.



3.5 Multivariate Probability Densities 59

3.5.8 Angular Distributions

In physics applications we are often interested in spatial distributions. For-
tunately our problems often exhibit certain symmetries which facilitate the
description of the phenomena. Depending on the kind of symmetry of the
physical process or the detector, we choose appropriate coordinates, spherical,
cylindrical or polar. These coordinates are especially well suited to describe
processes where radiation is emitted by a local source or where the detector
has a spherical or cylindrical symmetry. Then the distance, i.e. the radius vec-
tor, is not the most interesting parameter and we often describe the process
solely by angular distributions. In other situations, only directions enter, for
example in particle scattering, when we investigate the polarization of light
crossing an optically active medium, or of a particle decaying in flight into a
pair of secondaries where the orientation of the normal of the decay plane con-
tains relevant information. Similarly, distributions of physical parameters on
the surface of the earth are expressed as functions of the angular coordinates.

Distribution of the Polar Angle

As already explained above, the expressions

x = r cosϕ ,

y = r sinϕ

relate the polar coordinates r, ϕ to the cartesian coordinates x , y. Since we
have periodic functions, we restrict the angle ϕ to the interval [−π, π]. This
choice is arbitrary to a certain extent.

For an isotropic distribution all angles are equally likely and we obtain the
uniform distribution of ϕ

g(ϕ) =
1

2π
.

Since we have to deal with periodic functions, we have to be careful when
we compute moments and in general expected values. For example the mean
of the two angles ϕ1 = π/2, ϕ2 = −π is not (ϕ1 + ϕ2)/2 = −π/4, but 3π/4.
To avoid this kind of mistake it is advisable to go back to the unit vectors
{xi, yi} = {cosϕi, sinϕi}, to average those and to extract the resulting angle.

Example 33. The v. Mises distribution
We consider the Brownian motion of a particle on the surface of a liquid.

Starting from a point r0 its position r after some time will be given by the
expression

f(r) =
1

2πσ2
exp

(
−|r − r0|2

2σ2

)
.
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Taking into account the Jacobian ∂(x, y)/∂(r, ϕ) = r, the distribution in polar
coordinates is:

g(r, ϕ) =
r

2πσ2
exp

(
−r

2 + r20 − 2rr0 cosϕ

2σ2

)
.

For convenience we have chosen the origin of ϕ such that ϕ0 = 0. For fixed r
we obtain the conditional distribution

g̃(ϕ) = g(ϕ|r) = cN (κ) exp (κ cosϕ)

with κ = rr0/σ
2 and cN (κ) the normalization constant. This is the v. Mises

distribution. It is symmetric in ϕ, unimodal with its maximum at ϕ = 0. The
normalization

cN (κ) =
1

2πI0(κ)

contains I0, the modified Bessel function of order zero [25]. For large values of
κ the distribution approaches a Gaussian with variance 1/κ. To demonstrate
this feature, we rewrite the distribution in a slightly modified way,

g̃(ϕ) = cN (κ)eκe[−κ(1−cosϕ)] ,

and make use of the asymptotic form limx→∞ I0(x) ∼ ex/
√
2πx (see [25]).

The exponential function is suppressed for large values of (1 − cosϕ), and
small values can be approximated by ϕ2/2. Thus the asymptotic form of the
distribution is

g̃ =

√
κ

2π
e−κϕ2/2 . (3.40)

In the limit κ = 0, which is the case for r0 = 0 or σ → ∞, the distribution
becomes uniform, as it should.

Distribution of Spherical Angles

Spatial directions are described by the polar angle θ and the azimuthal angle
ϕ which we define through the transformation relations from the cartesian
coordinates:

x = r sin θ cosϕ , −π ≤ ϕ ≤ π

y = r sin θ sinϕ , 0 ≤ θ ≤ π

z = r cos θ .

The Jacobian is ∂(x, y, z)/∂(r, θ, ϕ) = r2 sin θ. A uniform distribution inside
a sphere of radius R in cartesian coordinates
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fu(x, y, z) =

{
3/(4πR3) if x2 + y2 + z2 ≤ R2 ,
0 else

thus transforms into

hu(r, θ, ϕ) =
3r2

4πR3
sin θ if r ≤ R .

We obtain the isotropic angular distribution by marginalizing or conditioning
on r:

hu(θ, ϕ) =
1

4π
sin θ . (3.41)

Spatial distributions are usually expressed in the coordinates z̃ = cos θ
and ϕ, because then the uniform distribution simplifies further to

gu(z̃, ϕ) =
1

4π

with |z̃| ≤ 1.
The p.d.f. g(z̃, ϕ) of an arbitrary distribution of z̃, ϕ is defined in the

standard way through the probability d2P = g(z̃, ϕ)dz̃dϕ. The product
dz̃dϕ = sin θdθdϕ = d2Ω is called solid angle element and corresponds to
an infinitesimal area at the surface of the unit sphere. A solid angle Ω defines
a certain area at this surface and contains all directions pointing into this
area.

Example 34. Fisher’s spherical distribution
Instead of the uniform distribution considered in the previous example

we now investigate the angular distribution generated by a three-dimensional
rotationally symmetric Gaussian distribution with variances σ2 = σ2

x = σ2
y =

σ2
z . We put the center of the Gaussian at the z-axis, r0 = {0, 0, 1}. In spherical

coordinates we then obtain the p.d.f.

f(r, θ, ϕ) =
1

(2π)3/2σ3
r2 sin θ exp

(
−r

2 + r20 − 2rr0 cos θ

2σ2

)
.

For fixed distance r we obtain a function of θ and ϕ only which for our choice
of r0 is also independent of ϕ:

g(θ, ϕ) = cN (κ) sin θ exp(κ cos θ) .

The parameter κ is again given by κ = rr0/σ
2. Applying the normalization

condition
∫
gdθdϕ = 1 we find cN (κ) = κ/(4π sinhκ) and

g(θ, ϕ) =
κ

4π sinhκ
eκ cos θ sin θ (3.42)
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a two-dimensional, unimodal distribution, known as Fisher’s spherical distri-
bution. As in the previous example we get in the limit κ → 0 the uniform
distribution (3.41) and for large κ the asymptotic distribution

g̃(θ, ϕ) ≈ 1

4π
κθ e−κθ2/2 ,

which is an exponential distribution of θ2. As a function of z̃ = cos θ the
distribution (3.42) simplifies to

h(z̃, ϕ) =
κ

4π sinhκ
eκz̃ .

which illustrates the spatial shape of the distribution much better than (3.42).

3.6 Some Important Distributions

3.6.1 The Binomial Distribution

What is the probability to get with ten dice just two times a six? The answer
is given by the binomial distribution:

B10
1/6(2) =

(
10

2

)(
1

6

)2 (
1− 1

6

)8

.

The probability to get with 2 particular dice six, and with the remaining 8
dice not the number six, is given by the product of the two power factors. The
binomial coefficient (

10

2

)
=

10!

2! 8!

counts the number of possibilities to distribute the 2 sixes over the 10 dice.
This are just 45. With the above formula we obtain a probability of about
0.29.

Considering, more generally, n randomly chosen objects (or a sequence of
n independent trials), which have with probability p the property A, which we
will call success, the probability to find k out of these n objects with property
A is Bn

p (k),

Bn
p (k) =

(
n

k

)
pk(1− p)n−k , k = 0, . . . , n .

Since this is just the term of order pk in the power expansion of [p+(1−p)]n,
we have the normalization condition
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[p+ (1− p)]n = 1 , (3.43)
n∑

k=0

Bn
p (k) = 1 .

Since the mean number of successes in one trial is given by p, we obtain,
following the rules for expected values, for n independent trials

E(k) = np .

With a similar argument we can find the variance: For n = 1, we can directly
compute the expected quadratic difference, i.e. the variance σ2

1 . Using 〈k〉 = p
and that k = 1 is found with probability10 P{1} = p and k = 0 with P{0} =
1− p, we find:

σ2
1 = 〈(k − 〈k〉)2〉
= p(1− p)2 + (1− p)(0− p)2

= p(1− p).

According to (3.12) the variance of the sum of n i.i.d. random numbers is

σ2 = nσ2
1 = np(1− p) .

The characteristic function has the form:

φ(t) =
[
1 + p

(
eit − 1

)]n
. (3.44)

It is easily derived by substituting in the expansion of (3.43) in the kth term
pk with

(
p eit

)k
. From (3.25) follows the property of stability, which is also

convincing intuitively:
The distribution of a sum of numbers k = k1 + . . .+ kN obeying binomial

distributions Bni
p (ki), is again a binomial distribution Bn

p (k) with n = n1 +
· · ·+ nN .

There is no particularly simple expression for higher moments; they can of
course be calculated from the Taylor expansion of φ(t), as explained in Sect.
3.3.2. We give only the results for the coefficients of skewness and excess:

γ1 =
1− 2p√
np(1− p)

, γ2 =
1− 6p(1− p)

np(1− p)
.

10For n = 1 the binomial distribution is also called two-point or Bernoulli distri-
bution.
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Example 35. Efficiency fluctuations of a Geiger counter
A Geiger counter with a registration probability of 90% (p = 0.9) de-

tects n′ out of n = 1000 particles crossing it. On average this will be
〈n′〉 = np = 900. The mean fluctuation (standard deviation) of this num-
ber is σ =

√
np(1− p) =

√
90 ≈ 9.5. The observed efficiency ε = n′/n will

fluctuate by σε = σ/n =
√
p(1− p)/n ≈ 0.0095

Example 36. Accuracy of a Monte Carlo integration
We want to estimate the value of π by a Monte Carlo integration. We

distribute randomly n points in a square of area 4 cm2, centered at the origin.
The number of points with a distance less than 1 cm from the origin is k = np
with p = π/4. To reach an accuracy of 1% requires

σ

np
= 0.01 ,

√
np(1− p)

np
= 0.01 ,

n =
(1− p)

0.012p
=

(4− π)

0.012π
≈ 2732 ,

i.e. we have to generate n = 2732 pairs of random numbers.

Example 37. Acceptance fluctuations for weighted events
The acceptance of a complex detector is determined by Monte Carlo sim-

ulation which depends on a probability density f0(x) where x denotes all
relevant kinematical variables. In order to avoid the repetition of the sim-
ulation for a different physical situation (e.g. a different cross section) de-
scribed by a p.d.f. f(x), it is customary to weight the individual events with
wi = f(x)/f0(x), i = 1, . . . , N for N generated events. The acceptance εi for
event i is either 1 or 0. Hence the overall acceptance is

εT =

∑
wiεi∑
wi

.

The variance for each single term in the numerator is w2
i εi(1− εi). Then the

variance σ2
T of εT becomes

σ2
T =

∑
w2

i εi(1 − εi)

(
∑
wi)

2 .
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3.6.2 The Multinomial Distribution

When a single experiment or trial has not only two, but N possible outcomes
with probabilities p1, p2, . . . , pN , the probability to observe in n experiments
k1, k2, . . . , kN trials belonging to the outcomes 1, . . . , N is equal to

Mn
p1,p2,...,pN

(k1, k2, . . . , kN ) =
n!

∏N
i=1 ki!

N∏

i=1

pki

i ,

where
∑N

i=1 pi = 1 and
∑N

i=1 ki = n are satisfied. Hence we have N − 1
independent variates. The value N = 2 reproduces the binomial distribution.

In complete analogy to the binomial distribution, the multinomial distri-
bution may be generated by expanding the multinom

(p1 + p2 + . . .+ pN )n = 1

in powers of pi, see (3.43). The binomial coefficients are replaced by multino-
mial coefficients which count the number of ways in which n distinguishable
objects can be distributed into N classes which contain k1, . . . , kN objects.

The expected values are
E(ki) = npi

and the covariance matrix is given by

Cij = npi(δij − pj) .

They can be derived from the characteristic function

φ(t1, . . . , tN−1) =

(
1 +

N−1∑

1

pi
(
eiti − 1

)
)n

,

which is a straight forward generalization of the 1-dimensional case (3.44).
The correlations are negative: If, for instance, more events ki as expected fall
into class i, the mean number of kj for any other class will tend to be smaller
than its expected value E(kj).

The multinomial distribution applies for the distribution of events into
histogram bins. For total a number n of events with the probability pi to
collect an event in bin i, the expected number of events in that bin will be
ni = npi and the variance Cii = npi(1− pi). Normally a histogram has many
bins and pi ≪ 1 for all i. Then we approximate Cij ≈ niδij . The correlation
between the bin entries can be neglected and the fluctuation of the entries
in a bin is described by the Poisson distribution which we will discuss in the
following section.



66 3 Probability Distributions and their Properties

100 150
0.00

0.02

0.04

P

l = 100

k

0 5 10 15 20
0.00

0.05

0.10

0.15

0.20

P

l = 5

k

0 20 40
0.00

0.02

0.04

0.06

0.08

P

l = 20

k

0 2 4 6 8 10
0.0

0.1

0.2

0.3

0.4

P
l = 1

k

Fig. 3.15. Poisson distriutions with different expected values.
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3.6.3 The Poisson Distribution

When a certain reaction happens randomly in time with an average frequency
λ in a given time interval, then the number k of reactions in that time interval
will follow a Poisson distribution (Fig. 3.15)

Pλ(k) = e−λλ
k

k!
.

Occasionally we will use also the notation P(k|λ). The expected value and
variance have already been calculated above (see 39):

E(k) = λ , var(k) = λ .

The characteristic function and cumulants have also been derived in Sect.
3.3.2 :

φ(t) = exp
(
λ(eit − 1)

)
, (3.45)

κi = λ , i = 1, 2, . . . .

Skewness and excess,

γ1 =
1√
λ
, γ2 =

1

λ

decrease with λ and indicate that the distribution approaches the normal
distribution (γ1 = 0, γ2 = 0) with increasing λ (see Fig. 3.15).

The Poisson distribution itself can be considered as the limiting case of
a binomial distribution with np = λ, where n approaches infinity (n → ∞)
and, at the same time, p approaches zero, p → 0. The corresponding limit
of the characteristic function of the binomial distribution (3.44) produces the
characteristic function of the Poisson distribution (3.45): With p = λ/n we
then obtain

lim
n→∞

[
1 +

λ

n
(eit − 1)

]n
= exp

(
λ(eit − 1)

)
.

For the Poisson distribution, the supply of potential events or number of
trials is supposed to be infinite while the chance of a success, p, tends to zero.
It is often used in cases where in principle the binomial distribution applies,
but where the number of trials is very large.

Example 38. Poisson limit of the binomial distribution
A volume of 1 l contains 1016 hydrogen ions. The mean number of ions in

a sub-volume of 1µm3 is then λ = 10 and its standard deviation for a Poisson
distribution is σ =

√
10 ≈ 3. The exact calculation of the standard deviation

with the binomial distribution would change σ only by a factor
√
1− 10−15.
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Also the number of radioactive decays in a given time interval follows a
Poisson distribution, if the number of nuclei is big and the decay probability
for a single nucleus is small.

The Poisson distribution is of exceptional importance in nuclear and par-
ticle physics, but also in the fields of microelectronics (noise), optics, and gas
discharges it describes the statistical fluctuations.

Specific Properties of the Poisson Distribution

The sum k = k1 + k2 of Poisson-distributed numbers k1, k2 with expected
values λ1, λ2 is again a Poisson distributed number with expected value
λ = λ1 + λ2. This property, which we called stability in connection with
the binomial distribution follows formally from the structure of the character-
istic function, or from the additivity of the cumulants given above. It is also
intuitively obvious.

Example 39. Fluctuation of a counting rate minus background
Expected are S signal events with a mean background B. The mean fluc-

tuation (standard deviation) of the observed number k is
√
S +B. This is also

the fluctuation of k −B, because B is a constant. For a mean signal S = 100
and an expected background B = 50 we will observe on average 150 events
with a fluctuation of

√
150. After subtracting the background, this fluctuation

will remain. Hence, the background corrected signal is expected to be 100 with
the standard deviation σ =

√
150. The uncertainty would even be larger, if

also the mean value B was not known exactly.

If from a Poisson-distributed number n with expected value λ0 on the
average only a fraction ε is registered, for instance when the size of a detector
is reduced by a factor of ε, then the expected rate is λ = λ0ε and the number of
observed events k follows the Poisson distribution Pλ(k). This intuitive result
is also obtained analytically: The number k follows a binomial distribution
Bn
ε (k) where n is a Poisson-distributed number. The probability p(k) is:

p(k) =

∞∑

n=k

Bn
ε (k)Pλ0(n)

=

∞∑

n=k

n!

k!(n− k)!
εk(1− ε)n−ke−λ0

λn0
n!

= e−λ0
(ελ0)

k

k!

∞∑

n=k

1

(n− k)!
(λ0 − λ0ε)

n−k

= e−ελ0
(ελ0)

k

k!
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= Pλ(k) .

Of interest is also the following mathematical identity

k∑

i=0

Pλ(i) =

∫ ∞

λ

dλ′Pλ′(k) ,

k∑

i=0

λi

i!
e−λ =

∫ ∞

λ

(λ′)k

k!
e−λ′

dλ′ ,

which allows us to calculate the probability P {i ≤ k} to find a number i less
or equal k via a well known integral (described by the incomplete gamma
function). It is applied in the estimation of upper and lower interval limits in
Chap. 8.

3.6.4 The Uniform Distribution

The uniform distribution is the simplest continuous distribution. It describes,
for instance, digital measurements where the random variable is tied to a given
interval and where inside the interval all its values are equally probable.

Given an interval of length α centered at the mean value ξ the p.d.f. reads

f(x|ξ, α) =
{
1/α if |x− ξ| < α/2
0 else . (3.46)

Mean value and variance are 〈x〉 = ξ and σ2 = α2/12, respectively. The
characteristic function is

φ(t) =
1

α

∫ ξ+α/2

ξ−α/2

eitxdx =
2

αt
sin

αt

2
eiξt . (3.47)

Using the power expansion of the sinus function we find from (3.47) for ξ = 0
the even moments (the odd moments vanish):

µ′
2k =

1

2k + 1

(α
2

)2k
, µ′

2k−1 = 0 .

The uniform distribution is the basis for the computer simulation of all
other distributions because random number generators for numbers uniformly
distributed between 0 and 1 are implemented on all computers used for sci-
entific purposes. We will discuss simulations in some detail in Chap. 5.

3.6.5 The Normal Distribution

The normal or Gauss distribution which we introduced already in Sect. 3.2.7,
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N (x|µ, σ) = 1√
2πσ

e−(x−µ)2/(2σ2) ,

enjoys great popularity among statisticians. This has several reasons which,
however, are not independent from each other.

1. The sum of normally distributed quantities is again normally distributed
(stability), with µ =

∑
µi, σ2 =

∑
σ2
i , in obvious notation.

2. The discrete binomial- and Poisson distributions and also the χ2-
distribution, in the limit of a large number, a large mean value and many
degrees of freedom, respectively, approach the normal distribution.

3. Many distributions met in natural sciences are well approximated by
normal distributions. We have already mentioned some examples: velocity
components of gas molecules, diffusion, Brownian motion and many measure-
ment errors obey normal distributions to good accuracy.

4. Certain analytically simple statistical procedures for parameter estima-
tion and propagation of errors are valid exactly only for normally distributed
errors.

The deeper reason for point 2 and 3 is explained by the central limit theo-
rem: The mean value of a large number N of independent random variables,
obeying the same distribution with variance σ2

0 , approaches a normal distri-
bution with variance σ2 = σ2

0/N . The important point is that this theorem
is valid for quite arbitrary distributions, provided they have a finite variance,
a condition which practically always can be fulfilled, if necessary by cutting
off large absolute values of the variates. Instead of a formal proof11, we show
in Fig. 3.16, how with increasing number of variates the distribution of their
mean value approaches the normal distribution better and better.

As example we have chosen the mean values for uniformly respectively
exponentially distributed numbers. For the very asymmetrical exponential
distribution on the left hand side of the figure the convergence to a normal
distribution is not as fast as for the uniform distribution, where already the
distribution of the mean of five random numbers is in good agreement with
the normal distribution. The central limit theorem applies also when the in-
dividual variates follow different distributions provided that the variances are
of the same order of magnitude.

The characteristic function of the normal distribution is

φ(t) = exp(−1

2
σ2t2 + iµt) .

It is real and also of Gaussian shape for µ = 0. The stability (see point 1 above)
is easily proven, using the convolution theorem (3.25) and the exponential
form of φ(t).

Differentiating the characteristic function, setting µ = 0, we obtain the
central moments of the normal distribution:

11A simplified proof is presented in the Appendix 13.1.
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Fig. 3.16. Illustration of the central limit theorem. The mean values of n expo-
nential or uniformely distributed variates approach with increasing n the normal
distribution.
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µ′
2j =

(2j)!

2jj!
σ2j .

Cumulants, with the exception of κ1 = µ and κ2 = σ2, vanish. Also the odd
central moments are zero.

The Normal Distribution in Higher Dimensions

The normal distribution in two dimensions with its maximum at the origin
has the general form

N0(x, y) =
1√

1− ρ22πsxsy
exp

[
− 1

2(1− ρ2)

(
x2

s2x
− 2ρ

xy

sxsy
+
y2

s2y

)]
.

(3.48)
The notation has been chosen such that it indicates the moments:

〈
x2
〉
= s2x ,〈

y2
〉
= s2y ,

〈xy〉 = ρsxsy .

We skip the explicit calculation. Integrating (3.48) over y, (x), we obtain
the marginal distributions of x, (y). They are again normal distributions with
widths sx and sy. A characteristic feature of the normal distribution is that
for a vanishing correlation ρ = 0 the two variables are independent, since in
this case the p.d.f. N0(x, y) factorizes into normal distributions of x and y.

Curves of equal probability are obtained by equating the exponent to a
constant. The equations

1

1− ρ2

(
x2

s2x
− 2ρ

xy

sxsy
+
y2

s2y

)
= const

describe concentric ellipses. For the special choice const = 1 we show the
ellipse in Fig. 3.17. At this so-called error ellipse the value of the p.d.f. is just
N0(0, 0)/

√
e, i.e. reduced with respect to the maximum by a factor 1/

√
e.

By a simple rotation we achieve uncorrelated variables x′ and y′:

x′ = x cosφ+ y sinφ ,

y′ = −x sinφ+ y cosφ ,

tan 2φ =
2ρsxsy
s2x − s2y

.

The half-axes, i.e. the variances s′x
2 and s′y

2 of the uncorrelated variables x′

and y′ are

s′2x =
s2x + s2y

2
+
s2x − s2y
2 cos 2φ

,

s′2y =
s2x + s2y

2
− s2x − s2y

2 cos 2φ
.
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Fig. 3.17. Transformation of the error ellipse.

In the new variables, the normal distribution has then the simple form

N ′
0(x

′, y′) =
1

2πs′xs
′
y

exp

(
−1

2

(
x′2

s′x
2
+
y′2

s′y
2

))
= f(x′)g(y′) .

The two-dimensional normal distribution with its maximum at (x0, y0) is
obtained from (3.48) with the substitution x→ x− x0, y → y − y0.

We now generalize the normal distribution to n dimensions. We skip again
the simple algebra and present directly the result. The variables are written in
vector form x and with the symmetric and positive definite covariance matrix
C, the p.d.f. is given by

N (x) =
1√

(2π)n det(C)
exp

(
−1

2
(x− x0)

TC−1(x− x0)

)
.

Frequently we need the inverse of the covariance matrix

V = C−1
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which is called weight matrix. Small variances Cii of components xi lead to
large weights Vii. The normal distribution in n dimensions has then the form

N (x) =
1√

(2π)n det(C)
exp

(
−1

2
(x− x0)

TV(x− x0)

)
.

In the two-dimensional case the matrices C and V are

C =

(
s2x ρsxsy

ρsxsy s2y

)
,

V =
1

1− ρ2

(
1
s2x

− ρ
sxsy

− ρ
sxsy

1
s2y

)

with the determinant det(C) = s2xs
2
y(1 − ρ2) = 1/ det(V).

3.6.6 The Exponential Distribution

Also the exponential distribution appears in many physical phenomena. Be-
sides life time distributions (decay of instable particles, nuclei or excited
states), it describes the distributions of intervals between Poisson distributed
events like time intervals between decays or gap lengths in track chambers,
and of the penetration depth of particles in absorbing materials.

The main characteristics of processes described by the exponential dis-
tribution is lack of memory, i.e. processes which are not influenced by their
history. For instance, the decay probability of an instable particle is indepen-
dent of its age, or the scattering probability for a gas molecule at the time t
is independent of t and of the time that has passed since the last scattering
event. The probability density for the decay of a particle at the time t1 + t2
must be equal to the probability density f(t2) multiplied with the probability
1− F (t1) to survive until t1:

f(t1 + t2) = (1− F (t1)) f(t2) .

Since f(t1 + t2) must be symmetric under exchanges of t1 and t2, the first
factor has to be proportional to f(t1),

1− F (t1) = cf(t1) , (3.49)

f(t1 + t2) = cf(t1)f(t2) (3.50)

with constant c. The property (3.50) is found only for the exponential function:
f(t) = aebt. If we require that the probability density is normalized, we get

f(t) = λe−λt .

This result could also have been derived by differentiating (3.49) and solving
the corresponding differential equation f = −c df/dt.
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The characteristic function

φ(t) =
λ

λ− it

and the moments
µn = n!λ−n

have already been derived in Example 20 in Sect. 3.3.4.

3.6.7 The χ2 Distribution

The chi-square distribution (χ2 distribution) plays an important role in the
comparison of measurements with theoretical distributions (see Chap. 10).
The corresponding tests allow us to discover systematic measurement errors
and to check the validity of theoretical models. The variable χ2 which we
will define below, is certainly the quantity which is most frequently used to
quantify the quality of the agreement of experimental data with the theory.

The variate χ2 is defined as the sum

χ2 =

f∑

i=1

x2i
σ2
i

,

where xi are independent, normally distributed variates with zero mean and
variance σ2

i .
We have already come across the simplest case with f = 1 in Sect. 3.4.1:

The transformation of a normally distributed variate x with expected value
zero to u = x2/s2, where s2 is the variance, yields

g1(u) =
1√
2πu

e−u/2 (f = 1) .

(We have replaced the variable χ2 by u = χ2 to simplify the writing.) Mean
value and variance of this distribution are E(u) = 1 and var(u) = 2.

When we now add f independent summands, we obtain

gf (u) =
1

Γ (f/2)2f/2
uf/2−1e−u/2 . (3.51)

The only parameter of the χ2 distribution is the number of degrees of
freedom f , the meaning of which will become clear later. We will prove (3.51)
when we discuss the gamma distribution, which includes the χ2 distribution
as a special case. Fig. 3.18 shows the χ2 distribution for some values of f . The
value f = 2 corresponds to an exponential distribution. As follows from the
central limit theorem, for large values of f the χ2 distribution approaches a
normal distribution.
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Fig. 3.18. χ2distribution for different degrees of freedom.

By differentiation of the p.d.f. we find for f > 2 the maximum at the
mode umod = f − 2. The expected value of the variate u is equal to f and its
variance is 2f . These relations follow immediately from the definition of u.

umod = f − 2 for f > 2 ,

E(u) = f ,

var(u) = 2f .

Distribution of the Sample Width

We define the width v of a sample of N elements xi as follows (see 3.2.3):

v2 =
1

N

N∑

i=1

x2i − x2

= x2 − x2 .

If the variates xi of the sample are distributed normally with mean x0 and
variance σ2, then Nv2/σ2 follows a χ2 distribution with f = N − 1 degrees
of freedom. We omit the formal proof; the result is plausible, however, from
the expected value derived in Sect. 3.2.3:
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〈
v2
〉
=
N − 1

N
σ2 ,

〈
Nv2

σ2

〉
= N − 1 .

Degrees of Freedom and Constraints

In Sect. 7.3 we will discuss the method of least squares for parameter esti-
mation. To adjust a curve to measured points xi with Gaussian errors σi we
minimize the quantity

χ2 =

N∑

i=1

(
xi − x

(t)
i (λ1, . . . , λZ)

)2

σ2
i

,

where x(t)i are the ordinates of the curve depending on the Z free parameters
λk. Large values of χ2 signal a bad agreement between measured values and
the fitted curve. If the predictions x(t)i depend linearly on the parameters, the
sum χ2 obeys a χ2 distribution with f = N − Z degrees of freedom. The
reduction of f accounts for the fact that the expected value of χ2 is reduced
when we allow for free parameters. Indeed, for Z = N we could adjust the
parameters such that χ2 would vanish.

Generally, in statistics the term degrees of freedom12 f denotes the num-
ber of independent predictions. For N = Z we have no prediction for the
observations xi. For Z = 0 we predict all N observations, f = N . When we
fit a straight line through 3 points with given abscissa and observed ordinate,
we have N = 3 and Z = 2 because the line contains 2 parameters. The corre-
sponding χ2 distribution has 1 degree of freedom. The quantity Z is called the
number of constraints, a somewhat misleading term. In the case of the sample
width discussed above, one quantity, the mean, is adjusted. Consequently, we
have Z = 1 and the sample width follows a χ2 distribution of f = N − 1
degrees of freedom.

3.6.8 The Gamma Distribution

The distributions considered in the last two sections, the exponential- and the
chi-square distribution, are special cases of the gamma distribution

G(x|ν, λ) = λν

Γ (ν)
xν−1e−λx , x > 0 .

The parameter λ > 0 is a scale parameter, while the parameter ν > 0 de-
termines the shape of the distribution. With ν = 1 we obtain the exponential

12Often the notation number of degrees of freedom, abbreviated by n.d.f. or NDF
is used in the literature.



78 3 Probability Distributions and their Properties

distribution. The parameter ν is not restricted to natural numbers. With the
special choice ν = f/2 and λ = 1/2 we get the χ2-distribution with f degrees
of freedom (see Sect. 3.6.7).

The gamma distribution is used typically for the description of random
variables that are restricted to positive values, as in the two cases just men-
tioned. The characteristic function is very simple:

φ(t) =

(
1− it

λ

)−ν

. (3.52)

As usual, we obtain expected value, variance, moments about the origin,
skewness and excess by differentiating φ(t):

〈x〉 = ν

λ
, var(x) =

ν

λ2
, µi =

Γ (i+ ν)

λi Γ (ν)
, γ1 =

2√
ν
, γ2 =

6

ν
.

The maximum of the distribution is at xmod = (ν − 1)/λ, (ν > 1).
The gamma distribution has the property of stability in the following sense:

The sum of variates following gamma distributions with the same scaling
parameter λ, but different shape parameters νi is again gamma distributed,
with the shape parameter ν,

ν =
∑

νi .

This result is obtained by multiplying the characteristic functions (3.52). It
proves also the corresponding result (3.51) for the χ2-distribution.

Example 40. Distribution of the mean value of decay times
Let us consider the sample mean x =

∑
xi/N , of exponentially distributed

variates xi. The characteristic function is (see 3.3.4)

φx(t) =
1

1− it/λ
.

Forming the N -fold product, and using the scaling rule for Fourier transforms
(3.19), φx/N (t) = φx(t/N), we arrive at the characteristic function of a gamma
distribution with scaling parameter Nλ and shape parameter N :

φx(t) =

(
1− it

Nλ

)−N

. (3.53)

Thus the p.d.f. f(x) is equal to G(x|N,Nλ). Considering the limit for large
N , we convince ourself of the validity of the law of large numbers and the
central limit theorem. From (3.53) we derive
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Fig. 3.19. Lorentz distribution with mean equal to 1 and halfwidth Γ/2 =

√
2.

lnφx(t) = −N ln

(
1− it

Nλ

)

= −N
[(

− it

Nλ

)
− 1

2

(
− it

Nλ

)2

+O(N−3)

]
,

φx(t) = exp

[
i
1

λ
t− 1

2

1

Nλ2
t2 +O

(
N−2

)]
.

When N is large, the term of order N−2 can be neglected and with the two
remaining terms in the exponent we get the characteristic function of a nor-
mal distribution with mean µ = 1/λ = 〈x〉 and variance σ2 = 1/(Nλ2) =
var(x)/N , (see 3.3.4), in agreement with the central limit theorem. If N ap-
proaches infinity, only the first term remains and we obtain the characteristic
function of a delta distribution δ(1/λ−x). This result is predicted by the law
of large numbers (see Appendix 13.1). This law states that, under certain con-
ditions, with increasing sample size, the difference between the sample mean
and the population mean approaches zero.

3.6.9 The Lorentz and the Cauchy Distributions

The Lorentz distribution (Fig. 3.19)
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f(x) =
1

π

Γ/2

(x− a)2 + (Γ/2)2

is symmetric with respect to x = a. Although it is bell-shaped like a Gaussian,
it has, because of its long tails, no finite variance. This means that we cannot
infer the location parameter a of the distribution13 from the sample mean,
even for arbitrary large samples. The Lorentz distribution describes resonance
effects, where Γ represents the width of the resonance. In particle or nuclear
physics, mass distributions of short-lived particles follow this p.d.f. which then
is called Breit–Wigner distribution.

The Cauchy distribution corresponds to the special choice of the scale
parameter Γ = 2. 14 For the location parameter a = 0 it has the characteristic
function φ(t) = exp(−|t|), which obviously has no derivatives at t = 0, an
other consequence of the nonexistence of moments. The characteristic function
for the sample mean of N measurements, x =

∑N
1 xi/N , is found with the

help of (3.19), (3.25) as

φx(t) = (φ(t/N))
N

= φ(t) .

The sample mean has the same distribution as the original population. It is
therefore, as already stated above, not suited for the estimation of the location
parameter.

3.6.10 The Log-normal Distribution

The distribution of a variable x > 0 whose logarithm u is normally distributed

g(u) =
1√
2πs

e−(u−u0)
2/2s2

with mean u0 and variance s2 follows the log-normal distribution, see Fig.
3.20:

f(x) =
1

xs
√
2π

e−(lnx−u0)
2/2s2 .

This is, like the normal distribution, a two-parameter distribution where the
parameters u0, s2, however, are not identical with the mean µ and variance
σ2, but the latter are given by

µ = eu0+s2/2,

σ2 = (es
2 − 1)e2u0+s2 . (3.54)

Note that the distribution is declared only for positive x, while u0 can also be
negative.

13The first moment exists only as a Cauchy principal value and equals a.
14In the literature also the more general definition with two parameters is met.
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The characteristic function cannot be written in closed form, but only as
a power expansion. This means, the moments of order k about the origin are

µk = eku0+
1
2k

2s2 .

Other characteristic parameters are

median : x0.5 = eu0 ,

mode : xmod = eu0−s2 ,

skewness : γ1 = (es
2

+ 2)
√
es2 − 1 ,

excess : γ2 = e4s
2

+ 2e3s
2

+ 3e2s
2 − 6 . (3.55)

The distribution of a variate x =
∏
xi which is the product of many

variates xi, each of which is positive and has a small variance, σ2
i compared

to its mean squared µ2, σ2
i ≪ µ2

i , can be approximated by a log-normal
distribution. This is a consequence of the central limit theorem (see 3.6.5).
Writing

lnx =

N∑

i=1

lnxi

we realize that lnx is normally distributed in the limit N → ∞ if the sum-
mands fulfil the conditions required by the central limit theorem. Accordingly,
x will be distributed by the log-normal distribution.

3.6.11 Student’s t Distribution

This distribution, introduced by W. S. Gosset (pseudonym “Student”) is fre-
quently used to test the compatibility of a sample with a normal distribution
with given mean but unknown variance. It describes the distribution of the
so-called “studentized” variate t, defined as

t =
x− µ

s
. (3.56)

The numerator is the difference between a sample mean and the mean of
the Gaussian from which the sample of size N is drawn. It follows a normal
distribution centered at zero. The denominator s is an estimate of the standard
deviation of the numerator derived from the sample. It is defined by (3.15).

s2 =
1

N(N − 1)

N∑

i=1

(xi − x)2 .

The sum on the right-hand side, after division by the variance σ2 of the
Gaussian, follows a χ2 distribution with f = N − 1 degrees of freedom, see
(3.51). Dividing also the numerator of (3.56) by its standard deviation σ/

√
N ,
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Fig. 3.20. Log-normal distribution with u0 = 1 and different values of s.

it follows a normal distribution of variance unity. Thus the variable t of the
t distribution is the quotient of a normal variate and the square root of a χ2

variate.
The analytical form of the p.d.f. can be found by the standard method

used in Sect. 3.5.4. The result is

h(t|f) = Γ ((f + 1)/2)

Γ (f/2)
√
πf

(
1 +

t2

f

)− f+1
2

.

The only parameter is f , the number of degrees of freedom. For f = 1
we recover the Cauchy distribution. For large f it approaches the normal
distribution N (0, 1) with variance equal to one. The distribution is symmetric,
centered at zero, and bell shaped, but with longer tails than N (0, 1). The even
moments are

µi = f
i
2

1 · 3 · · · (i− 1)

(f − 2)(f − 4) · · · (f − i)
.
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Fig. 3.21. Student’s distributions for 1, 2, 5 degrees of freedom and normal distri-
bution.

They exist only for i ≤ f − 1. The variance for f ≥ 3 is σ2 = f/(f − 2), the
excess for f ≥ 5 is γ2 = 6/(f −4), disappearing for large f , in agreement with
the fact that the distribution approaches the normal distribution.

The typical field of application for the t distribution is the derivation of
tests or confidence intervals in cases where a sample is supposed to be taken
from a normal distribution of unknown variance but known mean µ. Qual-
itatively, very large absolute values of t indicate that the sample mean is
incompatible with µ. Sometimes the t distribution is used to approximate ex-
perimental distributions which differ from Gaussians because they have longer
tails. In a way, the t distribution interpolates between the Cauchy (for f = 1)
and the Gauss distribution (for f → ∞).

3.6.12 The Extreme Value Distributions

The family of extreme value distributions is relevant for the following type
of problem: Given a sample taken from a certain distribution, what can be
said about the distribution of its maximal or minimal value? It is found that
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these distributions converge with increasing sample size to distributions of the
types given below.

The Weibull Distribution

This distribution has been studied in connection with the lifetime of complex
aggregates. It is a limiting distribution for the minimal member of a sample
taken from a distribution limited from below. The p.d.f. is

f(x|a, p) = p

a

(x
a

)p−1

exp
(
−
(x
a

)p)
, x > 0 (3.57)

with the positive scale and shape parameters a and p. The mode is

xm = a

(
p− 1

p

)1/p

for p ≥ 1 ,

mean value and variance are

µ = aΓ (1 + 1/p) ,

σ2 = a2
(
Γ (1 + 2/p)− Γ 2(1 + 1/p)

)
.

The moments are
µi = aiΓ (1 + i/p) .

For p = 1 we get an exponential distribution with decay constant 1/a.

The Fisher–Tippett Distribution

Also this distribution with the p.d.f.

f±(x|x0, s) =
1

s
exp

(
±x− x0

s
− e±(x−x0)/s

)

belongs to the family of extreme value distributions. It is sometimes called
extreme value distribution (without further specification) or log-Weibull dis-
tribution.

If y is Weibull-distributed (3.57) with parameters a, p, the transformation
to x = − ln y leads for x to a log-Weibull distribution with parameters x0 =
− lna and s = 1/p. The first of these, the location parameter x0, gives the
position of the maximum, i.e. xmod = x0, and the parameter s > 0 is a scale
parameter. Mean value µ and variance σ2 depend on these parameters through

µ = x0 ∓ Cs , with Euler’s constant C = 0.5772 . . . ,

σ2 = s2
π2

6
.

Mostly, the negative sign in the exponent is realized. Its normal form
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Fig. 3.22. Log-Weibull distribution.

f(x|0, 1) = exp
(
−x− e−x

)

is also known as Gumbel’s distribution and shown in Fig. 3.22.
Using mathematical properties of Euler’s Γ function [25] one can derive

the characteristic function in closed form:

φ(t) = Γ (1± ist)eix0t ,

whose logarithmic derivatives give in turn the cumulants for this distribution:

κ1 = x0 ∓ Cs , κi≥2 = (∓1)i(i − 1)!siζ(i) ,

with Riemann’s zeta function ζ(z) = Σ∞
n=11/n

z. (see [25]). Skewness and
excess are given by γ1 ≈ 1.14 and γ2 = 12/5.

3.7 Mixed and Compound Distributions

In the statistical literature the terms mixed distribution and compound dis-
tribution are not clearly defined and separated. Sometimes the compound
distribution is regarded as a specific mixed distribution.
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3.7.1 Superposition of distributions

The term mixed distribution is sometimes used for a superposition of distri-
butions:

f(x) =

N∑

i=1

wifi(x) , (3.58)

P (k) =

N∑

i=1

wiPi(k) . (3.59)

In physics applications superpositions occur, for instance, if a series of reso-
nances or peaks is observed over a background. We have calculated the mean
value and the variance of the superposition of two continuous distributions in
Sect. 3.2. The relations (3.2.3), (3.16) can easily be extended to more then
two components.

3.7.2 Compound Distributions

If a parameter of a distribution is itself a randomly distributed, then we have
a compound distribution. We can form different combinations of continuous
and discrete distributions, but restrict ourselves to the case of a resulting
continuous distribution:

f(x) =

∫ ∞

−∞
h(x|λ)g(λ)dλ , (3.60)

f(x) =
∑

k

h(x|λk)Pk .

The relation (3.60) has the form of a convolution and is closely related to the
marginalization of a two-dimensional distribution of x and λ. A compound
distribution may also have the form of (3.58) or (3.59) where the weights are
independently randomly distributed.

Frequently we measure a statistical quantity with a detector that has a
limited resolution. Then the probability to observe the value x′ is a random
distribution R(x′|x) depending on the undistorted value x which itself is dis-
tributed according to a distribution g(x). (In this context the notation is
usually different from the one used in (3.60)) We have the convolution

f(x′) =

∫ ∞

−∞
R(x′, x)g(x)dx .
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Fig. 3.23. Lifetime distribution, original (solid line) and measured with Gaussian
resolution (dashed line).

Example 41. Measurement of a decay time distribution with Gaussian resolu-
tion

A myon stops in a scintilator and decays subsequently into an electron.
The time t between the two corresponding light pulses follows an exponential
distribution γe−γt with γ the myon decay constant. The observed value is t′

with the response function

R(t′, t) =
1√
2πσ

exp

(
− (t′ − t)2

2σ2

)
.

The convolution integral

f(t′) =
1√
2πσ

∫ ∞

0

exp

(
− (t′ − t)2

2σ2

)
γe−γtdt

= γe−γt′ 1√
2πσ

∫ ∞

0

exp

(
− (t′ − t)2

2σ2

)
eγ(t

′−t)dt

= γe−γt′ 1√
2πσ

∫ ∞

−t′
exp

(
− x2

2σ2

)
e−γxdx

can be expressed with the help of the error function
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erfc(x) = 1− erf(x) =
2√
π

∫ ∞

x

e−t2dt ,

resulting in

f(t′) =
1

2
γ exp−γt′− 1

2σ
2γ2

erfc
(−t′ + σ2γ√

2σ

)
.

The result for γ = 1, σ = 0.5 is shown in Fig. 3.23. Except for small values of
t, the observed time is shifted to larger values. In the asymptotic limit t→ ∞
the integral becomes a constant and the distribution f∞(t′) is exponentially
decreasing with the same slope γ as the undistorted distribution:

f∞(t′) ∝ γe−γt′ .

This property applies also to all measurements where the resolution is a func-
tion of t′ − t. This condition is usually met.

3.7.3 The Compound Poisson Distribution

The compound Poisson distribution (CPD) describes the sum of a Poisson dis-
tributed number of independent and identical distributed weights. It applies
if we weight events and sum up the weights. For example, when we measure
the activity of a β source with a Geiger counter the probability that it fires,
the detection probability may depend on the electron energy which varies
from event to event. We can estimate the true number of decays by weight-
ing each observation with the inverse of its detection probability. Sometimes
weighting is used to measure the probability that an event belongs to a certain
particle type. Weighted events play also a role in some Monte Carlo integra-
tion methods and in parameter inference (see Chap. 6, Sect. 6.8), if weighted
observations are summed up in histogram bins.

The CPD also describes the sum x =
∑N

i=1 niwi, if there is a given discrete
weight distribution, wi, i = 1, 2, 3..N and where the numbers ni are Poisson
distributed. The equivalence of the two definitions of the CPD is shown in
Appendix 13.9.1. In Ref. [26] some properties of the compound Poisson dis-
tribution and the treatment of samples of weighted events is described. The
CPD does not have a simple analytic expression. However, the cumulants and
thus also the moments of the distribution can be calculated exactly.

Let us consider the definite case that on average λ1 observations are ob-
tained with probability ε1 and λ2 observations with probability ε2. We correct
the losses by weighting the observed numbers with w1 = 1/ε1 and w2 = 1/ε2.
For the Poisson-distributed numbers k1, k2

Pλ1(k1) =
λk1

1

k1!
e−λ1 ,
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Pλ2(k2) =
λk2
2

k2!
e−λ2 ,

k = w1k1 + w2k2 ,

The mean value µ of the variate k and its variance σ2 are

µ = w1λ1 + w2λ2

= λ〈w〉 , (3.61)

σ2 = w2
1λ1 + w2

2λ2

= λ〈w2〉. (3.62)

with λ = λ1 + λ2, 〈w〉 = (w1λ1 + w2λ2)/λ and 〈w2〉 = (w2
1λ1 + w2

2λ2)/λ. We
have used var(cx) = c2var(x).

According to (3.28), the cumulant κi of order i of the distribution of k is
related to the cumulants κ(1)i , κ

(2)
i of the corresponding distributions of k1, k2

through
κi = wi

1κ
(1)
i + wi

2κ
(2)
i . (3.63)

With (3.27) we get also skewness γ1 and excess γ2:

γ1 =
κ3

κ
3/2
2

=
w3

1λ1 + w3
2λ2

(w2
1λ1 + w2

2λ2)
3/2

=
〈w3〉

λ1/2〈w2〉3/2 , (3.64)

γ2 =
κ4
κ22

=
w4

1λ1 + w4
2λ2

(w2
1λ1 + w2

2λ2)
2

=
〈w4〉
λ〈w2〉2 . (3.65)

The formulas can easily be generalized to more than two Poisson distri-
butions and to a continuous weight distribution (see Appendix 13.9.1). The
relations (3.61), (3.62), (3.64), (3.65) remain valid.

In particular for a CPD with a weight distribution with variance E(w2)
and expected number of weights λ the variance of the sum of the weights is
λE(w2) as indicated by (3.62).

For large values of λ the CPD can be approximated by a normal distribu-
tion or by a scaled Poisson distribution (see Appendix 13.9.1).
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Measurement Errors

4.1 General Considerations

When we talk about measurement errors, we do not mean mistakes caused by
the experimenter, but the unavoidable random dispersion of measurements.
Therefore, a better name would be measurement uncertainties. We will use
the terms uncertainty and error synonymously.

The correct determination and treatment of measurement errors is not al-
ways trivial. In principle, the evaluation of parameters and their uncertainties
are part of the statistical problem of parameter inference, which we will treat
in Chaps. 6, 7 and 8. There we will come back to this problem and look at is
from a more general point of view. In the present chapter we will introduce
certain, in practice often well justified approximations.

Official recommendations are given in “Guide to the Expression of Uncer-
tainty of Measurement”, published in 1993 and updated in 1995 in the name of
many relevant organizations like ISO and BIMP (Guide to the Expression of
Uncertainty of Measurement, International Organization for Standardization,
Geneva, Switzerland) [27]. More recently, a task force of the European coop-
eration for Accreditation of Laboratories (EAL) with members of all western
European countries has issued a document (EAL-R2) with the aim to har-
monize the evaluation of measurement uncertainties. It follows the rules of
the document mentioned above but is more specific in some fields, especially
in calibration issues which are important when measurements are exchanged
between different laboratories. The two reports essentially recommend to es-
timate the expected value and the standard deviation of the quantity to be
measured. Our treatment of measurement uncertainty will basically be in
agreement with the recommendations of the two cited documents which deal
mainly with systematic uncertainties and follow the Bayesian philosophy, but
we will extend their concept in Sect. 8.2 where we introduce asymmetric error
limits.
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4.1.1 Importance of Error Assignments

The natural sciences owe their success to the possibility to compare quanti-
tative hypotheses to experimental facts. However, we are able to check theo-
retical predictions only if we have an idea about the accuracy of the measure-
ments. If this is not the case, our measurements are completely useless.

Of course, we also want to compare the results of different experiments
to each other and to combine them. Measurement errors must be defined in
such a way that this is possible without knowing details of the measurement
procedure. Only then, important parameters, like constants of nature, can be
determined more and more accurately and possible variations with time, like
it was hypothesized for the gravitational constant, can be tested.

Finally, it is indispensable for the utilization of measured data in other
scientific or engineering applications to know their accuracy and reliability.
An overestimated error can lead to a waste of resources and, even worse, an
underestimated error may lead to wrong conclusions.

4.1.2 The Declaration of Errors

There are several ways to present measurements with their uncertainties. Some
of the more frequent ones are given in the following examples:

t = (34.5± 0.7) 10−3 s
t = 34.5 10−3 s ± 2%
x = 10.3+0.7

−0.3

me = (0.510 999 06± 0.000 000 15) MeV/c2

me = 0.510 999 06 (15) MeV/c2

me = 9.109 389 7 10−31kg ± 0.3 ppm

The abbreviation ppmmeans parts per million. The treatment of asymmet-
ric errors will be postponed to Chap. 8. The measurement and its error must
have the same number of significant digits. Declarations like x = 3.2± 0.01 or
x = 3.02± 0.1 are inconsistent.

A relatively crude declaration of the uncertainty is sufficient, one or two
significant digits are adequate in any case, keeping in mind that often we
do not know all sources of errors or are unable to estimate their influence
on the result with high accuracy1. This fact also justifies in most cases the
approximations which we have to apply in the following.

We denote the error of x with δx or δx. Sometimes it is convenient, to
quote dimensionless relative errors δx/x that are useful in error propagation
– see below.

1There are exceptions to this rule in hypothesis testing (see Chap. 10).
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4.1.3 Definition of Measurement and its Error

Measurements are either quantities read from a measurement device or simply
an instrument – we call them input quantities – or derived quantities, like the
average of two or more input quantities, the slope of a street, or a rate which
are computed from several input quantities. Let us first restrict ourselves to
input quantities. An input quantity can be regarded as an observation, i.e. a
random variable x drawn from a distribution centered around the true value
xt of the quantity which we want to determine. The measurement process,
including the experimental setup, determines the type of this distribution
(Gauss, Poisson, etc.) For the experimenter the true value is an unknown
parameter of the distribution. The measurement and its error are estimates
of the true value and of the standard deviation of the distribution2. This
definition allows us to apply relations which we have derived in the previous
chapter for the standard deviation to calculations of the uncertainty, e.g. the
error δ of a sum of independent measurements with individual errors δi is
given by δ2 =

∑
δ2i .

In an ideal situation the following conditions are fulfilled:

1. The mean value of infinitely often repeated measurements coincides with
the true value, i.e. the true value is equal to the expectation value 〈x〉
of the measurement distribution, see Sect. 3.2. The measurement is then
called unbiased.

2. The assigned measurement error is independent of the measured value.

These properties can not always be realized exactly but often they are
valid to a sufficiently good approximation. The following two examples refer
to asymmetric errors where in the first but not in the second the asymmetry
can be neglected.

Example 42. Scaling error
A tape measure is slightly elastic. The absolute measurement error in-

creases with the measured length. Assuming a scaling error of 1% also the
estimate of the error of a measured length would in average be wrong by 1%
and asymmetric by the same proportion. This, however, is completely unim-
portant.

Example 43. Low decay rate

2Remark that we do not need to know the full error distribution but only its
standard deviation.
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We want to measure the decay rate of a radioactive compound. After one
hour we have recorded one decay. Given such small rates, it is not correct
to compute the error from a Poisson distribution (see Sect. 3.6.3) in which
we replace the mean value by the observed measurement. The declaration
R = 1 ± 1 does not reflect the result correctly because R = 0 is excluded by
the observation while R = 2.5 on the other hand is consistent with it.

In Sect. 8.2 we will, as mentioned above, also discuss more complex cases,
including asymmetric errors due to low event rates or other sources.

Apart from the definition of a measurement and its error by the estimated
mean and standard deviation of the related distribution there exist other con-
ventions: Distribution median, maximal errors, width at half maximum and
confidence intervals. They are useful in specific situations but suffer from the
crucial disadvantage that they are not suited for the combination of mea-
surements or the determination of the errors of depending variables, i.e. error
propagation.

There are uncertainties of different nature: statistical errors and systematic
errors. Their definitions are not unambiguous, disagree from author to author
and depend somewhat on the scientific discipline in which they are treated.

4.2 Statistical Errors

4.2.1 Errors Following a Known Statistical Distribution

Relatively simple is the interpretation of measurements if the distributions
of the errors follow known statistical laws. The corresponding uncertainties
are called statistical errors. Examples are the measurement of counting rates
(Poisson distribution), counter efficiency (binomial distribution) or of the life-
time of unstable particles (exponential distribution). Characteristic for sta-
tistical errors is that sequential measurements are uncorrelated and thus the
precision of the combined results is improved by the repetition of the mea-
surement. In these cases the distribution is known up to a parameter – its
expected value. We then associate the actually observed value to that param-
eter and declare as measurement error the standard deviation belonging to
that distribution.

Example 44. Poisson distributed rate
Recorded have been N = 150 decays. We set the rate and its error equal

to Z = N ±
√
N = (150±

√
150) ≈ 150± 12 .
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Example 45. Digital measurement (uniform distribution)
With a digital clock the time t = 237 s has been recorded. The error is

δt = 1/
√
12 s ≈ 0.3 s, thus t = (237.0± 0.3) s .

Example 46. Efficiency of a detector (binomial distribution)
From N0 = 60 particles which traverse a detector, 45 are registered. The

efficiency is ε = N/N0 = 0.75. The error derived from the binomial distribu-
tion is

δε = δN/N0 =
√
ε(1− ε)/N0 =

√
0.75 · 0.25/60 = 0.06 .

Example 47. Calorimetric energy measurement (normal distribution)
The energy of an high energy electron is measured by a scintillating fiber

calorimeter by collecting light produced by the electromagnetic cascade in the
scintillator of the device. From the calibration of the calorimeter with electrons
of known energies E we know that the calorimeter response is well described
by a Gaussian with mean proportional to E and variance proportional to E.

Many experimental signals follow to a very good approximation a normal
distribution. This is due to the fact that they consist of the sum of many
contributions and a consequence of the central limit theorem.

In particle physics we derive parameters usually from a sample of events
and thus take the average of many independent measurements. We have seen
that the relative error of the mean from N i.i.d measurements decreases with
1/

√
N , see relation (3.13). This behavior is typical for statistical errors.

4.2.2 Errors Determined from a Sample of Measurements

An often used method for the estimation of errors is to repeat a measurement
several times and to estimate the error from the fluctuation of the results.
The results presented below will be justified in subsequent chapters but are
also intuitively plausible.

In the simplest case, for instance in calibration procedures, the true value
xt of the measured quantity x is known, and the measurement is just done to
get information about the accuracy of the measurement. An estimate of the
average error δx of x from N measurements is in this case
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(δx)2 =
1

N

N∑

i=1

(xi − xt)
2 .

We have to require that the fluctuations are purely statistical and that cor-
related systematic variations are absent, i.e. the data have to be independent
from each other. The relative uncertainty of the error estimate follows the
1/

√
N law. It will be studied below. For example with 100 repetitions of the

measurement, the uncertainty of the error itself is reasonably small, i.e. about
10 % but depends on the distribution of x.

When the true value is unknown, we can approximate it by the sample
mean x = 1

N

∑N
i=1 xi and use the following recipe:

(δx)2 =
1

N − 1

N∑

i=1

(xi − x)2 . (4.1)

In the denominator of the formula used to determine the mean quadratic de-
viation (δx)2 of a single measurement figures N − 1 instead of N . This is
plausible because, when we compute the empirical mean value x, the mea-
surements xi enter and thus they are expected to be in average nearer to their
mean value than to the true value. In particular the division by N would pro-
duce the absurd value δx = 0 for N = 1, while the division by N − 1 yields
an indefinite result. The derivation of (4.1) follows from (3.15). The quantity
(δx)2 in (4.1) is sometimes called empirical variance. We have met it already
in Sect. 3.2.3 of the previous chapter.

Frequently, we want to find the error for measurements xi which are con-
strained by physical or mathematical laws and where the true values are es-
timated by a parameter fit (to be explained in subsequent chapters). The
expression (4.1) then is generalized to

(δx)2 =
1

N − Z

N∑

i=1

(xi − x̂i)
2 . (4.2)

where x̂i are the estimates of the true values corresponding to the measure-
ments xi and Z is the number of parameters that have been adjusted using
the data. When we compare the data of a sample to the sample mean we have
Z = 1 parameter, namely x̄, when we compare coordinates to the values of a
straight line fit then we have Z = 2 free parameters to be adjusted from the
data, for instance, the slope and the intercept of the line with the ordinate
axis. Again, the denominator N − Z is intuitively plausible, since for N = Z
we have 2 points lying exactly on the straight line which is determined by
them, so also the numerator is zero and the result then is indefinite.

Relation (4.2) is frequently used in particle physics to estimate momentum
or coordinate errors from empirical distributions (of course, all errors are as-
sumed to be the same). For example, the spatial resolution of tracking devices
is estimated from the distribution of the residuals (xi − x̂i). The individual
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measurement error δx as computed from a M tracks and N points per track
is then estimated quite reliably to

(δx)2 =
1

(N − Z)M

M×N∑

i=1

(xi − x̂i)
2 .

Not only the precision of the error estimate, but also the precision of a
measurements can be increased by repetition. The error δx of a corresponding
sample mean is, following the results of the previous section, given by

(δx)2 = (δx)2/N ,

=
1

N(N − 1)

N∑

i=1

(xi − x)2 . (4.3)

Example 48. Average from 5 measurements
In the following table five measurements are displayed.

measurements quadratic deviations
xi (xi − x)2

2.22 0.0009
2.25 0.0000
2.30 0.0025
2.21 0.0016
2.27 0.0004

The resulting mean
∑
xi = 11.25

∑
(xi − x)2 = 0.0054

x = 2.25 (δx)2 =
∑

(xi − x)2/4 = 0.0013

The resulting mean value is x = 2.25±0.02. We have used that the error of
the mean value is smaller by the factor

√
5 than that of a single measurement,

δx = δx/
√
5. With only 5 repetitions the precision of the error estimate is

rather poor.

Our recipe yields δx ∼ 1/
√
N , i.e. the error becomes arbitrarily small if the

number of the measurements approaches infinity. The validity of the 1/
√
N

behavior relies on the assumption that the fluctuations are purely statistical
and that correlated systematic variations are absent, i.e. the data have to
be independent of each other. When we measure repeatedly the period of a
pendulum, then the accuracy of the measurements can be deduced from the
variations of the results only if the clock is not stopped systematically too
early or too late and if the clock is not running too fast or too slow. Our
experience tells us that some correlation between the different measurements
usually cannot be avoided completely and thus there is a lower limit for δx.
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To obtain a reliable estimate of the uncertainty, we have to take care that the
systematic uncertainties are small compared to the statistical error δx.

4.2.3 Error of the Empirical Variance

Sometimes we are interested in the variance of an empirical distribution and in
its uncertainty. In the same category falls the problem to estimate the error of
the error of a parameter which is determined from a series of measurements.
For example, we may need to know the resolution of a meter or the width of a
spectral line and the related accuracy. It is also of interest to know how often
a calibration measurement has to be performed to estimate the corresponding
error with sufficient accuracy. In these situations the variance s2 itself is the
result of the investigation to which we would like to associate an uncertainty.

The variance of (x−µ)2 for a given distribution is easily calculated using
the formulas of Sect. 3.2.3. We omit the details of the calculation and quote
the result which is related of the second and fourth central moments.

var[(x− µ)2] =
〈[

(x− µ)2 − σ2
]2〉

= µ′
4 − σ4 .

We now assume that our sample is large and replace the distribution moments
µ′
n by the empirical central moments m′

n,

m′
n =

1

N

∑
(xi − x)n .

The moment s2 = m′
2 is an estimate for σ2. For N events in the sample, we

get for the uncertainty δs2 of s2

(δs2)2 =
m′

4 −m′2
2

N

and from error propagation (see next section 4.4) we derive the uncertainty
of s itself

δs

s
=

1

2

δs2

s2
,

=
1

2
√
N

√
m′

4 − s4

s2
.

If the type of distribution is known, we can use relations between mo-
ments. Thus, for the normal distribution we have µ′

4 = 3σ4 (see Sect. 3.6.5),
and it follows δs/s = 1/

√
2N which also follows from the variance of the χ2

distribution. This relation sometimes is applied to arbitrary distributions. It
then often underestimates the uncertainty.
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4.3 Systematic Errors

The errors assigned to measurements serve primarily the purpose to verify
or reject theoretical predictions and to establish new discoveries. Sometimes
a significance of four or five standard deviations is required to accept a new
finding, for example a new particle that manifests itself through a bump in a
mass distribution. Obviously our reasoning here is based on the assumption
that the errors are approximately normally distributed which is the case for
the statistical error derived from the number of events that have been involved.
If background has to be subtracted which usually is extrapolated from regions
left and right of the bump location, then the distribution of the background
has to be estimated. In this way additional uncertainties are introduced, which
are summarized in a systematic error. Nearly every measurement is subject to
systematic errors, typically associated with auxiliary parameters related to the
measuring apparatus, or to model assumptions. Their evaluation is especially
important in high precision measurements like those of the magnetic dipole
moment of the muon or of the CP violation constants in the neutral kaon
system.

The result of a measurement is typically presented in the form x = 2.34±
0.06 = 2.34± 0.05(stat.)± 0.03(syst.).

The main reason for the separate quotation of the two uncertainties is
that the systematic uncertainties are usually less well known than the purely
statistical errors. Thus, for example, excluding a prediction by say a 4 standard
deviation measurement where the errors are dominantly of systematic type is
certainly less convincing than if the result is purely statistical. Furthermore
the separate quotation is informative for subsequent experiments; it helps to
design an experiment in such a way that the systematic errors are reduced or
avoided such that the precision of a measurement can be improved.

4.3.1 Definition and Examples

Systematic errors are at least partially based on assumptions made by the
experimenter, are model dependent or follow unknown distributions. This
leads to correlations between repeated measurements because the assump-
tions entering into their evaluations are common to all measurements. There-
fore, contrary to statistical errors, the relative error of mean value of repeated
measurements, suffering from systematic errors, violates the 1/

√
N law.

A systematic error arises for instance if we measure a distance with a
tape-measure which may have expanded or shrunk due to temperature ef-
fects. Corrections can be applied and the corresponding uncertainty can be
estimated roughly from the estimated range of temperature variations and the
known expansion coefficient of the tape material if it is made out of metal. It
may also be guessed from previous experience.

Systematic errors occur also when an auxiliary parameter is taken from
a technical data sheet where the given uncertainty is usually not of the type
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“statistical”. It may happen that we have to derive a parameter from two
or three observations following an unknown distribution. For instance, the
current of a magnet may have been measured at the beginning and at the
end of an experiment. The variation of the current introduces an error for the
momentum measurement of charged particles. The estimate of the uncertainty
from only two measurements obeying an unknown distribution of the magnet
variations will be rather vague and thus the error is classified as systematic.

A relatively large systematic error has affected the measurement of the
mass of the Z0 particle by the four experiments at the LEP collider. It was
due to the uncertainty in the beam energy and has led to sizable correlations
between the four results.

Typical systematic uncertainties are the following:

1. Uncertainties in the experimental conditions (Calibration uncertainties for
example of a calorimeter or the magnetic field, unknown beam conditions,
unknown geometrical acceptance, badly known detector resolutions, tem-
perature and pressure dependence of the performance of gaseous tracking
detectors.),

2. unknown background behavior,
3. limited quality of the Monte Carlo simulation due to technical approxi-

mations,
4. uncertainties in the theoretical model used in the simulation (approxima-

tions in radiative or QCD corrections, poorly known parton densities),
5. systematic uncertainties caused by the elimination of nuisance parameters

(see Sect. 6.13),
6. uncertainties in auxiliary parameters taken from data sheets or previous

experiments.

Contrary to some authors [28] we classify uncertainties from a limited
number of Monte Carlo events as statistical.

4.3.2 How to Avoid, Detect and Estimate Systematic Errors

Some systematic errors are difficult to retrieve3. If, for instance, in the data ac-
quisition system the deadtime is underestimated, all results may look perfectly
all right. In order to detect and to estimate systematic errors, experience, com-
mon sense, and intuition is needed. A general advice is to try to suppress them
as far as possible already by an appropriate design of the experiment and to
include the possibility of control measurements, like regular calibration. Since
correlation of repeated measurements is characteristic for the presence of sys-
tematic errors, observed correlations of results with parameters related to the
systematic effects provide the possibility to estimate and reduce the latter. In

3For example, the LEP experiments had to discover that monitoring the beam
energy required a magnet model which takes into account leakage currents from
nearby passing trains and tidal effects.
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the pendulum example, where the frequency is determined from a time mea-
surement for a given number of periods, systematic contribution to the error
due to a possible unknown bias in the stopping procedure can be estimated
by studying the result as a function of the number of periods and it can be
reduced by increasing the measurement time. In particle physics experiments
where usually only a fraction of events is accepted by some filtering procedure,
it is advisable to record also a fraction of those events that are normally re-
jected (downscaling) and to try to understand their nature. Some systematic
effects are related to the beam intensity, thus a variation of the beam intensity
helps to study them.

How can we detect systematic errors caused for instance by background
subtraction or efficiency corrections at the stage of data analysis? Clearly, a
thorough comparison of the collected data with the simulation in as many
different distributions as possible is the primary method. All effects that can
be simulated are necessarily understood.

Often kinematical or geometrical constraints can be used to retrieve sys-
tematic shifts and to estimate the uncertainties. A trivial example is the com-
parison of the sum of measured angles of a triangle with the value 1800 which
is common in surveying. In the experiments of particle physics we can apply
among other laws the constraints provided by energy and momentum conser-
vation. When we adjust curves, e.g. a straight line to measured points, the
deviations of the points from the line permit us to check the goodness of the
fit, and if the fit is poor, we might reject the presumed parametrization or
revise the error assignment. (Goodness-of-fit tests will be treated in Chap.
10.) Biases in the momentum measurement can be detected by comparing the
locations and widths of mass peaks to the nominal values of known particles.

A widely used method is also the investigation of the results as a function
of the selection criteria. A correlation of the interesting parameter with the
value of a cut-off parameter in a certain variable is a clear indication for the
presence of systematic errors. It is evident though that the systematic errors
then have to be much larger than the normal statistical fluctuations in order
to be detected. Obviously, we want to discriminate also systematic errors
which are of the same order of magnitude as the statistical ones, preferably
much smaller. Therefore we have to investigate samples, where the systematic
effects are artificially enhanced. If we suspect rate dependent distortion effects
as those connected with dead times, it is recommended to analyze a control
sample with considerably enhanced rate. When we eliminate a background
reaction by a selection criterion, we should investigate its importance in the
region which has been excluded, where it is supposed to be abundant.

Frequently made mistakes are: 1. From the fact that the data are consistent
with the absence of systematic errors, it is supposed that they do not exist.
This leads always to underestimation of systematic errors. 2. The changes
of the results found by changing the selection criteria are directly converted
into systematic errors. This in most cases leads to overestimates because the
variations are partially due to the normal statistical fluctuations.
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There is no simple recipe for the estimation of systematic uncertainties. Let
us consider again the problem of background subtraction under an interesting
physics signal. If we know nothing about the background, we cannot exclude
with absolute certainty that the whole signal is faked by the background. We
should exploit all possibilities to reduce the background by looking into many
different distributions to derive efficient kinematical cuts. In the end we have
to use plausible extrapolations of the background shape based on experience
and common sense.

4.3.3 Treatment of Systematic Errors

Because of the difficulty to specify systematic errors accurately, scientists are
rather sceptical about results based on measurements which are dominated
by systematic errors. In any case, it is indispensable to declare the systematic
and the statistical contributions to the measurement error separately.

In many experiments there appears a quite large number – typically a
dozen or so – of such systematic uncertainties. When we combine systematic
errors (see Sect. 8.2), we can often profit from the central limit theorem (see
Sect. 3.6.5) provided that they are all of the same order of magnitude. The
distribution of the sum of variables suffering from systematic uncertainties
approaches a normal distribution, with variance equal to the sum of variances
of the contributing distributions. In this case tails in the distributions of the
individual systematic errors are less disturbing.

Sometimes a systematic effect affects several experiments which measure
the same quantity. For example, the measurements of the mass of the Z0

particle by the four experiments at the e+ − e− - collider LEP suffered from
a common systematic uncertainty of the beam energy. When we combine the
results the correlation has to be taken into account.

Sometimes systematic errors are combined linearly. There is no justifica-
tion for such a procedure.

Interesting discussions of systematic error can be found in [28, 29]. In [30]
a very detailed and competent study of systematic errors as met in particle
physics experiments is presented.

In Ref. [28] purely statistical uncertainties related to detector effects or
secondary measurements are called class 1 systematic errors, but the author
states that a classification of these uncertainties as statistical errors would be
more informative. He subdivides further the real systematic errors following
his definition of systematic errors (which coincides with ours), into systematic
errors related to experimental effects (class 2 ) and those depending on theo-
retical models (class 3 ). This distinction makes sense, because our possibilities
to reduce, detect and estimate class 2 and class 3 errors are very different.
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2 dy

2 dx

y

x

Fig. 4.1. Linear error propagation.

4.4 Linear Propagation of Errors

4.4.1 Error Propagation

We now want to investigate how a measurement error propagates into quan-
tities which are functions of the measurement. We consider a function y(x),
a measurement value xm ± δx, with the standard deviation δx, and are in-
terested in ym, the corresponding measurement of y and its error δy. If the
p.d.f. f(x) is known, we can determine the p.d.f. of y, its expectation value
ym and the standard deviation δy by an analytic or numerical transformation
of the variables, as introduced above in Chap. 3. We will assume, however,
that the measurement error is small enough to justify the approximation of
the function by a linear expression within the error limits. Then we need not
know the full p.d.f. f(x).

We use the Taylor expansion of y around xm:

y = y(xm) + y′(xm)∆x+
1

2!
y′′(xm)(∆x)2 + · · · .

We neglect quadratic and higher order terms, set ym equal to the expected
value of y, and (δy)2 equal to the expected value of the squared deviation.
According to the definition, the expected value of∆x = x−xm is zero, and that
of (∆x)2 equals (δx)2. (In our notation quantities denoted by δ are expected
values, i.e. fixed positive parameters, while ∆x is a random variable). We get
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ym = 〈y(x)〉
≈ 〈y(xm)〉+ 〈y′(xm)∆x〉 = y(xm) ,

and

(δy)2 = 〈(y − ym)2〉
≈ 〈(y(xm) + y′(xm)∆x− ym)2〉
= y′2(xm)〈(∆x)2〉
= y′2(xm)(δx)2 ,

δy = |y′(xm)|δx .

This result also could have been red off directly from Fig. 4.1.
Examples of the linear propagation of errors for some simple functions are

compiled below:

Function : Relation between errors :

y = axn ⇒ δy

|y| =
|n|δx
|x| ,

y = a ln(bx) ⇒ δy =
|a|δx
|x| ,

y = aebx ⇒ δy

|y| = |b|δx ,

y = tanx ⇒ δy

|y| =
δx

| cosx sinx| .

4.4.2 Error of a Function of Several Measured Quantities

Most physical measurements depend on several input quantities and their
uncertainties. For example, a velocity measurement v = s/t based on the
measurements of length and time has an associated error which obviously
depends on the errors of both s and t.

Let us first consider a function y(x1, x2) of only two measured quantities
with values x1m, x2m and errors δx1, δx2. With the Taylor expansion

y = y(x1m, x2m) +
∂y

∂x1
(x1m, x2m)∆x1 +

∂y

∂x2
(x1m, x2m)∆x2 + · · ·

we get as above to lowest order:

ym = 〈y(x1, x2)〉
= y(x1m, x2m)

and
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(δy)2 = 〈(∆y)2〉

= (
∂y

∂x1
)2〈(∆x1)2〉+ (

∂y

∂x2
)2〈(∆x2)2〉+ 2(

∂y

∂x1
)(
∂y

∂x2
)〈∆x1∆x2〉

= (
∂y

∂x1
)2(δx1)

2 + (
∂y

∂x2
)2(δx2)

2 + 2(
∂y

∂x1
)(
∂y

∂x2
)R12δx1δx2 , (4.4)

with the correlation coefficient

R12 =
〈∆x1∆x2〉
δx1δx2

.

In most cases the quantities x1 and x2 are uncorrelated. Then the relation
(4.4) simplifies with R12 = 0 to

(δy)2 = (
∂y

∂x1
)2(δx1)

2 + (
∂y

∂x2
)2(δx2)

2 .

If the function is a product of independent quantities, it is convenient to
use relative errors as indicated in the following example:

z = xnym ,
(
δz

z

)2

=

(
n
δx

x

)2

+

(
m
δy

y

)2

.

It is not difficult to generalize our results to functions y(x1, .., xN ) of N
measured quantities. We obtain

(δy)2 =

N∑

i,j=1

(
∂y

∂xi

∂y

∂xj
Rijδxiδxj

)

=
N∑

i=1

(
∂y

∂xi
)2(δxi)

2

)
+

N∑

i6=j=1

(
∂y

∂xi

∂y

∂xj
Rijδxiδxj

)

with the correlation coefficient

Rij =
〈∆xi∆xj〉
δxiδxj

,

Rij = Rji ,

Rii = 1 .

The Covariance Matrix

To simplify the notation, we introduce the covariance matrix C

C =




〈∆x1∆x1〉, 〈∆x1∆x2〉, ... 〈∆x1∆xn〉
〈∆x2∆x1〉, 〈∆x2∆x2〉, ... 〈∆x2∆xn〉

: : :
〈∆xn∆x1〉, 〈∆xn∆x2〉, ... 〈∆xn∆xn〉


 ,
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Cij = Rijδxiδxj

which, in this context, is also called error matrix. The covariance matrix by
definition is positive definite and symmetric. The error δy of the dependent
variable y is then given in linear approximation by

(δy)2 =

N∑

i,j=1

(
∂y

∂xi

∂y

∂xj
Cij

)

which can also be written in matrix notation as

(δy)2 = ∇yTC∇y .

For two variables with normally distributed errors following (3.48)

N (∆x1, ∆x2) =
1

2πδ1δ2
√
1− ρ2

exp


−1

2

(∆x1)
2

δ21
− 2ρ∆x1∆x2

δ1δ2
+ (∆x2)

2

δ22

1− ρ2




(4.5)
we get

C =

(
δ21 , ρδ1δ2

ρδ1δ2, δ22

)
.

Error Ellipsoids

Two-dimensional Gaussian error distributions like (4.5) (see Sect. 3.6.5) have
the property that the curves of constant probability density are ellipses. In-
stead of nσ error intervals in one dimension, we define nσ error ellipses.
The curve of constant probability density with density down by a factor of
exp(−n2/2) relative to the maximal density is the nσ error ellipse.

For the error distribution in the form of (4.5) the error ellipse is

(∆x1)
2

δ21
− 2ρ∆x1∆x2

δ1δ2
+ (∆x2)

2

δ22

1− ρ2
= n2 .

For uncorrelated errors the one standard deviation error ellipse is simply

(∆x1)
2

δ21
+

(∆x2)
2

δ22
= 1 .

In higher dimensions, we obtain ellipsoids which we better write in vector
notation:

∇yTC∇y = n2 .
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4.4.3 Averaging Uncorrelated Measurements

Important measurements are usually performed by various experiments in
parallel, or are repeated several times. The combination of the results from
various measurements should be performed in such a way that it leads to op-
timal accuracy. Under these conditions we can calculate a so-called weighted
mean, with an error smaller than that of any of the contributing measure-
ments. We assume that the individual measurements are independent.

Remember that in this chapter we assume that the errors are small enough
to neglect a dependence of the error on the value of the measured quantity
within the range of the error. This condition is violated for instance for small
Poisson numbers. The general case will be discussed in Chap. 8.

As an example let us consider two measurements with measured values x1,
x2 and errors δ1, δ2. With the relations given in Sect. 3.2.3, we find for the
error squared δ2 of a weighted sum

x = w1x1 + w2x2 ,

δ2 = w2
1δ

2
1 + w2

2δ
2
2 .

Now we chose the weights in such a way that the error of the weighted sum
is minimal, i.e. we seek for the minimum of δ2 under the condition w1+w2 = 1.
The result is

wi =
1/δ2i

1/δ21 + 1/δ22

and for the combined error we get

1

δ2
=

1

δ21
+

1

δ22
.

Generally, for N measurements we find

x =

N∑

i=1

xi
δ2i
/

N∑

i=1

1

δ2i
, (4.6)

1

δ2
=

N∑

i=1

1

δ2i
. (4.7)

When all measurements have the same error, all the weights are equal to
wi = 1/N , and we get the normal arithmetic mean, with the corresponding
reduction of the error by the factor 1/

√
N .

Remark: If the original raw data of different experiments are available,
then we have the possibility to improve the averaging process compared to the
simple use of the relations 4.6 and 4.7. When, for example, in two rate mea-
surements of 1 and 2 hours duration, 2, respectively 12 events are observed,
then the combined rate is (2+12)/(1 h+3 h) = 3.5 h−1, with an error ±0.9 h−1.
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Averaging according to (4.6) would lead to too low a value of (3.2± 1.2)h−1,
due to the above mentioned problem of small rates and asymmetric errors.
The optimal procedure is in any case the addition of the log-likelihoods which
will be discussed in Chap. 8. It will correspond to the addition of the original
data, as done here.

4.4.4 Averaging Correlated Measurements

In Sect.4.4.3 we derived the expression for the weighted mean of independent
measurements of one and the same quantity. This is a special case of a more
general result for a sample of N measurements of the same quantity which
differ not only in their variances, but are also correlated, and therefore not sta-
tistically independent. Consequently, they have to be described by a complete
N ×N covariance or error matrix C.

We choose the weights for a weighted mean such that the variance of the
combined value is minimal, in much the same way as in Sect.4.4.3 for uncorre-
lated measurements. For simplicity, we restrict ourselves to two measurements
x1,2. The weighted sum x is

x = w1x1 + w2x2 , with w1 + w2 = 1 .

To calculate var(x) we have to take into account the correlation terms:

δ2x ≡ var(x) = w2
1C11 + w2

2C22 + 2w1w2C12 .

The minimum of δ2x is achieved for

w1 =
C22 − C12

C11 + C22 − 2C12
,

w2 =
C11 − C12

C11 + C22 − 2C12
. (4.8)

The uncorrelated weighted mean corresponds to C12 = 0. Contrary to this
case, where the expression for the minimal value of δ2x is particularly simple,
it is not as transparent in the correlated case.

The case of N correlated measurements leads to the following expression
for the weights:

wi =

∑N
j=1 Vij∑N
ij=1 Vij

,

where V is the inverse matrix of C which we called the weight matrix in Sect.
3.6.5.

The weighted mean and its error, derived by error propagation, are:

x =

N∑

i=1

wixi =

∑N
ij=1 Vijxi∑N
ij=1 Vij

, (4.9)

δ2 =

∑N
ijkl=1 VijVklCik
(∑N

ij=1 Vij

)2 =
1

∑N
ij=1 Vij

. (4.10)
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Example 49. Average of measurements with common off-set error
Several experiments (i) determine the energy E∗

i of an excited nuclear
state by measuring its transition energy Ei with the uncertainty δi to the
ground state with energy E0. They take the value of E0 from the same table
which quotes an uncertainty of δ0 of the ground state energy. Thus the results
E∗

i = Ei + E0 are correlated. The covariance matrix is

Cij = 〈(∆i +∆0)(∆j +∆0)〉 = δ2i δij + δ20 .

C is the sum of a diagonal matrix and a matrix where all elements are identical,
namely equal to δ20 . In this special situation the variance var(E∗) ≡ δ2 of the
combined result E∗ =

∑
wiE

∗
i is

δ2 =
∑

i

w2
iCii +

∑

i6=j

wiwjCij

=
∑

w2
i δ

2
i +

(∑
wi

)2
δ20 .

Since the second sum is unity, the second term is unimportant when we min-
imize δ2, with respect to the weights and we get the same result (4.6) for the
weighted mean E∗ as in the uncorrelated case. For its error we find, as could
have been expected,

δ2 =

(∑ 1

δ2i

)−1

+ δ20 .

It is interesting that in some rare cases the weighted mean of two correlated
measurements x1 and x2 is not located between the individual measurement,
the so-called “mean value” is not contained in the interval [x1, x2].

Example 50. Average outside the range defined by the individual measure-
ments

The matrix

C =

(
1 2
2 5

)

with eigenvalues
λ1,2 = 3±

√
8 > 0

is symmetric and positive definite and thus a possible covariance matrix. But
following (4.8) it leads to weights w1 = 3

2 , w2 = − 1
2 . Thus the weighted mean

x = 3
2x1 − 1

2x2 with x1 = 0, x2 = 1 will lead to x = − 1
2 which is less than

both input values. The reason for this sensible but at first sight unexpected
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result can be understood intuitively in the following way: Due to the strong
correlation, x1 and x2, both will usually be either too large or too low. An
indication, that x2 is too large is the fact that it is larger than x1 which is
the more precise measurement. Thus the true value x then is expected to be
located below both x1 and x2.

4.4.5 Averaging Measurements with Systematic Errors

The combination of measurements with systematic errors proceeds in the same
way as for measurements with purely random errors. We form the weighted
sum where the weights are computed from the full error and we associate to
it again a statistical and a systematic error that we calculate by simple error
propagation.

To avoid complicated indices, we write the result of a measurement as
x ± δ, x ± a ± b, where a stands for the statistical and b for the systematic
error. For N measurements, xi ± δi, xi ± ai ± bi we have as before

x =
N∑

j=1

wixi

with

wi =
1/δ2i∑N
i=1 1/δ

2
i

.

The statistical and the systematic errors are

a2 =

N∑

i=1

w2
i a

2
i ,

b2 =
N∑

i=1

w2
i b

2
i .

Now we consider correlated errors. As always, we assume that the statisti-
cal errors are not correlated with the systematic errors. Then we have, apart
from the combined covariance matrix C, statistical and systematic covariance
matrices A and B which add up to C, Cij = Aij + Bij . The formulas (4.9)
and (4.10) remain valid and if we split the error into its statistical and its
systematic part we get:

a2 =

∑N
ijkl=1 VijVklAik
(∑N

ij=1 Vij

)2 ,

b2 =

∑N
ijkl=1 VijVklBik
(∑N

ij=1 Vij

)2 .
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Example 51. Average of Z0 mass measurements
In four experiments at the LEP storage rings the mass of the Z0 particle

has been measured. The results in unit of GeV are summarized in the first
four lines of the following table:

experiment mass x error δ stat. error a syst. error b
OPAL 91.1852 0.0030 0.0023 0.0018

DELPHI 91.1863 0.0028 0.0023 0.0016
L3 91.1898 0.0031 0.0024 0.0018

ALEPH 91.1885 0.0031 0.0024 0.0018
mean 91.1871 0.0023 0.0016 0.0017

The estimated covariance matrices in MeV2 are:

C =




302 162 162 162

162 282 162 162

162 162 312 162

162 162 162 312


 ,

A =




232 0 0 0
0 232 0 0
0 0 242 0
0 0 0 242


 , B =




182 162 162 162

162 162 162 162

162 162 182 162

162 162 162 182


 .

The covariance matrices are estimates derived from numbers given in [49].
The systematic errors are almost completely correlated. The weight matrix
V = C−1 is:

V =




1.32 −0.29 −0.29 −0.29
−0.29 1.54 −0.29 −0.29
−0.29 −0.29 1.22 −0.29
−0.29 −0.29 −0.29 1.22


 · 10−3 .

We insert these numbers into (4.9) and (4.10) and obtain the results displyed
in the last line of the table. Remark, had we neglected the correlation, the
uncertainty would have been only 15 MeV compared to the correct num-
ber 23 MeV . The results do not exactly agree with the numbers m(Z0) =
91.1876 ± 0.0021 quoted in [49] where theoretical corrections have been ap-
plied to the Z0 mass.

4.4.6 Several Functions of Several Measured Quantities

When we fix a straight line by two measured points in the plane, we are
normally interested in its slope and its intercept with a given axis. The errors
of these two quantities are usually correlated. The correlations often have to
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be known in subsequent calculations, e.g. of the crossing point with a second
straight line.

In the general case we are dealing with K functions yk(x1, .., xN ) ofN vari-
ables with given measurement values xi and error matrix C. The symmetric
error matrix E related to the values yk is

〈∆yk∆yl〉 =
N∑

i,j=1

(
∂yk
∂xi

∂yl
∂xj

〈∆xi∆xj〉
)
, (4.11)

Ekl =

N∑

i,j=1

∂yk
∂xi

∂yl
∂xj

Cij .

Defining a matrix

Dki =
∂yk
∂xi

,

we can write more compactly

Ekl =

N∑

i,j=1

DkiDljCij , (4.12)

E = DCD
T . (4.13)

4.4.7 Examples

The following examples represent some standard cases of error propagation.

Example 52. Error propagation: velocity of a sprinter
Given are s = (100.0± 0.1)m, t = (10.00± 0.02) s, searched for is δv:

(
δv

v

)2

=

(
δt

t

)2

+

(
δs

s

)2

,

δv

v
=

√(
0.02

10

)2

+

(
0.1

100

)2

= 2.2 10−3 .

Example 53. Error propagation: area of a rectangular table
Given are the sides a, b with a reading error δ1 and a relative scaling error

δ2, caused by a possible extension or shrinkage of the measuring tape. We
want to calculate the error δF of the area F = ab. We find
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(δa)
2 = (δ1)

2 + (aδ2)
2 ,

(δb)
2 = (δ1)

2 + (bδ2)
2 ,

Cab = ab(δ2)
2 ,

(δF )2 = b2(δa)
2 + a2(δb)

2 + 2abCab ,
(
δF

F

)2

= (δ1)
2

(
1

a2
+

1

b2

)
+ 2(δ2)

2 .

For large areas, the contribution of the reading error is negligible compared
to that of the scaling error.

Example 54. Straight line through two measured points
Given are two measured points (x1, y1± δy1), (x2, y2± δy2) of the straight

line y = mx + b, where only the ordinate y possesses an error. We want to
find the error matrix for the intercept

b = (x2y1 − x1y2)/(x2 − x1)

and the slope
m = (y2 − y1)/(x2 − x1) .

According to (4.11) we calculate the errors

(δm)2 =
(δy2)

2 + (δy1)
2

(x2 − x1)2
,

(δb)2 =
x22(δy1)

2 + x21(δy2)
2

(x2 − x1)2
,

E12 = 〈∆m∆b〉 = −x2(δy1)
2 + x1(δy2)

2

(x2 − x1)2
.

The error matrix E for m and b is therefore

E =
1

(x2 − x1)2

(
(δy1)

2 + (δy2)
2, −x2(δy1)2 − x1(δy2)

2

−x2(δy1)2 − x1(δy2)
2, x22(δy1)

2 + x21(δy2)
2

)
.

The correlation matrix element R12 is

R12 =
E12

δm δb
,

= − x2(δy1)
2 + x1(δy2)

2

{[(δy2)2 + (δy1)2] [x22(δy1)
2 + x21(δy2)

2]}1/2
. (4.14)
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For the special case δy1 = δy2 = δy the results simplify to

(δm)2 =
2

(x1 − x2)2
(δy)2 ,

(δb)2 =
(x21 + x22)

(x1 − x2)2
(δy)2 ,

E12 = − (x1 + x2)

(x1 − x2)2
(δy)2 ,

R12 = − x1 + x2√
2(x21 + x22)

.

Remark: As seen from (4.14), for a suitable choice of the abscissa the correla-
tion disappears. To achieve this, we take as the origin the “center of gravity” xs
of the x-values xi, weighted with the inverse squared errors of the ordinates,
1/(δyi)

2:

xs =
∑ xi

(δyi)2
/
∑ 1

(δyi)2
.

Example 55. Error of a sum of weighted measurements
In the evaluation of event numbers, the events are often counted with dif-

ferent weights, in order to take into account, for instance, a varying acceptance
of the detector. Weighting is also important in Monte Carlo simulations (see
5.2.6) especially when combined with parameter estimation Sect. 6.8. For N
different weights wi, i = 1, ..., N and ni events with weight wi the weighted
number of events is

s =

N∑

i=1

niwi .

As ni is Poisson distributed, its uncertainty is
√
ni. From error proagation we

obtain for the error of the sum δ2s =
∑
niw

2
i . Normally we register individual

events, ni = 1 and we get

δ2s =

N∑

i=1

w2
i . (4.15)

The sum of the weights follows a compound Poisson distribution which is
described in Sect. 3.7.3. The result (4.15) corresponds to (3.62).
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4.5 Biased Measurements

We have required that our measurement values xi are undistorted (unbiased).
We have used this property in the discussion of error propagation. Anyway, it
is rather plausible that we should always avoid biased measurements, because
averaging measurements with a common bias would produce a result with
the same bias. The average from infinitely many measurements would thus
be different from the true parameter value but the associated error would be
infinitely small. However a closer look at the problem reveals that the require-
ment of unbiasedness has also its problems: When we average measurements,
the measurements xi are weighted with 1/δ2i , their inverse squared errors, as
we have seen above. To be consistent, it is therefore required that the quan-
tities xi/δ

2
i are unbiased! Of course, we explicitly excluded the possibility of

errors which depend on the measurement values, but since this requirement
is violated so often in reality and since a bias which is small compared to the
uncertainty in an individual experiment can become important in the average,
we stress this point here and present an example.

Example 56. Bias in averaging measurements
Let us assume that several measurements of a constant x0 produce un-

biased results xi with errors δi ∼ xi which are proportional to the measure-
ments. This could be, for instance, measurements of particle lifetimes, where
the relative error is determined by the number of recorded decays and thus
the absolute error is set proportional to the observed mean life. When we
compute the weighted mean x over many such measurements

x =
∑ xi

δ2i
/
∑ 1

δ2i

=
∑ 1

xi
/
∑ 1

x2i

≈ 〈1/x〉 /
〈
1/x2

〉

the expected value is shifted systematically to lower values. This is easily seen
from a Taylor expansion of the expected values:

〈x− x0〉 =
〈1/x〉
〈1/x2〉 − x0 ,

〈
1

x

〉
=

1

x0

(
1−

〈
∆x

x0

〉
+

〈
∆x2

x20

〉
+ · · ·

)

≈ 1

x0
(1 +

δ2

x20
) ,

〈
1

x2

〉
=

1

x20

(
1− 2

〈
∆x

x0

〉
+ 3

〈
∆x2

x20

〉
+ ..

)
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≈ 1

x20
(1 + 3

δ2

x20
) ,

〈x− x0〉 ≈ x0
1 + δ2/x20
1 + 3δ2/x20

− x0

≈ x0(1− 2δ2/x20)− x0 ,

〈x− x0〉
x0

≈ −2
δ2

x20
.

Here δ2 is the expectation of the error squared in an individual measurement.
For a measurement error δ/x0 of 20% we obtain a sizable final bias of 8% for
the asymptotic result of infinitely many contributions.

The revised requirement of unbiasedness of measurements divided by the
error squared does not alter the other results which we have derived for the
general error propagation in the linear approximation.

4.6 Confidence Intervals

Under the condition that the error distribution is a one-dimensional Gaussian,
with a width independent of the expected value, the error intervals of many
repeated measurements will cover the true parameter value in 68.3 % of the
cases, because for any true value µ the probability to observe x inside one
standard deviation interval is

1√
2πδ

∫ δ

−δ

exp

[
− (x− µ)2

2δ2

]
dx ≈ 0.683 .

The region [x − δ, x + δ] is called a confidence interval4 with the confidence
level (CL) of 68.3%, or, in physicists’ jargon, a 1σ confidence interval. Thus
in about one third of the cases our standard error intervals, under the above
assumption of normality, will not contain the true value. Often a higher safety
is desired, for instance 90 %, 95 %, or even 99 %. The respective limits can
be calculated, provided the probability distribution is known with sufficient
accuracy. For the normal distribution we present some limits in units of the
standard deviation in Table 4.1. The numerical values can be taken from tables
of the χ2-distribution function.

4We will discuss confidence intervals in more detail in Chap. 8 and in Appendix
13.5.
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Table 4.1. Upper table: confidence levels for several error limits and dimensions,
lower table: error limits in units of σ for several confidence levels and dimensions.

Deviation Dimension
1 2 3 4

1 σ 0.683 0.393 0.199 0.090
2 σ 0.954 0.865 0.739 0.594
3 σ 0.997 0.989 0.971 0.939
4 σ 1. 1. 0.999 0.997

Confidence Dimension
level 1 2 3 4
0.50 0.67 1.18 1.54 1.83
0.90 1.65 2.14 2.50 2.79
0.95 1.96 2.45 2.79 3.08
0.99 2.58 3.03 3.37 3.64

Example 57. Confidence level for the mean of normally distributed variates
Let us consider a sample of N measurements x1, . . . , xN which are sup-

posed to be normally distributed with unknown mean µ but known variance
σ2. The sample mean x is also normally distributed with variance δN = σ/

√
N .

The 1σ confidence interval [x−δN , x+δN ] covers, as we have discussed above,
the true value µ in 68.3 % of the cases. We can, with the help of Table 4.1,
also find a 99 % confidence level, i.e. [x− 2.58δN , x+ 2.58δN ].

We have to keep in mind that the Gaussian confidence limits do not or
only approximately apply to other distributions. Error distributions often have
tails which are not well understood. Then it is impossible to derive reliable
confidence limits with high confidence levels. The same is true when system-
atic errors play a role, for example due to background and acceptance which
usually are not known with great accuracy. Then for a given confidence level
much wider intervals than in the above case are required.

We come back to our previous example but now we assume that the error
has to be estimated from the sample itself, according to (4.1), (4.3):

δ
2

N =

N∑

i=1

(xi − x)2/[N(N − 1)] .

To compute the confidence level for a given interval in units of the standard
deviation, we now have to switch to Student’s distribution (see Sect. 3.6.11).
The variate t, given by (x − µ)/δN , can be shown to be distributed accord-
ing to hf (t) with f = N − 1 degrees of freedom. The confidence level for a
given number of standard deviations will now be lower, because of the tails of
Student’s distribution. Instead of quoting this number, we give in Table 4.2
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Table 4.2. Values of the factor k for the Student’s t-distribution as a function of
the confidence levels CL and sample size N .

N 68.3% 99%

3 1.32 3.85
10 1.06 1.26
20 1.03 1.11
∞ 1.00 1.00

0.989

0.865

0.393
2d2

2d1

 

 

x2

x1

Fig. 4.2. Confidence ellipses for 1, 2 and 3 standard deviations and corresponding
probabilities.

the factor k by which we have to increase the interval length to get the same
confidence level as in the Gaussian case. To clarify its meaning, let us look at
two special cases: For 68.3% confidence and N = 3 we require a 1.32 standard
deviation interval and for 99% confidence and N = 10 a 1.26 × 2.58 = 3.
25 standard deviation interval. As expected, the discrepancies are largest for
small samples and high confidence levels. In the limit when N approaches
infinity the factor k has to become equal to one.

Often it is overlooked that for distributions of several variates, the proba-
bility to find all variables inside their error limits is strongly decreasing with
the number of variables. Some probabilities for Gaussian errors are given in
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Table 4.1. In three dimensions only 20 % of the observations are found in
the 1σ ellipsoid. Fig. 4.2 shows confidence ellipses and probabilities for two
variables.





5

Monte Carlo Simulation

5.1 Introduction

The possibility to simulate stochastic processes and of numerical modeling
on the computer simplifies extraordinarily the solution of many problems in
science and engineering. The deeper reason for this is characterized quite
aptly by the German saying “Probieren geht über studieren” (Trying beats
studying). Monte Carlo methods replace intellectual by computational effort
which, however, is realized by the computer.

A few simple examples will demonstrate the advantages, but also the limits
of this method. The first two of them are purely mathematical integration
problems which could be solved also by classical numerical methods, but show
the conceptual simplicity of the statistical approach.

Example 58. Area of a circle of diameter d
We should keep in mind that without the knowledge of the quantity π

the problem requires quite some mathematics but even a child can solve this
problem experimentally. It may inscribe a circle into a square with edge length
d, and sprinkles confetti with uniform density over it. The fraction of con-
fetti confined inside the circle provides the area of the circle in units of the
square area. Digital computers have no problem in “sprinkling confetti” ho-
mogeneously over given regions.

Example 59. Volume of the intersection of a cone and a torus
We solve the problem simply by scattering points homogeneously inside a

cuboid containing the intersect. The fraction of points inside both bodies is a
measure for the ratio of the intersection volume to that of the cuboid.
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In the following three examples we consider the influence of the measure-
ment process on the quantity to be determined.

Example 60. Correction of decay times
The decay time of instable particles is measured with a digital clock which

is stopped at a certain maximal time. How can we determine the mean lifetime
of the particles? The measured decay times are distorted by both the limited
resolution as well as by the finite measurement time, and have to be corrected.
The correction can be determined by a simulation of the whole measurement
process. (We will come back to details below.)

Example 61. Efficiency of particle detection
Charged particles passing a scintillating fiber produce photons. A fraction

of the photons is reflected at the surface of the fiber, and, after many re-
flections, eventually produces a signal in a photomultiplier. The photon yield
per crossing particle has to be known as a function of several parameters like
track length of the particle inside the fiber, its angle of incidence, fiber length
and curvature, surface parameters of the fiber etc.. Here a numerical solution
using classical integration methods would be extremely involved and an ex-
perimental calibration would require a large number of measurements. Here,
and in many similar situations, a Monte Carlo simulation is the only sensible
approach.

Example 62. Measurement of a cross section in a collider experiment
Particle experiments often consist of millions of detector elements which

have to measure the trajectories of sometimes thousands of particles and the
energies deposited in an enormous number of calorimeter cells. To measure a
specific cross section, the corresponding events have to be selected, acceptance
losses have to be corrected, and unavoidable background has to be estimated.
This can only be achieved by sophisticated Monte Carlo simulations which
require a huge amount of computing time. These simulations consist of two
distinct parts, namely the generation of the particle reaction (event genera-
tion) which contains the interesting physics, and the simulation of the detector
response. The computing time needed for the event generation is negligible
compared to that required for the detector simulation. As a consequence one
tries to avoid the repetition of the detector simulation and takes, if possible,
modifications of the physical process into account by re-weighting events.
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Example 63. Reaction rates of gas mixtures
A vessel contains different molecules with translational and rotational

movements according to the given temperature. The molecules scatter on the
walls, with each other and transform into other molecules by chemical pro-
cesses depending on their energy. To be determined is the composition of the
gas after a certain time. The process can be simulated for a limited number
of particles. The particle trajectories and the reactions have to be computed.

All examples lead finally to integration problems. In the first three ex-
amples also numerical integration, even exact analytical methods, could have
been used. For the Examples 61 and 63, however, this is hardly possible, since
the number of variables is too large. Furthermore, the mathematical formula-
tion of the problems becomes rather involved.

Monte Carlo simulation does not require a profound mathematical exper-
tise. Due to its simplicity and transparency mistakes can be avoided. It is true,
though, that the results are subject to statistical fluctuations which, however,
may be kept small enough in most cases thanks to the fast computers available
nowadays. For the simulation of chemical reactions, however, (Example 63) we
reach the limits of computing power quite soon, even with super computers.
The treatment of macroscopic quantities (one mole, say) is impossible. Most
questions can be answered, however, by simulating small samples.

Nowadays, even statistical problems are often solved through Monte Carlo
simulations. In some big experiments the error estimation for parameters de-
termined in a complex analysis is so involved that it is easier to simulate
the experiment, including the analysis, several times, and to derive the errors
quasi experimentally from the distribution of the resulting parameter values.
The relative statistical fluctuations can be computed for small samples and
then scaled down with the square root of the sample size.

In the following section we will treat the simulation of the basic univariate
distributions which are needed for the generation of more complex processes.
The generalization to several dimensions is not difficult. Then we continue
with a short summary on Monte Carlo integration methods.

5.2 Generation of Statistical Distributions

The simplest distribution is the uniform distribution which serves as the basis
for the generation of all other distributions. In the following we will intro-
duce some frequently used methods to generate random numbers with desired
distributions.

Some of the simpler methods have been introduced already in Chap. 3,
Sect. 3.6.4, 3.6.5: By a linear transformation we can generate uniform dis-
tributions of any location and width. The sum of two uniformly distributed
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random numbers follows a triangular distribution. The addition of only five
such numbers produces a quite good approximation of a Gaussian variate.

Since our computers work deterministically, they cannot produce numbers
that are really random, but they can be programmed to deliver for practi-
cally any application sufficiently unordered numbers, pseudo random numbers
which approximate random numbers to a very good accuracy.

5.2.1 Computer Generated Pseudo Random Numbers

The computer delivers pseudo random numbers in the interval between zero
and one. Because of the finite number of digits used to represent data in a
computer, these are discrete, rational numbers which due to the usual floating
point accuracy can take only 218 ≈ 8 · 106 different values, and follow a fixed,
reproducible sequence which, however, appears as stochastic to the user. More
refined algorithms can avoid, though, the repetition of the same sequence after
218 calls. The Mersenne twister, one of the fastest reasonable random number
generators, invented in 1997 by M. Matsomoto and T. Nishimura has the
enormous period of 219937 which never can be exhausted and is shown to be
uniformly distributed in 623 dimensions. In all generators, the user has the
possibility to set some starting value, called seed, and thus to repeat exactly
the same sequence or to interrupt a simulation and to continue with the
sequence in order to generate statistically independent samples.

In the following we will speak of random numbers also when we mean
pseudo random numbers.

There are many algorithms for the generation of random numbers. The
principle is quite simple: One performs an arithmetic operation and uses only
the insignificant digits of the resulting number. How this works is shown by
the prescription

xi+1 = n−1 mod(λxi;n) ,

producing from the old random number xi a new one between zero and one.
The parameters λ and n fulfil the condition λ ≫ n. With the values x1 =
0.7123, λ = 4158, n = 1 we get, for instance, the number

x2 = mod(2961.7434; 1) = 0.7434 .

The apparent “randomness” is due to the cutting off the significant digits by
the mod operation.

This random number generator is far from being perfect, as can be shown
experimentally by investigation of the correlations of consecutive random
numbers. The generators installed in the commonly used program libraries
are almost always sufficiently good. Nevertheless it is advisable to check their
quality before starting important calculations. Possible problems with random
number generators are that they have a shorter than expected repetition pe-
riod, correlations of successive values and lack of uniformity. For simulations
which require a high accuracy, we should remember that with the standard
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generators only a limited number of random numbers is available. Though in-
tuitively attractive, randomly mixing the results of different random number
generators does not improve the overall quality.

In Fig. 5.1 the values of two consecutive random numbers from a PC
routine are plotted against each other. Obvious correlations and clustering
cannot be detected. The histogram of a projection is well compatible with
a uniform distribution. A quantitative judgment of the quality of random
number generators can be derived with goodness-of-fit tests (see Chap. 10).

In principle, one could of course integrate random number generators into
the computers which indeed work stochastically and replace the determinis-
tic generators. As physical processes, the photo effect or, even simpler, the
thermal noise could be used. Each bit of a computer word could be set by
a dual oscillator which is stopped by the stochastic process. Unfortunately,
such hardware random number generators are presently not used, although
they could be produced quite economically, presumably ≈ 103 in a single
chip. They would make obsolete some discussions, which come up from time
to time, on the reliability of software generators. On the other hand, the re-
producibility of the random number sequence is quite useful when we want to
compare different program versions, or to debug them.

5.2.2 Generation of Distributions by Variable Transformation

Continuous Variables

With the restrictions discussed above, we can generate with the computer
random numbers obeying the uniform distribution

u(r) = 1 for 0 ≤ r ≤ 1.

In the following we use the notations u for the uniform distribution and
r for a uniformly distributed variate in the interval [0, 1]. Other univariate
distributions f(x) are obtained by variable transformations r(x) with r a
monotone function of x (see Chap. 3):

f(x)dx = u(r)dr,
∫ x

−∞
f(x′)dx′ =

∫ r(x)

0

u(r′)dr′ = r(x),

F (x) = r,

x(r) = F−1(r) .

The variable x is calculated from the inverse function F−1 where F (x)
is the distribution function which is set equal to r. For an analytic solution
the p.d.f. has to be analytically integrable and the distribution function must
have an inverse in analytic form.
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Fig. 5.1. Correlation plot of consequtive random numbers (top) and frequency of
random numbers (bottom).
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Fig. 5.2. The p.d.f (top) follows from the distribution function as indicated by the
arrows.

The procedure is explained graphically in Fig. 5.2: A random number r
between zero and one is chosen on the ordinate. The distribution function (or
rather its inverse) then delivers the respective value of the random variable x.

In this way it is possible to generate the following distributions by simple
variable transformation from the uniform distribution:

• Linear distribution:

f(x) = 2x 0 ≤ x ≤ 1 ,

x(r) =
√
r .

• Power-law distribution:

f(x) = (n+ 1)xn 0 ≤ x ≤ 1, n > −1 ,

x(r) = r1/(n+1) .

• Exponential distribution (Sect. 3.6.6) :

f(x) = γe−γx,

x(r) = − 1

γ
ln(1− r) .
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• Normal distribution (Sect. 3.6.5) : Two independent normally distributed
random numbers x, y are obtained from two uniformly distributed random
numbers r1, r2, see (3.38), (3.39).

f(x, y) =
1

2π
exp

[
−x

2 + y2

2

]
,

x(r1, r2) =
√
−2 ln(1 − r1) cos(2πr2) ,

y(r1, r2) =
√
−2 ln(1 − r1) sin(2πr2) .

• Breit-Wigner distribution (Sect3.6.9) :

f(x) =
1

πΓ/2

(Γ/2)2

x2 + (Γ/2)2
,

x(r) =
Γ

2
tan

[
π(r − 1

2
)

]
.

• Log-Weibull (Fisher–Tippett) distribution (3.6.12)

f(x) = exp(−x− e−x),

x(r) = − ln(− ln r) .

The expression 1 − r can be replaced by r in the formulas. More general
versions of these distributions are obtained by translation and/or scaling op-
erations. A triangular distribution can be constructed as a superposition of
two linear distributions. Correlated normal distributed random numbers are
obtained by scaling x and y differently and subsequently rotating the coordi-
nate frame. How to generate superpositions of distributions will be explained
in Sect. 5.2.5.

Uniform Angular, Circular and Spherical Distributions

Very often the generation of a uniform angular distribution is required. The
azimuthal angle ϕ is given by

ϕ = 2πr .

To obtain a spatially isotropic distribution, we have also to generate the polar
angle θ. As we have discussed in Sect. 3.5.8, its cosine is uniformly distributed
in the interval [−1, 1]. Therefore

cos θ = (2r1 − 1) ,

θ = arccos(2r1 − 1) ,

ϕ = 2πr2 .

A uniform distribution inside a circle of radius R0 is generated by
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Fig. 5.3. Generation of a Poisson distributed random number.

R = R0
√
r1,

ϕ = 2πr2 .

Because the differential area element is R dR dϕ, we have a linear distribution
in R.

A uniform distribution inside a sphere of radius R0 is obtained similarly
from

R = R0r
1/3
1 ,

θ = arccos(2r2 − 1) ,

ϕ = 2πr3 ,

with a quadratic distribution in R.

Discrete Distributions

The generation of random numbers drawn from discrete distributions is per-
formed in a completely analogous fashion. We demonstrate the method with
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a simple example: We generate random numbers k following a Poisson dis-
tribution (see Sect. 3.6.3) P4.6(k) with expected value 4.6 which is displayed
in Fig. 5.3. By summation of the bins starting from the left (integration), we
obtain the distribution function S(k) = Σi=k

i=0P4.6(i) shown in the figure. To
a uniformly distributed random number r we attach the value k which corre-
sponds to the minimal S(k) fulfilling S > r. The numbers k follow the desired
distribution.

Histograms

A similar method is applied when an empirical distribution given in the form
of a histogram has to be simulated. The random number r determines the
bin j. The remainder r − S(j − 1) is used for the interpolation inside the bin
interval. Often the bins are small enough to justify a uniform distribution for
this interpolation. A linear approximation does not require much additional
effort.

For two-dimensional histograms hij we first produce a projection,

gi =
∑

j

hij ,

normalize it to one, and generate at first i, and then for given i in the same
way j. That means that we need for each value of i the distribution summed
over j.

5.2.3 Simple Rejection Sampling

In the majority of cases it is not possible to find and invert the distribution
function analytically. As an example for a non-analytic approach, we consider
the generation of photons following the Planck black-body radiation law. The
appropriately scaled frequency x obeys the distribution

f(x) = c
x3

ex − 1
(5.1)

with the normalization constant c. This function is shown in Fig. 5.4 for c = 1,
i.e. not normalized. We restrict ourselves to frequencies below a given maximal
frequency xmax.

A simple method to generate this distribution f(x) is to choose two uni-
formly distributed random numbers, where r1 is restricted to the interval
(xmin, xmax) and r2 to (0, fmax). This pair of numbers P (r1, r2) corresponds
to a point inside the rectangle shown in the figure. We generate points and
those lying above the curve f(x) are rejected. The density of the remaining
r1 values follows the desired p.d.f. f(x).

A disadvantage of this method is that it requires several randomly dis-
tributed pairs to select one random number following the distribution. In our
example the ratio of successes to trials is about 1:10. For generating photons
up to arbitrary large frequencies the method cannot be applied at all.
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Fig. 5.4. Random selection method. The projection of the points located below the
curve follow the desired distribution.

5.2.4 Importance Sampling

An improved selection method, called importance sampling, is the following:
We look for an appropriate functionm(x), called majorant, with the properties

• m ≥ f for all x,
• x =M−1(r), i.e. the indefinite integralM(x) =

∫ x

−∞m(x′)dx′ is invertible,

If it exists (see Fig. 5.5), we generate x according to m(x) and, in a second
step, drop stochastically for given x the fraction [m(x) − f(x)]/f(x) of the
events. This means, for each event (i.e. each generated x) a second, this time
uniform random number between zero andm(x) is generated, and if it is larger
than f(x), the event is abandoned. The advantage is, that for m(x) being not
much different from f(x) in most of the cases, the generation of one event
requires only two random numbers. Moreover, in this way it is possible to
generate also distributions which extend to infinity, as for instance the Planck
distribution, and many other distributions.

We illustrate the method with a simple example (Fig. 5.5):

Example 64. Importance sampling
To generate

f(x) = c(e−0.2x sin2 x) for 0 < x <∞
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Fig. 5.5. Majorant (dashed) used for importance sampling.

with the majorant
m(x) = c e−0.2x ,

we normalize m(x) and calculate its distribution function

r =

∫ x

0

0.2e−0.2x′

dx′

= 1− e−0.2x .

Thus the variate transformation from the uniformly distributed random num-
ber r1 to x is

x = − 1

0.2
ln(1 − r1) .

We draw a second uniform random number r2, also between zero and one,
and test whether r2m(x) exceeds the desired p.d.f. f(x). If this is the case,
the event is rejected:

for r2m(x) < sin2 x → keep x,

for r2m(x) > sin2 x → drop x .

With this method a uniform distribution of random points below the majorant
curve is generated, while only those points are kept which lie below the p.d.f.
to be generated. On average about 4 random numbers per event are needed
in this example, since the test has a positive result in about half of the cases.
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Fig. 5.6. Planck spectrum with majorant.

If an appropriate continuous, analytical majorant function cannot be
found, often a piecewise constant function (step function) is chosen.

Example 65. Generation of the Planck distribution
Here a piecewise defined majorant is useful. We consider again the Planck

distribution (5.1), and define the majorant in the following way: For small
values x < x1 we chose a constant majorantm1(x) = 6 c. For larger values x >
x1 the second majorant m2(x) should be integrable with invertible integral
function. Due to the x3-term, the Planck distribution decreases somewhat
more slowly than e−x. Therefore we chose for m2 an exponential factor with
x substituted by x1−ε. With the arbitrary choice ε = 0.1 we take

m2(x) = 200 c x−0.1e−x0.9

.

The factor x−0.1 does not influence the asymptotic behavior significantly but
permits the analytical integration:

M2(x) =

∫ x

x1

m2(x
′)dx′,

=
200c

0.9

[
e−x0.9

1 − e−x0.9
]
.

This function can be easily solved for x, therefore it is possible to generate m2

via a uniformly distributed random number. Omitting further details of the
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Fig. 5.7. Generated Planck spectrum.

calculation, we show in Fig. 5.6 the Planck distribution with the two majorant
pieces in logarithmic scale, and in Fig. 5.7 the generated spectrum.

5.2.5 Treatment of Additive Probability Densities

Quite often the p.d.f. to be considered is a sum of several terms. Let us restrict
ourselves to the simplest case with two terms,

f(x) = f1(x) + f2(x) ,

with

S1 =

∫ ∞

−∞
f1(x)dx ,

S2 =

∫ ∞

−∞
f2(x)dx ,

S1 + S2 = 1 .
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Now we chose with probability S1 (S2) a random number distributed ac-
cording to f1 (f2). If the integral functions

F1(x) =

∫ x

−∞
f1(x

′)dx′ ,

F2(x) =

∫ x

−∞
f2(x

′)dx′

are invertible, we obtain with a uniformly distributed random number r the
variate x distributed according to f(x):

x = F−1
1 (r) for r < S1 ,

respectively
x = F−1

2 (r − S1) for r > S1 .

The generalization to more than two terms is trivial.

Example 66. Generation of an exponential distribution with constant back-
ground

In order to generate the p.d.f.

f(x) = ε
λe−λx

1− e−λa
+ (1− ε)

1

a
für 0 < x < a ,

we chose for r < ε

x =
−1

λ
ln

(
1− 1− e−λa

ε
r

)
,

and for r > ε

x = a
r − ε

1− ε
.

We need only one random number per event. The direct way to use the inverse
of the distribution function F (x) would not have been successful, since it
cannot be given in analytic form.

The separation into additive terms is always recommended, even when the
individual terms cannot be handled by simple variate transformations as in
the example above.

5.2.6 Weighting Events

In Sect. 3.6.3 we have discussed some statistical properties of weighted events
and realized that the relative statistical error of a sum of N weighted events
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can be much larger than the Poisson value 1/
√
N , especially when the indi-

vidual weights are very different. Thus we will usually refrain from weighting.
However, there are situations where it is not only convenient but essential
to work with weighted events. If a large sample of events has already been
generated and stored and the p.d.f. has to be changed afterwards, it is of
course much more economical to re-weight the stored events than to generate
new ones because the simulation of high energy reactions in highly complex
detectors is quite expensive. Furthermore, for small changes the weights are
close to one and will not much increase the errors. As we will see later, param-
eter inference based on a comparison of data with a Monte Carlo simulation
usually requires re-weighting anyway.

An event with weight w stands for w identical events with weight 1. When
interpreting the results of a simulation, i.e. calculating errors, one has to take
into account the distribution of a sum of weights, see last example in Sect.
4.4.7. There we showed that

var
(∑

wi

)
=
∑

w2
i .

Relevant is the relative error of a sum of weights:

δ (
∑
wi)∑
wi

=

√∑
w2

i∑
wi

.

Strongly varying weights lead to large statistical fluctuations and should there-
fore be avoided.

To simulate a distribution

f(x) : with xa < x < xb

with weighted events is especially simple: We generate events xi that are
uniformly distributed in the interval [xa, xb] and weight each event with wi =
f(xi).

In the Example 64 we could have generated events following the majorant
distribution, weighting them with sin2 x. The weights would then be wi =
f(xi)/m(xi).

When we have generated events following a p.d.f. f(x|θ) depending on a
parameter θ and are interested in the distribution f ′(x|θ′) we have only to
re-weight the events by f ′/f .

5.2.7 Markov Chain Monte Carlo

Introduction

The generation of distributions of high dimensional distributions is difficult
with the methods that we have described above. Markov chain Monte Carlo
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(MCMC) is able to generate samples of distributions with hundred or thou-
sand dimensions. It has become popular in thermodynamics where statistical
distributions are simulated to compute macroscopic mean values and espe-
cially to study phase transitions. It has also been applied for the approxima-
tion of functions on discrete lattices. The method is used mainly in theoretical
physics to sample multi-dimensional distributions, so-far we know of no appli-
cations in experimental particle physics. However, MCMC is used in artificial
neural networks to optimize the weights of perceptron nets.

Characteristic of a Markov chain is that a random variable x is mod-
ified stochastically in discrete steps, its value at step i depending only on
its value at the previous step i − 1. Values of older steps are forgotten:
P (xi|xi−1, xi−2, ..., x1) = P (xi|xi−1). A typical example of a Markov chain
is random walk. Of interest are Markov chains that converge to an equilib-
rium distribution, like random walk in a fixed volume. MCMC generates a
Markov chain that has as its equilibrium distribution the desired distribution.
Continuing with the chain once the equilibrium has been reached produces
further variates of the distribution. To satisfy this requirement, the chain has
to satisfy certain conditions which are fulfilled for instance for the so-called
Metropolis algorithm, which we will use below. There exist also several other
sampling methods. Here we will only sketch this subject and refer the inter-
ested reader to the extensive literature which is nicely summarized in [31].

Thermodynamical Model, Metropolis Algorithm

In thermodynamics the molecules of an arbitrary initial state always approach
– if there is no external intervention – a stationary equilibrium distribution.
Transitions then obey the principle of detailed balance. In a simple model with
atoms or molecules in only two possible states in the stationary case, the rate
of transitions from state 1 to state 2 has to be equal to the reverse rate from
2 to 1. For occupation numbers N1, N2 of the respective states and transition
rates per molecule and time W12, respectively W21, we have the equation of
balance

N1W12 = N2W21 .

For instance, for atoms with an excited state, where the occupation numbers
are very different, the equilibrium corresponds to a Boltzmann distribution,
N1/N2 = e−∆E/kT , with ∆E being the excitation energy, k the Boltzmann
constant and T the absolute temperature. When the stationary state is not yet
reached, e.g. the number N1 is smaller than in the equilibrium, there will be
less transitions to state 2 and more to state 1 on average than in equilibrium.
The occupation number of state 1 will therefore increase until equilibrium is
reached. Since transitions are performed stochastically, even in equilibrium
the occupation numbers will fluctuate around their nominal values.

If now, instead of discrete states, we consider systems that are character-
ized by a continuous variable x, the occupation numbers are to be replaced
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by a density distribution f(x) where x is multidimensional. It represents the
total of all energies of all molecules. As above, for a stationary system we have

f(x)W (x → x′) = f(x′)W (x′ → x) .

As probability P (x→ x′) for a transition from state x to a state x′ we choose
the Boltzmann acceptance function

P (x→ x′) =
W (x→ x′)

W (x→ x′) +W (x′ → x)

=
f(x′)

f(x) + f(x′)
.

In an ideal gas and in many other systems the transition regards only one
or two molecules and we need only consider the effect of the change of those.
Then the evaluation of the transition probability is rather simple. Now we
simulate the stochastic changes of the states with the computer, by choosing
a molecule at random and change its state with the probability P (x→ x′) into
a also randomly chosen state x′ (x→ x′). The choice of the initial distribution
for x is relevant for the speed of convergence but not for the asymptotic result.

This mechanism has been introduced by Metropolis et al. [32] with a dif-
ferent acceptance function in 1953. It is well suited for the calculation of mean
values and fluctuations of parameters of thermodynamical or quantum statis-
tical distributions. The process continues after the equilibrium is reached and
the desired quantity is computed periodically. This process simulates a peri-
odic measurement, for instance of the energy of a gas with small number of
molecules in a heat bath. Measurements performed shortly one after the other
will be correlated. The same is true for sequentially probed quantities of the
MCMC sampling. For the calculation of statistical fluctuations the effect of
correlations has to be taken into account. It can be estimated by varying the
number if moves between subsequent measurements.

Example 67. Mean distance of gas molecules
We consider an atomic gas enclosed in a cubic box located in the gravi-

tational field of the earth. The N atoms are treated as hard balls with given
radius R. Initially the atoms are arranged on a regular lattice. The p.d.f. is
zero for overlapping atoms, and proportional to e−αz, where z is the vertical
coordinate of a given atom. The exponential factor corresponds to the Boltz-
mann distribution for the potential energy in the gravitational field. An atom
is chosen randomly. Its position may be (x, y, z). A second position inside
the box is randomly selected by means of three uniformly distributed random
numbers. If within a distance of less than 2R an other atom is found, the
move is rejected and we repeat the selection of a possible new location. If the
position search with the coordinates (x′, y′, z′) is successful, we form the ratio
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w = e−az′

/(e−az′

+ e−αz). The position is changed if the condition r < w
is fulfilled, with a further random number r. Periodically, the quantity being
studied, here the mean distance between atoms, is calculated. It is displayed
in Fig. 5.8 as a function of the iteration number. Its mean value converges to
an asymptotic value after a number of moves which is large compared to the
number of atoms. Fig. 5.9 shows the position of atoms projected to the x-z
plane, for 300 out of 1000 considered atoms, after 20000 moves. Also the sta-
tistical fluctuations can be found and, eventually, re-calculated for a modified
number of atoms according to the 1/

√
N -factor.

5.3 Solution of Integrals

The generation of distributions has always the aim, finally, to evaluate inte-
grals. There the integration consists in simply counting the sample elements
(the events), for instance, when we determine the acceptance or efficiency of
a detector.

The integration methods follow very closely those treated above for the
generation of distributions. To simplify the discussion, we will consider mainly
one-dimensional integrals. The generalization to higher dimensions, where the
advantages of the Monte Carlo method become even more pronounced than
for one-dimensional integration, does not impose difficulties.

Monte Carlo integration is especially simple and has the additional advan-
tage that the accuracy of the integrals can be determined by the usual methods
of statistical error estimation. Error estimation is often quite involved with
the conventional numerical integration methods.

5.3.1 Simple Random Selection Method

Integrals with the integrand changing sign are subdivided into integrals over
intervals with only positive or only negative integrand. Hence it is sufficient
to consider only the case

I =

∫ xb

xa

y(x) dx with y > 0 . (5.2)

As in the analogous case when we generate a distribution, we produce
points which are distributed randomly and uniformly in a rectangle covering
the integrand function. An estimate Î for the area I is obtained from the
ratio of successes – this are the points falling below the function y(x) – to the
number of trials N0, multiplied by the area I0 of the rectangle:

Î = I0
N

N0
.
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Fig. 5.10. Geometry of photon radiation in a scintillating fiber.

To evaluate the uncertainty of this estimate, we refer to the binomial
distribution in which we approximate the probability of success ε by the ex-
perimental value ε = N/N0:

δN =
√
N0ε(1− ε) ,

δÎ

Î
=
δN

N
=

√
1− ε

N
. (5.3)

As expected, the accuracy raises with the square root of the number of
successes and with ε. The smaller the deviation of the curve from the rectangle,
the less will be the uncertainty.

Example 68. Photon yield for a particle crossing a scintillating fiber
Ionizing particles are crossing a scintillating fiber with circular cross section

perpendicular to the fiber axis which is parallel to the z-axis (Fig. 5.10),
and generate photons with spatially isotropic angular distribution (see 5.2.2).
Photons hitting the fiber surface will be reflected if the angle with respect to
the surface normal is larger than β0 = 60o. For smaller angles they will be
lost. We want to know, how the number of captured photons depends on the
location where the particle intersects the fiber. The particle traverses the fiber
in y direction at a distance x from the fiber axis. To evaluate the acceptance,
we perform the following steps:



142 5 Monte Carlo Simulation

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.05

0.10

0

1

2track length
ph

ot
on

 y
ie

ld

track position

photon yield

 tr
ac

k 
le

ng
th

 

Fig. 5.11. Photon yield as a function of track position.

• Set the fiber radius R = 1, create a photon at x, y uniformly distributed
in the square 0 < x , y < 1,

• calculate r2 = x2 + y2, if r2 > 1 reject the event,
• chose azimuth angle ϕ for the photon direction, with respect to an axis

parallel to the fiber direction in the point x, y, 0 < ϕ < 2π, ϕ uniformly
distributed,

• calculate the projected angle α (sinα = r sinϕ),
• choose a polar angle ϑ for the photon direction, 0 < cos(ϑ) < 1, cos(ϑ)

uniformly distributed,
• calculate the angle β of the photon with respect to the (inner) surface

normal of the fiber, cosβ = sinϑ cosα,
• for β < β0 reject the event,
• store x for the successful trials in a histogram and normalize to the total

number of trials.

The efficiency is normalized such that particles crossing the fiber at x = 0
produce exactly 1 photon.

Fig. 5.11 shows the result of our simulation. For large values of x the track
length is small, but the photon capture efficiency is large, therefore the yield
increases with x almost until the fiber edge.
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Fig. 5.12. Estimation of the number π.

5.3.2 Improved Selection Method

a) Reducing the Reference Area

We can gain in accuracy by reducing the area in which the points are dis-
tributed, as above by introduction of a majorant function, Fig. 5.5. As seen
from (5.3), the relative error is proportional to the square root of the ineffi-
ciency.

We come back to the first example of this chapter:

Example 69. Determination of π
The area of a circle with radius 1 is π. For N0 uniformly distributed trials

in a circumscribed square of area 4 (Fig. 5.12) the number of successes N is
on average

〈N〉 = π

4
N0 .

An estimate π̂ for π is
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π̂ =
4N

N0
,

δπ̂

π
=

√
1− π/4√
N0π/4

,

≈ 0.52
1√
N0

.

Choosing a circumscribed octagon as the reference area, the error is reduced
by about a factor two. A further improvement is possible by inscribing another
polygon in the circle and considering only the area between the polygons.

b) Importance Sampling

If there exists a majorant m(x) for the function y(x) to be integrated,

I =

∫ xb

xa

y(x)dx , (5.4)

with the property that the indefinite integral M(x)

M(x) =

∫ x

xa

m(x′)dx′

can be inverted, we generate N0 x-values according to the distribution m(x).
For each xi a further random number yi in the interval 0 < y < m(xi)
is generated. Again, as for the simulation of distributions, points lying above
y(xi) are rejected. The numberN of the remaining events provides the integral

Î =M(xb)
N

N0
.

5.3.3 Weighting Method

a) Simple Weighting

We generate N random numbers xi in the interval xa < x < xb and average
over the function values:

y =

N∑

i=1

y(xi)/N .

An estimate for the integral (5.4) is given by

Î = (xb − xa)y .



5.3 Solution of Integrals 145

This method corresponds to the usual numerical integration, with the pe-
culiarity that the supporting points on the abscissa are not chosen regularly
but are distributed at random. This alone cannot be an advantage, and indeed
the Monte Carlo integration in one and two dimensions for a given number of
supporting points is less efficient than conventional methods. It is, however,
superior to other methods for multi-dimensional integrations. Already in three
dimensions it competes favorably in many cases.

To estimate the accuracy, we apply the usual statistical error estimation.
We consider the numbers yi = y(xi) as N stochastic measurements of y. The
expected mean squared error of y is then given by (4.3):

(δy)2 =
1

N(N − 1)

∑
(yi − y)

2
.

The relative errors of y and Î are the same,

(
δÎ

Î

)2

=

(
δy

y

)2

,

=

∑
(yi − y)

2

N(N − 1)y2
. (5.5)

The numerator is an estimate of the variance of the y distribution. The
accuracy is the better, the smaller the fluctuations of the function around its
mean value are.

b) Subtraction method

The accuracy can be improved through a reduction of the fluctuations of the
integrand.

If we find a function ỹ(x) which is integrable analytically and does not
differ too much from the original integrand y(x) we cast the integral into the
form ∫ xb

xa

y(x)dx =

∫ xb

xa

ỹ(x)dx +

∫ xb

xa

(y(x)− ỹ(x)) dx .

We now have to evaluate by Monte Carlo only the second term with rela-
tively small fluctuations (Fig. 5.13).

5.3.4 Reduction to Expected Values

In many cases it makes sense to factorize the integrand y(x) = f(x)y1(x)
into a factor f(x) corresponding to a p.d.f. normalized inside the integration
interval which is easy to generate, and a second factor y1(x). To be effective,
the method requires that f is close to y. Our integral has now the form of an
expected value:
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Fig. 5.13. Monte Carlo integration of the difference between the function to be
integrated and an integrable function.

∫ xb

xa

y(x)dx =

∫ xb

xa

f(x)y1(x)dx

= 〈y1〉 .

We generate values xi distributed according to f(x) and obtain from these
an estimate for the integral I:

Î =

∑
i y1(xi)

N
,

(
δÎ

Î

)2

=

∑
[y1(xi)− y1]

2

N(N − 1)y21
.

The estimate is again the better, the less the y1-values are fluctuating, i.e.
the more similar the functions y and f are. The error estimate is analogous
to (5.5).

5.3.5 Stratified Sampling

In stratified sampling the domain of integration is partitioned into sub-
domains. Over each of these we integrate separately. The advantage is that
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the distribution in each sub-domain is more uniform and thus the fluctuations
of the random variables are smaller and the statistical error is reduced. This
method is somewhat antithetical to the basic idea of the simple Monte Carlo
method, since it produces a more uniform (equidistant) distribution of the
supporting points and requires some effort to combine the errors from the dif-
ferent contributions. Thus we recommend it only if the integrand shows very
strong variations.

5.4 General Remarks

Often we need to solve integrals over different domains but always with the
same integrand. In these cases the Monte Carlo approach is particularly ad-
vantageous. We store all single simulated values (usually called “events”) and
are able to select events afterwards according to the chosen domain, and obtain
the integral with relatively small computing expense by summation. Similarly
a change of event weights is possible without repeating the generation of the
events.

Let us illustrate this feature with a mechanical example: If, for instance,
we want to obtain the tensor of inertia for a complex mass distribution like
a car, we distribute points stochastically within the body and store their
coordinates together with the respective mass densities. With these data it
is easy to calculate by summations the mass, the center of mass and the
moments of inertia with respect to arbitrary axes. If desired, parts of the
body can be eliminated simply by rejecting the corresponding points in the
sums and different materials can be considered by changing the density.

In thermodynamic systems we are often interested in several mean values,
like the mean free path length, mean kinetic or potential energy, velocities
etc.. Once a statistical ensemble has been generated, all these quantities are
easily obtained, while with the usual integration methods, one has to repeat
each time the full integration.

Even more obvious are these advantages in acceptance calculations. Big
experiments in particle physics and other areas have to be simulated as com-
pletely and realistically as allowed by the available computing power. The
acceptance of a given system of particle detectors for a certain class of events
is found in two steps: first, a sample of interesting events is generated and the
particles produced are traced through the detecting apparatus. The hits in
various detectors together with other relevant information (momenta, particle
identities) are stored in data banks. In a second step the desired acceptance for
a class of events is found by simulating the selection procedure and counting
the fraction of events which are retained. Arbitrary changes in the selection
procedure are readily implemented without the need to simulate large event
samples more than once.
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Finally, we want to stress again how easy it is to estimate the errors of
Monte Carlo integration. It is almost identical1 to the error estimation for
the experimental data. We usually will generate a number of Monte Carlo
reactions which is large enough to neglect their statistical error compared to
the experimental error. In other words, the number of Monte Carlo events
should be large compared to the number of experimental events. Usually a
factor of ten is sufficient, a higher factor is reasonable if enough computing
power is available.

1The Monte Carlo errors are usually described by the binomial distribution, those
of the experimental data by the Poisson distribution.
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Parameter Inference I

6.1 Introduction

We now leave the probability calculus and its simple applications and turn
to the field of statistics. More precisely we are concerned with inferential
statistics.

While the probability calculus, starting from distributions, predicts prop-
erties of random samples, in statistics, given a data sample, we look for a
theoretical description of the population from which it has been derived by
some random process. In the simplest case, the sample consists of indepen-
dent observations, randomly drawn from a parent population. If not specified
differently, we assume that the population is a collection of elements which
all follow the same discrete or continuous distribution. Frequently, the sample
consists of data collected in a measurement sequence.

Usually we either want to check whether our sample is compatible with
a specific theory, or we decide between several theories, or we infer unknown
parameters of a given theory.

To introduce the problem, we discuss three simple examples:
1. At a table we find eight playing cards: two kings, three ladies, one ten,

one eight and one seven. Do the cards belong to a set of Canasta cards or to
a set of Skat cards?

2. A college is attended by 523 boys and 490 girls. Are these numbers
compatible with the assumption that in average the tendency to attend a
college is equal for boys and girls?

3. The lifetimes of five instable particles of a certain species have been
measured. How large is the mean life of that particle and how large is the
corresponding uncertainty?

In our first example we would favor the Skat game because none of the
cards two to six is present which, however, are part of Canasta card sets.
Assuming that the cards have been taken at random from a complete card
set, we can summarize the available information in the following way: The
probability to observe no card with value below seven in eight cards of a
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Canasta game is LC = (5/13)8 = 4.8 × 10−4 whereas it is LS = 1 for a
Skat game. We call these quantities likelihoods1 . The likelihood indicates how
well a given hypothesis is supported by a given observation but the likelihood
alone is not sufficient for a decision in favor of one or the other hypothesis.
Additional considerations may play an important role. When the cards are
located in a Swiss youth hostel we would consider the hypothesis Skat more
sceptically than when the cards are found in a pub at Hamburg. We therefore
would weight our hypotheses with prior probabilities (short: priors) which
quantify this additional piece of information. Prior probabilities are often hard
to estimate, often they are completely unknown. As a consequence, results
depending on priors are model dependent.

We usually will avoid to introduce prior probabilities and stay with likeli-
hoods but sometimes this is not possible. Then the results have to be inter-
preted conditional to the validity of the applied prior probabilities.

Similar situations as described in our trivial example also occur in empir-
ical sciences. Whenever an observation is more or less compatible with two
alternative theories, we cannot simply derive probabilities for the validities
of theories based solely on the experimental data. Other criteria like the at-
tractiveness of the theory, the compatibility with previous measurements will
enter into our judgement. These additional attributes again can be taken into
account by introducing prior probabilities which of course will depend to some
extend on subjective prejudices. The cases where well founded quantitative
priors are available are rare.

Some years ago, in an experiment a significant deviation from the gravita-
tional law had been observed. From the two alternatives: H1: Newton’s law is
correct and H2: A 1/r2 term has to be added to the 1/r potential, the latter
was much more compatible with the experimental data. In spite of this ex-
perimental evidence, hardly any serious physicist doubted the validity of the
classical gravitational law. The reason is that our experience shows that the
laws of nature are basically simple. In the mean time, as a consequence of the
availability of more precise data, the 1/r2 hypothesis has been rejected.

Nevertheless it is correct and necessary to publish the observed data with-
out weighting them with a prior, i.e. to restrict the presentation to the purely
statistical result and to leave the subjective part to the reader of the publica-
tion.

The scientific method requires the possibility to compare and combine
results from independent measurements. This is impossible when different au-
thors apply varying priors. We will see that it is almost always possible to
avoid the introduction of this kind of subjective assumptions into the statis-
tical analysis.

In our second example the situation is even more complex because we are
confronted with only one hypothesis and no well specified alternative. The

1The term likelihood was first used by the British biologist and statistician Sir
Ronald Aylmer Fisher (1890-1962).
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validity of the alternative, e.g. a deviation from the equality of the distribution
of the sexes is hardly measurable since an arbitrarily small deviation from the
equality is present in any case. There is no other possibility as to quantify
the deviation of the data with the prediction in some proper way. We will
accept the hypothesis if the deviation is not abnormally high. We will treat
this problem in the chapter goodness-of-fit tests.

In our third example the number of hypotheses is infinite. To each value
of the unknown parameter, i.e. to each different mean life, corresponds a
different prediction. The difficulties are very similar to those in case one. If we
want to quote probabilities, we are forced to introduce a priori probabilities
– here for the parameter under investigation. Again, in most cases no reliable
prior information will be available but we can avoid the subjective part by
documenting the results in a sensible way. We will quote the parameter best
supported by the data and define an error interval based on the likelihood of
the parameter values.

The following table summarizes the cases which we have discussed.

case1 given: N alternative hypotheses Hi

wanted: relative probabilities for the validity of Hi

case 2 given: one hypothesis H0

wanted: a quantitative statement about the validity of H0

case 3: given: one valid hypothesis H(λ) where λ is a single parameter
or a set of unknown continuous parameters

wanted: “ best” value of λ and its uncertainty

In practice we often will compare observations with a theory which con-
tains free parameters. In this case we have to infer parameters and to test the
compatibility of the hypothesis with the data, i.e. case 2 and case 3 apply.

We now address the different problems one after the other.
Remark 1 : In the following chapters we consider parameters as random

variables as is common in Bayesian statistics. Sometimes, we assign proba-
bilities to the possible values or intervals of parameters, probabilities which
reflect our knowledge of these parameters.

Remark 2 : We are primarily interested in the estimation of constants of
nature. A different problem is the estimation of the individual parameters of
an ensemble of events, like those of particle tracks, where the individual tracks
have different parameter values. An analogue situation is common in social
sciences and commercial applications but is of little importance in particle
physics and astronomy. It will be treated shortly in the appendix.

6.2 Inference with Given Prior

We now try to derive from a given sample probabilities for hypotheses or
parameters. If prior information is available this is possible by means of Bayes’
theorem.
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Fig. 6.1. Quantitative Venn diagramm. The areas indicate the probabilities for
certain combinations of hypotheses Hi and discrete events of type kj .

6.2.1 Discrete Hypotheses

In Chap. 1 we had shown that conditional probabilities fulfil the following
relation (Bayes’ theorem):

P{A ∩B} = P{A|B}P{B} = P{B|A}P{A} . (6.1)

The probability P{A∩B}, that both the properties A and B apply is equal
to the probability P{B}, to find property B multiplied by the conditional
probability P{A|B} to find A, when B is realized. This is the first part of the
relation above. The second part is analogous.

We apply this relation to a discrete random variable k and hypotheses Hi.
The index denoting the hypothesis is interpreted as a random variable2.

We assume that the probability P{k|Hi} to observe k is given for a finite
number of alternatively exclusive hypotheses Hi. Then we have

P{k|Hi}P{Hi} = P{Hi|k}P{k} ,

P{Hi|k} =
P{k|Hi}P{Hi}

P{k} . (6.2)

Here P{Hi} is the assumed probability for the validity of hypothesis i before
the observation happens, it is the a priori probability, in short the prior.

2In this case this is a categorical variable which denotes a certain class.
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In Fig. 6.1 we illustrate relation (6.2) in form of a so called Venn diagram
where in the present example 3 out of the 5 hypotheses have the same prior.
Each hypothesis bin is divided into 3 regions with areas proportional to the
probabilities to observe k = k1, k = k2 and k = k3, respectively. For example
when the observation is k = k2 (shadowed in gray) then the gray areas provide
the relative probabilities of the validity of the corresponding hypotheses. In
our example hypothesis H3 is the most probable, H1 the most unlikely.

The computation of P{k} which is the marginal distribution of k, i.e. the
probability of a certain observation, summed over all hypotheses, yields:

P{k} =
∑

i

P{k|Hi}P{Hi} .

As required, P{Hi|k} is normalized in such a way that the probability that
any of the hypotheses is fulfilled is equal to one. We get

P{Hi|k} =
P{k|Hi}P{Hi}∑
j P{k|Hj}P{Hj}

. (6.3)

In words: The probability for the validity of hypothesis Hi after the measure-
ment k is equal to the prior P{Hi} of Hi multiplied with the probability to
observe k if Hi applies and divided by a normalization factor. When we are
only interested in the relative probabilities of two different hypotheses Hi and
Hj for an observation k, the denominator P{k} cancels:

P{Hi|k}
P{Hj|k}

=
P{k|Hi}P{Hi}
P{k|Hj}P{Hj}

.

Example 70. Bayes’ theorem: pion or kaon decay?
A muon has been detected. Does it originate from a pion or from a

kaon decay? The decay probabilities inside the detector are known and are
P{µ|π} = 0.02 and P{µ|K} = 0.10, respectively. The ratio of pions and kaons
in the beam is P{π} : P{K} = 3 : 1. With these numbers we obtain:

P{K|µ}
P{π|µ} =

0.10× 1

0.02× 3
=

5

3
,

P{K|µ}
P{K|µ}+ P{π|µ} =

0.10× 1

0.02× 3 + 0.10× 1
= 0.625 .

The kaon hypothesis is more likely than the pion hypothesis. Its probability
is 0.625.

6.2.2 Continuous Parameters

Now we extend our considerations to the case where the hypothesis index
is replaced by a continuous parameter θ, i.e. we have an infinite number of
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hypotheses. Instead of probabilities we obtain probability densities. Bayes’
theorem now reads

f(x, θ) = fx(x|θ)πθ(θ) = fθ(θ|x)πx(x) (6.4)

which is just the relation 3.36 of Sect. 3.5, where fx, fθ are conditional dis-
tribution densities and πx(x), πθ(θ) are the marginal distributions of f(x, θ).
The joined probability density f(x, θ) of the two random variables x, θ is equal
to the conditional probability density fx(x|θ) of x, where θ is fixed, multiplied
by the probability density πθ(θ), the marginal distribution of θ. For an obser-
vation x we obtain analogously to our previous relations

fθ(θ|x) =
fx(x|θ)πθ(θ)

πx(x)
,

and

fθ(θ|x) =
fx(x|θ)πθ(θ)∫∞

−∞ fx(x|θ)πθ(θ)dθ
. (6.5)

In words: For a measurement with the result x, we compute the probability
density for the parameter θ from the value of the probability density fx(x|θ)
for x, multiplied by the probability density (prior) πθ(θ) of θ before the mea-
surement, divided by a normalization integral. Again, the quantity fx(x|θ)
determines how strongly various parameter values θ are supported by the
given observation x and is called – in this context – likelihood of θ.

From the probability density fθ(θ|x) of the interesting parameter we can
derive a best estimate θ̂ and an error interval. An obvious choice is the ex-
pectation value and the standard deviation. Thus the estimate is a function
of the observations3, θ̂ = θ̂(x).

Example 71. Time of a decay with exponential prior
A detector with finite resolution registers at time t the decay of a K me-

son. The time resolution corresponds to a Gaussian with variance σ2. We are
interested in the time θ at which the decay occurred. The mean lifetime τ of
kaons is known. The probability density for the parameter θ before the mea-
surement, the prior, is π(θ) = e−θ/τ/τ , θ ≥ 0. The probability density for t
with θ fixed is the Gaussian. Applying (6.5) we obtain the probability density
f(θ) = f(θ|t) of the parameter θ,

f(θ) =
e−(t−θ)2/(2σ2)e−θ/τ

∫∞
0

e−(t−θ)2/(2σ2)e−θ/τdθ
,

which is displayed in Fig. 6.2. As a consequence of the exponential prior it is
visibly shifted to the left with respect to the observation.



6.3 Definition and Visualization of the Likelihood 155

0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

observed value

 

 

f(θ)

θ

Fig. 6.2. Probability density for the true decay time. The mean decay time is 1,
the observed value is 1.5.

If the value of the probability density fx(x|θ) in (6.5) varies much more
rapidly with θ than the prior – this is the case when the observation restricts
the parameter drastically – then to a good approximation the prior can be
regarded as constant in the interesting region. We then have

fθ(θ|x) ≈
fx(x|θ)∫∞

−∞ fx(x|θ)dθ
.

In this approximation the probability density fθ of the parameter corresponds
to the normalized likelihood function.

In practice, fθ often follows to a good approximation a normal distribution.
The value θ̂ where fθ is maximal then is the estimate of θ and the values where
fθ has decreased by the factor e1/2 define a standard deviation error interval
and thus fix the uncertainty of the estimate θ̂.

6.3 Definition and Visualization of the Likelihood

Usually we do not know the prior or our ideas about it are rather vague.
3A function of the observations is called a statistic, to be distinguished from the

discipline statistics.
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Example 72. Likelihood ratio: V +A or V −A reaction?
An experiment is performed to measure the energy E of muons produced

in the decay of the tau lepton, τ− → µ−ντ ν̄µ, to determine whether the decay
corresponds to a V −A or a V +A matrix element. We know the corresponding
normalized decay distributions f−(E), f+(E) and we can derive the ratio
RL = f−(E)/f+(E). But how should we choose the prior densities for the two
alternative hypotheses? In this example it would not make sense to quantify
our prejudices for one or the other hypothesis and to publish the resulting
probabilities. We restrict the information to the ratio

RL =
f−(E)

f+(E)
.

The quantity RL is called likelihood ratio.

In the absence of prior information the likelihood ratio is the only element
which we have, to judge the relative virtues of alternative hypotheses.

Definition: The likelihood Li of a hypothesis Hi, to which corresponds
a probability density fi(x) ≡ f(x|Hi) or a discrete probability distribution
Wi(k) ≡ P{k|Hi}, when the observation x, k, respectively, has been realized,
is equal to

Li ≡ L(i|x) = fi(x)

and
Li ≡ L(i|k) =Wi(k) ,

respectively. Here the index i denoting the hypothesis is treated as an inde-
pendent random variable. When we replace it by a continuous parameter θ
and consider a parameter dependent p.d.f. f(x|θ) or a discrete probability
distribution W (k|θ) and observations x, k, the corresponding likelihoods are

L(θ) ≡ L(θ|x) = f(x|θ) ,
L(θ) ≡ L(θ|k) = W (k|θ) .

While the likelihood is related to the validity of a hypothesis given an
observation, the p.d.f. is related to the probability to observe a variate for a
given hypothesis. In our notation, the quantity which is considered as fixed is
placed behind the bar while the variable quantity is located left of it. When
both quantities are fixed the function values of both the likelihood and the
p.d.f. are equal. To attribute a likelihood makes sense only if alternative hy-
potheses, either discrete or differing by parameters, can apply. If the likelihood
depends on one or several continuous parameters, we talk of a likelihood func-
tion
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Remark: The likelihood function is not a probability density of the param-
eter. It has no differential element like dθ involved and does not obey the laws
of probability. To distinguish it from probability, R.A. Fisher had invented the
name likelihood. Multiplied by a prior and normalized, a probability density
of the parameter is obtained. Statisticians call this inverse probability or prob-
ability of causes to emphasize that compared to the direct probability where
the parameter is known and the chances of an event are described, we are in
the inverse position where we have observed the event and want to associate
probabilities to the various causes that could have led to the observation.

As already stated above, the likelihood of a certain hypothesis is large if
the observation is probable for this hypothesis. It measures how strongly a
hypothesis is supported by the data. If an observation is very unlikely the
validity of the hypothesis is doubtful – however this classification applies only
when there is an alternative hypothesis with larger likelihood. Only relations
between likelihoods make sense.

Usually experiments provide a sample of N independent observations xi
which all follow independently the same p.d.f. f(x|θ) which depends on the
unknown parameter θ (i.i.d. variates). The combined p.d.f. f̃ then is equal to
the product of the N simple p.d.f.s

f̃(x1, . . . , xN |θ) =
N∏

i=1

f(xi|θ) .

For discrete variates we have the corresponding relation

W̃ (k1, . . . , kN |θ) =
N∏

i=1

W (ki|θ) .

For all values of θ the function f̃ evaluated for the sample x1, . . . , xN is equal
to the likelihood L̃

L̃(θ) ≡ L̃(θ|x1,x2, . . . , xN )

= f̃(x1,x2, . . . , xN |θ)

=

N∏

i=1

f(xi|θ)

=

N∏

i=1

L(θ|xi) .

The same relation also holds for discrete variates:

L̃(θ) ≡ L̃(θ|k1, . . . , kN )

=

N∏

i=1

W (ki|θ)
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Fig. 6.3. Likelihood of three observations and two hypotheses with different p.d.f.s.

=

N∏

i=1

L(θ|ki) .

When we have a sample of independent observations, it is convenient to
consider the logarithm of the likelihood. It is called log-likelihood . It is equal
to

ln L̃(θ) =

N∑

i=1

ln [f(xi|θ)]

for continuous variates. A corresponding relation holds for discrete variates.
Fig. 6.3 illustrates the notion of likelihood in a concrete case of two hy-

potheses. For two given hypotheses and a sample of three observations we
present the values of the likelihood, i.e. the products of the three correspond-
ing p.d.f. values. The broad p.d.f. in the right hand picture matches better. Its
likelihood is about thirty times higher than that of the left hand hypothesis.

So far we have considered the likelihood of samples of i.i.d. variates. Also
the case where two independent experiments A, B measure the same quantity
x is of considerable interest. The combined likelihood L is just the product of
the individual likelihoods LA(θ|x1) = fA(x1|θ) and LB(θ|x2) = fB(x2|θ) as is
obvious from the definition:

f(x1, x2|θ) = fA(x1|θ)fB(x2|θ) ,
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L(θ) = f(x1, x2|θ) ,
hence

L = LALB ,

lnL = lnLA + lnLB .

We state: The likelihood of several independent observations or experiments
is equal to the product of the individual likelihoods. Correspondingly, the log-
likelihoods add up.

L =
∏

Li ,

lnL =
∑

lnLi .

6.4 The Likelihood Ratio

To discriminate between hypotheses, we use the likelihood ratio. According
to a lemma of Neyman and Pearson there is no other more powerful quantity.
This means that classifying according to the likelihood ratio, we can obtain
the smallest number of false decisions (see Chap. 10). When we have to choose
between more than two hypotheses, there are of course several independent
ratios.

Example 73. Likelihood ratio of Poisson frequencies
We observe 5 decays and want to compute the relative probabilities for

three hypotheses. Prediction H1 assumes a Poisson distribution with expec-
tation value 2, H2 and H3 have expectation values 9 and 20, respectively. The
likelihoods following from the Poisson distribution Pλ(k) are:

L1 = P2(5) ≈ 0.036 ,
L2 = P9(5) ≈ 0.061 ,
L3 = P20(5) ≈ 0.00005 .

We can form different likelihood ratios. If we are interested for example
in hypothesis 2, then the quotient L2/(L1 + L2 + L3) ≈ 0.63 is relevant4. If
we observe in a second measurement in the same time interval 8 decays, we
obtain:

L1 = P2(5)P2(8) = P4(13) ≈ 6.4 · 10−3 ,
L2 = P9(5)P9(8) = P18(13) ≈ 5.1 · 10−2 ,
L3 = P20(5)P20(8) = P40(13) ≈ 6.1 · 10−7 .

The likelihood ratio L2/(L1+L2+L3) ≈ 0.89 (for H1 and H3 correspond-
ingly 0.11 and 10−5) now is much more significant. The fact that all values Li

are small is unimportant because one of the three hypotheses has to be valid.
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Fig. 6.4. Likelihood ratio for two normal distributions. Top: 1 observation, bottom:
5 observations.

We now apply the same procedure to hypotheses with probability densities.

Example 74. Likelihood ratio of normal distributions
We compare samples drawn from one out of two alternative normal distri-

butions with different expectation values and variances (Fig. 6.4)

f1 =
1√
2π1

e−(x−1)2/2 ,

f2 =
1√
2π2

e−(x−2)2/8 .

a) Initially the sample consists of a single observation at x = 0, for both cases
one standard deviation off the mean values of the two distributions (Fig. 6.4a):
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L1

L2
= 2

e−1/2

e−4/8
= 2 .

b) Now we place the observation at x = 2, the maximum of the second distri-
bution (Fig. 6.4b):

L1

L2
= 2

e−1/2

e−0
= 1.2 .

c) We now consider five observations which have been taken from distribution
f1 (Fig. 6.4c) and distribution f2, respectively (Fig. 6.4d). We obtain the
likelihood ratios

L1/L2 = 30 (Fig. 5.3c) ,
L1/L2 = 1/430 (Fig. 5.3d) .

It turns out that small distributions are easier to exclude than broad ones. On
the other hand we get in case b) a preference for distribution 1 even though
the observation is located right at the center of distribution 2.

Example 75. Likelihood ratio for two decay time distributions
A sample of N decay times ti has been recorded in the time interval

tmin < t < tmax. The times are expected to follow either an exponential
distribution f1(t) ∼ e−t/τ (hypothesis 1), or an uniform distribution f2(t) =
const. (hypothesis 2). How likely are H1, H2? First we have to normalize the
p.d.f.s:

f1(t) =
1

τ

e−t/τ

e−tmin/τ − e−tmax/τ
,

f2(t) =
1

tmax − tmin
.

The likelihoods are equal to the product of the p.d.f.s at the observations:

L1 =
[
τ
(
e−tmin/τ − e−tmax/τ

)]−N

exp

(
−

N∑

i=1

ti/τ

)
,

L2 = 1/(tmax − tmin)
N .

With t =
∑
ti/N the mean value of the times, we obtain the likelihood ratio

L1

L2
=

(
tmax − tmin

τ(e−tmin/τ − e−tmax/τ )

)N

e−Nt/τ .
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6.5 The Maximum Likelihood Method for Parameter
Inference

In the previous examples we have compared a sample with different hypotheses
which differed only in the value of a parameter but corresponded to the same
distribution. We now allow for an infinite number of hypotheses by varying the
value of a parameter. As in the discrete case, in the absence of a given prior
probability, the only available piece of information which allows us to judge
different parameter values is the likelihood function. A formal justification for
this assertion is given by the likelihood principle (LP) which states that the
likelihood function exhausts all the information contained in the observations
related to the parameters and which we will discuss in the following chapter.
It is then plausible to choose the parameter such that the likelihood is as
large as possible. This is the maximum likelihood estimate (MLE). When we
are interested in a parameter range, we will choose the interval such that the
likelihood outside is always less than inside.

Remark that the MLE as well as likelihood intervals are invariant against
transformations of the parameter. The likelihood is not a p.d.f. but a function
of the parameter and therefore L(θ) = L′(θ′) for θ′(θ). Thus a likelihood
analysis estimating, for example, the mass of a particle will give the same
result as that inferring the mass squared, and estimates of the decay rate γ
and mean life τ = 1/γ will be consistent.

Here and in the following sections we assume that the likelihood function
is continuous and differentiable and has exactly one maximum inside the valid
range of the parameter. This condition is fulfilled in the majority of all cases.

Besides the maximum likelihood (ML) method, invented by Fisher, there
exist a number of other methods of parameter estimation. Popular is especially
the method of least squares (LS) which was first proposed by Gauß5. It is
used to adjust parameters of curves which are fixed by some measured points
and will be discussed in the next chapter. It can be traced back to the ML
method if the measurement errors are normally distributed.

In most cases we are not able to compute analytically the location of the
maximum of the likelihood. To simplify the numerical computation, still lin-
ear approximations (e.g. linear regression) are used quite frequently. These
methods find the solution by matrix operations and iteration. They are dis-
pensable nowadays. With common PCs and maximum searching programs the
maximum of a function of some hundred parameters can determined without
problem, given enough observations to fix it.

6.5.1 The Recipe for a Single Parameter

We proceed according to the following recipe. Given a sample of N i.i.d.
observations {x1, . . . , xN} from a p.d.f. f(x|θ) with unknown parameter θ, we

5Carl Friedrich Gauß (1777-1855), German mathematician, astronomer and
physicist.
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Fig. 6.5. Log-likelihood function and uncertainty limits for 1, 2, 3 standard devia-
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form the likelihood or its logarithm, respectively, in the following way:

L(θ) =

N∏

i=1

f(xi|θ) , (6.6)

lnL(θ) =

N∑

i=1

ln f(xi|θ) . (6.7)
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In most cases the likelihood function resembles a bell shaped Gaussian
and lnL(θ) approximately a downwards open parabola (see Fig. 6.5). This
approximation is especially good for large samples.

To find the maximum of L (lnL and L have their maxima at the same
location), we derive the log-likelihood6 with respect to the parameter and set
the derivative equal to zero. The value θ̂, that satisfies the equation which we
obtain in this way is the MLE of θ:

d lnL

dθ
|θ̂ = 0 . (6.8)

Since only the derivative of the likelihood function is of importance, factors
in the likelihood or summands in the log-likelhood which are independent of
θ can be omitted.

The estimate θ̂ is a function of the sample values xi, and consequently a
statistic.

The point estimate has to be accompanied by an error interval. Point esti-
mate and error interval form an ensemble and cannot be discussed separately.
Choosing as point estimate the value that maximizes the likelihood function
it is natural to include inside the error limits parameter values with higher
likelihood than all parameters that are excluded. This prescription leads to
so-called likelihood ratio error intervals.

We will discuss the error interval estimation in a separate chapter, but fix
the error limit already now by definition:

Definition: The limits of a standard error interval are located at the pa-
rameter values where the likelihood function has decreased from its maximum
by a factor e1/2. For two and three standard deviations the factors are e2 and
e4.5. This choice corresponds to differences for the log-likelihood of 0.5 for one,
of 2 for two and of 4.5 for three standard error intervals as illustrated in Fig.
6.5. For the time being we assume that these limits exist inside the parameter
range.

The reason for this definition is the following: As already mentioned,
asymptotically, when the sample size N tends to infinity, under very general
conditions the likelihood function approaches a Gaussian and becomes propor-
tional to the probability density of the parameter (for a proof, see Appendix
13.3). Then our error limit corresponds exactly to the standard deviation of
the p.d.f., i.e. the square root of the variance of the Gaussian. We keep the
definition also for non normally shaped likelihood functions and small sample
sizes. Then we usually get asymmetric error limits.

6The advantage of using the log-likelihood compared to the normal likelihood is
that we do not need to derive a product but a sum which is much more convenient.
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6.5.2 Examples

Example 76. Maximum likelihood estimate (MLE) of the mean life of an un-
stable particle

Given be N decay times ti of an unstable particle with unknown mean life
τ . For an exponential decay time distribution

f(t|γ) = γe−γt

with γ = 1/τ the likelihood is

L = γN
N∏

i=1

e−γti

= γNe−
∑

N

i=1
γti ,

lnL = N ln γ − γ
N∑

i=1

ti .

The estimate γ̂ satisfies

d lnL

dγ
|γ̂ = 0 ,

0 =
N

γ̂
−

N∑

i=1

ti ,

τ̂ = γ̂−1 =
N∑

i=1

ti/N = t .

Thus the estimate is just equal to the mean value t of the observed decay
times. In practice, the full range up to infinitely large decay times is not always
observable. If the measurement is restricted to an interval 0 < t < tmax, the
p.d.f. changes, it has to be renormalized:

f(t|γ) = γe−γt

1− e−γtmax
,

lnL = N
[
ln γ − ln(1 − e−γtmax)

]
− γ

N∑

i=1

ti .

The maximum is now located at the estimate γ̂, which fulfils the relation

0 = N

(
1

γ̂
− tmaxe

−γ̂tmax

1− e−γ̂tmax

)
−

N∑

i=1

ti ,

τ̂ = t+
tmaxe

−tmax/τ̂

1− e−tmax/τ̂
,
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Fig. 6.6. Log-likelihood functions for the parameters of a normal distribution: a)
for the mean µ with know width (solid curve) and unknown mean (dashed curve), b)
for the width σ with known mean (solid curve) and unknown mean (dashed curve).

which has to be evaluated numerically. If the time interval is not too short,
tmax > τ , an iterative computation lends itself: The correction term at the
right hand side is neglected in zeroth order. At the subsequent iterations we
insert in this term the value τ of the previous iteration. We notice that the
estimate again depends solely on the mean value t of the observed decay
times. The quantity t is a sufficient statistic. We will explain this notion in
more detail later. The case with also a lower bound tmin of t can be reduced
easily to the previous one by transforming the variable to t′ = t− tmin.

In the following examples we discuss the likelihood functions and the MLEs
of the parameters of the normal distribution in four different situations:

Example 77. MLE of the mean value of a normal distribution with known
width (case Ia)

Given are N observation xi drawn from a normal distribution of known
width σ and mean value µ to be estimated:
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f(x|µ) = 1√
2πσ

exp

[
− (x− µ)2

2σ2

]
,

L(µ) =

N∏

i=1

1√
2πσ

exp

[
− (xi − µ)2

2σ2

]
,

lnL(µ) = −
N∑

i=1

(xi − µ)2

2σ2
+ const (6.9)

= −N x2 − 2xµ+ µ2

2σ2
+ const .

The log-likelihood function is a parabola. It is shown in Fig. 6.6a for σ = 2.
Deriving it with respect to the unknown parameter µ and setting the result
equal to zero, we get

N
(x− µ̂)

σ2
= 0 ,

µ̂ = x .

The likelihood estimate µ̂ for the expectation value of the normal distribution
is equal to the arithmetic mean x of the sample. It is independent of σ, but
σ determines the width of the likelihood function and the standard error
δµ = σ/

√
N .

Example 78. MLE of the width of a normal distribution with given mean (case
Ib)

Given are now N observations xi which follow a normal distribution of
unknown width σ to be estimated for known mean µ = 5/3. The reason for
this – in principle here arbitrary – choice will become clear below.

L(σ) =

N∏

i=1

1√
2πσ

exp

(
− (xi − µ)2

2σ2

)
,

lnL(σ) = −N(
1

2
ln 2π + lnσ)−

N∑

i=1

(xi − µ)2

2σ2

= −N
[
lnσ +

(x− µ)2

2σ2

]
+ const .

The log-likelihood function for our numerical values is presented in Fig. 6.6b.
Deriving with respect to the parameter of interest and setting the result equal
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to zero we find

0 =
1

σ̂
− (x− µ)2

σ̂3
,

σ̂ =

√
(x− µ)2 .

Again we obtain a well known result. The mean square deviation of the sample
values provides an estimate for the width of the normal distribution. This
relation is the usual distribution-free estimate of the standard deviation if the
expected value is known. The error bounds from the drop of the log-likelihood
function by 1/2 become asymmetric. Solving the respective transcendental
equation, thereby neglecting higher orders in 1/N , one finds

δ±σ =
σ̂
√

1
2N

1∓
√

1
2N

.

Example 79. MLE of the mean of a normal distribution with unknown width
(case IIa)

The solution of this problem can be taken from Sect. 3.6.11 where we found
that t = (x − µ)/s with s2 =

∑
(xi − x)2/[N(N − 1)] = v2/(N − 1) follows

the Student’s distribution with N − 1 degrees of freedom.

h(t|N − 1) =
Γ (N/2)

Γ ((N − 1)/2)
√
π(N − 1)

(
1 +

t2

N − 1

)−N
2

.

The corresponding log-likelihood is

lnL(µ) = −N
2
ln

[
1 +

(x− µ)2

v2

]

with the maximum µ = x. It corresponds to the dashed curve in Fig. 6.6a.
From the drop of lnL by 1/2 we get now for the standard error squared the
expression

δ2µ = (e1/N − 1)v2 .

This becomes for large N , after expanding the exponential function, very sim-
ilar to the expression for the standard error in case Ia, whereby σ is exchanged
by v.
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Example 80. MLE of the width of a normal distribution with unknown mean
(case IIb)

Obviously, shifting a normally distributed distribution or a corresponding
sample changes the mean value but not the true or the empirical variance
v2 = (x − x)2. Thus the empirical variance v2 can only depend on σ and not
on µ. Without going into the details of the calculation, we state that Nv2/σ2

follows a χ2 distribution of N − 1 degrees of freedom.

f(v2|σ) = N

Γ [(N − 1)/2] 2σ2

(
Nv2

2σ2

)(N−3)/2

exp

(
−Nv

2

2σ2

)

with the log-likelihood

lnL(σ) = −(N − 1) lnσ − Nv2

2σ2

corresponding to the dashed curve in Fig. 6.6b. (The numerical value of the
true value of µ was chosen such that the maxima of the two curves are located
at the same value in order to simplify the comparison.) The MLE is

σ̂2 =
N

N − 1
v2,

in agreement with our result (3.15). For the asymmetric error limits we find
in analogy to example 78

δ±σ =
σ̂
√

1
2(N−1)

1∓
√

1
2(N−1)

.

6.5.3 Likelihood Inference for Several Parameters

We can extend our concept easily to several parameters λk which we combine
to a vector λ = {λ1, . . . , λK}.

L(λ) =
N∏

i=1

f(xi|λ) , (6.10)

lnL(λ) =

N∑

i=1

ln f(xi|λ) . (6.11)

To find the maximum of the likelihood function, we set the partial deriva-
tives equal to zero. Those values λ̂k which satisfy the system of equations
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Fig. 6.7. MLE of the parameters of a normal distribution and lines of constant
log-likelihood. The numbers indicate the values of log-likelihood relative to the max-
imum.

obtained this way, are the MLEs λ̂k of the parameters λk:

∂ lnL

∂λk
|λ̂1,...,λ̂K

= 0 . (6.12)

The error interval is now to be replaced by an error volume with its surface
defined again by the drop of lnL by 1/2:

lnL(λ̂)− lnL(λ) = 1/2 .

We have to assume, that this defines a closed surface in the parameter space,
in two dimensions just a closed contour, as shown in the next example.

Example 81. MLEs of the mean value and the width of a normal distribution
Given are N observations xi which follow a normal distribution where

now both the width and the mean value µ are unknown. As above, the log-
likelihood is

lnL(µ, σ) = −N
[
lnσ +

(x− µ)2

2σ2

]
+ const .
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The derivation with respect to the parameters leads to the results:

µ̂ =
1

N

N∑

i=1

xi = x ,

σ̂2 =
1

N

N∑

i=1

(xi − µ̂)2 = (x − x)2 = v2 .

The MLE and log-likelihood contours for a sample of 10 events with empirical
mean values x = 1 and x2 = 5 are depicted in Fig. 6.7. The innermost line
encloses the standard error area. If one of the parameters, for instance µ = µ1

is given, the log-likelihood of the other parameter, here σ, is obtained by the
cross section of the likelihood function at µ = µ1.

Similarly any other relation between µ and σ defines a curve in Fig. 6.7
along which a one-dimensional likelihood function is defined.

Remark: Frequently, we are interested only in one of the parameters, and
we want to eliminate the others, the nuisance parameters. How to achieve this,
will be discussed in Sect. 6.13. Generally, it is not allowed to use the MLE of
a single parameter in the multi-parameter case separately, ignoring the other
parameters. While in the previous example σ̂ is the correct estimate of σ if µ̂
applies, the solution for the estimate and its likelihood function independent
of µ has been given in example 80 and that of µ independent of σ in example
79.

Example 82. Determination of the axis of a given distribution of directions7

Given are the directions of N tracks by the unit vectors ek. The distri-
bution of the direction cosines cosαi with respect to an axis u corresponds
to

f(cosα) =
3

8
(1 + cos2 α) .

We search for the direction of the axis. The axis u(u1, u2, u3) is parameterized
by its components, the direction cosines uk. (There are only two independent
parameters u1, u2 because u3 =

√
1− u21 − u22 depends on u1 and u2.) The

log-likelihood function is

lnL =
N∑

i=1

ln(1 + cos2 αi) ,

where the values cosαi = u · ei depend on the parameters of interest, the
direction cosines. Maximizing lnL, yields the parameters u1, u2. We omit the
details of the calculation.
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Example 83. Likelihood analysis for a signal with background
We want to fit a normal distribution with a linear background to a given

sample. (The procedure for a background described by a higher order poly-
nomial is analogous.) The p.d.f. is

f(x) = θ1x+ θ2 + θ3N(x|µ, σ) .

Here N is the normal distribution with unknown mean µ and standard de-
viation σ. The other parameters are not independent because f has to be
normalized in the given interval xmin < x < xmax. Thus we can eliminate one
parameter. Assuming that the normal distribution is negligible outside the
interval, the norm D is:

D =
1

2
θ1(x

2
max − x2min) + θ2(xmax − xmin) + θ3 .

The normalized p.d.f. is therefore

f(x) =
θ′1x+ θ′2 + N(x|µ, σ)

1
2θ

′
1(x

2
max − x2min) + θ′2(xmax − xmin) + 1

,

with the new parameters θ′1 = θ1/θ3 and θ′2 = θ2/θ3. The likelihood function
is obtained in the usual way by inserting the observations of the sample into
lnL =

∑
ln f(xi|θ′1, θ′2, µ, σ). Maximizing this expression, we obtain the four

parameters and from those the fraction of signal events S = θ3/D:

S =

[
1 +

1

2
θ′1(x

2
max − x2min) + θ′2(xmax − xmin)

]−1

.

6.5.4 Complicated Likelihood Functions

If the likelihood function deviates considerably from a normal distribution in
the vicinity of its maximum, e.g. contains several significant maxima, then it
is not appropriate to parametrize it by the maximum and error limits. In this
situation the full function or a likelihood map should be presented. Such a map
is shown in Fig. 6.8. The presentation reflects very well which combinations
of the parameters are supported by the data. Under certain conditions, with
more than two parameters, several projections have to be considered.

6.5.5 Combining Measurements

When parameters are determined in independent experiments, we obtain ac-
cording to the definition of the likelihood the combined likelihood by multi-
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Fig. 6.8. Likelihood contours.

plication of the likelihoods of the individual experiments.

L(λ) =
∏

Li(λ) ,

lnL =
∑

lnLi .

The likelihood method makes it possible to combine experimental results in
a extremely simple and at the same time optimal way. Thereby experimental
data can originate from completely heterogeneous experiments because no
assumptions about the p.d.f.s of the individual experiments enter, except that
they are independent of each other.

For the combination of experimental results it is convenient to use the
logarithmic presentation. In case the log-likelihoods can be approximated by
quadratic parabolas, the addition again produces a parabola.

6.5.6 Normally Distributed Variates and χ2

Frequently we encounter the situation that we have to compare measurements
with normally distributed errors to a parameter dependent prediction, for in-
stance when we fit a curve to measurements. (Remark that so far we had
considered i.i.d variates, now each observation may follow a different distribu-
tion.) We will come back to this problem below. For the moment let us assume
that N observations xi each following a normal distribution with variance δ2i ,
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f(x1, . . . , xN ) =

N∏

i=1

1√
2πδ2i

exp

[
− (xi − ti(θ))

2

2δ2i

]
,

are to be compared to a function ti(θ). The log-likelihood is

lnL = −1

2

N∑

i=1

[
(xi − ti(θ))

2

δ2i
+ ln(2π) + ln δ2i

]
. (6.13)

The first term of the sum corresponds to the expression (3.6.7) and has
been denoted by χ2,

χ2 =
N∑

i=1

[
(xi − ti(θ))

2

δ2i

]
.

For parameter inference we can omit the constant terms in (6.13) and thus
have

lnL = −1

2
χ2 . (6.14)

Minimizing χ2 is equivalent to maximizing the log-likelihood. The MLE of
θ is obtained from a so-called least squares (LS) or χ2 fit. (When we talk about
a χ2 fit, we assume that the square roots of the summands are approximately
normally distributed with variance equal to one. For a LS fit the normality
is not required, see 7.3.2) Since we obtain the error of the estimates θ̂ from
the change of the likelihood function by 1/2, χ2 increases in the range by one
unit, ∆χ2 = 1.

Repeating the measurement many times χ2 would follow a χ2 distribution
with B = N − P degrees of freedom where P is the number of adjusted
parameters, see Sect. 3.6.7. The standard deviation of the χ2 distribution for
B degrees of freedom is σ =

√
2B which, for example, is equal to 10 for 50

degrees of freedom. With such large fluctuations of the value of χ2 from one
sample to the other, it appears paradoxical at first sight that a parameter
error of one standard deviation corresponds to such a small change of χ2 as
one unit, while a variation of χ2 by 10 is compatible with the prediction.
The obvious reason for the good resolution is that the large fluctuations from
sample to sample are unrelated to the value of the parameter. In case we would
compare the prediction after each parameter change to a new measurement
sample, we would not be able to obtain a precise result for the estimate of the
parameter θ.

6.6 Likelihood of Histograms

For large samples it is more efficient to analyze the data in form of histograms
than to compute the likelihood for many single observations. The individual
observations are classified and collected into bins where all events of a bin have
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approximately the same likelihood. We then compare the number of entries
of a bin with the parameter dependent prediction. Often the prediction is
available only as a Monte Carlo simulation in form of a histogram. We will
discuss the comparison of data to a Monte Carlo simulation in some detail in
the following section.

We denote the total number of events by N , the number of events in bin
i by di and the number of bins by B. In the following all sums run over all
bins, i = 1, ..., B.

We have to distinguish different situations:
i) We have an absolute prediction ti(θ) for the number of events di in bin

i. The numbers di are described by Poisson distributions with mean ti.
ii) The absolute particle flux is not known. The prediction cti(θ) of the

number of events in bin i contains an unknown normalization factor c. The
numbers di are described by Poisson distributions with mean cti. The param-
eter c is a free parameter in the fit.

The second case is much more frequent than the first. Think for instance
of the measurement of a particle lifetime from a sample of events where the
flux is not predicted.

Remark : The case with unknown normalization can also be formulated in
the following way: The relative probabilities pi(θ) = ti(θ)/Σiti(θ), Σipi = 1
for the number of events of the bins are predicted. Then the observed data fol-
low a multinomial distribution where N events are distributed into the B bins
with probabilities pi. The two treatments are equivalent. As the multinomial
formalism is more involved than the Poissonian way, we follow the latter.

We start with case i):
The likelihood for ti expected and di observed entries according to the

Poisson distribution is given by

Li(θ) =
e−titdi

i

di!
,

lnLi(θ) = −ti + di ln ti − ln(di!) .

Since factors not depending on θ are irrelevant for the likelihood inference
(see Sect. 6.5.1), we are allowed to omit the term with the factorial. The
log-likelihood of the complete histogram with B bins is then

lnL(θ) =
B∑

i=1

(−ti + di ln ti) . (6.15)

The parameter dependence is hidden in the quantities ti. The maximum
of this function is determined by numerical methods.

For the determination of the maximum, the sum (6.15) has to be re-
computed after each modification of the parameters. Since the sum runs only
over the bins but not over all individual observations as in the normal likeli-
hood method, the computation for histograms is relatively fast.
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Fig. 6.9. Linear distribution with adjusted straight line (left) and likelihood func-
tion (right).

In the second case with unknown normalization we have to replace ti by
cti:

lnL(θ) =
B∑

i=1

(−cti + di ln(cti)) . (6.16)

Deriving the log-likelihood with respect to c and setting the derivative equal
to zero, we obtain the proper estimate for the normalization: ĉ = Σdi/Σti.
The parameter c is not correlated with the parameters of interest θ. Therefore
the error estimates of θ are independent of c.

Example 84. Adjustment of a linear distribution to a histogram
The cosine u = cosα of an angle α be linearly distributed according to

f(u|λ) = 1

2
(1 + λu) , −1 ≤ u ≤ 1 , |λ| < 1 .

We want to determine the parameter λ which best describes the observed
distribution of 500 entries di into 20 bins (Fig. 6.9). In the Poisson ap-
proximation we expect ti entries for the bin i corresponding to the value
ui = −1 + (i − 0.5)/10 of the cosine in the center of the bin:

ti =
500

20
(1 + λui) .
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We obtain the likelihood function by inserting this expression into (6.15). The
likelihood function and the MLE are indicated in the Figure 6.9.

6.6.1 Histograms with Background

If the measurement is contaminated by background which follows the Poisson
statistics with mean b, we have to modify the expression (6.15) for the log-
likelihood to

lnL =

B∑

i=1

[−(ti + bi) + di ln(ti + bi)] .

A simple subtraction of the average background from the data di would
have underestimated the uncertainties. A further modification of the above
expression is necessary if the expectation value bi of the background itself is
subject to uncertainties.

6.6.2 The χ2 Approximation

We have seen in Sect. 3.6.3 that with increasing mean value t, the Poisson
distribution asymptotically approaches a normal distribution with variance
t. Thus for high statistics histograms the number of events d in a bin with
prediction t(θ) is described by

f(d) =
1√
2πt

exp

[
− (d− t)2

2t

]
.

Contrary to the case of relation (6.13) the denominator of the exponent and
the normalization now depend on the parameters.

The corresponding log-likelihood is

lnL = − (d− t)2

2t
− 1

2
ln(2π)− 1

2
ln t .

For large t, the logarithmic term is an extremely slowly varying function of t.
In situations where the Poisson distribution can be approximated by a normal
distribution, it can safely be neglected. Omitting it and the constant term, we
find for the whole histogram

lnL = −1

2

B∑

i=1

(di − ti)
2

ti

= −1

2
χ2
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with

χ2 =
B∑

i=1

(di − ti)
2

ti
. (6.17)

If the approximation of the Poisson distribution by a normal distribution is
justified, the likelihood estimation of the parameters is equivalent to a χ2 fit
and the standard errors are given by an increase of χ2 by one unit.

Often histograms contain some bins with few entries. Then a binned like-
lihood fit is to be preferred to a χ2 fit, since the above condition of large ti is
violated. It is recommended to perform always a likelihood adjustment.

6.7 Extended Likelihood

When we record N independent multi-dimensional observations, {xi} , i =
1, . . . , N , of a distribution depending on a set of parameters θ, then it may
happen that these parameters also determine the rate, i.e. the expected rate
λ(θ) is a function of θ. In this situation N is no longer an ancillary statistic
but a random variable like the xi. This means that we have to multiply two
probabilities, the probability to find N observations which follow the Pois-
son statistics Pλ(N) and the probability to observe a certain distribution of
the variates xi. Given a p.d.f. f(x|θ) for a single observation, we obtain the
extended likelihood function [33]

L(θ) =
e−λ(θ)λ(θ)N

N !

N∏

i=1

f(xi|θ)

and its logarithm

lnL(θ) = −λ(θ) +N ln(λ(θ)) +

N∑

i=1

ln f(xi|θ)− lnN ! . (6.18)

Again we can omit the last term in the likelihood analysis, because it does
not depend on θ.

Example 85. Fit of the particle composition of an event sample (1) [35].
We consider the distribution f(x) of a mixture of K different types of

particles. The p.d.f. of the identification variable x (This could be for example
the energy loss) for particles of type k be fk(x). The task is to determine the
numbers λk of the different particle species in the sample from the observed
values xi of N detected particles. The p.d.f. of x is

f(x) =

K∑

k=1

λkfk(x)/

K∑

k=1

λk
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and the probability to observe N events is

exp

(
−

K∑

k=1

λk

)
(

K∑

k=1

λk

)N

N !
.

The extended log-likelihood is

lnL = −
K∑

k=1

λk +N ln

K∑

k=1

λk +

N∑

i=1

ln

K∑

k=1

λkfk(xi)−N ln

K∑

k=1

λk

= −
K∑

k=1

λk +
N∑

i=1

ln
K∑

k=1

λkfk(xi) . (6.19)

To find the MLE, we derive lnL:

∂ lnL

∂λm
= −1 +

N∑

i=1

fm(xi)
K∑

k=1

λkfk(xi)

= 0 ,

1 =

N∑

i=1

fm(xi)
K∑

k=1

λkfk(xi)

. (6.20)

The solution of (6.20) can be obtained iteratively [35]

λ(n)m =

N∑

i=1

λ
(n−1)
m fm(xi)

K∑

k=1

λ
(n−1)
k fk(xi)

or with a standard maximum searching program applied to (6.19). Alterna-
tively, we can base the fit on (6.19) and constrain the parameters, e.g. require
Σλk = N . This solution will be explained in Sect. 6.10.

As a special case, let us assume that the cross section for a certain reaction
is equal to g(x|θ). Then we get the p.d.f. by normalization of g:

f(x|θ) = g(x|θ)∫
g(x|θ)dx . (6.21)
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The production rate λ is equal to the normalization factor multiplied with the
luminosity S which is a constant:

λ(θ) = S

∫
g(x|θ)dx . (6.22)

The relations (6.21) and (6.22) have to be inserted into (6.18).

6.8 Comparison of Observations to a Monte Carlo
Simulation

6.8.1 Motivation

Modern research in natural sciences requires more and more complex and
expensive experimental setups which nevertheless cannot be perfect. Limited
acceptance, finite resolution, and dead time affect the measurements. Accep-
tance losses can be corrected directly by a Monte Carlo simulation, but resolu-
tion effects depend on the shape of the distribution and its parameters used in
the simulation. These effects can be described by a response function R(x, x′)
which specifies with which probability a physical quantity x is detected as x′.
The response function relates via a folding integral the distribution f(x) that
would be observed with an ideal detector to the distribution f ′(x′) that is
actually observed:

f ′(x′) =

∫ xmax

xmin

R(x, x′)f(x) dx .

In many cases the detection effects can only be corrected by means of very
elaborate Monte Carlo simulations. This is especially true for experiments in
nuclear and particle physics.

There are two fundamentally different ways to extract interesting parame-
ters from the data: i) The function R is generated by a Monte Carlo simulation
and is subsequently used to unfold the observed distribution. We will devote
Chap. 9 to unfolding. ii) The observed distribution is compared to the sim-
ulation and the parameters used in the simulation are adjusted. The second
method is preferable because unfolding methods always require assumptions
about the shape of the distribution, assumptions which are hard to justify
and which introduce additional uncertainties.

6.8.2 The Likelihood Function

The theoretical models are represented by Monte Carlo samples and the pa-
rameter inference is carried out by a comparison of experimental and simulated
histograms of the observed variable x′. For mi Monte Carlo events in bin i we
get for the likelihood instead of (6.15).
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lnL =

B∑

i=1

(−cmmi + di ln(cmmi)) (6.23)

assuming that the statistical error of the simulation can be neglected, i.e.
M ≫ N applies. In some rare cases the normalization cm is known, if not, it
is a free parameter in the likelihood fit. The parameters of interest are hidden
in the Monte Carlo predictions mi(θ).

6.8.3 The χ2 Approximation

If the number of the entries in all bins is large enough to approximate the
Poisson distribution by the normal distribution, we can as well minimize the
corresponding χ2 expression (6.17)

χ2 =

B∑

i=1

(di − cmmi)
2

cmmi
. (6.24)

The simulation programs usually consist of two different parts. The first
part describes the physical process which depends on the parameters of inter-
est. The second models the detection process. Both parts often require large
program packages, the so-called event generators and the detector simula-
tors. The latter usually consume considerable computing power. Limitations
in the available computing time then may result in non-negligible statistical
fluctuations of the simulation.

6.8.4 Weighting the Monte Carlo Observations

When we fit parameters, every parameter change obviously entails a modifi-
cation of the Monte Carlo prediction. Now we do not want to repeat the full
simulation with every fitting step. Apart from the fact that we want to avoid
the computational effort there is another more important reason: With the χ2

fit, we find the standard error interval by letting vary χ2 by one unit. On the
other hand when we compare experimental data with an optimal simulation,
we expect a contribution to χ2 from the simulation of the order of

√
2BN/M

for B histogram bins. Even with a simulation sample which is a hundred times
larger than the data sample this value is of the order of one. This means that
a repetition of the simulation causes considerable fluctuations of the χ2 value
which have nothing to do with parameter changes. These fluctuations can only
be reduced if the same Monte Carlo sample is used for all parameter values.
We have to adjust the simulation to the modified parameters by weighting its
observations.

Also re-weighting produces additional fluctuations. These, however, should
be tolerable if the weights do not vary too much and if the Monte Carlo sample
is much larger than the data sample. If we are not sure that this assumption is
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justified, we can verify it: We reduce the number of Monte Carlo observations
and check whether the result remains stable. We know that the contribution
of the simulation to the parameter errors scales with the inverse square root of
the number of simulated events. Alternatively, we can also estimate the Monte
Carlo contribution to the error by repeating the full estimation process with
bootstrap samples, see Sect. 13.9.3.

The weights are computed in the following way: For each Monte Carlo
observation x′ we know the true values x of the variates and the corre-
sponding p.d.f. f(x|θ0) for the parameter θ0, which had been used at the
generation. When we modify the parameter, we weight each observation by
w(θ) = f(x|vecθ)/f(x|θ0). The weighted distribution of x′ then describes
the modified prediction.

6.8.5 Including the Monte Carlo Uncertainty

In rare cases it is necessary to include the statistical error of the Monte Carlo
simulation. The formulas are derived in Appendix 13.8 and the problem is
discussed in detail in Ref. [26]. We summarize here the relevant relations. The
Monte Carlo prediction for a histogram bin is up to a normalization constant
m =

∑
wk, where the sum runs over all weights wk of the events of the bin.

We define a scaled number m̃,

m̃ = sm

with

s =

[∑
wk

]

∑
w2

k

,

and a normalization constant c̃ specific for the bin

c̃m = cm/s .

The χ2 expression to be minimized with respect to θ and cm is then

χ2 =

B∑

i=1

[
1

c̃m

(n− c̃mm̃)2

(n+ m̃)

]

i

.

If resolution effects are absent and only acceptance losses have to be taken
care of, all weights in bin i are equal wi. The above relation simplifies with
Ki Monte Carlo entries in bin i to

χ2 =

B∑

i=1

1

cmwi

(ni − cmmi)
2

(ni +Ki)
.
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6.8.6 Solution for a large number of Monte Carlo events

Statistical problems decrease with increasing event numbers, but computa-
tional requirements may increase. The numerical minimum search that is re-
quired to estimate the wanted parameters can become quite slow. It may hap-
pen that we have of the order of 106 or more simulated events. This means
that, for say 103 changes of a parameter value during the extremum search,
that 109 weights have to be computed. This is feasible, but we may want to
speed up the fitting procedure. This can be achieved in situations where the
Monte Carlo uncertainties can be neglected. We represent the prediction by
a superposition of Monte Carlo histograms with factors that depend on the
parameters. To this end it is useful to expand the p.d.f. f(x|θ) in a Taylor
expansion with respect to the parameter at some preliminary estimate θ0:

f(x|θ) = f(x|θ0) +∆θ
df(x|θ)
dθ

|θ0 +
(∆θ)2

2!

d2f(x|θ)
dθ2

|θ0 + · · · (6.25)

= f(x|θ0)
{
1 +∆θ

1

f0

df(x|θ)
dθ

|θ0 +
(∆θ)2

2!

1

f0

d2f(x|θ)
dθ2

|θ0 + · · ·
}
.(6.26)

We generate events according to f0(x) = f(x|θ0) and obtain simulated events
with the observed kinematic variable x′. We histogram x′ and obtain the
histogram m0i. Weighting each event by ω1(x), we obtain the histogram m1i

and weighting by ω2(x) the histogram m2i with the weights

ω1(x) =
1

f0

df

dθ
(x|θ0) , (6.27)

ω2(x) =
1

2f0

d2f

dθ2
(x|θ0) . (6.28)

The parameter inference of ∆θ is performed by comparing mi = (m0i +
∆θm1i + (∆θ)2m2i) with the experimental histogram di as explained in Sect.
2:

χ2 =

B∑

i=1

(di − cmi)
2

cmi
. (6.29)

In many cases the quadratic term can be omitted. In other situations it
might be necessary to iterate the procedure.

We illustrate the method with two examples.

Example 86. Fit of the slope of a linear distribution with Monte Carlo correc-
tion
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Fig. 6.10. The superposition of two Monte Carlo distributions, a) flat and b) tri-
angular is adjusted to the experimental data.

The p.d.f. be

f(x|θ) = 1 + θx

1 + θ/2
, 0 ≤ x ≤ 1 .

We generate observations x uniformly distributed in the interval 0 ≤ x ≤ 1,
simulate the experimental resolution and the acceptance, and histogram the
distorted variable x′ into bins i and obtain contents m0i. The same obser-
vations are weighted by x and summed up to the histogram m1i. These two
distributions are shown in Fig. 6.10 a, b. The dotted histograms correspond
to the distributions before the distortion by the measurement process. In Fig.
6.10 c is also depicted the experimental distribution. It should be possible to
describe it by a superposition mi of the two Monte Carlo distributions:

di ∼ mi = m0i + θm1i . (6.30)
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Fig. 6.11. Lifetime fit. The dotted histogram in b) is the superposition of the three
histograms of a) with weights depending on ∆λ.

We optimize the parameter θ such that the histogram di is described up to
a normalization constant as well as possible by a superposition of the two
Monte Carlo histograms. We have to insert mi from (6.30) into (6.23) and set
cm = N/

∑

i

mi.
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Example 87. Fit of a lifetime with Monte Carlo correction
We expand the p.d.f.

f(t|γ) = γe−γt

into a Taylor expansion at γ0 which is a first guess of the decay rate γ:

f(t|γ) = γ0e
−γ0t

{
1 +

∆γ

γ0
(1− γ0t) + (

∆γ

γ0
)2(−γ0t+

γ20t
2

2
) + · · ·

}
.

The Monte Carlo simulation follows the distribution f0 = γ0e
−γ0t. Weighting

the events by (1/γ0 − t) and (−t/γ0 + t2/2), we obtain the distributions f1 =
(1− γ0t)e

−γ0t, f2 = (−t+ γ0t
2/2)e−γ0t and

f(t|γ) = f0(t) +∆γf1(t) + (∆γ)2f2(t) + · · · .
If it is justified to neglect the higher powers of ∆γ/γ0, we can again describe
our experimental distribution this time by a superposition of three distribu-
tions f ′

0(t
′), f ′

1(t
′), f ′

2(t
′) which are the distorted versions of f0, f1, f2. The

parameter ∆γ is determined by a χ2 or likelihood fit. In our special case it
is even simpler to weight f0 by t, and t2, respectively, and to superpose the
corresponding distributions f0, g1 = tf0, g2 = t2f0 with the factors given in
the following expression:

f(t|γ) = f0(t)

(
1 +

∆γ

γ0

)
− γ0g1(t)

(
∆γ

γ0
+ (

∆γ

γ0
)2
)
+

1

2
g2(t)γ

2
0

(
∆γ

γ0

)2

.

The parameter ∆γ is then modified until the correspondingly weighted sum
of the distorted histograms agrees optimally with the data. Figure 6.11 shows
an example. In case the quadratic term can be neglected, two histograms are
sufficient. The general case is treated in an analogous manner. The Taylor
expansion is:

f(θ) = f(θ0) +∆θ
df

dθ
(θ0) +

(∆θ)2

2!

d2f

dθ2
(θ0) + · · ·

= f(θ0)

{
1 +∆θ

1

f0

df

dθ
(θ0) +

(∆θ)2

2!

1

f0

d2f

dθ2
(θ0) + · · ·

}
.

The observations x′ of the distribution f0(x|θ0) provide the histogram m0.
Weighting with w1 and w2, where

w1 =
1

f0

df

dθ
(x|θ0) ,

w2 =
1

2f0

d2f

dθ2
(x|θ0) ,

we obtain two further histograms m1i, m2i. The parameter inference of ∆θ is
performed by comparingmi = (m0i+∆θm1i+∆θ

2m2i) with the experimental
histogram di. In many cases the quadratic term can be omitted. In other
situations it might be necessary to iterate the procedure.
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6.9 Parameter Estimate of a Signal Contaminated by
Background

In this section we will discuss point inference in the presence of background in
a specific situation, where we have the chance to record independently from a
signal sample also a reference sample containing pure background. The mea-
suring times or fluxes, i.e. the relative normalization, of the two experiments
are supposed to be known. The parameters searched for could be the position
and width of a Breit-Wigner bump but also the slope of an angular distribu-
tion or the lifetime of a particle. The interest in this method rests upon the
fact that we do not need to parameterize the background distribution and
thus are independent of assumptions about its shape. This feature has to be
paid for by a certain loss of precision.

The idea behind the method is simple: The log-likelihood of the wanted
signal parameter as derived for the full signal sample is a superposition of
the log-likelihood of the genuine signal events and the log-likelihood of the
background events. The latter can be estimated from the reference sample
and subtracted from the full log-likelihood.

To illustrate the procedure, imagine we want to measure the signal
response of a radiation detector by recording a sample of signal heights
x1, . . . , xN from a mono-energetic source. For a pure signal, the xi would
follow a normal distribution with resolution σ:

f(x|µ) = 1√
2πσ

e−(x−µ)2/(2σ2) .

The unknown parameter µ is to be estimated. After removing the source,
we can – under identical conditions – take a reference sample x′1, . . . , x

′
M of

background events. They follow a distribution which is of no interest to us.
If we knew, which observations xi in our signal sample were signal (x(S)

i ),
respectively background (x(B)

i ) events, we could take only the S signal events
and calculate the correct log-likelihood function

lnL =

S∑

i=1

ln f(x
(S)
i |µ) = −

S∑

i=1

(x
(S)
i − µ)2

2σ2
+ const.

=
S∑

i=1

(xi − µ)2

2σ2
+

B∑

i=1

(x
(B)
i − µ)2

2σ2
+ const. ,

with S+B = N . The second unknown term can be estimated from the control
sample

B∑

i=1

(x
(B)
i − µ)2

2σ2
≈

M∑

i=1

(x′i − µ)2

2σ2
.

The logarithm of our corrected log-likelihood becomes:
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ln L̃ =

N∑

i=1

(xi − µ)2

2σ2
+

M∑

i=1

(x′i − µ)2

2σ2
.

We call it pseudo log-likelihood, ln L̃, to distinguish it from a genuine log-
likelihood. To obtain the estimate µ̂ of our parameter, we look for the pa-
rameter µ̂ which maximizes ln L̃ and find the expected simple function of the
mean values x, x′:

µ̂ =

∑N
i=1 xi −

∑M
i=1 x

′

N −M

=
Nx−Mx′

N −M
. (6.31)

The general problem where the sample and parameter spaces could be
multi-dimensional and with different fluxes of the signal and the reference
sample, is solved in complete analogy to our example: Given a contaminated
signal distribution of size N and a reference distribution of size M and flux
1/r times larger than that of the signal sample, we put

ln L̃ =

N∑

i=1

ln f(xi|θ)− r

M∑

i=1

ln f(x′
i|θ) . (6.32)

For small event numbers, for example if the flux-corrected number of back-
ground events in the reference sample exceeds the total number of events in
the main sample, rM > N , it may happen that ln L̃ becomes unbounded from
above (for instance asymptotically a parabola opening to the upper side), ren-
dering a maximum undefined.

The formula (6.32) is completely general and does not depend on the shape
of the background distribution8. It avoids histogramming which is problematic
for low event counts. Especially, those methods which subtract a background
histogram from the signal histogram often fail in such a situation. A different
method, where the shape of the background distribution is approximated by
probability density estimation (PDE) will be given in Sect. 12.1.1.

To get a feeling of the uncertainty ∆ of the corrected estimate, we return
to our example and look at the difference of the estimate µ̂ from the uncon-
taminated estimate x(S) which we can set without loss of generality equal to
zero. From simple error propagation we find:

∆ =
Bx(B) −Mx′

S +B −M
.

Without going into the details, we realize that the error increases i) with
the amount of background, ii) with the difference of the expected value of

8The method which we present in this section has been taken from the Russian
translation of the book by Eadie et al. [8] and has been introduced probably by the
Russian editors [36].
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Fig. 6.12. Experimental distributionof a normally distributed signal over back-
ground (left) and background reference sample (right). The lower histogram is scaled
to the signal flux.

the reference distribution from that of the genuine signal distribution, and
iii) with the variance of the background distribution. Correspondingly, we
have to require

√
2M ≪ S, more specifically

√
2M |µB − µS | ≪ Sσ and√

2MσB ≪ Sσ. Here
√
2M is an estimate of the Poisson error of B −M ,

S ≈ N −M , µB ≈ x′, µS ≈ µ̂, σB ≈ (x′2 − x2)1/2.
Also this consideration can be generalized: Stated qualitatively, the con-

tribution to the parameter uncertainty is small, if background and signal lead
to similar parameter estimates, if the background estimate has a small un-
certainty, and, trivially, if the amount of background is small. This applies
also, for instance, when we estimate the asymmetry parameter of an angular
distribution contaminated by background.

The shape itself of the pseudo likelihood cannot be used directly to es-
timate the parameter errors. The calculation of the error in the asymptotic
approximation is given in Appendix 13.4.

An alternative procedure for the error estimation is the bootstrap method,
where we take a large number of bootstrap samples from the experimental
distributions of both the signal- and the control experiment and calculate the
background corrected parameter estimate for each pair of samples, see Chap.
12.2.
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Example 88. Signal over background with background reference sample
Fig. 6.12 shows an experimental histogram of a normally distributed signal

of width σ = 1 contaminated by background, together 95 events with mean
x = 0.61 and empirical variance v2 = 3.00. The right hand side is the dis-
tribution of a background reference sample with 1/r = 2.5 times the flux of
the signal sample, containing 91 events with mean x′ = −1.17 and variance
v′2 = 4.79. The mean of the signal is obtained from the flux corrected version
of (6.31):

µ̂ =
Nx− rMx′

N − rM

=
95 · 0.61− 0.4 · 91 · 1.17

95− 0.4 · 91 = −0.26± 0.33 .

The error is estimated by linear error propagation. The result is indicated
in Fig. 6.12. The distributions were generated with nominally 60 pure signal
plus 40 background events and 100 background reference events. The signal
corresponds to a normal distribution, N(x|0, 1), and the background to an
exponential, ∼ exp(−0.2x).

6.10 Inclusion of Constraints

6.10.1 Introduction

The interesting parameters are not always independent of each other but are
often constrained by physical or geometrical laws.

As an example let us look at the decay of a Λ particle into a proton and
a pion, Λ → p + π, where the direction of flight of the Λ hyperon and
the momentum vectors of the decay products are measured. The momentum
vectors of the three particles which participate in the reaction are related
through the conservation laws of energy and momentum. Taking into account
the conservation laws, we add information and can improve the precision of
the momentum determination.

In the following we assume that we have N direct observations xi which
are predicted by functions ti(θ) of a parameter vector θ with P components
as well as K constraints of the form hk(θ1, . . . , θP ) = 0. Let us assume further
that the uncertainties ∆i of the observations are normally distributed and
that the constraints are fulfilled with the precision δk,

〈
(ti(θ)− xi)

2
〉
= ∆2

i ,〈
h2k(θ1, . . . , θP )

〉
= δ2k . (6.33)
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Then χ2 can be written in the form:

χ2 =

N∑

i=1

[xi − ti(θ)]
2

∆2
i

+

K∑

k=1

h2k(θ)

δ2k
. (6.34)

We minimize χ2 by varying the parameters and obtain their best estimates at
the minimum of χ2. The procedure works also when the constraints contain
more than N parameters, as long as the number of parameters P does not
exceed the the number of terms N + K. We assume that there is a single
minimum.

A corresponding likelihood fit would maximize

lnL =

N∑

i=1

ln f(xi|θ)−
1

2

K∑

k=1

h2k(θ)

δ2k
.

In most cases the constraints are obeyed exactly, δk = 0, and the sec-
ond term in (6.34) diverges. This difficulty is avoided in the following three
procedures:

1. The constraints are used to reduce the number of parameters.
2. The constraints are approximated by narrow Gaussians.
3. Lagrange multipliers are adjusted to satisfy the constraints.

We will discuss the problem in terms of a χ2 minimization. The solutions
can also be applied to likelihood fits.

6.10.2 Eliminating Redundant Parameters

Sometimes it is possible to eliminate parameters by expressing them by an
unconstrained subset.

Example 89. Fit with constraint: two pieces of a rope
A rope of exactly 1m length is cut into two pieces. A measurement of both

pieces yields l1 = 35.3 cm and l2 = 64.3 cm, both with the same Gaussian
uncertainty of δ = 0.3. We have to find the estimates λ̂1, λ̂2 of the lengths.
We minimize

χ2 =
(l1 − λ1)

2

δ2
+

(l2 − λ2)
2

δ2

including the constraint λ1+λ2 = l = 100 cm. We simply replace λ2 by l−λ1
and adjust λ1, minimizing

χ2 =
(l1 − λ1)

2

δ2
+

(l − l2 − λ1)
2

δ2
.
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The minimization relative to λ1 leads to the result:

λ̂1 =
l

2
+
l1 − l2

2
= 35.5± 0.2 cm

and the corresponding estimate of λ2 is just the complement of λ̂1 with respect
to the full length. Note that due to the constraint the error of λi is reduced by
a factor

√
2, as can easily be seen from error propagation. The constraint has

the same effect as a double measurement, but with the modification that now
the results are (maximally) anti-correlated: one finds cov(λ1λ2) = −var(λi).

Example 90. Fit of the particle composition of an event sample (2)
A particle identification variable x has different distributions fm(x) for

different particles. The p.d.f. given the relative particle abundance λm for
particle species m out of M different particles is

f(x|λ1, . . . , λM ) =

M∑

m=1

λmfm(x) ,

M∑

m=1

λm = 1 . (6.35)

As the constraint relation is linear, we can easily eliminate the parameter λM
to get rid of the constraint

∑
λm = 1:

f ′(x|λ1, . . . , λM−1) =

M−1∑

m=1

λmfm(x) + (1 −
M−1∑

m=1

λm)fM (x) .

The log-likelihood for N particles is

lnL =
N∑

i=1

ln

[
M−1∑

m=1

λmfm(xi) + (1−
M−1∑

m=1

λm)fM (xi)

]
.

From the MLE we obtain in the usual way the firstM−1 parameters and their
error matrix E. The remaining parameter λM and the related error matrix
elements EMj are derived from the constraint (6.35) and the corresponding
relation

∑
∆λm = 0. The diagonal error is the expected value of (∆λM )2:

∆λM = −
M−1∑

m=1

∆λm ,

(∆λM )2 =

[
M−1∑

m=1

∆λm

]2
,
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EMM =

M−1∑

m=1

Emm +

M−1∑

m

M−1∑

l 6=m

Eml .

The remaining elements are computed analogously:

EMj = EjM = −Ejj −
M−1∑

m 6=j

Emj .

An iterative method, called channel likelihood, to find the particle contribu-
tions, is given in [34].

These trivial examples are not really representative for the typical prob-
lems we have to solve in particle- or astrophysics. Indeed, it is often com-
plicated or even impossible to reduce the parameter set analytically to an
unconstrained subset. But we can introduce a new unconstrained parameter
set which then predicts the measured quantities. To find such a set is straight
forward in the majority of problems: We just have to think how we would sim-
ulate the corresponding experimental process. A simulation is always based
on a minimum set of parameters. The constraints are satisfied automatically.

Example 91. Kinematical fit with constraints: eliminating parameters
A neutral particle c is decaying into two charged particles a and b, for

instance Λ → p + π−. The masses mc,ma,mb are known. Measured are the
decay vertex ρ and the momenta πa,πb of the decay products. The measure-
ments of the components of the momentum vectors are correlated. The inverse
error matrices be Va and Vb. The origin of the decaying particle be at the ori-
gin of the coordinate system. Thus we have 9 measurements (r,pa,pb), 10
parameters, namely the 3 momentum vectors and the distance (πc,πa,πb, ρ),
and 4 constraints from momentum and energy conservation:

π(πc,πa,πb) ≡ πc − πa − πb = 0 ,

ε(πc,πa,πb) ≡
√
π2
c +m2

c −
√
π2
a +m2

a −
√
π2
b −m2

b = 0 .

The corresponding χ2 expression is

χ2 =

3∑

i=1

(
ri − ρi
δri

)2

+
∑3

i,j=1(pai − πai)Vaij(paj − πaj)

+
∑3

i,j=1(pbi − πbi)Vbij(pbj − πbj) .

The vertex parameters ρi are fixed by the vector relation ρ = ρπc/|πc|. Now
we would like to remove 4 out of the 10 parameters using the 4 constraints.
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A Monte Carlo simulation of the Λ decay would proceed as follows: First we
would select the Λ momentum vector (3 parameters). Next the decay length
would be generated (1 parameter). The decay of the Λ hyperon into proton and
pion is fully determined when we choose the proton direction in the lambda
center of mass system (2 parameters). All measured laboratory quantities
and thus also χ2 can then be expressed analytically by these 6 unconstrained
quantities (we omit here the corresponding relations) which are varied in the
fitting procedure until χ2 is minimal. Of course in the fit we would not select
random starting values for the parameters but the values which we compute
from the experimental decay length and the measured momentum vectors.
Once the reduced parameter set has been adjusted, it is easy to compute
also the remaining laboratory momenta and their errors which, obviously, are
strongly correlated.

Often the reduced parameter set is more relevant than the set correspond-
ing to the measurement, because a simulation usually is based on parameters
which are of scientific interest. For example, the investigation of the Λ decay
might have the goal to determine the Λ decay parameter which depends on
the center of mass direction of the proton relative to the Λ polarization, i.e.
on one of the directly fitted quantities.

6.10.3 Gaussian Approximation of Constraints

The direct inclusion of the constraint through a penalty term in the fit is
technically very simple and efficient.

As suggested by formula (6.34) to fulfil the constraints within the precision
of our measurement, we just have to choose the uncertainty δk small compared
to the experimental resolution of the constraint. To estimate the resolution,
the constraint is evaluated from the observed data, h̃(xi, ..., xN ) and we require
δ2k << h̃2. The precise choice of the constraint precision δk is not at all critical,
but a too small values of δk could lead to numerical problems. In case the
minimum search is slow, or does not converge, one should start initially with
loose constraints which could subsequently be tightened.

The value of χ2 in the major part of the parameter space is dominated
by the contributions from the constraint terms. In the minimum searching
programs the parameter point will therefore initially move quickly from its
starting value towards the subspace defined by the constraint equations and
then proceed towards the minimum of χ2. Oscillations inside the subspace can
be suppressed by parabolic minimum finding routines.

Remark that the minimum of χ2 is found at parameter values that satisfy
the constraints much better than naively expected from the set constraint
tolerances. The reason is the following: Once the parameters are close to their
estimates, small changes which reduce the χ2 contribution of the penalty
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terms, will not sizably affect the remaining terms. Thus the minimum will be
observed very close to hk = 0. As a consequence, the contribution of the K
constraint terms in (6.34) to the minimum value of χ2 is negligible.

Example 92. Example 89 continued
Minimizing

χ2 =
(l1 − λ1)

2

δ2
+

(l2 − λ2)
2

δ2
+

(λ1 + λ2 − l)2

(10−5δ)2
.

produces the same result as the fit presented above. The value δ2k = 10−10δ2

is chosen small compared to δ.

For a numerical test we consider the decay of a Λ hyperon into a proton
and a pion and simplify example 91.

Example 93. Example 91 continued
We do not consider the decay length of the lambda hyperon and the ab-

solute value of its momentum as these two quantities are not related to the
constraint equations. The modified χ2 expression is

χ2 =
(x− ξ)2

δ2x
+

(y − θ)2

δ2y
+

3∑

i,j=1

(pai − πai)Vaij(paj − πaj) +
3∑

i,j=1

(pbi − πbi)Vbij(pbj − πbj) +

(ξ/z − πcx/πcz)
2

δ2α
+

(θ/z − πcy/πcz)
2

δ2α
+

(mpπ −mΛ)
2

δ2m
. (6.36)

The first two terms of (6.36) compare the x and y components of the Λ
path vector with the corresponding parameters ξ and θ. The next two terms
measure the difference between the observed and the fitted momentum com-
ponents of the proton and the pion. The following two terms constrain the
direction of the Λ hyperon flight path to the direction of the momentum vec-
tor π = πa +πb and the last term constrains the invariant mass mpπ(πa,πb)
of the decay products to the Λ mass. We generate 104 events, all with the
same nominal parameter values but different normally distributed measure-
ment errors. The velocity of the Λ particle is parallel to the z axis with a
Lorentz factor γ = 9. The decay length is fixed to 1m. The direction of the
proton in the Λ center of mass is defined by the polar and azimuthal angles
θ = 1.5, φ = 0.1. The measurement errors of the x and y coordinates are
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δx = δy = 1 cm. The momentum error is assumed to be the sum of a term
proportional to the momentum p squared, δpr = 2p2/(GeV )2 and a constant
term δp0 = 0.02GeV added to each momentum component. The tolerances for
the constraints are δα = 0.001 and δm = 0.1MeV , i.e. about 10−3 times the
experimental uncertainty. The minimum search is performed with a combina-
tion of a simplex and a parabolic minimum searching routine. The starting
values for the parameters are the measured values. The fit starts with a typi-
cal value of χ2

0 of 2× 108 and converges for all events with a mean value of χ2

of 2.986 and a mean value of the standard deviation of 2.446 to be compared
to the nominal values 3 and

√
6 = 2.450. The contribution from each of the

three constraint terms to χ2 is 10−4. Thus the constraints are realized with a
precision 105 times the experimental resolution.

6.10.4 The Method of Lagrange Multipliers

This time we choose the likelihood presentation of the problem. The likelihood
function is extended to

lnL =

N∑

i=1

ln f(xi|θ) +
∑

k

αkhk(θ) . (6.37)

We have appended an expressions that in the end should be equal to zero,
the constraint functions multiplied by the so-called Lagrange multipliers. The
MLE as obtained by setting ∂ lnL/∂θj = 0 yields parameters that depend on
the Lagrange multipliers α. We can now use the free parameters αk to fulfil
the constraints, or in other words, we use the constraints to eliminate the
Lagrange multiplier dependence of the MLE.

Example 94. Example 89 continued
Our full likelihood function is now

lnL = − (l1 − λ1)
2

2δ2
− (l2 − λ2)

2

2δ2
+ α(λ1 + λ2 − l)

with the MLE λ̂1,2 = l1,2−δ2α. Using λ̂1+ λ̂2 = l we find δ2α = (l1+ l2− l)/2
and, as before, λ̂1 = (l + l1 − l2)/2, λ̂2 = (l + l2 − l1)/2.

Of course, the general situation is much more complicated than that of our
trivial example. An analytic solution will hardly be possible. Instead we can set
the derivative of the log-likelihood not only with respect to the parameters
θ but also with respect to the multipliers αk equal to zero, ∂ lnL/∂αk =
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0, which automatically implies, see (6.37), that the constraints are satisfied.
Unfortunately, the zero of the derivative corresponds to a saddle point and
cannot be found by a maximum searching routine. More subtle numerical
methods have to be applied.

Most methods avoid this complication and limit themselves to linear re-
gression models which require a linear dependence of the observations on
the parameters and linear constraint relations. Non-linear problems are then
solved iteratively. The solution then is obtained by a simple matrix calculus.

Linear regression will be sketched in Sect. 7.3.3 and the inclusion of con-
straints in Appendix 13.11. For a detailed discussion see Ref. [37].

6.10.5 Conclusion

By far the simplest method is the one where the constraint is directly included
and approximated by a narrow Gaussian. With conventional minimizing pro-
grams the full error matrix is produced automatically.

The approach using a reduced parameter set is especially interesting when
we are primarily interested in the parameters of the reduced set. This is the
case in most kinematical fits. Due to the reduced dimension of the parameter
space, it is faster than the other methods. The determination of the errors of
the original parameters through error propagation is sometimes tedious.

It is recommended to either eliminate redundant parameters or to use
the simple method where we represent constraints by narrow Gaussians. The
application of Lagrange multipliers is unnecessarily complicated and the linear
approximation requires additional assumptions and iterations.

6.11 Reduction of the Number of Variates

6.11.1 The Problem

A statistical analysis of an univariate sample is obviously much simpler than
that of a multidimensional one. This is not only true for the qualitative com-
parison of a sample with a parameter dependent p.d.f. but also for the quan-
titative parameter inference. Especially when the p.d.f. is distorted by the
measurement process and a Monte Carlo simulation is required, the direct ML
method cannot be applied as we have seen above. The parameter inference
then happens by comparing histograms with the problem that in multidimen-
sional spaces the number of entries can be quite small in some bins. Therefore,
we have an interest to reduce the dimensionality of the variable space by ap-
propriate transformations, of course, if possible, without loss of information.
However, it is not always easy to find out which variable or which variable
combination is especially important for the parameter estimation.
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6.11.2 Two Variables and a Single Linear Parameter

A p.d.f. f(x, y|θ) of two variates with a linear parameter dependence can
always be written in the form

f(x, y|θ) = v(x, y)[1 + u(x, y)θ] .

The log-likelihood for observations u = u(x, y), v = v(x, y),

lnL(θ) = ln v + ln(1 + uθ) ,

is essentially a function of only one significant variate u(x, y) because ln v
does not depend on θ and can be omitted. A MLE of θ for a given sample
{(x1, y1), . . . , (xN , yN)} with

lnL(θ) =
∑

ln(1 + uiθ) , (6.38)

and ui = u(xi, yi) depends only on the observations {u1, . . . , uN}. The analysis
can be based on the individual quantities or a histogram.

The simple form of the relation (6.38) suggests that the analytic form
g(u|θ) of the p.d.f. of u is not needed for the parameter inference. Only the
experimental observations ui enter into the likelihood function.

Unfortunately this nice property is lost when acceptance and resolution
effects are present – and this is usually the case. In this situation, the linearity
in θ is lost because we are forced to renormalize the p.d.f.. Nevertheless we
gain by the reduction to one variate u. If the detector effects are not too large,
the distribution of u still contains almost the complete information relative
to θ.

The analytic variable transformation and reduction is possible only in rare
cases, but it is not necessary because it is performed implicitly by the Monte
Carlo simulation. We generate according to f(x, y|θ) and for each observation
xi, yi we calculate the corresponding quantity ui = u(xi, yi). The parameter
θ is determined by a comparison of the experimental sample with the Monte
Carlo distribution of u by means of a likelihood or a χ2 fit. The distribution
of u lends itself also for a goodness-of-fit test (see Chap. 10).

6.11.3 Generalization to Several Variables and Parameters

The generalization to N variates which we combine to a vector x is trivial:

f(x|θ) = v(x) [1 + u(x)θ] .

Again we can reduce the variate space to a single significant variate u
without loosing relevant information. If simultaneously P parameters have to
be determined, we usually will need also P new variates u1, . . . , uP :
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Fig. 6.13. Simulated p.d.f.s of the reduced variable u for the values ±θ of the
parameter.

f(x|θ) = v(x)

[
1 +

∑

p

up(x)θp

]
.

Our procedure thus makes sense only if the number of parameters is smaller
than the dimension of the variate space.

Example 95. Reduction of the variate space
We consider the p.d.f.

f(x, y, z|θ) = 1

π

[
(x2 + y2 + z2)1/2 + (x+ y3)θ

]
, x2 + y2 + z2 ≤ 1 , (6.39)

which depends on three variates and one parameter. For a given sample of
observations in the three dimensional cartesian space we want to determine
the parameter θ. The substitutions

u =
x+ y3

(x2 + y2 + z2)1/2
, |u| ≤

√
2 ,

v = (x2 + y2 + z2)1/2 , 0 ≤ v ≤ 1 ,

z = z
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lead to the new p.d.f. g′(u, v, z)

g′(u, v, z|θ) = v

π
[1 + u θ]

∂(x, y, z)

∂(u, v, z)
,

which after integrating out v and z yields the p.d.f. g(u|θ):

g(u|θ) =
∫

dz dv g′(u, v, z|θ) .

This operation is not possible analytically but we do not need to compute g
explicitly. We are able to determine the MLE and its error from the simple
log-likelihood function of θ

lnL(θ) =
∑

i

ln(1 + uiθ) .

In case we have to account for acceptance effects, we have to simulate the u
distribution. For a Monte Carlo simulation of (6.39) we compute for each ob-
servation xi, yi, zi the value of ui and histogram it. The simulated histograms
g+ and g− of u for the two parameter values θ = ±1 are shown in Fig. 6.13.
(The figure does not include experimental effects. This is irrelevant for the
illustration of the method.) The superposition ti = (1−θ)g−i+(1+θ)g+i has
then to be inserted into the likelihood function (6.15).

6.11.4 Non-linear Parameters

The example which we just investigated is especially simple because the p.d.f.
depends linearly on a single parameter. Linear dependencies are quite frequent
because distributions often consist of a superposition of several processes, and
the interesting parameters are the relative weights of those.

For the general, non-linear case we restrict ourselves to a single parameter
to simplify the notation. We expand the p.d.f. into a Taylor series at a first
rough estimate θ0:

f(x|θ) = f(x|θ0) +
∂f

∂θ
|θ0 ∆θ +

1

2

∂2f

∂θ2
|θ0 ∆θ2 + · · ·

= V
[
1 + u1∆θ + u2∆θ

2 + · · ·
]
. (6.40)

As before, we choose the coefficients ui as new variates. Neglecting
quadratic and higher terms, the estimate θ̂ = θ0 + ∆̂θ depends only on the
new variate u1,

u1(x) =
∂f(x|θ)/∂θ |θ0

f(x|θ0)
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which is a simple function of x.
If the linear approximation is insufficient, a second variate u2 should be

added. Alternatively, the solution can be iterated. The generalization to sev-
eral parameters is straight forward.

A more detailed description of the method with application to a physics
process can be found in Refs. [38, 39]. The corresponding choice of the variate
is also known under the name optimal variable method [40].

6.12 Method of Approximated Likelihood Estimator

As in the previous section 6.8 we investigate the situation where we have to
estimate parameters in presence of acceptance and resolution effects. The idea
of the method is the following: We try to find a statistic θ̂′ of the distorted
data sample which summarizes the information relative to the parameter of
interest. Then we perform a Monte Carlo simulation to infer the relation θ(θ′)
between the parameter of interest θ and the observed quantity θ′. Ideally, we
can find an approximately sufficient statistic9. If we are not successful, we can
use the likelihood estimate which we obtain when we insert the data into the
undistorted p.d.f.. In both cases we find the relation between the experimental
statistic and the estimate of the parameter by a Monte Carlo simulation. The
method should become clear in the following example.

Example 96. Approximated likelihood estimator: Lifetime fit from a distorted
distribution

The sample mean t of a sample of N undistorted exponentially distributed
lifetimes ti is a sufficient estimator: It contains the full information related to
the parameter τ , the mean lifetime (see Sect. 7.1.1). In case the distribution
is distorted by resolution and acceptance effects (Fig. 6.14), the mean value

t′ =
∑

t′i/N

of the distorted sample t′i will usually still contain almost the full information
relative to the mean life τ . The relation τ(t′) between τ and its approximation
t′ (see insert of Fig. 6.14) is generated by a Monte Carlo simulation. The
uncertainty δτ is obtained by error propagation from the uncertainty δt′ of t′,

(δt′)2 =
(t′2 − t′

2
)

N − 1
,

with t′2 =
1

N

∑
t′2i

using the Monte Carlo relation τ(t′).

9A sufficient statistic is a function of the sample and replaces it for the parameter
estimation without loss in precision. We will define sufficiency in Chap. 7.
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Fig. 6.14. Measured lifetime distribution. The insert indicates the transformation
of the measured lifetime to the corrected one.

This approach has several advantages:

• We do not need to histogram the observations.
• Problems due to small event numbers for bins in a multivariate space are

avoided.
• It is robust, simple and requires little computing time.

For these reasons the method is especially suited for online applications,
provided that we find an efficient estimator.

If the distortions are not too large, we can use the likelihood estimator
extracted from the observed sample {x′1, . . . , x′N} and the undistorted distri-
bution f(x|λ):

L(λ) =
∏

f(x′i|λ) ,
dL
dλ

|λ̂′ = 0 . (6.41)

This means concretely that we perform the usual likelihood analysis where
we ignore the distortion. We obtain λ̂′. Then we correct the bias by a Monte
Carlo simulation which provides the relation λ̂(λ̂′).
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It may happen in rare cases where the experimental resolution is very
bad that f(x|λ) is undefined for some extremely distorted observations. This
problem can be cured by scaling λ̂′ or by eliminating particular observations.

Acceptance losses α(x) alone without resolution effects do not necessarily
entail a reduction in the precision of our approach. For example, as has been
shown in Sect. 6.5.2, cutting an exponential distribution at some maximum
value of the variate, the mean value of the observations is still a sufficient
statistic. But there are cases where sizable acceptance losses have the conse-
quence that our method deteriorates. In these cases we have to take the losses
into account. We only sketch a suitable method. The observed p.d.f. f ′(x|λ)
for the variate x is

f ′(x|λ) = α(x)f(x|λ)∫
α(x)f(x|λ)dx ,

where the denominator is the global acceptance and provides the correct nor-
malization. We abbreviate it by A(λ). The log-likelihood of N observations
is

lnL(λ) =
∑

lnα(xi) +
∑

ln f(xi|λ)−NA(λ) .

The first term can be omitted. The acceptance A(λ) can be determined by
a Monte Carlo simulation. Again a rough estimation is sufficient, at most it
reduces the precision but does not introduce a bias, since all approximations
are automatically corrected with the transformation λ(λ′).

Frequently, the relation (6.41) can only be solved numerically, i.e. we find
the maximum of the likelihood function in the usual manner. We are also
allowed to approximate this relation such that an analytic solution is possible.
The resulting error is compensated in the simulation.

Example 97. Approximated likelihood estimator: linear and quadratic distri-
butions

A sample of events xi is distributed linearly inside the interval [−1, 1], i.e.
the p.d.f. is f(x|b) = 0.5 + bx. The slope b , |b| < 1/2, is to be fitted. It is
located in the vicinity of b0. We expand the likelihood function

lnL =
∑

ln(0.5 + bxi)

at b0 with
b = b0 + β

and derive it with respect to β to find the value β̂ at the maximum:
∑ xi

0.5 + (b0 + β̂)xi
= 0 .

Neglecting quadratic and higher order terms in β̂ we can solve this equation
for β̂ and obtain
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β̂ ≈
∑
xi/f0i∑
x2i /f

2
0i

(6.42)

where we have set f0i = f(xi|b0). If we allow also for a quadratic term

f(x|a, b) = a+ bx+ (1.5− 3a)x2 ,

we write, in obvious notation,

f(x|a, b) = f0 + α(1− 3x2) + βx

and get, after deriving lnL with respect to α and β and linearizing, two linear
equations for α̂ and β̂:

α̂
∑

A2
i + β̂

∑
AiBi =

∑
Ai ,

α̂
∑

AiBi + β̂
∑

B2
i =

∑
Bi , (6.43)

with the abbreviations Ai = (1 − 3x2i )/f0i, Bi = xi/f0i. From the observed
data using (6.43) we get β̂′(x′), α̂′(x′), and the simulation provides the pa-
rameter estimates b̂(β̂′), â(α̂′) and their uncertainties.

The calculation is much faster than a numerical minimum search and al-
most as precise. If α̂, β̂ are large we have to iterate.

6.13 Nuisance Parameters

Frequently a p.d.f. f(x|θ,ν) contains several parameters from which only
some, namely θ, are of interest, whereas the other parameters ν are unwanted,
but influence the estimate of the former. Those are called nuisance parameters.
A typical example is the following.

Example 98. Nuisance parameter: decay distribution with background
We want to infer the decay rate γ of a certain particle from the decay times

ti of a sample of M events. Unfortunately, the sample contains an unknown
amount of background. The decay rate γb of the background particles be
known. The nuisance parameter is the number of background events N . For
a fraction of background events of N/M , the p.d.f. for a single event with
lifetime t is

f(t|γ,N) =

(
1− N

M

)
γe−γt +

N

M
γbe

−γbt , N ≤M ,
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from which we derive the likelihood for the sample:

L(γ,N) =
20∏

i=1

[(
1− N

M

)
γe−γti +

N

M
γbe

−γbti

]
.

A contour plot of the log-likelihood of a specific data sample of 20 events and
γb = 0.2 is depicted in Fig. 6.15. The two parameters γ and N are correlated.
The question is then: What do we learn about γ, what is a sensible point
estimate of γ and how should we determine its uncertainty?

We will re-discuss this example in the next subsection and present in the
following some approaches which permit to eliminate the nuisance parameters.
First we will investigate exact methods and then we will turn to the more
problematic part where we have to apply approximations.

6.13.1 Nuisance Parameters with Given Prior

If we know the p.d.f. π(ν) of a nuisance parameter vector ν, the prior of ν,
then we can eliminate ν simply by integrating it out, thereby weighting ν

with its probability π(ν) to occur.

fθ(x|θ) =
∫
f(x|θ,ν)π(ν)dν .

In this way we obtain a p.d.f. depending solely on the parameters of interest
θ. The corresponding likelihood function of θ is

Lθ(θ|x) =
∫
L(θ,ν|x)π(ν)dν =

∫
f(x|θ,ν)π(ν)dν . (6.44)

Example 99. Nuisance parameter: measurement of a Poisson rate with a dig-
ital clock

An automatic monitoring device measures a Poisson rate θ with a digital
clock with a least count of ∆. For n observed reactions within a time interval ν
the p.d.f. is given by the Poisson distribution Pθν(n). If we consider both, the
rate parameter θ and the length of the time interval ν as unknown parameters,
the corresponding likelihood function is

L(θ, ν) =
e−θν [θν]

n

n!
.

For a clock reading t0, the true measurement time is contained in the time
interval t0 ± ∆/2. We can assume that all times ν within that interval are
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Fig. 6.15. Log-likelihood contour as a function of decay rate and number of back-
ground events. For better visualization the discrete values of the event numbers are
connected.

equally probable and thus the prior of ν is π(ν) = 1/∆ for ν in the interval
[t0−∆/2 , t0+∆/2] and equal to zero elsewhere. We eliminate constant factors,
and, integrating over ν,

Lθ(θ) =

∫ t0+∆/2

t0−∆/2

e−θν [θν]
n
dν ,

we get rid of the nuisance parameter. The integral can be evaluated numeri-
cally.

Let us resume the problem discussed in the introduction. We now assume
that we have prior information on the amount of background: The background
expectation had been determined in an independent experiment to be 10 with
sufficient precision to neglect its uncertainty. The actual number of back-
ground events follows a binomial distribution. The likelihood function is

L(γ) =

20∑

N=0

B20
0.5(N)

20∏

i=1

[(
1− N

20

)
γe−γti +

N

20
0.2e−0.2ti

]
.
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Since our nuisance parameter is discrete we have replaced the integration in
(6.44) by a sum.

6.13.2 Factorizing the Likelihood Function

Very easy is the elimination of the nuisance parameter if the p.d.f. is of the
form

f(x|θ, ν) = fθ(x|θ)fν(x|ν) , (6.45)

i.e. only the first factor fθ depends on θ. Then we can write the likelihood as
a product

L(θ, ν) = Lθ(θ)Lν(ν)

with
Lθ =

∏
fθ(xi|θ) ,

independent of the nuisance parameter ν.

Example 100. Elimination of a nuisance parameter by factorization of a two-
dimensional normal distribution

A sample of space points (xi, yi), i = 1, . . . , N follow a normal distribution

f(x, y|θ, ν) = ab

2π
exp

(
−1

2

[
a2(x− θ)2 + b2(y − ν)2

])

=
ab

2π
exp

(
−a

2

2
(x− θ)2

)
exp

(
−b

2

2
(y − ν)2

)
.

with θ the parameter which we are interested in. The normalized x distribution
depends only on θ. Whatever value ν takes, the shape of this distribution
remains always the same. Therefore we can estimate θ independently of ν.
The likelihood function is proportional to a normal distribution of θ,

L(θ) ∼ exp

(
−a

2

2
(θ − θ̂)2

)
,

with the estimate θ̂ = x =
∑
xi/N .

6.13.3 Parameter Transformation, Restructuring

Sometimes we manage by means of a parameter transformation ν′ = ν′(θ, ν)
to bring the p.d.f. into the desired form (6.45) where the p.d.f. factorizes
into two parts which depend separately on the parameters θ and ν′. We have
already sketched an example in Sect. 4.4.7: When we are interested in the slope
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θ and not in the intersection ν with the y-axis of a straight line y = θx + ν
which should pass through measured points, then we are able to eliminate the
correlation between the two parameters. To this end we express the equation
of the straight line by the slope and the ordinate at the center of gravity, see
Example 116 in Chap. 7.

A simple transformation ν′ = c1ν+c2θ also helps to disentangle correlated
parameters of a Gaussian likelihood

L(θ, ν) ∼ exp

(
−a

2(θ − θ̂)2 − 2abρ(θ − θ̂)(ν − ν̂) + b2(ν − ν̂)2

2(1− ρ2)

)
,

With suitable chosen constants c1, c2 it produces a likelihood function that
factorizes in the new parameter pair θ, ν′. In the notation where the quantities
θ̂, ν̂ maximize the likelihood function, the transformation produces the result

Lθ(θ) ∼ exp

(
−a

2

2
(θ − θ̂)2

)
.

We set the proof of this assertion aside.
It turns out that this procedure yields the same result as simply integrating

out the nuisance parameter and as the profile likelihood method which we
will discuss below. This result is interesting in the following respect: In many
situations the likelihood function is nearly of Gaussian shape. As is shown in
Appendix 13.3, the likelihood function approaches a Gaussian with increasing
number of observations. Therefore, integrating out the nuisance parameter,
or better to apply the profile likelihood method, is a sensible approach in
many practical situations. Thus nuisance parameters are a problem only if
the sample size is small.

The following example is frequently discussed in the literature [19].

Example 101. Elimination of a nuisance parameter by restructuring: absorp-
tion measurement

The absorption factor θ for radioactive radiation by a plate is determined
from the numbers of events r1 and r2, which are observed with and without
the absorber within the same time intervals. The numbers r1, r2 follow Poisson
distributions with mean values ρ1 and ρ2:

f1(r1|ρ1) =
e−ρ1ρr11
r1!

,

f2(r2|ρ2) =
e−ρ2ρr22
r2!

.

The interesting parameter is the expected absorption θ = ρ2/ρ1. In first ap-
proximation we can use the estimates r1, r2 of the two independent parameters
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Fig. 6.16. Log-likelihood function of an absoption factor.

ρ1 and ρ2 and their errors to calculate in the usual way through error propa-
gation θ and its uncertainty:

θ̂ =
r2
r1
,

(δθ̂)2

θ̂2
=

1

r1
+

1

r2
.

For large numbers r1, r2 this method is justified but the correct way is to
transform the parameters ρ1, ρ2 of the combined distribution

f(r1, r2|ρ1, ρ2) =
e−(ρ1+ρ2)ρr11 ρ

r2
2

r1!r2!

into the independent parameters θ = ρ2/ρ1 and ν = ρ1 + ρ2. The transforma-
tion yields:

f̃(r1, r2|θ, ν) = e−ννr1+r2 (1 + 1/θ)−r2(1 + θ)−r1

r1!r2!
,

L(θ, ν|r1, r2) = Lν(ν|r1, r2)Lθ(θ|r1, r2) .

Thus the log-likelihood function of θ is

lnLθ(θ|r1, r2) = −r2 ln(1 + 1/θ)− r1 ln(1 + θ) .
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It is presented in Fig. 6.16 for the specific values r1 = 10, r2 = 20. The
maximum is located at θ̂ = r2/r1, as obtained with the simple estimation
above. However the errors are asymmetric.

Instead of a parameter transformation it is sometimes possible to eliminate
the nuisance parameter if we can find a statistic y which is independent of the
nuisance parameter ν, i.e. ancillary with respect to ν, but dependent on the
parameter θ. Then we can use the p.d.f. of y, f(y|θ), which per definition is
independent of ν, to estimate θ. Of course, we may loose information because
y is not necessarily a sufficient statistic relative to θ. The following example
illustrates this method. In this case there is no loss of information.

Example 102. Eliminating a nuisance parameter by restructuring: Slope of a
straight line with the y-axis intercept as nuisance parameter

We come back to one of our standard examples which can, as we have
indicated, be solved by a parameter transformation. Now we solve it in a
simpler way. Points (xi, yi) are distributed along a straight line. The x co-
ordinates are exactly known, the y coordinates are the variates. The p.d.f.
f(y1, . . . , yn|θ, ν) contains the slope parameter θ and the uninteresting inter-
cept ν of the line with the y axis. It is easy to recognize that the statistic
{ỹ1 = y1−yn, ỹ2 = y2−yn, . . . , ỹn−1 = yn−1−yn} is independent of ν. In this
specific case the new statistic is also sufficient relative to the slope θ which
clearly depends only on the differences of the ordinates. We leave the details
of the solution to the reader.

Further examples for the elimination of a nuisance parameter by restruc-
turing have been given already in Sect. 6.5.2, Examples 79 and 80.

6.13.4 Profile Likelihood

We now turn to approximate solutions.
Some scientists propose to replace the nuisance parameter by its estimate.

This corresponds to a delta function for the prior of the nuisance parameter
and is for that reason quite exotic and dangerous. It leads to an illegitimate
reduction of the error limits whenever the nuisance parameter and the in-
teresting parameter are correlated. Remark, that a correlation always exists
unless a factorization is possible. In the extreme case of full correlation the
error would shrink to zero.

A much more sensible approach to eliminate the nuisance parameter uses
the so-called profile likelihood [41]. To explain it, we give an example with a
single nuisance parameter.
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Fig. 6.17. Profile likelihood (solid curve, right hand scale) and ∆(lnL) = −1/2 , θ−
ν contour.(left hand scale). The dashed curve is ν̂(θ).

The likelihood function is maximized with respect to the nuisance param-
eter ν as a function of the wanted parameter θ. The function ν̂(θ) which
maximizes L then satisfies the relation

∂L(θ, ν|x)
∂ν

|ν̂ = 0 → ν̂(θ) .

It is inserted into the likelihood function and provides the profile likelihood
Lp,

Lp = L (θ, ν̂(θ)|x) ,
which depends solely on θ.

This method has the great advantage that only the likelihood function
enters and no assumptions about priors have to be made. It also takes cor-
relations into account. Graphically we can visualize the error interval of the
profile likelihood ∆ lnLp(θ, ν) = 1/2 by drawing the tangents of the curve
∆ lnL = 1/2 parallel to the ν axis. These tangents include the error interval.

Example 103. Profile likelihood
We reformulate the absorption example 101 with the nuisance parame-

ter ρ1 and the parameter of interest θ = ρ2/ρ1. The log-likelihood, up to
constants, is:
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lnL(ρ1, θ) = −ρ1(1 + θ) + (r1 + r2) ln ρ1 + r2 ln θ .

The maximum of ρ1 as a function of θ is ρ̂1 = (r1+ r2)/(1+ θ) and the profile
likelihood becomes

lnLp(θ) = −(r1 + r2) ln(1 + θ) + r2 ln θ .

The function ρ̂1, the profile likelihood and the 1 st. dev. error contour are
depicted in Fig. 6.17. The result coincides with that of the exact factorization.
(In the figure the nuisance parameter is denoted by ν.)

In the literature we find methods which orthogonalize the parameters at
the maximum of the likelihood function [42] which means to diagonalize a more
dimensional Gaussian. The result is similar to that of the profile likelihood
approach.

In the limit of a large number of observations where the likelihood function
approaches the shape of a normal distribution, the profile likelihood method
is identical to restructuring and factorizing the likelihood.

6.13.5 Integrating out the Nuisance Parameter

If the methods fail which we have discussed so far, we are left with only two
possibilities: Either we give up the elimination of the nuisance parameter or
we integrate it out. The simple integration

Lθ(θ|x) =
∫ ∞

−∞
L(θ, ν|x)dν

implicitly contains the assumption of a uniform prior of ν and therefore de-
pends to some extend on the validity of this condition. However, in most cases
it is a reasonable approximation. The effect of varying the prior is usually neg-
ligible, except when the likelihood function is very asymmetric. Also a linear
term in the prior does usually not matter. It is interesting to notice that in
most cases integrating out the nuisance parameter leads to the same result as
restructuring the problem.

6.13.6 Explicit Declaration of the Parameter Dependence

It is not always possible to eliminate the nuisance parameter in such a way
that the influence of the method on the result can be neglected. When the
likelihood function has a complex structure, we are obliged to document the
full likelihood function. In many cases it is possible to indicate the depen-
dence of the estimate θ and its error limits θ1, θ2 on the nuisance parameter
ν explicitly by a simple linear function
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θ̂ = θ̂0 + c(ν − ν̂) ,

θ1,2 = θ1,2 + c(ν − ν̂) .

Usually the error limits will show the same dependence as the MLE which
means that the width of the interval is independent of ν.

However, publishing a dependence of the parameter of interest on the
nuisance parameter is useful only if ν corresponds to a physical constant and
not to an internal parameter of an experiment like efficiency or background.

6.13.7 Advice

If it is impossible to eliminate the nuisance parameter explicitly and if the
shape of the likelihood function does not differ dramatically from that of a
Gaussian, the profile likelihood approach should be used for the parameter and
interval estimation. In case the deviation from a Gaussian is considerable, we
will try to avoid problems by an explicit declaration of the dependence of the
likelihood estimate and limits on the nuisance parameter. If also this fails, we
abstain from the elimination of the nuisance parameter and publish the full
likelihood function.
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7.1 Likelihood and Information

7.1.1 Sufficiency

In a previous example, we have seen that the likelihood function for a sample
of exponentially distributed decay times is a function only of the sample mean.
In fact, in many cases, the i.i.d. individual elements of a sample {x1, . . . , xN}
can be combined to fewer quantities, ideally to a single one without affecting
the estimation of the interesting parameters. The set of these quantities which
are functions of the observations is called a sufficient statistic. The sample
itself is of course a sufficient, while uninteresting statistic.

According to R. A. Fisher, a statistic is sufficient for one or several param-
eters, if by addition of arbitrary other statistics of the same data sample, the
parameter estimation cannot be improved. More precise is the following defi-
nition [1]: A statistic t(x1, . . . , xN ) ≡ {t1(x1, . . . , xN ), . . . , tM (x1, . . . , xN )} is
sufficient for a parameter set θ, if the distribution of a sample {x1, . . . , xN},
given t, does not depend on θ:

f(x1, . . . , xN |θ) = g(t1, . . . , tM |θ)h(x1, . . . , xN ) . (7.1)

The distribution g(t|θ) then contains all the information which is relevant
for the parameter estimation. This means that for the estimation process we
can replace the sample by the sufficient statistic. In this way we may reduce the
amount of data considerably. In the standard situation where all parameter
components are constraint by the data, the dimension of t must be larger
or equal to the dimension of the parameter vector θ. Every set of uniquely
invertible functions of t is also a sufficient statistic.

The relevance of sufficiency is expressed in a different way in the so-called
sufficiency principle:

If two different sets of observations have the same values of a sufficient
statistic, then the inference about the unknown parameter should be the same.
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Of special interest is a minimal sufficient statistic. It consists of a minimal
number of components, ideally only of one element per parameter.

In what follows, we consider the case of a one-dimensional sufficient statis-
tic t(x1, . . . , xN ) and a single parameter θ. The likelihood function can ac-
cording to (7.1) be written in the following way:

L = L1(θ|t(x)) · L2(x) . (7.2)

It is easy to realize that the second factor L2 which is independent of θ1,
has no bearing on the likelihood ratios of different values of θ. We obtain a
data reduction of N to 1. This means that all samples of size N which have
the same value of the statistic t lead to the same likelihood function and thus
to the same MLE and the same likelihood ratio interval.

If a minimal sufficient statistic of one element per parameter exists, then
the MLE itself is a minimal sufficient statistic and the MLE together with
the sample size N fix the likelihood function up to an irrelevant factor. (For
the Cauchy distribution the full sample is a minimal sufficient statistic. No
further reduction in size is possible. Thus its MLE is not sufficient.)

If in the general situation with P parameters a minimal sufficient statistic
t of P components exists, the data reduction is N to P and the MLE for the
P parameters will be a unique function of t and is therefore itself a sufficient
statistic.

Once we have found a sufficient statistic it is mostly easy to compute the
MLE.

Example 104. Sufficient statistic and expected value of a normal distribution
Let x1, . . . , xN be N normally distributed observations with width σ. The

parameter of interest be the expected value µ of the distribution. The likeli-
hood function is

L(µ|x1, . . . , xN ) = c

N∏

i=1

exp[−(xi − µ)2/(2σ2]

= c exp[−
N∑

i=1

(xi − µ)2/(2σ2)] ,

with c = (
√
2πσ)−N . The exponent can be expressed in the following way:

N∑

i=1

(xi − µ)2/(2σ2) = N(x2 − 2xµ+ µ2)/(2σ2) .

Now the likelihood L factorizes:

1Note, that also the domain of x has to be independent of θ.
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L(µ, σ|x1, . . . , xN ) = exp[−N(−2xµ+µ2)/(2σ2)] · c exp[−Nx2/(2σ2)] . (7.3)

Only the first factor depends on µ. Consequently the experimental quantity
x contains the full information on µ and thus is a one-dimensional sufficient
statistic. Setting the derivative of the first factor equal to zero, we obtain the
MLE µ̂ = x.

In the following example we show that a sufficient two-dimensional statistic
can be found when besides the expectation value also the width σ is to be
estimated.

Example 105. Sufficient statistic for mean value and width of a normal distri-
bution

Let x1, . . . , xN be N normally distributed observations. The mean value
µ and the width σ be the parameters of interest. From (7.3) we deduce that
x and x2 together form a sufficient statistic {x, x2}. Alternatively, also x and
v2 =

∑
(xi − x)2 form a sufficient statistic. The MLE in the two-dimensional

parameter space µ, σ2 is

µ̂ = x , σ̂2 =
1

N
(x2 − x2) .

There is no one-dimensional sufficient statistic for σ alone, as has been the
case for µ.

Remark: In the examples which we have discussed, the likelihood function
is fixed up to an irrelevant multiplicative factor if we consider the sample size
N as a constant. In case N is also a random variable, then N is part of the
sufficient statistic, e.g. in the last example it is {x, x2, N}. Usually N is given
and is then an ancillary statistic.

Definition: A statistic y is called ancillary, if f(y|θ) = f(y), i.e. the p.d.f.
of y is independent of the parameter of interest2.

The value of the ancillary statistic has no influence on the MLE but is
relevant for the shape of the likelihood function and thus for the precision
of the estimation. The sample size is in most cases an ancillary statistic and
responsible for the accuracy of the estimation.

7.1.2 The Conditionality Principle

Imagine that a measurement is performed either with the precise device A or
with the imprecise device B. The device is selected by a stochastic process.

2Note that the combination of two ancillary statistics is not necessarily ancillary.
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After the measurement has been realized, we know the device which had been
selected. Let us assume this was device B. The conditionality principle tells
us that for the parameter inference we are allowed to use this information
which means that we may act as if device A had not existed. The analysis is
not “blind”. Stochastic results influence the way we evaluate the parameters.

More generally, the conditionality principle states:
If an experiment concerning the inference about θ is chosen from a collec-

tion of possible random experiments, independently of θ, then any experiment
not chosen is irrelevant to the inference.

Example 106. Conditionality
We measure the position coordinate of the trajectory of an ionizing particle

passing a drift chamber. A certain wire responds. Its position provides a rough
coordinate. In 90 % of all cases a drift time is registered and we obtain a
much more precise value of the coordinate. The conditionality principle tells
us that in this case we are allowed to use the drift time information without
considering the worse resolution of a possible but not realized failure of the
time measurement.

The conditionality principle seems to be trivial. Nevertheless the belief in
its validity is not shared by all statisticians because it leads to the likelihood
principle with its far reaching consequences which are not always intuitively
obvious.

7.1.3 The Likelihood Principle

We now discuss a principle which concerns the foundations of statistical in-
ference and which plays a central role in Bayesian statistics.

The likelihood principle (LP) states the following:
Given a p.d.f. f(x|θ) containing an unknown parameter of interest θ and

an observation x, all information relevant for the estimation of the parameter
θ is contained in the likelihood function L(θ|x) = f(x|θ).

Furthermore, two likelihood functions which are proportional to each
other, contain the same information about θ. The general form of the p.d.f.
is considered as irrelevant. The p.d.f. at variate values which have not been
observed has no bearing for the parameter inference.

Correspondingly, for discrete hypotheses Hi the full experimental informa-
tion relevant for discriminating between them is contained in the likelihoods
Li.

The following examples are intended to make plausible the LP which we
have implicitly used in Chap. 6.
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Example 107. Likelihood principle, dice
We have a bag of biased dice of type A andB. Dice A produces the numbers

1 to 6 with probabilities 1/12, 1/6, 1/6, 1/6, 1/6, 3/12. The corresponding
probabilities for dice B are 3/12, 1/6, 1/6, 1/6, 1/6, 1/12. The result of an
experiment where one of the dice is selected randomly is “3”. We are asked
to bet for A or B. We are unable to draw a conclusion from the observed
result because both dice produce this number with the same probability, the
likelihood ratio is equal to one. The LP tells us – what intuitively is clear –
that for a decision the additional information, i.e. the probabilities of the two
dice to yield values different from “3”, are irrelevant.

Example 108. Likelihood principle, V −A
We come back to an example which we had discussed already in Sect. 6.3.

An experiment investigates τ− → µ−ντ ν̄µ, µ− → e−νµν̄e decays and measures
the slope α̂ of the cosine of the electron direction with respect to the muon
direction in the muon center-of-mass. The parameter α depends on the τ − µ
coupling. Is the τ decay proceeding through V −A or V +A coupling? The LP
implies that the probabilities f−(α), f+(α) of the two hypotheses to produce
values α different from the observed value α̂ do not matter.

When we now allow that the decay proceeds through a mixture r = gV /gA
of V and A interaction, the inference of the ratio r is based solely on the
observed value α̂, i.e. on L(r|α̂).

The LP follows inevitably from the sufficiency principle and the condi-
tioning principle. It goes back to Fisher, has been reformulated and derived
several times [43, 44, 45, 46]. Some of the early promoters (Barnard, Birn-
baum) of the LP later came close to rejecting it or to restrict its applicability.
The reason for the refusal of the LP has probably its origin in its incompat-
ibility with some concepts of the classical statistics. A frequently expressed
argument against the LP is that the confidence intervals of the frequentist
statistics cannot be derived from the likelihood function alone and thus con-
tradict the LP. But this fact merely shows that certain statistical methods
do not use the full information content of a measurement or / and use irrel-
evant information. Another reason lies in problems applying the LP outside
the natural sciences like in medicine or biology. There it is often not possible
to parameterize the empirical models in a stringent way. But uncertainties in
the model prohibit the application of the LP. The exact validity of the model
is a basic requirement for the application of the LP.
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In the literature examples are presented which are pretended to contradict
the LP. These examples are not really convincing and rather strengthen the
LP. Anyway, they often contain quite exotic distributions which are irrelevant
in physics applications and which lead when treated in a frequentist way to
unacceptable results [46].

We abstain from a reproduction of the rather abstract proof of the LP and
limit us to present a simple and transparent illustration of it:

The quantity which contains all the information we have on θ after the
measurement is the p.d.f. of θ,

g(θ) =
L(θ|x)π(θ)∫
L(θ|x)π(θ)dθ .

It is derived from the prior density and the likelihood function. The prior
does not depend on the data, thus the complete information that can be
extracted from the data, and which is relevant for g(θ), must be contained in
the likelihood function.

A direct consequence of the LP is that in the absence of prior informa-
tion, optimal parameter inference has to be based solely upon the likelihood
function. It is then logical to select for the estimate the value of the parame-
ter which maximizes the likelihood function and to choose the error interval
such that the likelihood is constant at the border, i.e. is smaller everywhere
outside than inside. (see Chap. 8). All approaches which are not based on the
likelihood function are inferior to the likelihood method or at best equivalent
to it.

7.1.4 Stopping Rules

An experiment searches for a rare reaction. Just after the first successful
observation at time t the experiment is stopped. Is the resulting rate 1/t sys-
tematically biased? Do we have to consider the stopping rule in the inference
process? The answer is “no” but many people have a different opinion. This is
the reason why we find the expression stopping rule paradox in the literature.

The possibility to stop an experiment without compromising the data anal-
ysis, for instance because a detector failed, no money was left or because the
desired precision has been reached, means a considerable simplification of the
data analysis.

The validity of the independence of the parameter estimation on a large
class of stopping conditions is a direct consequence of the LP because the
likelihood function of a parameter determined from sequentially obtained data
does not depend on stopping rules.

In this context we examine a simple example.
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Example 109. Stopping rule: four decays in a time interval
In two similar experiments the lifetime of the same instable particle is

measured. In experiment A the time interval t is fixed and 4 decays are ob-
served. In experiment B the time t is measured which is required to observe
4 decays. Accidentally the two times coincide. Thus in both experiments 4
decays are registered in the time interval t but in experiment A the number
n of decays is the random variable whereas in experiment B it is the time t.
Do both experiments find the same rate, namely τ = t/4 and the same error
interval? We could think “no” because in the first experiment the fourth decay
has happened earlier than in the second. The likelihood functions for the two
situations are deduced for experiment A from the Poisson distribution and for
experiment B from the exponential time distribution:

LA(θ|n) = Pθt(n)

=
e−θt(θt)4

4!
∼ θ4e−θt ,

LB(θ|t) = θ4e−θt ∼ LA(θ|n) .

The likelihood functions are equal up to an irrelevant factor and consequently
also the results are the same. The stopping rule does not influence the analysis.
The only relevant data are the number of decays and the time interval.

The fact that an arbitrary sequential stopping rule does not change the
expectation value is illustrated with an example given in Fig. 7.1. A rate is de-
termined. The measurement is stopped if a sequence of 3 decays occurs within
a short time interval of only one second. It is probable that the observed rate
is higher than the true one, the estimate is too high in most cases. However, if
we perform many such experiments one after the other, their combination is
equivalent to a single very long experiment where the stopping rule does not
influence the result and from which we can estimate the mean value of the rate
with high precision. Since the log-likelihood of the long experiment is equal
to the sum of the log-likelihoods of the short experiments, the log-likelihoods
of the short experiments obviously represent correctly the measurements. The
stopping rule does not enter into the likelihood function and therefore must
be irrelevant.

Why does the fact that neglecting the stopping rule is justified, contradict
our intuition? Well, most of the sequences indeed lead to too high rates but
when we combine measurements the few long sequences get a higher weight
and they tend to produce lower rates, and the average is correct. On the other
hand, one might argue that the LP ignores the information that in most cases
the true value of the rate is lower than the MLE. This information clearly
matters if we would bet on this property, but it is irrelevant for estimating
the probability density of the parameter value. A bias correction would im-
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Fig. 7.1. An experiment is stopped when 3 observations are registered within a
short time interval (indicated by a box). An arbitrarily long experiment can be
subdivided into many such sub-experiments following the stopping rule.

prove somewhat the not very precise estimate for small sequences but be very
unfavorable for the fewer but more precise long sequences and if we have no
prior information, we cannot know whether our sequence is short or long. (see
also Appendix 13.6).

!!

7.2 Properties of estimators

The content of this Section is resumed in the Appendices 13.2 and 13.2.2.

7.2.1 Consistency

An estimator is consistent if in the large number limit the estimator ap-
proaches the true parameter value θ, limN→∞(θ̂ − θ) = 0. Consistency is
a necessary condition for a useful estimator. The MLE is consistent (see Ap-
pendix 13.2.2).

7.2.2 Transformation Invariance

We require that the estimate θ̂ and the estimate of a function of θ, f̂(θ), satisfy
the relation f̂(θ) = f(θ̂). For example the mean lifetime τ and the decay rate γ
of a particle are related by γ = 1/τ . Therefore their estimates from a sample
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of observations have to be related by γ̂ = 1/τ̂ . If they were different, the
prediction for the number of decays in a given time interval would depend on
the choice of τ̂ or γ̂ used to evaluate the number. Similarly in the computation
of a cross section which depends on different powers of a coupling constant
g, we would get inconsistent results unless ĝn = ĝn. Estimators applied to
constants of nature have to be transformation invariant. The MLE and the
likelihood ratio error intervals satisfy this condition.

Remark that the transformation invariance is not important in most sta-
tistical applications outside the natural sciences. This is why it is not always
considered as necessary.

7.2.3 Accuracy and Bias of Estimators

The bias b of an estimate θ̂ is the deviation of its expectation value from the
true value θ of the parameter:

b = E(θ̂)− θ .

Example 110. Bias of the estimate of a decay parameter
We estimate the decay parameter γ from 5 observed decays of an unstable

particle. We have seen in a previous example that the MLE γ̂ is the inverse of
the average of the individual decay times, γ̂ = 1/t. The mean value t follows
a gamma distribution (see Sect. 3.6.8).

f(t|γ) = (5γ)5

4!
t
4
exp(−5γt) ,

and thus the expectation value E(γ̂) of γ̂ is

E(γ̂) =

∫ ∞

0

γ̂f(t|γ) dt

=

∫ ∞

0

(5γ)54!t
3

exp
(−5γt̄) dt =

5

4
γ .

When in a large number of similar experiments with 5 observed events the
MLE of the decay time is determined then the arithmetic mean differs from
the true value by 25%, the bias of the MLE is b = E(γ̂) − γ = γ/4. For a
single decay the bias is infinite.

The MLE of the decay constant of an exponential decay distribution is
biased while the MLE of the mean lifetime is unbiased.

Similarly, we may define as a measure of accuracy a as the expected value
of the mean squared deviation of the estimate from the true value.
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a = E[(θ̂ − θ)2] . (7.4)

In both cases the estimate is considered as a random variable. An estimate
with the property that a in the large sample limit, N → ∞, is smaller than the
result of any other estimator is called efficient (see Appendix 13.2). Efficient
estimators have to be unbiased. In an exponential decay the MLE τ̂ of the
lifetime is both unbiased and efficient while the MLE of the decay rate γ = 1/τ
is neither unbiased nor efficient.

Biases occur quite frequently at small samples. With increasing number of
observations the bias decreases (see Appendix 13.2.2).

The word bias somehow suggests that something is wrong and thus it
appears quite disturbing at first sight that estimates may be systematically
biased. In fact in most of the conventional statistical literature it is recom-
mended to correct for the bias. One reason given for the correction is the
expectation that averaging many biased results the error would decrease, but
the bias would remain. However, there is no obvious reason for a correction
and a closer study reveals that bias corrections lead rather to difficulties when
we combine different measurements θ̂i in the usual way, weighting the results
by the inverse covariance matrix, or in the one dimensional case according to
(4.6) simply by the inverse error squared.

θ =

∑
θ̂i/δ

2
i∑

1/δ2i
.

Since usually the estimated errors depend on the value of the MLE, the weight-
ing introduces a bias which may partially compensate a bias of the MLE or
it may increase it.

Let us resume our last example and assume that many experiments mea-
sure the decay rate from samples of size N = 5. The estimates γ̂i will vary
from experiment to experiment. Each experiment will apart from the estimate
evaluate the error δi which will turn out to be proportional to γ̂i, namely
δi = γ̂i/

√
5. Averaging without bias correction according to our prescription,

we will obtain E(γ) = 5/6 γ, thus the bias is reduced, while averaging the
bias corrected estimates would lead to the expectation E(γ) = 2/3 γ, a result
which is considerably worse. Anyway, the bias correction is rather unsatisfac-
tory for a small number of observations, for N = 1 the bias is infinite and thus
the corrected value would be zero! When we compute the weighted average
of the unbiased lifetimes based of 5 events the bias of the mean is 0.4τ , i.e.
much larger than the bias of the averaged decay constant.

The accuracy as defined by (7.4) and the bias are important quantities in
frequentist statistics, but are less relevant in Bayesian and likelihood based
statistics. Why is this so?

The frequentist statistics uses properties like a and b of the estimate given
the true parameter value, while we are interested in the properties of the
unknown true value given the measurement. The inversion of probabilities
can lead to contradictions as becomes obvious in our lifetime example. As the



7.2 Properties of estimators 225

decay rate is biased towards high values, one might conclude that the true
value is likely to be located below the estimate. As a consequence the true
value of τ = 1/γ, should be located above its estimate τ̂ , the estimate should
be negatively biased, however it is unbiased.

The requirements of unbiasedness and efficiency violate the requirement
of transformation invariance and for this reason are not relevant for the MLE
of constants of nature. Bias corrections should not be applied to MLEs. For
measurements with low event numbers in addition to the MLE, asymmetric
errors, or even better, the full likelihood function should be presented because
the exact procedure to combine measurements is to add the log-likelihoods.
We will come back to this point in Chap. 8. In the following examples we
discuss some very asymmetric likelihood functions.

Example 111. Bias of the estimate of a Poisson rate with observation zero
We search for a rare decay but we do not observe any. The likelihood for

the mean rate λ is according to the Poisson statistic

L(λ) =
e−λλ0

0!
= e−λ .

When we normalize the likelihood function to obtain the Bayesian p.d.f. with
a uniform prior, we obtain the expectation value 〈λ〉 = 1 while the value λ̂ = 0
corresponds to the maximum of the likelihood function.

(It may seem astonishing, that an expectation value one follows from a
null-measurement. This result is a consequence of the assumption of a uniform
distribution of the prior which is not unreasonable because had we not antic-
ipated the possibility of a decay, we would not have performed the measure-
ment. Since also mean rates different from zero may lead to the observation
zero it is natural that the expectation value of λ is different from zero.)

Now if none of 10 similar experiments would observe a decay, a naive aver-
aging of the expected values alone would again result in a mean of one, a crazy
value. Strictly speaking, the likelihoods of the individual experiments should
be multiplied, or, equivalently the null rate would have to be normalized to
ten times the original time with the Bayesian result 1/10.

We study a further example.

Example 112. Bias of the measurement of the width of a uniform distribution
Let x1, . . . , xN be N observations of a sample following a uniform distri-

bution f(x) = 1/θ with 0 < x < θ. We search for the value of the parameter
θ. Figure 7.2 shows the observations and the likelihood function for N = 12.
The likelihood function is
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Fig. 7.2. Likelihood function of the width of a uniform distribution for 12 observa-
tions.

L = 0 for θ < xmax ,

=
1

θN
for θ ≥ xmax .

Obviously, the likelihood has its maximum when θ coincides with the largest
observation xmax of the sample: θ̂ = xmax. (Here xmax is a sufficient statistic.)
At smaller values of x, the likelihood is zero. The estimate is biased towards
small values. Given a sample size of N , we obtain N + 1 gaps between the
observations and the borders [0, θ]. The average distance of the largest ob-
servation from θ thus is θ/(N + 1). The bias is −θ̂/N . There is no reason
to correct for the bias. We rather prefer to present the biased result with a
one-sided error

θ = xmax
+xmax/N
−0

or, alternatively, the full likelihood function.

A further, more general discussion of the bias problem is given in Appendix
13.6.
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7.3 Further Methods of Parameter Inference

In the previous sections we have discussed in some detail the maximum likeli-
hood method. Another very popular method is the least square method which
we can derive from the maximum likelihood method. A further approach to
estimate unknown parameters of a distribution is the moments method which
we will treat briefly in the following section.

7.3.1 The Moments Method

The moments of a distribution which depends on a parameter θ usually also
depend on θ:

µn(θ) =

∫
xnf(x|θ) dx . (7.5)

The empirical moments

µ̂n =
1

N

∑

i

xni ,

e.g. the sample mean or the mean of squares, which we can extract trivially
for a sample, are estimators of the moments of the distribution. From the
inverse function µ−1 we obtain a consistent estimate of the parameter,

θ̂ = µ−1(µ̂) ,

because according to the law of large numbers we have (see Appendix 13.1)

lim
N→∞

P{|µ̂− µ| > ε} = 0 .

It is clear that any function u(x) for which expected value and variance ex-
ist, and where 〈u〉 is an invertible function of θ, can be used instead of xn.
Therefore the method is somewhat more general than suggested by its name.

If the distribution has several parameters to be estimated, we must use
several moments or expected values, approximate them by empirical averages,
and solve the resulting system of – in general non-linear – equations for the
unknown parameters.

The estimators derived from the lower moments are usually more precise
than those computed from the higher ones. Parameter estimation from the
moments is usually inferior to that of the ML method. Only if the moments
used form a sufficient statistic, the two approaches produce the same result.

The uncertainties of the fitted parameters have to be estimated from the
covariance matrix of the corresponding moments and subsequently by error
propagation or alternatively by a Monte Carlo simulation, generating the mea-
surement several times. Also the bootstrap method which will be introduced in
Chap. 12, can be employed. Sometimes the error calculation is a bit annoying
and reproduces the ML error intervals only in the large sample limit.
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Example 113. Moments method: mean and variance of the normal distribu-
tion

We come back to the example from Sect. 6.5.2 For a sample {x1, . . . , xN}
following the distribution

f(x|µ, σ) = 1

σ
√
2π

exp
[
−(x− µ)2/(2σ2)

]
.

We determine independently the parameters µ and σ. We use the abbre-
viations x for the sample mean and x2 for the mean of the squares and
v2 = (x− x)2 = x2 − x2 for the empirical variance.

The relation between the moment µ1 and µ is simply µ1 = µ, therefore

µ̂ = µ̂1 = x .

In Chap. 3, we have derived the relation (3.15)
〈
v2
〉

= σ2(N − 1)/N
between the expectation of the empirical variance and the variance of the
distribution; inverting it, we get

σ̂ = v

√
N

N − 1
.

The two estimates are uncorrelated. The error of µ̂ is derived from the esti-
mated variance

δµ =
σ̂√
N
,

and the error of σ̂ is determined from the expected variance of v. We omit the
calculation, the result is:

δσ =
σ̂√

2(N − 1)
.

In the special case of the normal distribution, the independent point es-
timates of µ and σ of the moments method are identical to those of the
maximum likelihood method. The errors differ for small samples but coincide
in the limit N → ∞.

The moments method has the advantage of being very simple, especially
in the case of distributions which depend linearly on the parameters – see the
next example below:

Example 114. Moments method: asymmetry of an angular distribution
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Suppose we have to determine from a sample the asymmetry parameter α
of a distribution f(x) = (1 + αx)/2 linear in x = cosβ. The first moment of
the distribution is µ1 = α/3. Thus we can compute the parameter from the
sample mean x =

∑
xi/N :

α̂ = 3 x .

The mean square error from an individual measurement x is proportional to
the variance of the distribution:

var(α̂) = 9 var(x) = 3− α2 . (7.6)

Using instead of α its estimate, we get

δα̂ = 3 δx =

√
3− 9x2

N
.

A likelihood fit, according to the likelihood principle, is more accurate and
reflects much better the result of the experiment which, because of the kine-
matical limits3 |α| < 1, cannot be described very well by symmetric errors;
especially when the sample size is small and the estimate happens to lie near
the boundary. In this case the maximum likelihood method should be applied.

An indication of the relative precision of the estimate moments method as
compared to the MLE is provided by a comparison of the asymptotic efficien-
cies. In the asymptotic limit N → ∞ the variance of the moments estimate
α̂ does not approach the limiting value given by the Cramer–Rao inequality,
see (13.6) in Appendix 13.2, which can be shown to be achieved by the MLE:

var(α̂ML) ≈
α2

N

[
1

2α
ln(

1 + α

1− α
)− 1

]−1

.

A comparison with (7.6) shows that the asymptotic efficiency of the moments
method, defined as

ε =
var(α̂ML)

var(α̂)
,

is unity only for α = 0. It is 0.92 for α = 0.5 and drops to 0.73 for α = 0.8.
(At the boundary, |α| = 1 the Cramer–Rao relation cannot be applied.)

Note that the p.d.f. of our example is a special case of the usual expansion
of an angular distribution into Legendre polynomials Pl(cosβ):

f(x|θ) = (1 +

L∑

l=1

θlPl(x))/2 .

From the orthogonality of the Pl with the usual normalization
∫ 1

−1

Pl(x)Pm(x)dx =
2

2l + 1
δl,m
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Fig. 7.3. Fit of a curve to measurements.

it is easy to see that θl = (2l + 1)〈Pl〉. In the case l = 1, P1 = x, this is the
first moment of the distribution and we reproduce µ1 = α/3.

The moments method can also be used to provide start values for approx-
imations of likelihood estimators which we discussed in Sect. 6.12.

7.3.2 The Least Square Method

A frequently occurring problem is that measured points and error margins
are given through which we want to fit a curve as shown in Fig. 7.3. The
curve y = t(x, λ) be measured at N positions xi, yielding the values yi(xi).
The standard solution of this so-called regression problem is provided by the
least square method which fixes parameters of a given function by minimizing
the sum of the normalized square deviations of the function from measured
points.

Given N measured points xi, yi ± δi, and a function t(x, θ), known up to
some free parameters θ, the latter are determined such that

χ2 =

N∑

i=1

(yi − t(xi, θ))
2

δ2i
(7.7)
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takes its minimal value.
The least square method goes back to Gauss. Historically it has successfully

been applied to astronomical problems and is still the best method we have
to adjust parameters of a curve to measured points if only the variance of
the error distribution is known. It is closely related to the likelihood method
when the errors are normally distributed. Then we can write the p.d.f. of the
measurements in the following way:

f(y1, . . . , yN |θ) ∝ exp


−

N∑

i,j=1

(yi − ti(xi, θ))
2

2δ2i


 ,

and the log-likelihood is

lnL(θ|y) = −1

2

N∑

i,j=1

(yi − ti(xi, θ))
2

δ2i
,

= −1

2
χ2 . (7.8)

Thus minimizing χ2 is equivalent to maximizing the likelihood if the er-
rors are normally distributed, a condition which frequently is at least approxi-
mately satisfied. From (7.8) we conclude that the standard deviation errors of
the parameters in a least square fit correspond to one unit, ∆χ2 = 1, twice the
value 1/2 of the maximum likelihood method. In Sect. 3.6.7 we have seen that
χ2 follows a χ2 distribution of f = N−Z (Z is the number of free parameters)
degrees of freedom, provided the normality of the errors is satisfied. Thus we
expect χ2 to be of the order of f , large values indicate possible problems with
the data or their description. We will investigate this in chapter 10.

That the least square method can lead to false results if the condition of
Gaussian uncertainties is not fulfilled, is illustrated in the following example.

Example 115. Counter example to the least square method: gauging a digital
clock

A digital clock has to be gauged. Fig. 7.4 shows the time channel as a
function of the true time and a least square fit by a straight line. The error
bars in the figure are not error bars in the usual sense but indicate the channel
width. The fit fails to meet the allowed range of the fifth point and therefore
is not compatible with the data. All straight lines which meet all “error bars”
have the same likelihood. One correct solution is indicated in the figure.

We can easily generalize the expression (7.7) to the case of correlated
errors. Then we have
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tim
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Fig. 7.4. χ2−Fit (dashed) of straight line through digital measurements.

χ2 =
N∑

i,j=1

(yi − ti)Vij(yj − tj)

where V, the weight matrix, is the inverse of the covariance matrix. The quan-
tity χ2 is up to a factor two equal to the negative log-likelihood of a multi-
variate normal distribution,

f(y1, . . . , yN |θ) ∝ exp


−1

2

N∑

i,j=1

(yi − ti)Vij(yj − tj)


 ,

see Sect. 6.6.2. Maximizing the likelihood is again equivalent to minimizing
χ2 if the errors are normally distributed.

The sum χ2 is not invariant against a non-linear variable transformation
y′(y). The least square method is also used when the error distribution is
unknown. In this situation we do not dispose of a better method.

Example 116. Least square method: fit of a straight line
We fit the parameters a, b of the straight line

y(x) = ax+ b (7.9)

to a sample of points (xi, yi) with uncertainties δi of the ordinates. We mini-
mize χ2:
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χ2 =
∑

i

(yi − a xi − b)2

δ2i
,

∂χ2

∂a
=
∑

i

(−yi + a xi + b)2xi
δ2i

,

∂χ2

∂b
=
∑

i

(−yi + a xi + b)2

δ2i
.

We set the derivatives to zero and introduce the following abbreviations. (In
parentheses we put the expressions for the special case where all uncertainties
are equal, δi = δ):

x =
∑

i

xi
δ2i
/
∑

i

1

δ2i
(
∑

i

xi/N) ,

y =
∑

i

yi
δ2i
/
∑

i

1

δ2i
(
∑

i

yi/N) ,

x2 =
∑

i

x2i
δ2i
/
∑

i

1

δ2i
(
∑

i

x2i /N) ,

xy =
∑

i

xiyi
δ2i

/
∑

i

1

δ2i
(
∑

i

xiyi/N) .

We obtain
b̂ = y − â x ,

xy − â x2 − b̂ x = 0 ,

and

â =
xy − x y

x2 − x2
,

b̂ =
x2 y − xxy

x2 − x2
.

The problem is simplified when we put the origin of the abscissa at the center
of gravity x:

x′ = x− x ,

â′ =
x′y

x′2
,

b̂′ = y .

Now the equation of the straight line reads
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y = â′(x− x) + b̂′ . (7.10)

We gain an additional advantage, the errors of the estimated parameters are
no longer correlated.

δ2(â′) = 1/
∑

i

x2i
δ2i

,

δ2(b̂′) = 1/
∑

i

1

δ2i
.

We recommend to use always the form (7.10) instead of (7.9).

7.3.3 Linear Regression

If the prediction depends only linearly on the parameters, we can compute
the parameters which minimize χ2 analytically. We put

y(θ) = Aθ + e . (7.11)

Here θ is the P -dimensional parameter vector, e is a N -dimensional error
vector with zero expectation, y = t is the N -dimensional vector of predictions.
For simplification, it is usual to consider y− e as a random vector and call it
again y, of course now with expectation

〈y〉 = Aθ. (7.12)

A, also called the design matrix, is a rectangular matrix of given elements with
P columns and N rows, defining the above mentioned linear mapping from
the P -dimensional parameter space into the N-dimensional sample space.

The straight line fit discussed in Example 116 is a special case of (7.11)
with 〈yi〉 =

∑P=2
j=1 Aijθj = θ1xi + θ2, i = 1, . . . , N , and

A =

(
x1 · · · xN
1 · · · 1

)T

.

As opposed to θ, the xi are known. The dependence of y on them (being here
in the case of the straight line fit also linear) is in general not restricted.

We have to find the minimum in θ of

χ2 = (y − Aθ)TVN(y − Aθ)

where, as usual, VN is the weight matrix of y, the inverse of the covariance
matrix: VN = CN

−1. In the example above it is a diagonal N ×N matrix with
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elements 1/δ2i where δi is the standard deviation of the observed value yi 4.
We derive χ2 with respect to the parameters θ and set the derivatives equal
to zero:

1

2

∂χ2

∂θ

∣∣
θ̂
= 0 = −A

T
VN (y − Aθ̂) . (7.13)

From these so-called normal equations we get the estimate for the P param-
eters θ̂ :

θ̂ = (ATVNA)−1
ATVNy . (7.14)

Note that ATVNA is a symmetric P × P matrix which turns out to be the
inverse of the the error- or covariance matrix Eθ ≡ CP of θ̂. This matrix is
(see Sect. 4.4 relation (4.13)) CP = DCNDT with D the derivative matrix

D = (ATVNA)−1ATVN

derived from (7.14). After some simplifications we obtain:

CP = (ATVNA)−1 .

A feature of the linear model is that the result (7.14) for θ̂ turns out to be
linear in the measurements y. Using it together with (7.12) one easily finds〈
θ̂
〉
= θ, i.e. the estimate is unbiased5. The Gauss–Markov–theorem states

that any estimate obeying these two assumptions will have an error matrix
with larger or equal diagonal elements than the above estimate (also called
BLUE: best linear unbiased estimate).

In general, linear regression provides an optimal solution only for normally
distributed, known errors. Often, however, the latter depend on the parame-
ters.

Therefore, strict linear problems are rare. When the prediction is a non-
linear function of the parameters, the problem can be linearized by a Taylor
expansion as a first rough approximation. By iteration the precision can be
improved.

The importance of non-linear parameter inference by iterative linear re-
gression has decreased considerably. The minimum searching routines which
we find in all computer libraries are more efficient and easier to apply. Some
basic minimum searching approaches are presented in Appendix 13.10.

7.4 Comparison of Estimation Methods

The following table contains an evaluation of the virtues and properties of the
estimation approaches which we have been discussing.

4We keep here the notation χ2, which is strictly justified only in case of Gaussian
error distributions or asymptotically for large N . Only then it obeys a χ2 distribution
with N − P degrees of freedom. For better overview, we write quadratic matrices
with an index characterizing the dimension.

5This is true for any N , not only asymptotically.
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Table 7.1. Virtues and caveats of different methods of parameter estimation.

moments χ2 max. likelihood
simplicity ++ + −
precision − + ++
individual observations + − +
measured points − + −
histograms + + +
upper and lower limits − − +
external constraints − + +
background included + + −
error assignment from error propagation χ2

min + 1 lnLmax − 0.5

requirement full p.d.f. only variance full p.d.f.

Whenever possible, the likelihood method should be applied. It requires a
sample of observations and a p.d.f. in analytic or well defined numerical form
and is very sensitive to wrongly assigned observations in the sample. When the
theoretical description of the data is given in form of a simulated histogram,
the Poisson likelihood adjustment of the simulation to the bin content should
be chosen. When we have to fit a function to measured data points, we use
the least square method. If computing time is a limitation like in some on-line
applications, the moments method lends itself. In many situations all three
methods are equivalent.

All methods are sensitive to spurious background. Especially robust meth-
ods have been invented to solve this problem. An introduction and refer-
ences are given in Appendix 13.16. For completeness we present in Appendix
13.3.1 some frequentist criteria of point and interval estimation which are rel-
evant when parameters of many objects of the same type, for instance particle
tracks, are measured. In the Appendix 13.6 we discuss the virtues of different
point and interval inference approaches. Algorithms for minimum search are
sketched in Appendix 13.10.
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Interval Estimation

8.1 Introduction

In Chap. 4 we had presented a short introduction into error calculus. It was
based on probability theory. In principle, error estimation is an essential part
of statistics and of similar importance as parameter estimation. Measurements
result from point estimation of one or several parameters, measurement errors
from interval1 estimation. These two parts form an ensemble and have to be
defined in an consistent way.

As we have already mentioned, the notation measurement error used by
scientists is somewhat misleading, more precise is the term measurement un-
certainty. In the field of statistics the common term is confidence intervals,
an expression which often is restricted to the specific frequentist intervals as
introduced by Neyman which we sketch in the Appendix.

It is in no way obvious how we ought define error or confidence intervals
and this is why statisticians have very different opinions on this subject. There
are various conventions in different fields of physics, and particle physicists
have not yet adopted a common solution.

Let us start with a wish list which summarizes the properties in the single
parameter case which we would like to realize. The extrapolation to several
parameters is straight forward.

1. Error intervals should contain the wanted true parameter with a fixed
probability.

2. For a given probability, the interval should be as short as possible.
3. The error interval should represent the mean square spread of measure-

ments around the true parameter value. In allusion to the corresponding
probability term we talk about standard deviation errors.

4. The definition has to be consistent, i.e. observations containing identical
information about the parameters should lead to identical intervals. More

1The term interval is not restricted to a single dimension. In n dimensions it
describes a n-dimensional volume.
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precise measurements should have shorter intervals than less precise ones.
The error interval has to contain the point estimate.

5. Error intervals should be invariant under transformation of the estimated
parameter.

6. The computation of the intervals should be free from subjective, e.g. more
or less arbitrary model depending assumptions.

7. A consistent method for the combination of measurements and for error
propagation has to exist.

8. A fixed fraction of error intervals should contain the true parameter value.
9. The approach has to be simple and transparent.

Unfortunately it is absolutely impossible to fulfil simultaneously all these
conditions which partially contradict each other. We will have to set priori-
ties and sometimes we will have to use ad hoc solutions which are justified
only from experience and common sense. Under all circumstances, we will sat-
isfy point 4, i.e. consistency. As far as possible, we will follow the likelihood
principle and derive the interval limits solely from the likelihood function.

It turns out that not always the same procedure is optimum for the in-
terval estimation. For instance, if we measure the size or the weight of an
object, precision is the dominant requirement, i.e. properties denoting the
reliability or reproducibility of the data. Here, a quantity like the variance
corresponding to the mean quadratic deviation is appropriate to describe the
error or uncertainty intervals. Contrary, limits, for instance of the mass of
a hypothetical particle like the Higgs particle, will serve to verify theoretical
predictions. Here the dominant aspect is probability and we talk about con-
fidence or credibility intervals2. Confidence intervals are usually defined such
that they contain a parameter with high probability, e.g. 90% or 95% while
error intervals comprise one standard deviation or something equivalent. The
exact calculation of the standard deviation as well as that of the probability
that a parameter is contained inside an interval require the knowledge of its
p.d.f. which depends not only on the likelihood function but in addition on
the prior density which in most cases is unknown. To introduce a subjective
prior, however, is something which we want to avoid.

The coverage requirement 8 is sometimes relevant when we determine pa-
rameters of similar objects which differ in the value of the parameter of inter-
est. For example, when we infer particle momenta of tracks, then independent
of the true momentum, we want to guarantee that the error interval contains
the true value in a predefined fraction of times. Here it is more important
to retain all momenta with equal probability than to optimize the inference
procedure in the majority of cases. However, when we measure a constant
of nature several times, coverage is not relevant. Instead of contemplating
the fact that, say, two thirds of the measurements contain the true value, we
would rather combine the results. Since coverage does not play a significant

2The term credibility interval is used for Bayesian intervals.
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role in the large majority of the issues of particle physics, we will not discuss
it further, with the exception of a short section in Appendix 13.6.

First we treat situations where the aspect precision dominates. There, as
far as possible, we will base our considerations on the likelihood function only.
Then we will discuss cases where the probability aspect is important. These
will deal mainly with limits on hypothetical quantities, like masses of SUSY
particles. There we will be obliged to include prior densities.

8.2 Error Intervals

The purpose of error intervals is to document the precision of a measurement.
They are indispensable when we combine measurements. The combination of
measurements permits us to improve continuously the precision of a parameter
estimate with increasing number of measurements.

If the prior density is known with sufficient precision, we determine the
probability density of the parameter(s) and subsequently the moments. But
this condition is so rarely fulfilled that we need not discuss it. Normally, we
are left with the likelihood function only.

In what follows we will always assume that the likelihood function is of sim-
ple shape, differentiable, with only one maximum and decreasing continuously
to all sides. This condition is realized in most cases. In the remaining ones
where it is of complicated shape we have to renounce the simple parametriza-
tion by point and interval estimates and present the full likelihood function.

The width of the likelihood function indicates how precise a measurement
is. The standard error limits, as introduced in Sect. 6.5.1 – decrease by a factor
e1/2 from the maximum – rely on the likelihood ratio. These limits have the
positive property of being independent of the parameter metric: This means
in the one-dimensional case that for a parameter λ(θ) which is a monotonic
function of θ that the limits λ1, λ2, θ1, θ2 fulfill the relations λ1 = λ(θ1) and
λ2 = λ(θ2). It does not matter whether we write the likelihood as a function
of θ or of λ.

In large experiments usually there are many different effects which influ-
ence the final result and consequently also many different independent sources
of uncertainty, most of which are of the systematic type. Systematic errors (see
Sect. 4.3) such as calibration uncertainties can only be treated in the Bayesian
formalism. We have to estimate their p.d.f. or at least a mean value and a
standard deviation.

8.2.1 Parabolic Approximation

The error assignment is problematic only for small samples. As is shown in
Appendix 13.3, the likelihood function approaches a Gaussian with increasing
size of the sample. At the same time its width decreases with increasing sample
size, and we can neglect possible variations of the prior density in the region
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where the likelihood is significant. Under this condition we obtain a normally
distributed p.d.f. for the parameter(s) with a standard deviation error interval
given by the e1/2 decrease from the maximum. It includes the parameter with
probability 68.3 % (see Sect. 4.6) The log-likelihood then is parabolic and
the error interval corresponds to the region within which it decreases from
its maximum by a value of 1/2 as we had fixed it already previously. This
situation is certainly realized for the large majority of all measurements which
are published in the Particle Data Book [49].

In the parabolic approximation the MLE and the expectation value coin-
cide, as well as the likelihood ratio error squared and the variance. Thus we
can also derive the standard deviation δθ from the curvature of the likelihood
function at its maximum. For a single parameter we can approximate the
likelihood function by the expression

− lnLpar =
1

2
V (θ − θ̂)2 + const. . (8.1)

Consequently, a change of lnLpar by 1/2 corresponds to the second derivative
of lnL at θ̂:

(δθ)2 = V −1 = −
(
d2 lnL

dθ2

∣∣
θ̂

)−1

.

For several parameters the parabolic approximation can be expressed by

− lnLpar =
1

2

∑

i,j

(θi − θ̂i)Vij(θj − θ̂j) + const. .

We obtain the symmetric weight matrix3 V from the derivatives

Vij = −∂
2 lnL

∂θi∂θj

∣∣
θ̂

and the covariance or error matrix from its inverse C = V−1.
If we are interested only in part of the parameters, we can eliminate the

remaining nuisance parameters simply forgetting about the part of the ma-
trix which contains the corresponding elements. This is a consequence of the
considerations from Sect. 6.13.

In most cases the likelihood function is not known analytically. Usually, we
have a computer program which delivers the likelihood function for arbitrary
values of the parameters. Once we have determined the maximum, we are
able to estimate the second derivative and the weight matrix V computing
the likelihood function at parameter points close to the MLE. To ensure that
the parabolic approximation is valid, we should increase the distance of the
points and check whether the result remains consistent.

In the literature we find frequently statements like “The measurement ex-
cludes the theoretical prediction by four standard deviations.” These kind of

3It is also called Fisher-information.
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statements have to be interpreted with caution. Their validity relies on the
assumption that the log-likelihood is parabolic over a very wide parameter
range. Neglecting tails can lead to completely wrong conclusions. We have
also to remember that for a given number of standard deviations the proba-
bility decreases with the number of dimensions (see Tab. 4.1 in Sect. 4.6).

In the following section we address more problematic situations which usu-
ally occur with small data samples where the asymptotic solutions are not ap-
propriate. Fortunately, they are rather the exception. We keep in mind that a
relatively rough estimate of the error often is sufficient such that approximate
methods in most cases are justified.

8.2.2 General Situation

As above, we again use the likelihood ratio to define the error limits which
now usually are asymmetric. In the one-dimensional case the two errors δ−
and δ+ satisfy

lnL(θ̂)− lnL(θ̂ − δ−) = lnL(θ̂)− lnL(θ̂ + δ+) = 1/2 . (8.2)

If the log-likelihood function deviates considerably from a parabola it makes
sense to supplement the one standard deviation limits ∆ lnL = −1/2 with the
two standard deviation limits ∆ lnL = −2 to provide a better documentation
of the shape of the likelihood function. This complication can be avoided if
we can obtain an approximately parabolic likelihood function by an appro-
priate parameter transformation. In some situations it is useful to document
in addition to the mode of the likelihood function and the asymmetric errors,
if available, also the mean and the standard deviation which are relevant, for
instance, in some cases of error propagation which we will discuss below.

Example 117. Error of a lifetime measurement
To determine the mean lifetime τ of a particle from a sample of observed

decay times, we use the likelihood function

Lτ =

N∏

i=1

1

τ
e−ti/τ =

1

τN
e−Nt/τ . (8.3)

The corresponding likelihood for the decay rate is

Lλ =

N∏

i=1

λe−λti = λNe−Ntλ.

The values of the functions are equal at equivalent values of the two parame-
ters τ and λ, i.e. for λ = 1/τ :
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Lλ(λ) = Lτ (τ) .

Fig. 8.1 shows the two log-likelihoods for a small sample of ten events with
mean value t = 0.5. The lower curves for the parameter τ are strongly asym-
metric. This is also visible in the limits for changes of the log-likelihood by
0.5 or 2 units which are indicated on the right hand cut-outs. The likelihood
with the decay rate as parameter (upper figures) is much more symmetric
than that of the mean life. This means that the decay rate is the more appro-
priate parameter to document the shape of the likelihood function, to average
different measurement and to perform error propagation, see below. On the
other hand, we can of course transform the maximum likelihood estimates and
errors of the two parameters into each other without knowing the likelihood
function itself.

Generally, it does not matter whether we use one or the other parameter
to present the result but for further applications it is always simpler and
more precise to work with approximately symmetric limits. For this reason
usually 1/p (p is the absolute value of the momentum) instead of p is used as
parameter when charged particle trajectories are fitted to the measured hits
in a magnetic spectrometer.

In the general case we satisfy the conditions 4 to 7 of our wish list but the
first three are only approximately valid. We neither can associate an exact
probability content to the intervals nor do the limits correspond to moments
of a p.d.f..

8.3 Error Propagation

In many situations we have to evaluate a quantity which depends on one or
several measurements with individual uncertainties. We thus have a problem
of point estimation and of interval estimation. We look for the parameter
which is best supported by the different measurements and for its uncertainty.
Ideally, we are able to construct the likelihood function. In most cases this is
not necessary and approximate procedures are adequate.

8.3.1 Averaging Measurements

In Chap. 4 we have shown that the mean of measurements with Gaussian
errors δi which are independent of the measurement, is given by the weighted
sum of the individual measurements (4.6) with weights proportional to the
inverse errors squared 1/δ2i . In case the errors are correlated with the mea-
surements which occurs frequently with small event numbers, this procedure
introduces a bias (see Example 56 in Chap. 4) From (6.6) we conclude that
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Fig. 8.1. Likelihood functions for the parameters decay rate (top) and lifetime
(below). The standard deviation limits are shown in the cut-outs on the right hand
side.
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the exact method is to add the log-likelihoods of the individual measurements.
Adding the log-likelihoods is equivalent to combining the raw data as if they
were obtained in a single experiment. There is no loss of information and the
method is not restricted to specific error conditions.

Example 118. Averaging lifetime measurements
N experiments quote lifetimes τ̂i ± δi of the same unstable particle. The

estimates and their errors are computed from the individual measurements tij
of the i-th experiment according to τ̂i =

∑ni

j=1 tij/ni, respectively δi = τ̂i/
√
ni

where ni is the number of observed decays. We can reconstruct the individual
log-likelihood functions and their sum lnL, with n, n =

∑N
i=1 ni, the overall

event number:

lnL(τ) =

N∑

i=1

−ni(ln τ + τ̂i/τ)

= −n ln τ −
∑ niτ̂i

τ

with the maximum at

τ̂ =

∑
niτ̂i
n

and its error
δ =

τ̂√
n
.

The individual measurements are weighted by their event numbers, instead of
weights proportional to 1/δ2i . As the errors are correlated with the measure-
ments, the standard weighted mean (4.6) with weights proportional to 1/δ2i
would be biased. In our specific example the correlation of the errors and the
parameter values is known and we could use weights proportional to (τi/δi)

2.

Example 119. Averaging ratios of Poisson distributed numbers
In absorption measurements and many other situations we are interested

in a parameter which is the ratio of two numbers which follow the Poisson dis-
tribution. Averaging naively these ratios θ̂i = mi/ni using the weighted mean
(4.6) can lead to strongly biased results. Instead we add the log-likelihood
functions which we have derived in Sect. 6.13.3

lnL =
∑

[ni ln(1 + 1/θ)−mi ln(1 + θ)]

= n ln(1 + 1/θ)−m ln(1 + θ)
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with m =
∑
mi and n =

∑
ni. The MLE is θ̂ = m/n and the error limits

have to be computed numerically in the usual way or for not too small n,m
by linear error propagation, δ2θ/θ

2 = 1/n+ 1/m.

In the standard situation where we do not know the full likelihood func-
tion but only the MLE and the error limits we have to be content with an
approximate procedure. If the likelihood functions which have been used to
extract the error limits are parabolic, then the standard weighted mean (4.6)
is exactly equal to the result which we obtain when we add the log-likelihood
functions and extract then the estimate and the error.

Proof: A sum of terms of the form (8.1) can be written in the following
way:

1

2

∑
Vi(θ − θi)

2 =
1

2
Ṽ (θ − θ̃)2 + const. .

Since the right hand side is the most general form of a polynomial of second
order, a comparison of the coefficients of θ2 and θ yields

Ṽ =
∑

Vi ,

Ṽ θ̃ =
∑

Viθi ,

that is just the weighted mean including its error. Consequently, we should
aim at approximately parabolic log-likelihood functions when we present ex-
perimental results. Sometimes this is possible by a suitable choice of the pa-
rameter. For example, we are free to quote either the estimate of the mass or
of the mass squared.

8.3.2 Approximating the Likelihood Function

We also need a method to average statistical data with asymmetric errors, a
method which works without knowing the exact shape of the likelihood func-
tion. To this end we try to reconstruct the log-likelihood functions approxi-
mately, add them, and extract the parameter which maximize the sum and
the likelihood ratio errors. The approximation has to satisfy the constraints
that the derivative at the MLE is zero and the error relation (8.2).

The simplest parametrization uses two different parabola branches

− lnL(θ) =
1

2
(θ − θ̂)2/δ2± (8.4)

with
δ± =

1

2
δ+[1 + sgn(θ − θ̂)] +

1

2
δ−[1− sgn(θ − θ̂)] ,

i.e. the parabolas meet at the maximum and obey ( 8.2). Adding functions of
this type produces again a piecewise parabolic function which fixes the mean
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value and its asymmetric errors. The solution for both the mean value and
the limits is unique.

Parametrizations [50] varying the width σ of a parabola linearly or
quadratically with the parameter are usually superior to the simple two branch
approximation. We set

− lnL(θ) =
1

2

[
(θ − θ̂)/σ(θ)

]2

with
σ(θ) =

2δ+δ−
δ+ + δ−

+
δ+ − δ−
δ+ + δ−

(θ − θ̂) (8.5)

or
(σ(θ))2 = δ+δ− + (δ+ − δ−)(θ − θ̂) , (8.6)

respectively. The log-likelihood function has poles at locations of θ where the
width becomes zero, σ(θ) = 0. Thus our approximations are justified only in
the range of θ which excludes the corresponding parameter values.

In Fig. 8.2 we present four typical examples of asymmetric likelihood func-
tions. The log-likelihood function of the mean life of four exponentially dis-
tributed times is shown in 8.2 a. Fig. 8.2 b is the corresponding log-likelihood
function of the decay time4. Figs. 8.2 c, d have been derived by a parameter
transformation from normally distributed observations where in one case the
new parameter is one over the mean and the square root of the mean5 in the
other case. A method which is optimum for all cases does not exist. All three
approximations fit very well inside the one standard deviation limits. Outside,
the two parametrizations (8.5) and (8.6) are superior to the two-parabola ap-
proximation.

We propose to use one of two parametrizations (8.5, 8.6) but to be careful
if σ(θ) becomes small.

8.3.3 Incompatible Measurements

Before we rely on a mean value computed from the results of different ex-
periments we should make sure that the various input data are statistically
compatible. What we mean with compatible is not obvious at this point. It
will become clearer in Chap. 10, where we discuss significance tests which
lead to the following plausible procedure that has proven to be quite useful in
particle physics [49].

We compute the weighted mean value θ̃ of the N results and form the
sum of the quadratic deviations of the individual measurements from their
average, normalized to their expected errors squared:

4The likelihood function of a Poisson mean has the same shape.
5An example of such a situation is a fit of a particle mass from normally dis-

tributed mass squared observations.
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Fig. 8.2. Asymmetric likelihood functions and parametrizations.

χ2 =
∑

(θi − θ̃)2/δ2i .

The expectation value of this quantity is N − 1 if the deviations are normally
distributed with variances δ2i . If χ2 is sizably (e.g. by 50%) higher than N−1,
then we can suspect that at least one of the experiments has published a wrong
value, or what is more likely, has underestimated the error, for instance when
systematic errors have not been detected. Under the premise that none of
the experiments can be discarded a priori, we scale-up all declared errors by
a common scaling factor S =

√
χ2/(N − 1) and publish this factor together

with mean value and the scaled error. Large scaling factors indicate problems
in one or several experiments.

A similar procedure is applied if the errors are asymmetric even though
the condition of normality then obviously is violated. We form
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χ2 =
∑

(θi − θ̃)2/δ2i± ,

where δi+ and δi−, respectively, are valid for θi < θ̃ and θi > θ̃.

8.3.4 Error Propagation for a Scalar Function of a Single
Parameter

If we have to propagate the MLE and its error limits of a parameter θ to
another parameter θ′ = θ′(θ), we should apply the direct functional relation
which is equivalent to a transformation of the likelihood function:

θ̂
′

= θ′(θ̂) ,

θ̂
′

+ δ′+ = θ′(θ̂ + δ+) ,

θ̂
′ − δ′− = θ′(θ̂ − δ−) .

Here we have assumed that θ′(θ) is monotonically increasing. If it is decreasing,
the arguments of θ′ have to be interchanged.

The errors of the output quantity are asymmetric either because the input
errors are asymmetric or because the functional dependence is non-linear.
For instance an angular measurement α = 870 ± 10 would transform into
sinα = 0.9986+.0008

−.0010.

8.3.5 Error Propagation for a Function of Several Parameters

A difficult problem is the determination of the error of a scalar quantity
θ(µ) which depends on several measured input parameters µ with asymmetric
errors. We have to eliminate nuisance parameters.

If the complete likelihood function lnL(µ) of the input parameters is
available, we derive the error limits from the profile likelihood function of θ
as proposed in Sect. 6.5.1.

The MLE of θ is simply θ̂ = θ(µ̂). The profile likelihood of θ has to fulfil
the relation ∆ lnL(θ) = lnL(θ̂) − lnL(θ) = lnL(µ̂) − lnL(µ). To find the
two values of θ for the given ∆ lnL, we have to find the maximum and the
minimum of θ fulfilling the constraint. The one standard deviation limits are
the two extreme values of θ located on the ∆ lnL(θ) = lnL(µ̂)−lnL(µ) = 1/2
surface6.

There are various numerical methods to compute these limits. Constraint
problems are usually solved with the help of Lagrange multipliers. A simpler
method is the one which has been followed when we discussed constrained fits
(see Sect. 6.10): With an extremum finding program, we minimize

θ(µ) + c [lnL(µ̂)− lnL(µ)− 1/2]2

6Since we assumed likelihood functions with a single maximum, this is a closed
surface, in two dimensions a line of constant height.
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where c is a number which has to be large compared to the absolute change
of θ within the ∆ lnL = 1/2 region. We get µlow and θlow = θ(µlow) and
maximizing

θ(µ)− c [lnL(µ̂)− lnL(µ)− 1/2]
2

we get θup.
If the likelihood functions are not known, the only practical way is to

resort to a Bayesian treatment, i.e. to make assumptions about the p.d.f.s
of the input parameters. In many cases part of the input parameters have
systematic uncertainties. Then, anyway, the p.d.f.s of those parameters have
to be constructed. Once we have established the complete p.d.f. f(µ), we can
also determine the distribution of θ. The analytic parameter transformation
and reduction described in Chap. 3 will fail in most cases and we will adopt the
simple Monte Carlo solution where we generate a sample of events distributed
according to f(µ) and where θ(µ) provides the θ distribution in form of a
histogram and the uncertainty of this parameter. To remain consistent with
our previously adopted definitions we would then interpret this p.d.f. of θ as a
likelihood function and derive from it the MLE θ̂ and and the likelihood ratio
error limits.

We will not discuss the general scheme in more detail but add a few re-
marks related to special situations and discuss two simple examples.

Sum of Many Measurements

If the output parameter θ =
∑
ξi is a sum of “many” input quantities ξi with

variances σ2
i of similar size and their mean values and variances are known,

then due to the central limit theorem we have

θ̂ = 〈θ〉 = Σ〈ξi〉,
δ2θ = σ2

θ ≈ Σσ2
i

independent of the shape of the distributions of the input parameters and the
error of θ is normally distributed. This situation occurs in experiments where
many systematic uncertainties of similar magnitude enter in a measurement.

Product of Many Measurements

If the output parameter θ =
∏
ξi is a product of “many” positive input

quantities ξi with relative uncertainties σi/ξi of similar size then due to the
central limit theorem

〈ln θ〉 = Σ〈ln ξi〉 ,
σln θ ≈

√
Σσ2

ln ξi
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Fig. 8.3. Distribution of the product of 10 variates with mean 1 and standard
deviation 0.2.

independent of the shape of the distributions of the input parameters and the
error of ln θ is normally distributed which means that θ follows a log-normal
distribution (see Sect. 3.6.10). Such a situation may be realized if several mul-
tiplicative efficiencies with similar uncertainties enter into a measurement. The
distribution of θ is fully specified only once we know the quantities 〈ln ξi〉 and
σln ξi . The latter condition will usually not be fulfilled and 〈ln ξi〉 , σln ξi have
to be set by some educated guess. In most cases, however, the approximations
〈θ〉 =∏ 〈ξi〉 and δ2θ/θ

2 =
∑
δ2i /ξ

2
i may be adequate. These two quantities fix

the log-normal distribution from which we can derive the maximum and the
asymmetric errors. If the relative errors are sufficiently small, the log-normal
distribution approaches a normal distribution and we can simply use the stan-
dard linear error propagation with symmetric errors. As always, it is useful to
check approximations by a simulation.

Example 120. Distribution of a product of measurements
We simulate the distribution of θ =

∏
ξi, of 10 measured quantities with

mean equal to 1 and standard deviation of 0.2, all normally distributed. The
result is very different from a Gaussian and is well described by a log-normal
distribution as is shown in Fig. 8.3. The mean is compatible with 〈θ〉 = 1 and
the standard deviation is 0.69, slightly larger than the prediction from simple
error propagation of 0.63. These results remain the same when we replace
the Gaussian errors by uniform ones with the same standard deviation. Thus
details of the distributions of the input parameters are not important.
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Sum of Weighted Poisson Numbers

If θ =
∑
wiηi is a sum of Poisson numbers ηi weighted with wi then we can

apply the simple linear error propagation rule:

θ̂ =
∑

wiηi ,

δ2θ =
∑

w2
i ηi .

The reason for this simple relation is founded on the fact that a sum of
weighted Poisson numbers can be approximated by the Poisson distribution of
the equivalent number of events (see Sect. 3.7.3). A condition for the validity
of this approximation is that the number of equivalent events is large enough
to use symmetric errors. If this number is low we derive the limits from the
Poisson distribution of the equivalent number of events which then will be
asymmetric.

Example 121. Sum of weighted Poisson numbers
Particles are detected in three detectors with efficiencies ε1 = 0.7, ε2 =

0.5, ε3 = 0.9. The observed event counts are n1 = 10, n2 = 12, n3 = 8. A
background contribution is estimated in a separate counting experiment as
b = 9 with a reduction factor of r = 2. The estimate n̂ for total number of
particles which traverse the detectors is n̂ =

∑
ni/εi − b/r = 43. From linear

error propagation we obtain the uncertainty δn = 9. A more precise calculation
based on the Poisson distribution of the equivalent number of events would
yield asymmetric errors, n̂ = 43+10

−8 .

Averaging Correlated Measurements

The following example is a warning that naive linear error propagation may
lead to false results.

Example 122. Average of correlated cross section measurements, Peelle’s per-
tinent puzzle

The results of a cross section measurements is ξ1 with uncertainties due
to the event count, δ10, and to the beam flux. The latter leads to an error δfξ
which is proportional to the cross section ξ. The two contributions are inde-
pendent and thus the estimated error squared in the Gaussian approximation
is δ21 = δ210 + δ2fξ

2
1 . A second measurement ξ2 with different statistics but the

same uncertainty on the flux has an uncertainty δ22 = δ220 + δ2fξ
2
2 . Combining
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the two measurements we have to take into account the correlation of the
errors. In the literature [51] the following covariance matrix is discussed:

C =

(
δ210 + δ2fξ

2
1 δ2fξ1ξ2

δ2fξ1ξ2 δ220 + δ2fξ
2
2

)
.

It can lead to the strange result that the least square estimate ξ̂ of the two
cross sections is located outside the range defined by the individual results
[52] , e.g. ξ̂ < ξ1, ξ2. This anomaly is known as Peelle’s Pertinent Puzzle [53].
Its reason is that the normalization error is proportional to the true cross
section and not to the observed one and thus has to be the same for the two
measurements, i.e. in first approximation proportional to the estimate ξ̂ of the
true cross section. The correct covariance matrix is

C =

(
δ210 + δ2f ξ̂

2 δ2f ξ̂
2

δ2f ξ̂
2 δ220 + δ2f ξ̂

2

)
. (8.7)

Since the best estimate of ξ cannot depend on the common scaling error it is
given by the weighted mean

ξ̂ =
δ−2
10 ξ1 + δ−2

20 ξ2

δ−2
10 + δ−2

20

. (8.8)

The error δ is obtained by the usual linear error propagation,

δ2 =
1

δ−2
10 + δ−2

20

+ δ2f ξ̂
2. (8.9)

Proof: The weighted mean for ξ̂ is defined as the combination

ξ̂ = w1ξ1 + w2ξ2

which, under the condition w1 +w2 = 1, has minimal variance (see Sect. 4.4):

var(ξ̂) = w2
1C11 + w2

2C22 + 2w1w2C12 = min .

Using the correct C (8.7), this can be written as

var(ξ̂) = w2
1δ

2
10 + (1− w1)

2δ220 + δ2f ξ̂
2 .

Setting the derivative with respect to w1 to zero, we get the usual result

w1 =
δ−2
10

δ−2
10 + δ−2

20

, w2 = 1− w1 ,

δ2 = min[var(ξ̂)] =
δ−2
10

(δ−2
10 + δ−2

20 )
2
+

δ−2
20

(δ−2
10 + δ−2

20 )
2
+ δ2f ξ̂

2 ,

proving the above relations (8.8), (8.9).
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8.4 One-sided Confidence Limits

8.4.1 General Case

Frequently, we cannot achieve the precision which is necessary to resolve a
small physical quantity. If we do not obtain a value which is significantly
different from zero, we usually present an upper limit. A typical example is
the measurement of the lifetime of a very short-lived particle which cannot
be resolved by the measurement. The result of such a measurement is then
quoted by a phrase like “The lifetime of the particle is smaller than ... with 90
% confidence.” Upper limits are often quoted for rates of rare reactions if no
reaction has been observed or the observation is compatible with background.
For masses of hypothetical particles postulated by theory but not observed
with the limited energy of present accelerators, experiments provide lower
limits.

In this situation we are interested in probabilities. Thus we have to intro-
duce prior densities or to remain with likelihood ratio limits. The latter are
not very popular. As a standard, we fix the prior to be constant in order to
achieve a uniform procedure allowing to compare and to combine measure-
ments from different experiments. This means that a priori all values of the
parameter are considered as equally likely. As a consequence, the results of
such a procedure depend on the choice of the variable. For instance lower
limits of a mass um and a mass squared um2 , respectively, would not obey the
relation um2 = (um)2. Unfortunately we cannot avoid this unattractive prop-
erty when we want to present probabilities. Knowing that a uniform prior has
been applied, the reader of a publication can interpret the limit as a sensible
parametrization of the experimental result and draw his own conclusions. Of
course, it is also useful to present the likelihood function which fully docu-
ments the result.

To obtain the p.d.f. of the parameter of interest, we just have to normalize
the likelihood function7 to the allowed range of the parameter θ. The proba-
bility P{θ < θ0} computed from this density is the confidence level C for the
upper limit θ0:

C(θ0) =

∫ θo
−∞ L(θ) dθ∫∞
−∞ L(θ) dθ

. (8.10)

Lower limits are computed in an analogous way:

Clow(θ0) =

∫∞
θo
L(θ) dθ

∫∞
−∞ L(θ) dθ

. (8.11)

Here the confidence level C is given and the relations (8.10), (8.11) have
to be solved for θ0.

7In case the likelihood function cannot be normalized, we have to renounce to
produce a p.d.f. and present only the likelihood function.
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8.4.2 Upper Poisson Limits, Simple Case

When, in an experimental search for a certain reaction, we do not find the
corresponding events, we quote an upper limit for its existence. Similarly in
some cases where an experiment records one or two candidate events but
where strong theoretical reasons speak against accepting those as real, it is
common practice not to quote a rate but rather an upper limit. The result is
then expressed in the following way: The rate for the reaction x is less than
λ0 with 90 % confidence.

The upper limit is again obtained as above by integration of the normalized
likelihood function.

For k observed events, we want to determine an upper limit µ0 with C =
90% confidence for the expectation value of the Poisson rate. The normal-
ization integral over the parameter µ of the Poisson distribution P(k|µ) =
e−µ µk/k! is equal to one. Thus we obtain:

C =

∫ µo

0

P(k|µ)dµ

=

∫ µo

0
e−µ µk dµ

k!
. (8.12)

The integral is solved by partial integration,

C = 1−
k∑

i=0

e−µ0 µi
0

i!

= 1−
k∑

i=0

P(i|µ0) .

However, the sum over the Poisson probabilities cannot be solved analytically
for µ0. It has to be solved numerically, or (8.12) is evaluated with the help of
tables of the incomplete gamma function.

A special role plays the case k = 0, e.g. when no event has been observed.
The integral simplifies to:

C = 1− e−µ0 ,

µ0 = − ln(1− C) .

For C = 0.9 this relation is fulfilled for µ0 ≈ 2.3.
Remark that for Poisson limits of rates without background the frequentist

statistics (see Appendix 13.5) and the Bayesian statistics with uniform prior
give the same results. For the following more general situations, this does not
hold anymore.
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Fig. 8.4. Upper limits for poisson rates. The dashed lines are likelihood ratio limits
(decrease by e2).

8.4.3 Poisson Limit for Data with Background

When we find in an experiment events which can be explained by a back-
ground reaction with expected mean number b, we have to modify (8.12)
correspondingly. The expectation value of k is then µ+ b and the confidence
C is

C =

∫ µo

0
P(k|µ+ b)dµ∫∞

0
P(k|µ+ b)dµ

.

Again the integrals can be replaced by sums:

C = 1−
∑k

i=0 P(i|µ0 + b)
∑k

i=0 P(i|b)
.

Example 123. Upper limit for a Poisson rate with background
Expected are two background events and observed are also two events.

Thus the mean signal rate µ is certainly small. We obtain an upper limit µ0

for the signal with 90% confidence by solving numerically the equation

0.9 = 1−
∑2

i=0 P(i|µ0 + 2)
∑2

i=0 P(i|2)
.
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We find µ0 = 3.88. The Bayesian probability that the mean rate µ is larger
than 3.88 is 10%. Fig. 8.4 shows the likelihood functions for the two cases
b = 2 and b = 0 together with the limits. For comparison are also given
the likelihood ratio limits which correspond to a decrease from the maximum
by e−2. (For a normal distribution this would be equivalent to two standard
deviations).

We now investigate the more general case that both the acceptance ε and
the background are not perfectly known, and that the p.d.f.s of the back-
ground and the acceptance fb, fε are given. For a mean Poisson signal µ the
probability to observe k events is

g(k|µ) =
∫

db

∫
dεP(k|εµ+ b)fb(b)fε(ε) = L(µ|k) .

For k observations this is also the likelihood function of µ. According to
our scheme, we obtain the upper limit µ0 by normalization and integration,

C =

∫ µ0

0
L(µ|k)dµ∫∞

0 L(µ|k)dµ

which is solved numerically for µ0.

Example 124. Upper limit for a Poisson rate with uncertainty in background
and acceptance

Observed are 2 events, expected are background events following a normal
distribution N (b|2.0, 0.5) with mean value b0 = 2 and standard deviation
σb = 0.5. The acceptance is assumed to follow also a normal distribution with
mean ε0 = 0.5 and standard deviation σε = 0.1. The likelihood function is

L(µ|2) =
∫

dε

∫
dbP(2|εµ+ b)N (ε|0.5, 0.1)N (b|2.0, 0.5) .

We solve this integral numerically for values of µ in the range of µmin = 0
to µmax = 20, in which the likelihood function is noticeable different from
zero (see Fig. 8.5). Subsequently we determine µ0 such that the fraction C =
0.9 of the normalized likelihood function is located left of µ0. Since negative
values of the normal distributions are unphysical, we cut these distributions
and renormalize them. The computation in our case yields the upper limit
µ0 = 7.7. In the figure we also indicate the e−2 likelihood ratio limit.
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Fig. 8.5. Log-likelihood function for a Poisson signal with uncertainty in back-
ground and acceptance. The arrow indicates the upper 90% limit. Also shown is the
likelihood ratio limit (decrease by e2, dashed lines).

8.4.4 Unphysical Parameter Values

Sometimes the allowed range of a parameter is restricted by physical or math-
ematical boundaries, for instance it may happen that we infer from the exper-
imental data a negative mass. In these circumstances the parameter range will
be cut and the likelihood function will be normalized to the allowed region.
This is illustrated in Fig. 8.6. The integral of the likelihood in the physical
region is one. The shaded area is equal to α. The parameter θ is less than
θmax with confidence C = 1− α.

We have to treat observations which are outside the allowed physical region
with caution and check whether the errors have been estimated correctly and
no systematic uncertainties have been neglected.

8.5 Summary

Measurements are described by the likelihood function.

• The standard likelihood ratio limits are used to represent the precision of
the measurement.
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• If the log-likelihood function is parabolic and the prior can be approxi-
mated by a constant, e.g. the likelihood function is very narrow, the like-
lihood function is proportional to the p.d.f. of the parameter, error limits
represent one standard deviation and a 68.3 % probability interval.

• If the likelihood function is asymmetric, we derive asymmetric errors from
the likelihood ratio. The variance of the measurement or probabilities can
only be derived if the prior is known or if additional assumptions are made.
The likelihood function should be published.

• Nuisance parameters are eliminated by the methods described in Chap. 7,
usually using the profile likelihood.

• Error propagation is performed using the direct functional dependence of
the parameters.

• Confidence intervals, upper and lower limits are computed from the nor-
malized likelihood function, i.e. using a flat prior. These intervals usually
correspond to 90% or 95% probability.

• In many cases it is not possible to assign errors or confidence intervals
to parameters without making assumptions which are not uniquely based
on experimental data. Then the results have to be presented such that
the reader of a publication is able to insert his own assumptions and the
procedure used by the author has to be documented.
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Unfolding

9.1 Introduction

In many experiments the measurements are deformed by limited acceptance,
sensitivity, or resolution of the detectors. Knowing the properties of the de-
tector, we are able to simulate these effects, but is it possible to invert this
process, to reconstruct from a distorted event sample the original distribution
from which the undistorted sample has been drawn?

There is no simple answer to this question. Apart from the unavoidable
statistical uncertainties, the correction of losses is straight forward, but un-
folding the effects caused by the limited resolution is difficult and feasible only
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Fig. 9.1. The folded distributions (left hand) correspond to the very different true
distributions on the right hand side.
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by introducing a priory assumptions about the shape of the original distri-
bution or by grouping the data in rather wide histogram bins. Therefore, we
should ask ourselves, whether unfolding is really a necessary step of our anal-
ysis. If we want to verify a theoretical prediction for a distribution f(x), it
is much easier and more accurate to fold f with the known resolution and to
compare then the smeared prediction and the experimental distributions with
the methods discussed in Chap.10. If a prediction contains interesting param-
eters, also those should be estimated by comparing the smeared distribution
with the observed data. When we study, for instance, a sharp resonance peak
on a slowly varying background, it will be very difficult, if not impossible,
to determine the relevant parameters from an unfolded spectrum while it is
easy to fit them directly to the observed distribution, see Sect. 6.8 and Ref.
[54]. However, in situations where a reliable theoretical description is missing,
or where the measurement is to be compared with a distribution obtained in
another experiment with different experimental conditions, unfolding of the
data cannot be avoided. Examples are the determination of structure func-
tions in deep inelastic scattering or transverse momentum distributions from
the Large Hadron Collider at CERN where an obvious parametrization is
missing./endshaded

The choice of the unfolding procedure depends on the goal one is aim-
ing for. We either can try to optimize the reconstruction of the distribution,
with the typical trade-off between resolution and bias where we have a kind
of probability density estimation (PDE) problem (see Chapt. 12), or we can
treat unfolding as an inference problem where the errors should contain the
unknown result with a reasonable coverage probability1 The former approach
dominates in most applications outside the natural sciences, for instance in
picture unblurring, but is also adopted in particle physics and astronomy. We
will follow both approaches, the first indicates the most likely shape of the
distribution but is not suited as a bases for a quantitative analysis while the
second permits to combine results and to compare them quantitatively to
theoretical predictions. We will consider mainly histograms but sketch also
binning free methods which may become more popular with increased com-
puter power.

General unfolding studies are found in Refs. [55, 56, 57, 58, 59]. Specific
methods are presented in Refs. [60, 61, 62, 63, 64, 65, 66, 67, 68].

9.2 Mathematical Formulation of the Problem

We will consider the situation where the observed sample is produced from a
smeared distribution f ′(x′) which is obtained from the true distribution f(x)
via the folding integral

1Here coverage is important because we do not want to exclude distributions
that are admitted by the data, see also Appendix 13.5.
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f ′(x′) =

∫ ∞

−∞
A(x,x′)f(x)dx . (9.1)

Supposed to be known is the response function A(x,x′) (Other common
names for A are: smearing function, transfer function, resolution function)
which, for a sample element located at x, leads with the probabilityA(x,x′)dx′

to an observation in the interval dx′ at x′. We assume that the response func-
tion also includes the acceptance losses. As a function of x′ it often has a
shape similar to that of a normal distribution centered at x. In any case, the
response function has to be integrable and should approach zero for large val-
ues of |x− x′|. If the response function is a function of the difference x− x′

only, the terms convolution and deconvolution are used, but often the terms
folding and convolution are used synonymously.

To determine f(x) given A(x,x′) and f ′(x′) is called an inverse prob-
lem in numerical mathematics. The solution of (9.1), a Fredholms integral
equation of the first kind, for f(x) is not unique and for this reason qualified
by mathematicians as “ill-posed”. Small variations of the input f ′ may cause
large changes in f . This disease can be cured in principle by grouping the
events in histogram bins. However even then, due to statistical fluctuations,
with not too wide bins the problem persists. This is illustrated in Fig. 9.1
which shows two different original distributions and the corresponding dis-
tributions smeared with a Gaussian N (x − x′|0, 1). In spite of the extremely
different original distributions, the smeared distributions of the samples are
practically indistinguishable. This demonstrates the sizeable information loss
that is caused by the smearing, especially in the case of the distribution with
four peaks. Sharp structures are washed out and can hardly be reconstructed.
Given the observed histogram, it will be almost impossible to exclude one
of the two candidates for the true distribution even with a huge amount of
data. Since narrow structures in the true distribution are smeared over in
the observed distribution and in addition modified by statistical fluctuations,
naive unfolding may produce oscillations as shown in Fig. 9.2. Typically, the
errors of adjacent bins are strongly negatively correlated. Combining them
would reduce the errors considerably and produce a histogram that is closer
to the true distribution which is shown as a curve in Fig. 9.2. A very instuctive
mathematical introduction into unfolding is given in [69].

In the following we will reconstruct the statistical distribution f(x) from
a sample {x′

1, . . . ,x
′
N} drawn from a distribution f ′(x′). Because of the in-

stability of the solution, even when the number of events approaches infinity,
we either have to parametrize the distribution f(x) or / and to introduce
additional constraints. The usual way to parametrize the true distribution is
to represent it by a histogram, the parameters being the bin contents. Then
we are confronted with a well defined standard inference problem to be solved
by a least square (LS) or a maximum likelihood (ML) fit. The fits automat-
ically provide error estimates. In some experiments, unfolding is performed
by the so-called bin-by-bin correction method . This procedure is not recom-



262 9 Unfolding

-1000

-500

0

500

1000

1500

2000

nu
m

be
r o

f e
nt

rie
s

10 x

 

 

Fig. 9.2. Unfolding with a least square fit. The original function is compared to
the histogram obtained by unfolding a corresponding observed distribution.

Fig. 9.3. Relation between different histograms.

mended because its result depends strongly on assumptions on the shape of
the true distribution. Furthermore, reliable error estimates are not possible in
this simple approach.

A histogram can be considered as a superposition of b-splines of lowest
order (to be discussed in Chap. 11). In principle, higher order spline functions
or other smooth parametrizations could be considered which usually come
closer to the true distribution, but histograms are especially convenient for
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a comparison with theoretical predictions or other experiments. Such a com-
parison is more difficult with higher order splines which suffer also from the
difficulty to resolve narrow peaks.

We will call the original distribution, from which the undistorted sam-
ple is drawn, the true distribution and what we want to reconstruct is the
corresponding true histogram. The true histogram bins contain the expected
number of events that enter the detector and is represented by the vector θ,
θ1, ..., θK . The folded (smeared, observed, measured) distribution describes the
observed sample consisting of the smeared events. If not stated differently,
we will assume that the entries d1, ..., dN in a bin of an observed histogram
d follow Poisson distributions with expected numbers t1, ..., tN . The physi-
cal sequence in which the content of the different histograms is produced is
sketched in Fig. 9.3, left hand path. For the statistical treatment we follow
the equivalent right hand path, where multinomial statistical errors need not
be handled. The relation 9.1 reads now

E(di) = ti =

K∑

j=1

Aijθj , i = 1, . . . , N (9.2)

where E(di) is the expected value of the observation di. The matrix element

Aij =

∫
bini f

′(x′)dx′∫
binj

f(x)dx
(9.3)

is the probability to find an event in bin i of the observed histogram which
was produced in bin j of the true histogram. Usually, the number K of bins
of the true histogram is chosen smaller than the number N of bins in the
observed histogram to constrain the problem. It is necessary that all events
contained in the N bins of the observed histogram are also contained in the
true histogram. This means that the interval covered by x is usually larger
than the interval occupied by x′. The response matrix A is normally obtained
by a Monte Carlo simulation which is based on the known properties of the
detector. We will come back to it later. To simplify the notation, we consider
one-dimensional histograms. Higher dimensions can be treated in a similar
way.

9.2.1 The Least Square Approach

For a square matrix A, K = N the solution is simply obtained by matrix
inversion, θ̂ = A−1d. The error matrix Cθ = A−1Cd(A

−1)T is derived by error
propagation. We omit the calculation. The error matrix Cd is usually diagonal
and in the limit where there is no smearing, A is also diagonal and describes
only acceptance losses.

The choice K = N is not recommended. For K ≤ N the least square
function χ2

stat is given by the following relation:
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χ2
stat =

N∑

i=1

(ti − di)
2

ti
. (9.4)

In some rare cases the numbers di are not described by a simple Poisson
distribution. Then we have to insert the weight matrix2 where V = C

−1
d is the

inverse of its error matrix Cd:

χ2
stat =

N∑

i,k=1

[(ti − di)Vik(tk − dk)] . (9.5)

.
If the denominator of (9.4) or the weight matrix in (9.5) are independent

of the parameters θi, the least square minimum can be evaluated by a simple
matrix calculus (see Sect. 7.3.3). This is the case, for example, if the data follow
a Poisson distribution where the statistics is high enough to approximate the
denominator of (9.4) by di.

The LS solution in form of a linear relation was given in Sect. 7.3.3, Rela-
tion (7.14). With the transformations

d ⇒ b = ATVd , (9.6)

A ⇒ Q = ATVA (9.7)

we get for the expected value of b

E(b) = Qθ (9.8)

with the LS solution
θ̂ = Q

−1b (9.9)

and the error matrix Cθ of the solution

Eθ = Q
−1 .

We have simply replaced A by Q and d by b. Both quantities are then
known. The matrix Q is quadratic and positive definite and therefore invert-
ible.

9.2.2 The Maximum Likelihood Approach

Whenever possible, we should apply a maximum likelihood fit instead of a
LS fit. With Poisson distributed event numbers di with expected values ti =∑

j Aijθj the probability to obtain di is

P(di) =
e−titdi

i

di!

2In the literature the weight matrix is frequently denoted by V
−1.
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and the corresponding log-likelihood is up to an irrelevant constant

lnLstat =
∑

i

[di ln ti − ti] .

Minimizing χ2
stat or maximizing lnLstat we obtain an estimate θ̂ of the

true histogram. Contrary to the LS approach, the MLE usually does not pro-
duce negative values for θi and does not require to approximate the Poisson
distribution by a normal distribution. This is some progress but the main
problem, the strong fluctuations between neighboring bins, remains. Orthog-
onalization is more difficult than in the LS formalism, but is also feasible. The
χ2 expression can more easily be adjusted to more complicated situations, for
instance when background has to be taken care of.

So far, the solution is straight forward, but as mentioned above, the so-
lution of a specific problem may look for instance as the histogram with the
oscillating, strongly correlated bins shown in Fig. 9.2.

In spite of the large fluctuations, the LS and ML solutions are suited for a
comparison with theoretical models if the complete error matrix is taken into
account and if the event numbers are large enough to justify a linear error
treatment. For a visual comparison with other data or theories the oscillations
are disturbing. For this reason the regularization methods have been developed
which we will discuss below. First we will investigate the mathematical origin
of the oscillations.

9.2.3 Eigenvector Decomposition of the Least Square Matrix

To understand better the origin of the fluctuations of the LS solution (9.9),
we factorize the matrix Q in the following way: The symmetric matrix Q =
UΛU−1 = UΛUT is composed of the diagonal matrix Λ which contains the
eigenvalues of Q and the orthogonal matrix U whose columns consist of the
eigenvectors ui of Q:

Q =
(
u1 u2 . . uK

)




λ1
λ2 0

.
0 .

λK



(
u1 u2 . . uK

)T
,

Qui = λiui = vi , i = 1, ...,K . (9.10)

The LS solution θ can be split into the orthogonal eigenvectors ui, θ =
Σiciui. The LS fit determines the uncorrelated coefficients ci which replace
the parameter vector θ. The observed vector b is then given by

b = Qθ =

K∑

i=1

ciλiui =

K∑

i=1

civi . (9.11)
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histogram.

Multiplying from the right hand side with the unit vector ui, we obtain the
coefficient ci:

ci = b · ui/λi; . (9.12)

In Fig. 9.4 we present an example of a set of eigenvectors. A contribution ui

to the true histogram as shown on the left hand side will produce an observed
histogram vi of the same shape but reduced by the factor λi as shown on the
right hand side. The eigenvalues decrease from top to bottom. In most real
applications the eigenvalues decrease faster than in the sketched example.
Strongly oscillating components of the true histogram correspond to small
eigenvalues. They are hardly visible in the observed data, and in turn, small
contributions vi to the observed data caused by statistical fluctuations can lead
to rather large oscillating contributions ui = vi/λi to the unfolded histogram
if the eigenvalues are small. Eigenvector contributions with eigenvalues below
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Fig. 9.5. Implicit regularization. Left hand: true (shadowed) and smeared his-
tograms. Right hand: true (shadowed) and unfolded histograms without explicit
regularization.

a certain value cannot be reconstructed, because they cannot be distinguished
from noise in the observed histogram.

The eigenvector decomposition is equivalent to the singular value decompo-
sition (SVD). In most mathematical software libraries SVD software is avail-
able. To perform the eigenvector decomposition, we do not need the SVD and
require only routines that determine the eigenvalues and eigenvectors of the
matrix Q.

9.3 Implicit Regularization by Binning and
Documentation of the Experimental Result

As we cannot resolve high frequencies, it does not make sense to choose a
binning of the true histogram which is much narrower than our resolution.
With reasonably wide bins we do not need to apply further smoothing proce-
dures and reduce unfolding to a standard parameter estimation problem. In
this way we obtain an unbiased solution that can be compared to predictions
and to results of other experiments. We call the smoothing by binning implicit
regularization.

To illustrate the various regularization methods we will apply them to
a simple example: For the true distribution we choose a superposition of
two Gaussians and a uniform distribution: 25000 events N (x|0.3; 0.1.), 15000
events N (x|0.75; 0.08), 10000 events uniform. To demonstrate the problems,
we choose a relatively large Gaussian smearing with N (x− x′|0; 0.07).
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The unfolded histogram comprises 10 bins and the observed one 40 bins.
In Fig. 9.5 the corresponding original and smeared histograms from the Monte
Carlo simulation are shown together with the unfolding result and the theoret-
ical distribution. (The distributions and the resolutions corresponding to Fig.
9.5 and the oscillating Fig. 9.2 are the same but the number of bins and the
number of events are different.) The errors shown in the unfolded histogram
exaggerate the uncertainties. They are rather large due to the strong negative
correlations between neighboring bins. The result is useful only together with
the full error matrix.

To document the result of an experiment, it is mandatory to present it in
a way that it can be compared to theoretical predictions. Therefore, unfolding
results should always include the implicitly regularized data together with a
full error matrix.

9.4 Explicit Regularization of the Solution

To visualize the shape of the true distribution, a small number of bins as
required in implicit regularization is not convenient. From the above discus-
sions it follows that then it is necessary to suppress insignificant oscillations
in the unfolded histogram by an explicit regularization to be distinguished
from the implicit regularization by binning. Methods for solving our problem
are offered by numerical mathematics. The smoothing procedure introduces
unavoidably some bias.

In particle physics the data are distorted by resolution effects that can be
expressed by point spread functions like Gaussians. This means that without
regularization the number of events in neighboring bins of the unfolded his-
togram are negatively correlated. More precisely, the fitted numbers θ̂j , θ̂j′ in
two true bins j, j′ are negatively correlated if the events of the bins j and
j′ have sizable probabilities Aij , Aij′ to fall into the same observed bin i.
Smoothing therefore should take these specific correlations into account and
tend to suppress differences between θ̂j , θ̂j′ . A global smoothing, favoring a
uniform distribution, is not optimal.

The main explicit regularization methods that are useful in particle
physics, can be classified roughly as follows:

1. The unfolding is performed iteratively, starting from a smooth zeroth ap-
proximation of the true distribution. The iteration is stopped, once in-
significant oscillations appear.

2. The true histogram is fitted with a positive penalty term subtracted from
the statistical likelihood function or added to the χ2 expression. This term
is constructed in such a way that smooth functions are favored.

3. Eigenvectors with small eigenvalues are suppressed.
4. Standard smoothing programs are applied to the unfolded histogram.
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Of course, the size of the regularization must be limited such that the
unfolded function is still compatible with the observation. This condition is
used to fix the regularization strength.

We will limit ourselves to the methods 1 to 3. The accuracy of method 4
is hard to estimate.

9.4.1 Fixing the Regularization Strength

In methods 1 to 3 the degree of regularization can be controlled by a free
parameter. When we apply these explicit regularization procedures, we modify
the raw LS and ML fit solutions. However the modifications have to conserve
the compatibility of the unfolded solution with the data which we usually
measure with a χ2 statistic.

The χ2 surface of the unregularized fit near its minimum χ2
0 is rather

shallow and a smooth solution can be found with only a small increase ∆χ2
c

of χ2. In the approximation where χ2 follows a χ2 distribution, the difference
∆χ2 = χ2−χ2

0 defines an N dimensional error interval around the fitted point
in the K dimensional parameter space. We convert it to a p-value

p =

∫ ∞

∆χ2

uK(z)dz (9.13)

where uK is the χ2 distribution for K degrees of freedom. Fixing p fixes the
regularization strength. Strictly speaking, p is a proper p-value only in the
limit where the test quantity χ2 is described by a χ2 distribution. A large
value of p means little regularization. Remark that for the regularization the
value of χ2

0 of the fit is irrelevant, relevant is only its change due to the
regularization. (A large value χ2

0 could indicate that something is wrong with
the model.) Experience shows that the value of a cut pc can be chosen above
90%.

In the literature different methods are proposed to fix the regularization
strength, i.e. from the kink of the so-called L-curve or vanishing global corre-
lation [59]. However, from a physicist’s point of view, the essential criterion
is the compatibility of the result with the data as measured with the p-value
derived from the χ2 statistic. The choice of the regularization strength, e.g.
the value of pc depends on the applied regularization method.

9.4.2 Iterative Unfolding

Iterative unfolding with the Richardson-Lucy (R-L) method [70, 71, 72, 73,
74, 60, 75] is especially simple, reliable, independent of the dimension of the
histogram and independent of the underlying metric. It is the authors’ favorite
method and will be described in some detail.

Iterative unfolding with the R-L algorithm has initially been used for pic-
ture restoration. It corresponds to a gradual unfolding. Starting with a first
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Fig. 9.6. Iterative deconvolution.

guess of the smooth true distribution, this distribution is modified in steps
such that the difference between its smeared version and the observed distri-
bution is reduced. With increasing number of steps, the iterative procedure
approaches the true histogram but finally develops oscillations. These are
avoided by stopping the iterations as soon as the unfolded distribution, when
folded again, is compatible with the observed data within the uncertainties.
We will discuss the details below. The R-L algorithm originally was derived
using Bayesian arguments [70] but it can also be interpreted in a purely math-
ematical way [60, 75]. It became finally popular in particle physics in the
ninetieth [63]. In Ref. [62] it was adapted to unbinned unfolding. In [68] the
R-L method is tested with many examples and a prescription on how to choose
the number of iterations is developed.

The idea behind the iteration algorithm is the following: Starting with a
preliminary guess θ̂(0)of θ, the corresponding prediction for the observed dis-
tribution d(0) is computed. It is compared to d and for a bin i the ratio di/d

(0)
i

is formed which ideally should be equal to one. To improve the agreement, all
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Fig. 9.7. Iterative unfolding results for different numbers of iterations.

true components are scaled proportional to their contribution Aij θ̂
(0)
j to d(0)i .

This procedure when iterated corresponds to the following steps:
The prediction d(k) of the iteration k is obtained in a folding step from the

true vector θ̂(k):

d
(k)
i =

K∑

j=1

Aij θ̂
(k)
j . (9.14)
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In an unfolding step, the components Aij θ̂
(k)
j are scaled with di/d

(k)
i and

added up into the bin j of the true distribution from which they originated:

θ̂
(k+1)
j =

N∑

i=1

Aij θ̂
(k)
j

di

d
(k)
i

/αj . (9.15)

Dividing by the acceptance αj =
∑

iAij corrects for acceptance losses. A
simple example for the first iteration is sketched in Fig. 9.6. The start distri-
bution in 9.6a for the true histogram has been chosen as uniform. It consists
of three bins. The application of the response matrix produces the histogram
9.6b, a first prediction for the data. The different shadings indicate the origin
of the entries in the five observed bins. Now the distribution 9.6b is compared
to the observed distribution 9.6c. The agreement is bad, for instance the sec-
ond observed bin differs from the prediction by a factor two. All contributions
of the prediction to this bin are now multiplied by two. Finally the scaled
contributions are summed up according to their origin to a new true distribu-
tion 9.6d. If there would be only losses, but no migration of entries, this first
iteration would lead to a complete correction.

The result of the iteration converges to the maximum likelihood solution
[73, 60] for Poisson distributed bin entries. Since we start with a smooth initial
distribution, the artifacts of the unregularized ML estimate (MLE) occur only
after a certain number of iterations. Two true bins j, j′ with similar values of
the migration probabilities Aij and Aij′ will be fitted to strongly negatively
correlated values θ̂j and θ̂j′ . The corresponding oscillations are suppressed in
the iterative method because according to (9.15) the unfolding step modifies
their values in a similar way.

The regularization is performed simply by interrupting the iteration se-
quence. As explained above, the number of applied iterations should be based
on a p-value criterion which measures the compatibility of the regularized
unfolding solution with the MLE. To obtain the p-value, first the number of
iterations is chosen large enough to approach the asymptotic limit with the
oscillating ML solution. Folding the result and comparing it to the observed
histogram, we obtain χ2

0 of the fit. Then we stop the iteration at χ2 = χ2
0+

∆χ2(pc). A cut at the p-value pc = 0.95 usually leads to good results. A more
sophisticated and very reliable choice is to choose twice the number of iter-
ations that leads to a p-value of 0.5 [68]. This is shown for our example in
Fig. 9.8. The left hand graph shows ∆χ2 and the corresponding p-value (dot-
ted curve) as a function of the number of iterations. (The discrete points are
connected by lines.) The value of χ2 initially drops quickly and then slowly
reaches the asymptotic limit of 22.0 for 20 degrees of freedom. To measure the
quality of the unfolding result, the quantity X2 =

∑
i(θi− θ̂i)2/θ is computed

(only available for Monte Carlo experiments) as a function of the number of
iterations (right hand graph). The curve shows a shallow minimum at around
14 iterations. In our case the prediction from the p-value curve is 2×7.5 = 15,
very close to the location of the minimum of X2 = 33.
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Fig. 9.7 shows unfolding results for different numbers of iterations. The
solution selected by the proposed cut is the one with 16 iterations. The ML
solution obtained in the limit of an infinite number of iterations is strongly
oscillating.

9.4.3 Suppression of Small Eigenvalue Contributions to the LS
Solution

The eigenvector decomposition of the LS solution indicated that the main
problem is due to the contribution of the low eigenvalue eigenvectors. There-
fore, we can suppress the unwanted oscillations by eliminating these eigenvec-
tors. This method is known under the name truncated SVD (TSVD). As the
eigenvectors are orthogonal and uncorrelated, eliminating eigenvectors does
not affect the remaining part of the LS solution. The SVD and the regular-
ization by TSVD is treated in great detail in a book by C. Hansen [69].

The sequence of operations is the following: Starting from the response
matrix A and the observed histogram d, we determin the weight matrix V

(which for Poisson errors is diagonal, Vij = δijdi), the vector b and the LS
matrix Q according to (9.6) and (9.7). The sorted eigenvalues and the eigen-
vectors of Q are computed. With (9.12) they yield the coefficients ci. Finally
the unfolded histogram is given by θ =

∑k
i=1 ciui. The eigenvectors i > k are

discarded.
Fig. 9.9 contains results from a eigenvector decomposition of the same ex-

ample that has been studied with the iterative approach. The ordered eigen-
values extend over seven decades. With the eigenvalues also the significance
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s = ci/δci of the fitted coefficients decreases and is compatible with zero for
eigenvectors above 9. The agreement of the unfolded histograms with the his-
togram obtained with an ideal detector is satisfactory for 9 to 11 contributing
eigenvectors. The test quantity X2 = 143 is lowest for 11 contributing vec-
tors, χ2 is 29.5 and in agreement with 29 degrees of freedom. The p-value as
defined above is 95%. The 12th eigenvector introduces sizable fluctuations.
The observed distribution with 40 bins can be described by Neff = 10 or 11
parameters.

It has been proposed [69] to damp the contributions of small eigenvectors
according to a Wiener filter: θ = ΣK

i=1φiciui, φi = λ2i /(λ
2
i + λ20) instead of

cutting them abruptly. For large eigenvalues λi >> λ0 the filter factor tends
to one and for small eigenvalues, λi << λ0 it tends to zero. In our example a
smooth damping does not improve the result. The filtering introduces a bias,
it favors a small number of unfolded events. However the bias is negligible
in most applications. A smooth damping is equivalent to the Tikhonov reg-
ularization [69] which penalizes a large norm ||θ||22 of the solution, see next
section.

The regularization by suppression of low eigenvector contributions is based
solely on the information contained in the matrices A and V. The shape of
the observed histogram does not enter. A contribution belonging to a small
eigenvalue can become important if it is strongly represented in the true his-
togram, i.e. if the coefficient ci in (9.10) is large. It may be better to eliminate
contributions with insignificant coefficients instead of cutting the eigenvalue
sequence. This approach is known under the name selective SVD (SSVD).

Truncation or suppression of small eigenvalue contributions in the eigen-
vector decomposition is equivalent to the corresponding suppression in the
framework of SVD.

9.4.4 Adding a Penalty Function

We can suppress oscillations in the unfolded histogram by adding a positive
penalty function S that is large for solutions with strong bin-to-bin variations.
We subtract it from the purely statistical log-likelihood Lstat:

lnL(θ) = lnLstat(θ)− S(θ) (9.16)

=
∑

i


d̂i ln(

∑

j

Aijθj)−
∑

j

Aijθj


 − S(θ) .

The estimates of the parameters θj are obtained in the usual way.
For large event numbers we may use instead of the maximum likelihood

adjustment a LS fit:

χ2(θ) = χ2
stat(θ) + S(θ) (9.17)

=
N∑

i=1

(
∑K

j=1 Aijθj − d̂i)
2

∑K
j=1 Aijθj

+ S(θ) . (9.18)
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Fig. 9.9. Eigenvector decomposition and truncation: Eigenvalues of the eigenvectors
(top left), significance of the eigenvector coefficients (top right), unfolded histogram
composed of 9 to 12 eigenvectors.



276 9 Unfolding

The first term in (9.16) measures the goodness-of-fit, while the second
term measures the smoothness and similarly in (9.17). A reasonable balance
between the two terms has to be found. It is controlled by a regularization
parameter r which is part of the penalty function S.

Remark: The regularization with a penalty function is independent of the
response function. It smoothens the histogram even when there is no smearing!

Norm Regularization

As proposed by Tikhonov, a penalty is applied to the norm ||θ||22 of the solu-
tion:

S(x) = r

K∑

i=1

θ2i . (9.19)

The norm penalty favors a uniform distribution and slightly biases the total
number of entries in the unfolded distribution to small values.

Curvature Regularization

An often applied regularization function [77] S is,

S(x) = r

(
d2f

dx2

)2

. (9.20)

It increases with the curvature of f . It penalizes strong fluctuations between
adjacent bins and favors a linear variation of the unfolded distribution. The
regularization constant r determines the power of the regularization.

For a histogram of N bins with constant bin width we approximate (9.20)
by

S = r
K−1∑

i=2

(2θi − θi−1 − θi+1)
2 . (9.21)

This function becomes zero for a linear distribution. It is not difficult to adapt
(9.21) to variable bin widths.

The terms of the sum (9.21) in general become large for strongly pop-
ulated bins. In less populated regions of the histogram, where the relative
statistical fluctuations are large, the regularization by (9.21) will not be very
effective. Therefore the terms should be weighted according to their statistical
significance:

S = r

K−1∑

i=2

(2θi − θi−1 − θi+1)
2

δ2i
. (9.22)

Here δ2i is the expected variance of the difference in the numerator. For Poisson
distributed bin contents, it is
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Fig. 9.10. Comparison of different unfolding methods. The true histogram is shaded.

δ2i = 4θi + θi−1 + θi+1 .

Usually unfolding also corrects for acceptance losses. Then this error estimate
has to be modified. We leave the trivial calculation to the reader.

Fig. 9.10 shows the result obtained when we apply the procedure to our
example. The result is very similar to that obtained by truncation of the
eigenfunction sequence.

For higher dimensional histograms a regularization term can be introduced
analogously by penalizing the deviation of each bin content from the mean
value of its neighbors as in (9.21). However, then the distances of neighboring
bins from the central bin are not all equal and depend critically on the bin
sizes in all dimensions.

In Fig. 9.10 c the unfolded two-peak distribution with curvature penalty
is compared to the results of other unfolding methods. The values of χ2 and
of the test quantity X2 are indicated.

There may be good reasons to use regularization functions other then
(9.21), e.g. when it is known that the function which we try to reconstruct
is strongly non linear and when its shape is approximately known. Instead of
suppressing the curvature, we may penalize the deviation from the expected
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shape of the histogram. We accomplished this with the transformation

θ = θ0 + τ ,

where θ0 refers to the expectation and the new parameter vector τ is fitted
and regularized. For example, for nearly exponential distributions, like many
distributions of the transverse momentum squared in particle physics, it is
reasonable to penalize deviations from linearity of the logarithm of θ.

Entropy Regularization [78, 61, 79]

We borough the entropy concept from thermodynamics, where the entropy S
measures the randomness of a state and the maximum of S corresponds to the
equilibrium state which is the state with the highest probability. It has also
been introduced into information theory and into Bayesian statistics to fix
prior probabilities. The entropy S of a discrete distribution with probabilities
pi , i = 1, . . . ,K is defined through the relation:

S = −
K∑

i=1

pi ln pi .

For our unfolding problem we consider a histogram to be constructed with
K bins containing θ1, . . . , θK events. The probability for one of the n events to
fall into true bin i is given by θi/n. Therefore the entropy of the distribution
is

S = −
K∑

i=1

θi
n
ln
θi
n
.

The maximum of the entropy corresponds to an uniform population of the
bins, i.e. θi = const. = n/K, and equals Smax = lnK, while its minimum
Smin = 0 is found for the one-point distribution (all events in the same bin)
θi = nδi,j. Thus adding a term proportional to −S can be used to smoothen
a distribution. We minimize

χ2 = χ2
stat − rS ,

or equivalently maximize

lnL = lnLstat + rS

where r determines again the strength of the regularization. For further details
see [78, 61, 79]. The unfolded histogram for the two-peak distribution is shown
in Fig. 9.10 d.

A draw-back of a regularization based on the entropy or the norm is that
distant bins are related, while smearing is a local effect. The two methods are
suited for smoothing a rather uniform background. Entropy regularization is
popular in astronomy.
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9.5 The Response Matrix and Binning

Until now we have assumed that we know exactly the probability Aij for
observing elements in bin i which originally were produced in bin j. This is,
at least in principle, impossible, as we have to average the true distribution
f(x) – which we do not know – over the respective bin interval

Aij =

∫
x′−bin_i

∫
x−bin_j A(x, x

′)f(x)dxdx′
∫
Bin_j f(x)dx

. (9.23)

Therefore A depends on f . Only if f can be approximated by constants in all
bins the dependence is negligible. This condition is satisfied if the width of the
response function, i.e. the smearing, is large compared to the bin width in the
true histogram. On the other hand, small bins mean strong oscillations and
correlations between neighboring bins. They suggest a measurement resolution
which does not really exist. We have two contradicting conditions: To be
independent of the shape of f(x) we would like to choose small bins, to avoid
strong correlations we want wide bins. A way out in situations where the
statistics is relatively large, is to unfold with narrow bins and to combine bins
after the unfolding. With little statistics this procedure is difficult to follow
because then the errors are asymmetric and the linear error propagation used
in combining bins is a bad approximation. Eventually, the dependence of the
result on the assumed shape of the Monte Carlo input distribution has to be
investigated and documented by a systematic error. Iteration of the Monte
Carlo input distribution may improve the precision of the response matrix
but because of the smoothing the iteration will not converge to the correct
matrix.

Remark: The unfolding produces wrong results, if not all values of x′ which
are used as input in the unfolding process are covered by x values of the
considered true distribution. A safe procedure is not to restrict x at all, even
if some regions suffer from low statistics and thus will be reconstructed with
marginal precision. We can eliminate these regions after the unfolding step.

In practice, the response matrix is obtained (9.23) by a Monte Carlo sim-
ulation and the statistical fluctuations of the simulation have eventually to
be taken into account. This leads to multinomial errors of the transfer matrix
elements. The correct treatment of these errors is rather involved. Thus, if
possible, one should generate a number of simulated observations which is
much larger than the experimental sample such that the fluctuations can be
neglected. A rough estimate shows that for a factor of ten more simulated
observations the contribution of the simulation to the statistical error of the
result is only about 5% and then certainly tolerable. When this condition
cannot be fulfilled, bootstrap methods (see Chap. 11) can be used to estimate
the uncertainties caused by the statistical fluctuations of A. Apart from the
statistical error of the response matrix, the precision of the reconstruction of
f depends on the size of the experimental sample and on the accuracy with
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Fig. 9.11. Effect of deconvolution with a resolution wrong by 10%.

which we know the resolution. In nuclear and particle physics the sample size
is often the limiting factor, in other fields, like optics, the difficulties frequently
are related to a limited knowledge of the resolution of the measurement.

Fig. 9.11 shows the effect of using a wrong resolution function. The distri-
bution in the middle is produced from that on the left hand side by convolution
with a Gaussian with width σf . Unfolding produces the distribution on the
right hand side, where the assumed width σ′

f was taken too low by 10%. For
a relative error δ,

δ =

∣∣∣σf − σ′
f

∣∣∣
σf

,

we obtain an artificial broadening of a Gaussian line after unfolding by

σ2
art =

∣∣σ2
f − σ′2

f

∣∣ ,
σart = σf (2δ − δ2)1/2 ≈

√
2δσf ,

where σ2
art has to be added to the squared width of the original line. Thus

a Dirac δ-function becomes a normal distribution of width σart. Even small
deviations in the resolution can lead to a substantial artificial broadening of
sharp structures if the width of the smearing function is larger than that of
peaks in the true distribution.

9.6 Inclusion of Background

We distinguish two different situations.
In situation a) the background is generated by a Poisson random process.

This is by far the dominant case. We unfold the observed histogram as usual
and subtract the background from the unfolded histogram. Either its shape
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and amount is known, then it can be subtracted directly, or the background
has to be evaluated from the histogram. It has to be parametrized and its
amount and the parameters have to be fitted in regions of the histogram,
where the background dominates.

In situation b) The background is due to some malfunction of the detector
and not Poisson distributed. Then it has to be estimated and subtracted in
the observed histogram. Iterative unfolding is no longer possible because it
relies on the Poisson distribution of the number of events in the observed
histogram. The LS fit has to be applied with curvature penalty or truncation
of the eigenfunction sequence.

9.7 Error Assignment in the Unfolded Histogram

In a graphical representation of the unfolding result it is impossible to indi-
cate correctly the strongly correlated errors. However a sensible visualization
of the result of unfolding where the values but not the errors depend on the
regularization is the following: For each unfolded point we associate its sta-
tistical error δθj = θj/

√
αj,θj , where αj is the average acceptance of events

in bin j. In the absence of acceptance losses, we have δθj =
√
θj . Due to the

smearing, the location of the events along the horizontal axis is uncertain.
This effect can be visualized by a horizontal bar that indicates the experi-
mental resolution. An example of such a graph is shown in Fig. 9.12. True
distributions following the two curves would produce almost indistinguishable
data samples. The regularization eliminates oscillations but the way the data
are presented the solution with the wiggles is still admitted. This kind of er-
ror assignment is useful only for the graphical representation to indicate the
possible shape of the true distribution. The assigned errors tend to overcover.
For a further treatment of the data the documentation of the result without
regularization is mandatory.

9.8 Summary and Recommendations for the Unfolding
of Histograms

Let us summarize our conclusions:

• Whenever an existing theory has to be verified, or parameters of it have
to be estimated, the prediction should be folded and compared to the
observed data. The results are independent of the distribution used in
the Monte Carlo simulation and the unavoidable information losses of the
explicit unfolding procedures are avoided.

• The experimental results have to be published without explicit regular-
ization together with a corresponding error matrix. This is achieved by
unfolding with bins large enough to avoid excessive oscillations.
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Fig. 9.12. Unfolded histogram with explicit regularization. The two curves are
equally well compatible with the observed data.

• It should be attempted to generate enough Monte Carlo events such that
the statistical uncertainty introduced by the response matrix is negligible.
If this is not possible, its contribution to the error on the unfolded dis-
tribution can be estimated by bootstrap techniques or by variation of the
Monte Carlo statistics.

• Uncertainties in the shape of the distribution used to generate the response
matrix have to be estimated and taken into account by adding a systematic
error.

• In situations where the smearing effects are small and the distribution
does not exhibit strong fluctuations, the implicit regularization by binning
is sufficient.

• For the graphical representation it is often meaningful to regularize ex-
plicitly. The number of bins should not exceed about twice the effective
number of parameters that can be fitted. The effective number of parame-
ters can be estimated from an eigenvector or singular value decomposition
of the response matrix.

• If errors are assigned in the graphical representation, they should be inde-
pendent of the regularization strength.

• The regularization strength should be fixed through the p-value of the fit.
The p-value should be above 0.9.

We have discussed three different methods of explicit regularization: Reg-
ularization by interrupting the iteration sequence of the R-L algorithm, reg-
ularization by truncation of eigenvalue contributions and regularization by
penalizating fluctuating distributions.
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• The preferred choice is R-L iterative unfolding. It is technically very simple.
The standard starting distribution is uniform. If there is prior knowledge
about the gross features of the distribution, a different starting distribution
can be introduced but the results depend very little on the starting distri-
bution. Iterative unfolding avoids specifically oscillations between statisti-
cally correlated bins and for this reason it functions correctly independent
of the dimension of the histogram, the size and the ordering of the bins.
There exists a sensible way to fix the regularzation strength.

• The truncation of low eigenvalue components (TSVD) is attractive as it
provides insight into the specific unfolding problem at hand. However,
distributions with narrow peaks or other sharp structures require high fre-
quency contributions and then certain low eigenvalue contributions should
not be eliminated. Then a selective cut of eigenvectors (SSVD) is superior.
As the SVD method is based on a LS fit, problems arise with low event
numbers. Unless the statistics is high and the distribution is rather smooth
TSVD and SSVD are not recommended. The truncation with a smooth
cut is equivalent to a LSF with a norm penalty. The latter is technically
simpler to implement.

• Regularization with a curvature penalty term combined with a ML fit is es-
pecially transparent. It is restricted to local distortions. Problems arise in
distributions with sharp peaks and the generalization to higher dimensions
is problematic. Penalizing a small entropy or the norm of the unfolded his-
togram vector is appropriate for distributions that contain rather uniform
parts. They can be applied in arbitrary dimensions. A draw back of both
methods is that they relate distant bins while a point spread function leads
to local distorsions. One has to be aware of the fact that smoothing with
penalty terms is also effective in undistorted histograms. The extremum
search in the fits is often technically problematic as many correlated pa-
rameters have to be determined.

• All smoothing approaches that lead to distributions that are compatible
with the observed data sample, are in principle acceptable. What is smooth
and what shape the distribution should have, depends on our prejudices.
In most cases the three described approaches produce very similar, sensible
results, see Fig. 9.10.

There are very little systematic studies with the different regularization
schemes. Different distributions, event numbers and resolutions should be in-
vestigated. Algorithms of available unfolding computer programs are often
based on the experience from only a few simple examples. The results and
especially the quoted error estimates should be used with great care.

9.9 Binning-free Methods

We now turn to binning-free methods. The goal is to reconstruct the sample
that an ideal detector would have observed. The advantage of this approach is
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that arbitrary histograms under various selection criteria can be constructed
afterwards. It is especially suited for low statistics distributions in high di-
mensional spaces where histogram bins would suffer from too few events. A
draw back of these methods lies in the absence of a simple error handling
which includes correlations. So far, there is little experience with binning-free
methods.

9.9.1 Iterative Unfolding Based on Probability Density Estimation

We can realize the iterative weighting method described in Sect. 9.4.2 also in
a similar way without binning [62].

We start with a Monte Carlo sample of events, each event being defined by
the true coordinate x and the observation x′. During the iteration process we
modify at each step a weight which we associate to the events such that the
densities in the observation space of simulated and real events approach each
other. Initially all weights are equal to one. At the end of the procedure we have
a sample of weighted events which corresponds to the unfolded distribution.

To this end, we estimate a local density d′(x′i) in the vicinity of any point
x′i in the observation space. (For simplicity, we restrict ourselves again to a
one-dimensional space since the generalization to several dimensions is trivial.)
The following density estimation methods (see Chap. 12) lend themselves:

1. The density is taken as the number of observations within a certain fixed
region around x′i, divided by the length of the region. The length should
correspond roughly to the resolution, if the region contains a sufficient
number of entries.

2. The density is chosen proportional to the inverse length of that interval
which contains the K nearest neighbors, where K should be not less than
about 10 and should be adjusted by the user to the available resolution
and statistics.

We denote by t(x) the simulated density in the true space at location
x, by t′(x′) the folded simulated density at x′ and the corresponding data
density be d′(x′). The density d′(x′) is estimated from the length of the interval
containing K events, t′(x′) from the number of simulated events M(x′) in the
same interval. The simulated densities are updated in each iteration step k.
We associate a preliminary weight

w
′(1)
i =

d′(x′i)

t′(0)(x′i)
=

K

M(x′)

to the Monte Carlo event i. The weighted events in the vicinity of x represent
a new density t(1)(x) in the true space. We now associate a true weight wi

to the event which is just the average over the preliminary weights of all K
events in the neighborhood of xi, wi =

∑
j w

′
j/K. With the smoothed weight
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wi a new observed simulated density t′(1)is computed. In the k-th iteration
the preliminary weight is given by

w
′(k+1)
i =

d′(x′i)

t′(k)(x′i)
w

(k)
i .

The weight will remain constant once the densities t′ and d′ agree. As result
we obtain a discrete distribution of coordinates xi with appropriate weights
wi, which represents the unfolded distribution. The degree of regularization
depends on the parameters K used for the density estimation.

The method is obviously not restricted to one-dimensional distributions,
and is indeed useful in multi-dimensional cases, where histogram bins suffer
from small numbers of entries. We have to replace xi, x′i by xi, x′

i, and the
regions for the density estimation are multi-dimensional.

9.9.2 The Satellite Method

The basic idea of this method [80] is the following: We generate a Monte
Carlo sample of the same size as the experimental data sample. We let the
Monte Carlo events migrate until the distribution of their observed positions is
compatible with the observed data. With the help of a test variable φ, which
could for example be the negative log likelihood and which we will specify
later, we have the possibility to judge quantitatively the compatibility. When
the process has converged, i.e. φ has reached its minimum, the Monte Carlo
sample represents the unfolded distribution.

We proceed as follows:
We denote by {x′

1, . . . ,x
′
N} the locations of the points of the experimental

sample and by {y1, . . . ,yN} those of the Monte Carlo sample. The observed
density of the simulation is f(y′) =

∑
t(yi,y

′), where t is the resolution
or transfer function. The test variable φ [x′

1, . . . ,x
′
N ; f(y′)] is a function of

the sample coordinates xi and the density expected for the simulation. We
execute the following steps:

1. The points of the experimental sample {x′
1, . . . ,x

′
N} are used as a first

approximation to the true locations y1 = x′
1, . . . ,yN = x′

N .
2. We compute the test statistic φ of the system.
3. We select randomly a Monte Carlo event and let it migrate by a random

amount ∆yi into a randomly chosen direction, yi → yi +∆yi.
4. We recompute φ. If φ has decreased, we keep the move, otherwise we reject

it. If φ has reached its minimum, we stop, if not, we return to step 3.

The resolution or smearing function t is normally not a simple analytic
function, but only numerically available through a Monte Carlo simulation.
Thus we associate to each true Monte Carlo point i a set of K generated
observations {y′

i1, . . . ,y
′
iK}, which we call satellites and which move together
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with yi. The test quantity φ is now a function of the N experimental positions
and the N ×K smeared Monte Carlo positions.

Choices of the test statistic φ are presented in Chap. 10. We recommend
to use the variable energy.

The migration distances ∆yi should be taken from a distribution with
a width somewhat larger than the measurement resolution, while the exact
shape of the distribution is not relevant. We therefore recommend to use a
uniform distribution, for which the generation of random numbers is faster
than for a normal or other distributions. The unfolding result is independent
from these choices, but the number of iteration steps can raise appreciably for
a bad choice of parameters.

Example 125. Deconvolution of a blurred picture
Figure 9.13 shows a two-dimensional application. The observed picture

consisted of lines and points which are convoluted with a two-dimensional
normal distribution. In the Monte Carlo simulation for each true pointK = 25
satellites have been generated. The energy φ is minimized. The resolution of
the lines in the deconvoluted figure on the right hand side is restricted by the
low experimental statistics. For the eyes the restriction is predominantly due
to the low Monte Carlo factor K. Each eye has N = 60 points. The maximal
resolution for a point measured N times is obtained for measurement error
σf as

∆x = σf

√
1

N
+

1

K

= σf

√
1

60
+

1

25
= 0.24 σf .

Measurement resolution and acceptance should stay approximately con-
stant in the region in which the events migrate. When we start with a rea-
sonably good approximation of the true distribution, this condition is usually
satisfied. In exceptional cases it would be necessary to update the distribu-
tion of the satellites y′ik after each move, i.e. to simulate or correct them once
again. It is more efficient, however, to perform the adaptation for all elements
periodically after a certain number of migration steps.

The numberK determines the maximal resolution of the unfolded distribu-
tion, it has therefore a regularization effect; e.g. for a measurement resolution
σf and K = 16 the minimal sampling interval is σT = σf/

√
K = σf/4.

If the true p.d.f. has several maxima, we may find several relative minima
of the energy. In this case a new stochastic element has to be introduced in
the minimization (see Sect. 5.2.7). In this case a move towards a position with
smaller energy is not performed automatically, but only preferred statistically.
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Fig. 9.13. Deconvolution of a blurred picture with the satellite method.

We have not yet explained how acceptance losses are taken into account.
The simplest possibility is the following: If there are acceptance losses, we need
Ki0 > K trials to generate the K satellites of the event yi. Consequently, we
relate a weight wi = K0i/K to the element yi. At the end of the unfolding
procedure we obtain a weighted sample.

A more detailed description of the satellite method is found in [80].

9.9.3 The Maximum Likelihood Method

In the rare cases where the transfer function t(x, x′) is known analytically or
easily calculable otherwise, we can maximize the likelihood where the param-
eters are the locations of the true points. Neglecting acceptance losses, the
p.d.f. for an observation x′, with the true values x1, . . . ,xN as parameters is

fN (x′|x1, . . . ,xN ) =
1

N

N∑

i=1

t(xi,x
′)

where t is assumed to be normalized with respect to x′. The log likelihood
then is given, up to a constant, by

lnL(x|x′) =
N∑

k=1

ln

N∑

i=1

t(xi,x
′
k) .

The maximum can either be found using the well known minimum search-
ing procedures or the migration method which we have described above and
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Fig. 9.14. Deconvolution of point locations. The middle plot on the left hand side
is deconvoluted and shown in the bottom plot. The true point distribution is given
in the top plot. The right hand side shows the corresponding projections onto the x
axis in form of histograms.
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which is not restricted to low event numbers. Of course maximizing the likeli-
hood leads to the same artifacts as observed in the histogram based methods.
The true points form clusters which, eventually, degenerate into discrete dis-
tributions. A smooth result is obtained by stopping the maximizing process
before the maximum has been reached. For definiteness, similar to the case
of histogram unfolding, a fixed difference of the likelihood from its maximum
value should be chosen to stop the maximization process. Similarly to the his-
togram case, this difference should be of the order of ∆L ≈

√
NDF/2 where

the number of degrees of freedom NDF is equal to the number of points times
the dimension of the space.

There may be applications, for instance in astronomy, where we are inter-
ested to find point sources and their intensity. Then the described unfolding
procedure could be used without regularization.

Example 126. : Deconvolution by fitting the true event locations
Fig. 9.14 top shows 2000 points randomly generated according to the su-

perposition of two normal distributions denoted as N (x′, y′|µx, µy, σx, σy):

f(x′, y′) = 0.6N (x′, y′| − 2, 0, 1, 1) + 0.4N (x′, y′|+ 2, 0, 1, 1) .

The transfer function again is a normal distribution centered at the true points
with symmetric standard deviations of one unit. It is used to convolute the
original distribution with the result shown in Fig. 9.14 middle. The starting
values of the parameters x̂i, ŷi are set equal to the observed locations x′i, y

′
i.

Randomly selected points are then moved within squares of size 4 × 4 units
and moves that improve the likelihood are kept. After 5000 successful moves
the procedure is stopped to avoid clustering of the true points. The result is
shown in the lower plot of Fig. 9.14. On the right hand side of the same figure
the projections of the distribution onto the x axis in form of histograms are
presented.

9.9.4 Summary for Binning-free Methods

The advantage of binning-free methods is that there are no approximations
related to the binning. Unfolding produces again single points in the obser-
vation space which can be subjected to selection criteria and collected into
arbitrary histograms, while methods working with histograms have to decide
on the corresponding parameters before the unfolding is performed.

The binning-free, iterative method based on PDE has the disadvantage
that the user has to choose some parameters. It requires sufficiently high
statistics in all regions of the observation space.
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The satellite method is especially well suited for small samples and mul-
tidimensional distributions, where other methods have difficulties. For large
samples it is rather slow even on large computers.

The binning-free likelihood method requires an analytic response function.
It is much faster than the satellite method.



10

Hypothesis Tests

10.1 Introduction

So far we treated problems where a data sample was used to discriminate
between completely fixed competing hypotheses or to estimate free parameters
of a given distribution. Now we turn to the case where we would like to find
out whether a single hypothesis, without a completely defined alternative, is
true or not. Some of the questions which we would like to address are the
following:

1. Track parameters are fitted to some measured points. Are the deviations
of the coordinate from the adjusted track compatible with statistical fluc-
tuations or should we reject the hypothesis that they are related to a
particle trajectory?

2. Can we describe a sample of e+e− reactions by quantum electrodynamics?
3. Do two samples obtained at different times in an experiment significantly

differ from each other?
4. Is a signal in a spectral distribution significant?
5. Can we describe a background distribution significantly better by a linear

or by a higher order polynomial.

To answer this kind of questions, we will have to set up a test procedure
which quantifies the compatibility of a given data sample with a hypothesis.
The test has to provide a quantitative result which is used to judge how
plausible or unlikely a hypothesis is, definite judgements – right or wrong –
are outside the possibilities of statistics. A test can never prove the validity
of a hypothesis, it can only indicate problems with it.

A scientist who chooses a certain test procedure has to fix all parameters
of the test before looking at the data1. Under no circumstances is it allowed
to base the selection of a test on the data which one wants to analyze, to
optimize a test on the bases of the data or to terminate the running time of

1Scientists often call this a blind analysis.
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an experiment as a function of the output of a test. This would bias the result.
Obviously, it is allowed to optimize a test with a part of the data which is
excluded in the final analysis.

Usually a test is associated with a decision: accept or reject. We will not
always attempt a decision but confine ourselves to fix the parameters which
form the bases for a possible decision.

As mentioned, we will primarily deal with a part of test theory which
is especially important in natural sciences and also in many other empirical
research areas, namely that only one hypothesis, we call it the null hypoth-
esis H0, is tested while the admitted alternative is so vague or general that
it cannot be parameterized. The alternative hypothesis H1 is simply “H0 is
false”. The question is whether the sample at hand is in agreement with H0

or whether it deviates significantly from it. The corresponding tests are called
goodness-of-fit (GOF) tests.

Strongly related to GOF tests are two-sample tests which check whether
two samples belong to the same population.

At the end of this chapter we will treat another case in which we have a
partially specified alternative and which plays an important role in physics.
There the goal is to investigate whether a small signal is significant or ex-
plainable by a fluctuation of a background distribution corresponding to H0.
We call this procedure signal test.

10.2 Some Definitions

Before addressing GOF tests, we introduce some notations.

10.2.1 Single and Composite Hypotheses

We distinguish between simple and composite hypotheses. The former fix the
population uniquely. Thus H0: “The sample is drawn from a normal distribu-
tion with mean zero and variance one, i.e. N (0, 1).” is a simple hypothesis.
If the alternative is also simple, e.g. H1 : “N (5, 1)”, then we have the task to
decide between two simple hypotheses which we have already treated in Chap.
6, Sect. 6.3. In this simple case there exists an optimum test, the likelihood
ratio test.

Composite hypotheses are characterized by free parameters, like H0: “The
sample is drawn from a normal distribution.” The user will adjust mean and
variance of the normal distribution and test whether the adjusted Gaussian
is compatible with the data.

The hypothesis that we want to test is always H0, the null hypothesis, and
the alternative H1 is in most cases the hypothesis that H0 does not apply. H1

then represents an infinite number of specified hypotheses.
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10.2.2 Test Statistic, Critical Region and Significance Level

After we have fixed the null hypothesis and the admitted alternative H1, we
must choose a test statistic t(x), which is a function of the sample values
x ≡ {x1, . . . , xN}, possibly in such a way that the difference between the
distribution f(t|H0) and distributions belonging to H1 are as large as possi-
ble. To simplify the notation, we consider one-dimensional distributions. The
generalization to multi-dimensional observations is trivial.

When we test, for instance, the hypothesis that a coordinate is distributed
according to N (0, 1), then for a sample consisting of a single measurement
x, a reasonable test statistic is the absolute value |x|. We assume that if H0

is wrong then |x| would be large. A typical test statistic is the χ2 deviation
of a histogram from a prediction. Large values of χ2 indicate that something
might be wrong with the prediction.

Before we apply the test we have to fix a critical region K which leads to
the rejection of H0 if t is located inside of it. Under the condition that H0 is
true, the probability of rejecting H0 is α, P{t ∈ K|H0} = α where α ∈ [0, 1]
normally is a small quantity (e.g. 5 %). It is called significance level or size
of the test. For a test based on the χ2 statistic, the critical region is defined
by χ2 > χ2

max(α) where the parameter χ2
max is a function of the significance

level α. It fixes the range of the critical region.
To compute rejection probabilities we have to compute the p.d.f. f(t) of

the test statistic. In some cases it is known as we will see below, but in other
cases it has to be obtained by Monte Carlo simulation. The distribution f has
to include all experimental conditions under which t is determined, e.g. the
measurement uncertainties of t.

10.2.3 Errors of the First and Second Kind, Power of a Test

After the test parameters are selected, we can apply the test to our data. If
the actually obtained value of t is outside the critical region, t /∈ K, then
we accept H0, otherwise we reject it. This procedure implies four different
outcomes with the following a priori probabilities:

1. H0 ∩ t ∈ K, P{t ∈ K|H0} = α: error of the first kind. (H0 is true but
rejected.),

2. H0 ∩ t /∈ K, P{t /∈ K|H0} = 1− α (H0 is true and accepted.),
3. H1 ∩ t ∈ K, P{t ∈ K|H1} = 1− β (H0 is false and rejected.),
4. H1 ∩ t /∈ K, P{t /∈ K|H1} = β: error of the second kind (H0 is false but

accepted.).

When we apply the test to a large number of data sets or events, then
the rate α, the error of the first kind, is the inefficiency in the selection of
H0 events, while the rate β, the error of the second kind, represents the
background with which the selected events are contaminated with H1 events.
Of course, for α given, we would like to have β as small as possible. Given
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the rejection region K which depends on α, also β is fixed for given H1. For a
reasonable test we expect that β is monotonically decreasing with α increasing:
With α → 0 also the critical region K is shrinking, while the power 1 − β
must decrease, and the background is less suppressed. For fixed α, the power
indicates the quality of a test, i.e. how well alternatives to H0 can be rejected.

The power is a function, the power function, of the significance level α.
Tests which provide maximum power 1− β with respect to H1 for all values
of α are called Uniformly Most Powerful (UMP) tests. Only in rare cases
where H1 is restricted in some way, there exists an optimum, i.e. UMP test. If
both hypotheses are simple then as already mentioned in Chap. 6, Sect. 6.3,
according to a lemma of Neyman and E. S. Pearson, the likelihood ratio can
be used as test statistic to discriminate between H0 and H1 and provides a
uniformly most powerful test.

The interpretation of α and β as error rates makes sense when many exper-
iments or data sets of the same type are investigated. In a search experiment
where we want to find out whether a certain physical process or a phenomenon
exists or in an isolated GOF test they refer to virtual experiments and it is
not obvious which conclusions we can draw from their values.

10.2.4 P -Values

Strictly speaking, the result of a test is that a hypothesis is “accepted” or
“rejected”. In most practical situations it is useful to replace this digital answer
by a continuous parameter, the so called p-value which is a function p(t) of
the test statistic t and which measures the compatibility of the sample with
the null hypothesis, a small value of p casting some doubt on the validity of
H0. For an observed value tobs of the test statistic, p is the probability to
obtain a value t ≥ tobs under the null hypothesis:

p = P{t ≥ tobs|H0} .

To simplify its definition, we assume that the test statistic t is confined to
values between zero and infinity with a critical region t > tc

2. Its distribution
under H0 be f0(t). Then we have

p(t) = 1−
∫ t

0

f0(t
′)dt′ = 1− F0(t) . (10.1)

Since p is a unique monotonic function of t, we can consider p as a normalized
test statistic which is completely equivalent to t.

The relationship between the different quantities which we have introduced
is illustrated in Fig. 10.1. The upper graph represents the p.d.f of the test
statistic under H0. The critical region extends from tc to infinity. The a priori

2This condition can always be realized for one-sided tests. Two-sided tests are
rare – see Example 131.
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Fig. 10.1. Distribution of a test statistic and corresponding p-value curve.

rejection probability for a sample under H0 is α, equal to the integral of the
distribution of the test statistic over the critical region. The lower graph shows
the p-value function. It starts at one and is continuously decreasing to zero
at infinity. The smaller the test statistic is – think of χ2 – the higher is the
p-value. At t = tc the p-value is equal to the significance level α. The condition
p < α leads to rejection of H0. Due to its construction, the p.d.f. of the p-value
under H0 is uniform. The name p-value is derived from the word probability,
but its experimentally observed value does not represent the probability that
H0 is true. This is obvious from the fact that the p-value is a function of
the selected test statistic. We will come back to this point when we discuss
goodness-of-fit.

10.2.5 Consistency and Bias of Tests

A test is called consistent if its power tends to unity as the sample size tends
to infinity. In other words: If we have an infinitely large data sample, we should
always be able to decide between H0 and the alternative H1.

We also want that independent of α the rejection probability for H1 is
higher than for H0, i.e. α < 1− β. Tests that violate this condition are called
biased. Consistent tests are asymptotically unbiased.

When H1 represents a family of distributions, consistency and non-
biasedness are valid only if they apply to all members of the family. Thus
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in case that the alternative H1 is not specified, a test is biased if there is an
arbitrary hypothesis different from H0 with rejection probability less than α
and it is inconsistent if we can find a hypothesis different from H0 which is
not rejected with power unity in the large sample limit.

Example 127. Bias and inconsistency of a test
Assume, we select in an experiment events of the type K0 → π+π−. The

invariant mass mππ of the pion pairs has to match the K0 mass. Due to
the finite experimental resolution the experimental masses of the pairs are
normally distributed around the kaon mass mK with variance σ2. With the
null hypothesis H0 that we observe K0 → π+π− decays, we may apply to our
sample a test with the test quantity t = (mππ −mK)2/σ2, the normalized
mean quadratic difference between the observed masses of N pairs and the
nominal K0 mass. Our sample is accepted if it satisfies t < t0 where t0 is
the critical quantity which determines the error of the first kind α and the
acceptance 1 − α. The distribution of Nt under H0 is a χ2 distribution with
N degrees of freedom. Clearly, the test is biased, because we can imagine
mass distributions with acceptance larger than 1− α, for instance a uniform
distribution in the range t ≤ t0. This test is also inconsistent, because it
would favor this specific realization of H1 also for infinitely large samples.
Nevertheless it is not unreasonable for very small samples in the considered
case and for N = 1 there is no alternative. The situation is different for large
samples where more powerful tests exist which take into account the Gaussian
shape of the expected distribution under H0.

While consistency is a necessary condition for a sensible test applied to a
large sample, bias and inconsistency of a test applied to a small sample cannot
always be avoided and are tolerable under certain circumstances.

10.3 Goodness-of-Fit Tests

10.3.1 General Remarks

Goodness-of-fit (GOF) tests check whether a sample is compatible with a
given distribution. Even though this is not possible in principle without a
well defined alternative, this works quite well in practice, the reason being
that the choice of the test statistic is influenced by speculations about the
behavior of alternatives, speculations which are based on our experience. Our
presumptions depend on the specific problem to be solved and therefore very
different testing procedures are on the market.

In the empirical research outside the exact sciences, questions like “Is a
certain drogue effective?”, “Have girls less mathematical ability than boys?”,
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Fig. 10.2. Comparison of an experimental distribution to a prediction.

“Does the IQ follow a normal distribution? ” are to be answered. In the natural
sciences, GOF tests usually serve to detect unknown systematic errors in ex-
perimental results. When we measure the mean life of an unstable particle, we
know that the lifetime distribution is exponential but to apply a GOF test is
informative, because a low p-value may indicate a contamination of the events
by background or problems with the experimental equipment. But there are
also situations where we accept or reject hypotheses as a result of a test. Ex-
amples are event selection (e.g. B-quark production), particle track selection
on the bases of the quality of reconstruction and particle identification, (e.g.
electron identification based on calorimeter or Cerenkov information). Typical
for these examples is that we examine a number of similar objects and accept
a certain error rate α, while when we consider the p-value of the final result
of an experiment, discussing an error rate does not make sense.

An experienced scientist has a quite good feeling for deviations between
two distributions just by looking at a plot. For instance, when we examine the
statistical distribution of Fig. 10.2, we will realize that its description by an
exponential distribution is rather unsatisfactory. The question is: How can we
quantify the disagreement? Without a concrete alternative it is rather difficult
to make a judgement.

Let us discuss a different example: Throwing a dice produces “1” ten times
in sequence. Is this result compatible with the assumption H0 that the dice
is unbiased? Well, such a sequence does not occur frequently and the guess
that something is wrong with the dice is well justified. On the other hand,
the sequence of ten times “1” is not less probable than any other sequence,
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namely (1/6)10 = 1. 7 · 10−8. Our doubt relies on our experience: We have an
alternative to H0 in mind, namely asymmetric dice. We can imagine asym-
metric dice but not dice that produce with high probability a sequence like
“4,5,1,6,3,3,6,2,5,2”. As a consequence we would choose a test which is sensitive
to deviations from a uniform distribution. When we test a random number
generator we would be interested, for example, in a periodicity of the results
or a correlation between subsequent numbers and we would choose a different
test. In GOF tests, we cannot specify H1 precisely, but we need to have an
idea of it which then enters in the selection of the test. We search for test pa-
rameters where we suppose that they discriminate between the null hypothesis
and possible alternatives. However, there is not such a thing as a best test
quantity as long as the alternative is not completely specified.

A typical test quantity is the χ2-variable which we have introduced to ad-
just parameters of functions to experimental histograms or measured points
with known error distributions. In the least square method of parameter in-
ference, see Chap. 7, the parameters are fixed such that the sum χ2 of the
normalized quadratic deviations is minimum. Deviating parameter values pro-
duce larger values of χ2, consequently we expect the same effect when we
compare the data to a wrong hypothesis. If χ2 is abnormally large, it is likely
that the null hypothesis is not correct.

Unfortunately, physicists use almost exclusively the χ2 test, even though
for many applications more powerful tests are available. Scientists also of-
ten overestimate the significance of the χ2 test results. Other tests like the
Kolmogorov–Smirnov Test and tests of the Cramer–von Mises family avoid
the always somewhat arbitrary binning of histograms in the χ2 test. These
tests are restricted to univariate distributions, however. Other binning-free
methods can also be applied to multivariate distributions.

Sometimes students think that a good test statistic would be the likelihood
L0 of the null hypothesis, i.e. for H0 with single event distribution f0(x) the
product Πf0(xi). That this is not a good idea is illustrated in Fig. 10.3 where
the null hypothesis is represented by a fully specified normal distribution.
From the two samples, the narrow one clearly fits the distribution worse but
it has the higher likelihood. A sample where all observations are located at
the center would per definition maximize the likelihood but such a sample
would certainly not support the null hypothesis.

While the indicated methods are distribution-free, i.e. applicable to arbi-
trary distributions specified by H0, there are procedures to check the agree-
ment of data with specific distributions like normal, uniform or exponential
distributions. These methods are of inferior importance for physics applica-
tions. We will deal only with distribution-free methods.

We will also exclude tests based on order statistics from our discussion.
These tests are mainly used to test properties of time series and are not very
powerful in most of our applications.

At the end of this section we want to stress that parameter inference with
a valid hypothesis and GOF test which doubt the validity of a hypothesis
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Fig. 10.3. Two different samples and a hypothesis.

touch two completely different problems. Whenever possible deviations can be
parameterized it is always appropriate to determine the likelihood function of
the parameter and use the likelihood ratio to discriminate between different
parameter values.

A good review of GOF tests can be found in [81], in which, however, more
recent developments are missing.

10.3.2 P -Values

Interpretation and Use of p-values

We have introduced p-values p in order to dispose of a quantity which measures
the agreement between a sample and a distribution f0(t) of the test statistic
t. Small p-values should indicate a bad agreement. Since the distribution of p
under H0 is uniform in the interval [0, 1], all values of p in this interval are
equally probable. When we reject a hypothesis under the condition p < 0.1
we have a probability of 10% to reject H0. The rejection probability would be
the same for a rejection region p > 0.9. The reason for cutting at low p-values
is the expectation that distributions of H1 would produce low p-values.

The p-value is not the probability that the hypothesis under test is true. It
is the probability under H0 to obtain a p-value which is smaller than the one
actually observed. A p-value between zero and p is expected to occur in the
fraction p of experiments if H0 is true.
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Fig. 10.4. Comparison of two experimental histograms to a uniform distribution.

Example 128. The p-value and the probability of a hypothesis
In Fig. 10.4 we have histogrammed two distributions from two simulated

experiments A and B. Are these uniform distributions? For experimentB with
10000 observations this is conceivable, while for experiment A with only 100
observations it is difficult to guess the shape of the distribution. Alternatives
like strongly rising distributions are more strongly excluded in B than in
A. We would therefore attribute a higher probability for the validity of the
hypothesis of a uniform distribution for B than for A, but the p-values based
on the χ2 test are very similar in both cases, namely p ≈ 0.08. Thus the
deviations from a uniform distribution would have in both cases the same
significance

We learn from this example also that the p-value is more sensitive to devia-
tions in large samples than in small samples. Since in practice small unknown
systematic errors can rarely be excluded, we should not be astonished that in
high statistics experiments often small p-values occur. The systematic uncer-
tainties which usually are not considered in the null hypothesis then dominate
the purely statistical fluctuation.

Even though we cannot transform significant deviations into probabilities
for the validity of a hypothesis, they provide useful hints for hidden mea-
surement errors or contamination with background. In our example a linearly
rising distribution has been added to uniform distributions. The fractions were
45% in experiment A and 5% in experiment B.

In some experimental situations we are able to compare many replicates of
measurements to the same hypothesis. In particle physics experiments usually
a huge number of tracks has to be reconstructed. The track parameters are
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Fig. 10.5. Experimental distribution of p-values.

adjusted by a χ2 fit to measured points assuming normally distributed uncer-
tainties. The χ2 value of each fit can be used as a test statistic and transformed
into a p-value, often called χ2 probability. Histograms of p-values obtained
in such a way are very instructive. They often look like the one shown in Fig.
10.5. The plot has two interesting features: It is slightly rising with increasing
p-value which indicates that the errors have been slightly overestimated. The
peak at low p-values is due to fake tracks which do not correspond to par-
ticle trajectories and which we would eliminate almost completely by a cut
at about pc = 0.05. We would have to pay for it by a loss of good tracks of
somewhat less than 5 %. A more precise estimate of the loss can be obtained
by an extrapolation of the smooth part of the p-value distribution to p = 0.

Combination of p-values

If two p-values p1, p2 which have been derived from independent test statistics
t1, t2 are available, we would like to combine them to a single p-value p. The
at first sight obvious idea to set p = p1p2 suffers from the fact that the
distribution of p will not be uniform. A popular but arbitrary choice is

p = p1p2 [1− ln(p1p2)] (10.2)

which can be shown to be uniformly distributed [82]. This choice has the
unpleasant feature that the combination of the p-values is not associative,
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i.e. p [(p1, p2), p3] 6= p [p1, (p2, p3)]. There is no satisfactory way to combine
p-values.

We propose, if possible, not to use (10.2) but to go back to the original test
statistics and construct from them a combined statistic t and the correspond-
ing p-distribution. For instance, the obvious combination of two χ2 statistics
would be t = χ2

1 + χ2
2.

10.3.3 The χ2 Test in Generalized Form

The Idea of the χ2 Comparison

We consider a sample of N observations which are characterized by the values
xi of a variable x and a prediction f0(x) of their distribution. We subdivide
the range of x into B intervals to which we attach sequence numbers k. The
prediction pk for the probability that an observation is contained in interval
k is:

pk =

∫

k

f0(x) dx ,

with Σpk = 1. The integration extends over the interval k. The number of
sample observations dk found in this bin has to be compared with the expec-
tation value Npk. To interpret the deviation dk − Npk, we have to evaluate
the expected mean quadratic deviation δ2k under the condition that the pre-
diction is correct. Since the distribution of the observations into bins follows
a binomial distribution, we have

δ2k = Npk(1− pk) .

Usually the observations are distributed into typically 10 to 50 bins. Thus
the probabilities pk are small compared to unity and the expression in brack-
ets can be omitted. This is the Poisson approximation of the binomial distri-
bution. The mean quadratic deviation is equal to the number of expected
observations in the bin:

δ2k = Npk .

We now normalize the observed to the expected mean quadratic deviation,

χ2
k =

(dk −Npk)
2

Npk
,

and sum over all B bins:

χ2 =

B∑

k=1

(dk −Npk)
2

Npk
. (10.3)

By construction we have:



10.3 Goodness-of-Fit Tests 303

〈χ2
k〉 ≈ 1 ,

〈χ2〉 ≈ B .

If the quantity χ2 is considerably larger than the number of bins, then
obviously the measurement deviates significantly from the prediction.

A significant deviation to small values χ2 ≪ B even though considered
as unlikely is tolerated, because we know that alternative hypotheses do not
produce smaller 〈χ2〉 than H0.

The χ2 Distribution and the χ2 Test

We now want to be more quantitative. If H0 is valid, the distribution of χ2

follows to a very good approximation the χ2 distribution which we have intro-
duced in Sect. 3.6.7 and which is displayed in Fig. 3.18. The approximation
relies on the approximation of the distribution of observations per bin by
a normal distribution, a condition which in most applications is sufficiently
good if the expected number of entries per bin is larger than about 10. The
parameter number of degrees of freedom (NDF ) f of the χ2 distribution is
equal to the expectation value and to the number of bins minus one:

〈χ2〉 = f = B − 1 . (10.4)

Originally we had set 〈χ2〉 ≈ B but this relation overestimates χ2 slightly.
The smaller value B − 1 is plausible because the individual deviations are
somewhat smaller than one – remember, we had approximated the binomial
distribution by a Poisson distribution. For instance, in the limit of a single
bin, the mean deviation is not one but zero. We will come back to this point
below.

In some cases we have not only a prediction of the shape of the distribution
but also a prediction N0 of the total number of observations. Then the number
of entries in each bin should follow a Poisson distribution with mean N0pk,
(10.3) has to be replaced by

χ2 =

B∑

k=1

(dk −N0pk)
2

N0pk
. (10.5)

and we have f = B = 〈χ2〉.
In experiments with low statistics the approximation that the distribution

of the number of entries in each bin follows a normal distribution is sometimes
not justified and the distribution of the χ2 quantity as defined by (10.3) or
(10.5) is not very well described by a χ2 distribution. Then we have the
possibility to determine the distribution of our χ2 variable under H0 by a
Monte Carlo simulation3.

3We have to be especially careful when α is small.
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In Fig. 10.6 we illustrate how we can deduce the p-value or χ2 probabil-
ity from the distribution and the experimental value χ̂2 of our test statistic
χ2. The experimental value χ̂2 divides the χ2 distribution, which is fixed
through the number of degrees of freedom, and which is independent of the
data, into two parts. According to its definition (10.1), the p-value p(χ̂2) is
equal to the area of the right hand part. It is the fraction of many imagined
experiments where χ2 is larger than the experimentally observed value χ̂2

– always assuming that H0 is correct. As mentioned above, high values of
χ2 and correspondingly low values of p indicate that the theoretical descrip-
tion is inadequate to describe the data. The reason is in most cases found in
experimental problems.

The χ2 comparison becomes a test, if we accept the theoretical description
of the data only if the p-value exceeds a critical value, the significance level
α, and reject it for p < α. The χ2 test is also called Pearson test after the
statistician Karl Pearson who has introduced it already in 1900.

Figure 10.7 gives the critical values of χ2, as a function of the number of
degrees of freedom with the significance level as parameter. To simplify the
presentation we have replaced the discrete points by curves. The p-value as a
function of χ2 with NDF as parameter is available in the form of tables or in
graphical form in many books. For large f , about f > 20, the χ2 distribution
can be approximated sufficiently well by a normal distribution with mean
value x0 = f and variance s2 = 2f . We are then able to compute the p-
values from integrals over the normal distribution. Tables can be found in the
literature or alternatively, the computation can be performed with computer
programs like Mathematica or Maple.

The Choice of Binning

There is no general rule for the choice of the number and width of the his-
togram bins for the χ2 comparison but we note that the χ2 test looses signif-
icance when the number of bins becomes too large.

To estimate the effect of fine binning for a smooth deviation, we consider
a systematic deviation which is constant over a certain region with a total
number of entries N0 and which produces an excess of εN0 events. Partitioning
the region into B bins would add to the statistical χ2 in each single bin the
contribution:

χ2
s =

(εN0/B)2

N0/B
=
ε2N0

B
.

For B bins we increase χ2 by ε2N0 which is to be compared to the purely
statistical contribution χ2

0 which is in average equal to B. The significance S,
i.e. the systematic deviation in units of the expected fluctuation

√
2B is

S = ε2
N0√
2B

.
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Table 10.1. p-values for χ2 and EDF statistic.

test p value
χ2, 50 Bins 0.10
χ2, 50 Bins, e.p. 0.05
χ2, 20 Bins 0.08
χ2, 20 Bins, e.p. 0.07
χ2, 10 Bins 0.06
χ2, 10 Bins, e.p. 0.11
χ2, 5 Bins 0.004
χ2, 5 Bins, e.p. 0.01
Dmax 0.005
W 2 0.001
A2 0.0005

It decreases with the square root of the number of bins.
We recommend a fine binning only if deviations are considered which are

restricted to narrow regions. This could be for instance pick-up spikes. These
are pretty rare in our applications. Rather we have systematic deviations pro-
duced by non-linearity of measurement devices or by background and which
extend over a large region. Then wide intervals are to be preferred.

In [83] it is proposed to choose the number of bins according to the formula
B = 2N2/5 as a function of the sample size N .

Example 129. Comparison of different tests for background under an expo-
nential distribution

In Fig. 10.2 a histogrammed sample is compared to an exponential. The
sample contains, besides observations following this distribution, a small con-
tribution of uniformly distributed events. From Table 10.1 we recognize that
this defect expresses itself by small p-values and that the corresponding de-
crease becomes more pronounced with decreasing number of bins.

Some statisticians propose to adjust the bin parameters such that the
number of events is the same in all bins. In our table this partitioning is
denoted by e.p. (equal probability). In the present example this does not
improve the significance.

The value of χ2 is independent of the signs of the deviations. However, if
several adjacent bins show an excess (or lack) of events like in the left hand
histogram of Fig. 10.8 this indicates a systematic discrepancy which one would
not expect at the same level for the central histogram which produces the same
value for χ2. Because correlations between neighboring bins do not enter in
the test, a visual inspection is often more effective than the mathematical test.
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Fig. 10.8. The left hand and the central histogram produce the same χ2 p-value,
the left hand and the right hand histograms produce the same Kolmogorov p-value.

Table 10.2. χ2 values with sign of deviation for a two-dimensional histogram.

i \ j 1 2 3 4 5 6 7 8
1 0.1 -0.5 1.3 -0.3 1.6 -1.1 2.0 1.2
2 -1.9 0.5 -0.4 0.1 -1.2 1.3 1.5
3 -1.2 -0.8 0.2 0.1 1.3 1.9
4 0.2 0.7 -0.6 1.1 2.2

Sometimes it is helpful to present for every bin the value of χ2 multiplied by
the sign of the deviation either graphically or in form of a table.

Example 130. χ2comparison for a two-dimensional histogram
In Table 10.2 for a two-dimensional histogram the values of χ2 accom-

panied with the sign are presented. The absolute values are well confined in
the range of our expectation but near the right hand border we observe an
accumulation of positive deviations which point to a systematic effect.

Generalization to Arbitrary Measurements

The Pearson method can be generalized to arbitrary measurements yk with
mean square errors δ2k. For theoretical predictions tk we compute χ2,

χ2 =

N∑

k=1

(yk − tk)
2

δ2k
,
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where χ2 follows a χ2 distribution of f = N degrees of freedom. A necessary
condition for the validity of the χ2 distribution is that the uncertainties follow
a normal distribution. For a large number N of individual measurements the
central limit theorem applies and we can relax the condition of normality.
Then χ2 is approximately normally distributed with mean N and variance
2N .

A further generalization is given in the Appendix 13.8 where weighted
events and statistical errors of the theoretical predictions, resulting from the
usual Monte Carlo calculation, are considered.

Remark : The quantity δ2 has to be calculated under the assumption that
the theoretical description which is to be tested is correct. This means, that
normally the raw measurement error cannot be inserted. For example, instead
of ascribing to a measured quantity an error δ′k which is proportional to its
value yk, a corrected error

δk = δ′k
tk
yk

should be used.
Sometimes extremely small values of χ2 are presented. The reason is in

most cases an overestimation of the errors.
The variable χ2 is frequently used to separate signal events from back-

ground. To this end, the experimental distribution of χ2 is transformed into
a p-value distribution like the one presented in Fig. 10.5. In this situation it
is not required that χ2 follows the χ2 distribution. It is only necessary that it
is a discriminative test variable.

The χ2 Test for Composite Hypotheses

In most cases measurements do not serve to verify a fixed theory but to
estimate one or more parameters. The method of least squares for parame-
ter estimation has been discussed in Sect. 7.3. To fit a curve y = t(x, θ) to
measured points yi with Gaussian errors σi, i = 1, . . . , N , we minimize the
quantity

χ2 =

N∑

i=1

(yi − t(xi, θ1, . . . , θZ))
2

σ2
i

, (10.6)

with respect to the Z free parameters θk.
It is plausible that with increasing number of parameters, which are ad-

justed, the description of the data improves, χ2 decreases. In the extreme case
where the number of parameters is equal to the number N of measured points
or histogram bins it becomes zero. The distribution of χ2 in the general case
where Z parameters are adjusted follows under conditions to be discussed
below a χ2 distribution of f = N − Z degrees of freedom.

Setting in (10.6) zi = (yi − t(xi, θ))/σi we may interpret χ2 =
∑N

1 z2i
as the (squared) distance of a point z with normally distributed components
from the origin in an N -dimensional space . If all parameters are fixed except
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one, say θ1, which is left free and adjusted to the data by minimizing χ2, we
have to set the derivative with respect to θ1 equal to zero:

−1

2

∂χ2

∂θ1
=

N∑

i=1

zi
∂t

∂θ1
/σi = 0 .

If t is a linear function of the parameters, an assumption which is often jus-
tified at least approximately4, the derivatives are constants, and we get a
linear relation (constraint) of the form c1z1 + · · · + cNzN = 0. It defines a
(N − 1)-dimensional subspace, a hyperplane containing the origin, of the N -
dimensional z-space. Consequently, the distance in z-space is confined to this
subspace and derived from N − 1 components. For Z free parameters we get
Z constraints and a (N −Z)-dimensional subspace. The independent compo-
nents (dimensions) of this subspace are called degrees of freedom. The number
of degrees of freedom is f = N −Z as pretended above. Obviously, the sum of
f squared components will follow a χ2 distribution with f degrees of freedom.

In the case of fitting a normalized distribution to a histogram with B bins
which we have considered above, we had to set (see Sect. 3.6.7) f = B − 1.
This is explained by a constraint of the form z1 + · · ·+ zB = 0 which is valid
due to the equality of the normalization for data and theory.

The χ2 Test for Small Samples

When the number of entries per histogram bin is small, the approximation
that the variations are normally distributed is not justified. Consequently, the
χ2 distribution should no longer be used to calculate the p-value.

Nevertheless we can use in this situation the sum of quadratic deviations
χ2 as test statistic. The distribution f0(χ

2) has then to be determined by a
Monte Carlo simulation. The test then is slightly biased but the method still
works pretty well.

Warning

The assumption that the distribution of the test statistic underH0 is described
by a χ2 distribution relies on the following assumptions: 1. The entries in all
bins of the histogram are normality distributed. 2. The expected number of
entries depends linearly on the free parameters in the considered parameter
range. An indication for a non-linearity are asymmetric errors of the adjusted
parameters. 3. The estimated uncertainties σi in the denominators of the
summands of χ2 are independent of the parameters. Deviations from these
conditions affect mostly the distribution at large values of χ2 and thus the
estimation of small p-values. Corresponding conditions have to be satisfied
when we test the GOF of a curve to measured points. Whenever we are not
convinced about their validity we have to generate the distribution of χ2 by
a Monte Carlo simulation.

4Note that also the σi have to be independent of the parameters.
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10.3.4 The Likelihood Ratio Test

General Form

The likelihood ratio test compares H0 to a parameter dependent alterna-
tive H1 which includes H0 as a special case. The two hypothesis are defined
through the p.d.f.s f(x|θ) and f(x|θ0) where the parameter set θ0 is a subset
of θ, often just a fixed value of θ. The test statistic is the likelihood ratio λ,
the ratio of the likelihood of H0 and the likelihood of H1 where the parameters
are chosen such that they maximize the likelihoods for the given observations
x. It is given by the expression

λ =
supL(θ0|x)
supL(θ|x) , (10.7)

or equivalently by

lnλ = sup lnL(θ0|x)− sup lnL(θ|x) .
If θ0 is a fixed value, this expression simplifies to lnλ = lnL(θ0|x) −
sup lnL(θ|x).

From the definition (10.7) follows that λ always obeys λ ≤ 1.

Table 10.3. Values of λ and P , see text.

k 8 9 10 11 12 13
λ 0.807 0.950 1.000 0.953 0.829 0.663
P 0.113 0.125 0.125 0.114 0.095 0.073

Example 131. Likelihood ratio test for a Poisson count
Let us assume that H0 predicts µ0 = 10 decays in an hour, observed are

8. The likelihood to observe 8 for the Poisson distribution is L0 = P10(8) =
e−10108/8!. The likelihood is maximal for µ = 8, it is L = P8(8) = e−888/8!
Thus the likelihood ratio is λ = P10(8)/P8(8) = e−2(5/4)8 = 0.807. The
probability P to observe a ratio smaller than or equal to 0.807 is

P =
∑

k

P10(k) for k with P10(k) ≤ 0.807P10(10) .

Relevant numerical values of λ(k, µ0) = Pµ0(k)/Pk(k) and Pµ0(k) for µ0 = 10
are given in Table 10.3 It is seen, that the sum over k runs over all k, except
k = 9, 10, 11, 12: p = Σ8

k=0P10(k) + Σ∞
k=13P10(k) = 1 − Σ12

k=9P10(k) = 0.541
which is certainly acceptable. This is an example for the p-value of a two-sided
test.
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The likelihood ratio test in this general form is useful to discriminate
between a specific and a more general hypothesis, a problem which we will
study in Sect. 10.5.2. To apply it as a goodness-of-fit test, we have to histogram
the data.

The Likelihood Ratio Test for Histograms

We have shown that the likelihood L0 =
∏

i f0(xi) of a sample cannot be used
as a test statistic, but when we combine the data into bins, a likelihood ratio
can be defined for the histogram and used as test quantity. The test variable is
the ratio of the likelihood for the hypothesis that the bin content is predicted
by H0 and the likelihood for the hypothesis that maximizes the likelihood for
the given sample. The latter is the likelihood for the hypothesis where the
prediction for the bin coincides with its content. If H0 is not simple, we take
the ratio of the maximum likelihood allowed by H0 and the unconstrained
maximum of L.

For a bin with content d, prediction t and p.d.f. f(d|t) this ratio is λ =
f(d|t)/f(d|d) since at t = d the likelihood is maximal. For the histogram we
have to multiply the ratios of the B individual bins. Instead we change to the
log-likelihoods and use as test statistic

V = lnλ =

B∑

i=1

[ln f(di|ti)− ln f(di|di)] .

If the bin content follows the Poisson statistics we get (see Chap. 6, Sect.
6.6)

V =

B∑

i=1

[−ti + di ln ti − ln(di!) + di − di ln di + ln(di!)]

=
B∑

i=1

[di − ti + di ln(ti/di)] .

The distribution of the test statistic V is not universal, i.e. not independent
of the distribution to be tested as in the case of χ2. It has to be determined
by a Monte Carlo simulation. In case parameters of the prediction have been
adjusted to data, the parameter adjustment has to be included in the simu-
lation.

The method can be extended to weighted events and to the case of Monte
Carlo generated predictions with corresponding statistical errors, see Ap-
pendix 13.8.

Asymptotically, N → ∞, the test statistic V approaches −χ2/2 as is seen
from the expansion of the logarithm, ln(1 + x) ≈ x− x2/2. After introducing
xi = (di − ti)/ti which, according to the law of large numbers, becomes small
for large di, we find
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V =

B∑

i=1

[tixi − ti(1 + xi) ln(1 + xi)]

≈
B∑

i=1

ti

[
xi − (1 + xi)(xi −

1

2
x2i )

]

≈
B∑

i=1

ti

(
−1

2
x2i

)
= −1

2

B∑

i=1

(
(di − ti)

2

ti

)
= −1

2
χ2
B ,

and thus −2V is distributed according to a χ2 distribution with B degrees of
freedom, but then we may also use directly the χ2 test.

If the prediction is normalized to the data, we have to replace the Poisson
distribution by the multinomial distribution. We omit the calculation and
present the result:

V =

B∑

i=1

di ln(ti/di) .

In this case, V approaches asymptotically the χ2 distribution with B − 1
degrees of freedom.

10.3.5 The Kolmogorov–Smirnov Test

The subdivision of a sample into intervals is arbitrary and thus subjective.
Unfortunately some experimenters use the freedom to choose histogram bins
such that the data agree as well as possible with the theoretical description in
which they believe. This problem is excluded in binning-free tests which have
the additional advantage that they are also applicable to small samples.

The Kolmogorov–Smirnov test compares the distribution function

F0(x) =

∫ x

−∞
f0(x) dx

with the corresponding experimental quantity S,

S(x) =
Number of observations with xi < x

Total number
.

The test statistic is the maximum difference D between the two functions:

D = sup |F (x)− S(x)|
= sup(D+, D−) .

The quantities D+, D− denote the maximum positive and negative differ-
ence, respectively. S(x) is a step function, an experimental approximation of
the distribution function and is called Empirical Distribution Function (EDF ).



10.3 Goodness-of-Fit Tests 313

0.0 0.5 1.0
0.0

0.5

1.0

 

 

S(x)

D+

D-

F(x)

x

Fig. 10.9. Comparison of the empirical distribution function S(x) with the theo-
retical distribution function F (x).

It is depicted in Fig. 10.9 for an example and compared to the distribution
function F (x) of H0. To calculate S(x) we sort all N elements in ascending
order of their values, xi < xi+1 and add 1/N at each location xi to S(x).
Then S(xi) is the fraction of observations with x values less or equal to xi,

S(xi) =
i

N
,

S(xN ) = 1 .

As in the χ2 test we can determine the expected distribution of D, which
will depend on N and transform the experimental value of D into a p-value.
To get rid of the N dependence of the theoretical D distribution we use
D∗ =

√
ND. Its distribution under H0 is for not too small N (N >≈ 100)

independent of N and available in form of tables and graphs. For event num-
bers larger than 20 the approximation D∗ = D(

√
N +0.12+0.11/

√
N) is still

a very good approximation5. The function p(D∗) is displayed in Fig. 10.10.
The Kolmogorov–Smirnov test emphasizes more the center of the distribu-

tion than the tails because there the distribution function is tied to the values
zero and one and thus is little sensitive to deviations at the borders. Since it
is based on the distribution function, deviations are integrated over a certain
range. Therefore it is not very sensitive to deviations which are localized in a
narrow region. In Fig. 10.8 the left hand and the right hand histograms have

5D does not scale exactly with
√
N because S increases in discrete steps.
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Fig. 10.10. p-value as a function of the Kolmogorov test statistic D∗.

the same excess of entries in the region left of the center. The Kolmogorov–
Smirnov test produces in both cases approximately the same value of the
test statistic, even though we would think that the distribution of the right
hand histogram is harder to explain by a statistical fluctuation of a uniform
distribution. This shows again, that the power of a test depends strongly on
the alternatives to H0. The deviations of the left hand histogram are well
detected by the Kolmogorov–Smirnov test, those of the right hand histogram
much better by the Anderson–Darling test which we will present below.

There exist other EDF tests [81], which in most situations are more effec-
tive than the simple Kolmogorov–Smirnov test.

10.3.6 Tests of the Kolmogorov–Smirnov – and Cramer–von Mises
Families

In the Kuiper test one uses as the test statistic the sum V = D+ + D−
of the two deviations of the empirical distribution function S from F . This
quantity is designed for distributions “on the circle”. This are distributions
where the beginning and the end of the distributed quantity are arbitrary,
like the distribution of the azimuthal angle which can be presented with equal
justification in all intervals [ϕ0, ϕ0 + 2π] with arbitrary ϕ0.

The tests of the Cramer–von Mises family are based on the quadratic
difference between F and S. The simple Cramer–von Mises test employs the
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test statistic

W 2 =

∫ ∞

−∞
[(F (x)− S(x)]

2
dF .

In most situations the Anderson–Darling test with the test statistic A2

and the test of Watson with the test statistic U2

A2 = N

∫ ∞

−∞

[S(x)− F (x)]
2

F (x) [1− F (x)]
dF ,

U2 = N

∫ ∞

−∞

{
S(x)− F (x)−

∫ ∞

−∞
[S(x)− F (x)] dF

}2

dF ,

are superior to the Kolmogorov–Smirnow test.
The test of Anderson emphasizes especially the tails of the distribution

while Watson’s test has been developed for distributions on the circle. The
formulas above look quite complicated at first sight. They simplify consider-
ably when we perform a probability integral transformation (PIT ). This term
stands for a simple transformation of the variate x into the variate z = F0(x),
which is uniformly distributed in the interval [0, 1] and which has the simple
distribution function H0(z) = z. With the transformed step distribution S∗(z)
of the sample we get

A2 = N

∫ ∞

−∞

[S∗(z)− z]
2

z(1− z)
dz ,

U2 = N

∫ ∞

−∞

{
S∗(z)− z −

∫ ∞

−∞
[S∗(z)− z] dz

}2

dz .

In the Appendix 13.7 we show how to compute the test statistics. There
also the asymptotic distributions are collected.

10.3.7 Neyman’s Smooth Test

This test [84] is different from those discussed so far in that it parameterizes
the alternative hypothesis. Neyman introduced the smooth test in 1937 (for a
discussion by E. S. Pearson see [85]) as an alternative to the χ2 test, in that it
is insensitive to deviations from H0 which are positive (or negative) in several
consecutive bins. He insisted that in hypothesis testing the investigator has to
bear in mind which departures from H0 are possible and thus to fix partially
the p.d.f. of the alternative. The test is called “smooth” because, contrary to
the χ2 test, the alternative hypothesis approaches H0 smoothly for vanishing
parameter values. The hypothesis under test H0 is again that the sample after
the PIT, zi = F0(xi), follows a uniform distribution in the interval [0, 1].

The smooth test excludes alternative distributions of the form
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gk(z) =

k∑

i=0

θiπi(z), (10.8)

where θi are parameters and the functions πi(z) are modified orthogonal Leg-
endre polynomials that are normalized to the interval [0, 1] and symmetric or
antisymmetric with respect to z = 1/2:

π0(z) ≡ 1 ,

π1(z) =
√
3(2z − 1) ,

. . . . . . . . .

πi(z) =
√
2i+ 1Pi(2z − 1) .

Here Pi(x) is the Legendre polynomial in the usual form. The first parameter
θ0 is fixed, θ0 = 1, and the other parameters are restricted such that gk is
positive. The user has to choose the parameter k which limits the degree of
the polynomials. If the alternative hypothesis is suspected to contain narrow
structures, we have to admit large k. The test with k = 1 rejects a linear
contribution, k = 2 in addition a quadratic component and so on. Obviously,
the null hypothesis H0 corresponds to θ1 = · · · = θk = 0, or equivalently to∑k

i=1 θ
2
i = 0. We have to look for a test statistic which increases with the

value of this sum.
For a sample of size N the test statistic proposed by Neyman is

r2k =
1

N

k∑

i=1

t2i =
1

N

k∑

i=1




N∑

j=1

πi(zj)




2

. (10.9)

This choice is plausible, because a large absolute value of ti is due to a strong
contribution of the polynomial πi to the observed distribution and thus also
to a large value of θ2i , while under H0 we have for i ≥ 1

〈ti〉 = N〈πi(z)〉 = 0 ,

because ∫ 1

0

πi(z) dz = 0 .

Asymptotically, N → ∞, under H0 the test statistic r2k follows a χ2 dis-
tribution with k degrees of freedom (see 3.6.7). This is a consequence of the
orthonormality of the polynomials πi and the central limit theorem: We have

var(ti) = 〈t2i 〉 = N

∫ 1

0

π2
i (z) dz = N

and as a sum of N random variables the statistic ti/
√
N is normally dis-

tributed for large N , with expectation value zero and variance one. Due to
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the orthogonality of the πi, the ti are uncorrelated. For small N the distribu-
tion of the test statistic r2k has to be obtained by a Monte Carlo simulation.

In any case, large values of r2k indicate bad agreement of the data with
H0, but for a fixed value of k the smooth test is not consistent6. Its power
approaches unity for N → ∞ only for the class of alternatives Hk having
a PIT which is represented by an expansion in Legendre polynomials up to
order k. Hence with respect to these, while usually uninteresting, restricted
alternatives it is consistent. Thus for large samples and especially for the
exclusion of narrow structures k should not be chosen too small. The value of
k in the smooth test corresponds roughly to the number of bins in the χ2-test.

The smooth test is in most cases superior to the χ2 test. This can be
understood in the following way: The smooth test scrutinizes not only for
structures of a fixed frequency but for all frequencies up to k while the χ2 test
with B ≫ 1 bins is rather insensitive to low frequency variations.

Remark: The alternative distribution quoted by Neyman was the expo-
nential

gk(z) = C exp

(
k∑

i=0

θiπi(z)

)
(10.10)

where C(θ) is a normalization constant. Neyman probably chose the expo-
nential form, because it guaranties positivity without further restrictions of
the parameters θi. Moreover, with this class of alternatives, it has been shown
by E. S. Pearson [85] that the smooth test can be interpreted as a likelihood
ratio test. Anyway, (10.8) or (10.10) serve only as a motivation to choose the
test statistic (10.9) which is the relevant quantity.

10.3.8 The L2 Test

The binning-free tests discussed so far are restricted to one dimension, i.e. to
univariate distributions. We now turn to multivariate tests.

A very obvious way to express the difference between two distributions f
and f0 is the integrated quadratic difference

L2 =

∫
[f(r)− f0(r)]

2
dr. (10.11)

Unfortunately, we cannot use this expression for the comparison of a sample
{r1, . . . , rN} with a continuous function f0. Though we can try to derive
from our sample an approximation of f . Such a procedure is called probability
density estimation (PDE ). A common approach (see Chap. 12) is the Gaussian
smearing or smoothing. The N discrete observations at the locations ri are
transformed into the function

fG(r) =
1

N

∑
e−α(ri−r)2 .

6For k = 1, for instance, the test cannot exclude distributions concentrated near
z = 1/2.
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The smearing produces a broadening which has also to be applied to f0:

f0G(r) =

∫
f0(r

′)e−α(r−r
′)2dr′ .

We now obtain a useful test statistic L2G,

L2G =

∫
[fG(r)− f0G(r)]

2 dr .

So far the L2 test [86] has not found as much attention as it deserves
because the calculation of the integral is tedious. However its Monte Carlo
version is pretty simple. It offers the possibility to adjust the width of the
smearing function to the density f0. Where we expect large distances of ob-
servations, the Gaussian width should be large, α ∼ f2

0 .
A more sophisticated version of the L2 test is presented in [86]. The Monte

Carlo version is included in Sect. 10.3.11, see below.

10.3.9 Comparing a Data Sample to a Monte Carlo Sample and
the Metric

We know turn to tests where we compare our sample not to an analytic
distribution but to a Monte Carlo simulation of f0. This is not a serious
restriction because anyhow acceptance and resolution effects have to be taken
into account in the majority of all experiments. Thus the null hypothesis is
usually represented by a simulation sample.

To compare two samples we have to construct a relation between observa-
tions of the samples which in the multi-dimensional case has to depend in some
way on the distance between them. We can define the distance in the usual
way using the standard Euclidian metric but since the different dimensions
often represent completely different physical quantities, e.g. spatial distance,
time, mass etc., we have considerable freedom in the choice of the metric and
we will try to adjust the metric such that the test is powerful.

We usually want that all coordinates enter with about equal weight into
the test. If, for example, the distribution is very narrow in x but wide in y,
then the distance r of points is almost independent of y and it is reasonable
to stretch the distribution in the x direction before we apply a test. Therefore
we propose for the general case to scale linearly all coordinates such that the
empirical variances of the sample are the same in all dimensions. In addition
we may want to get rid of correlations when for instance a distribution is
concentrated in a narrow band along the x-y diagonal.

Instead of transforming the coordinates we can use the Mahalanobis dis-
tance7 in order to normalize distances between observations (x1, . . . ,xN} with
sample mean x. (The bold-face symbols here denote P -dimensional vectors
describing different features measured on each of the N sampled objects.)

7This is a distance measure introduced by P. C. Mahalanobis in 1936.
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Fig. 10.11. K-nearest neighbor test.

The Mahalanobis distance dM of two observations x and x′ is

dM =
√
(x− x′)TC−1(x− x′) ,

with

Cij =

N∑

n=1

(xni − xi)(xnj − xj)/N .

It is equivalent to the Euclidian distance after a linear transformation of the
vector components which produces a sample with unity covariance matrix. If
the covariance matrix is diagonal, then the resulting distance is the normalized
Euclidean distance in the P -dimensional space:

dM =

√√√√
P∑

p=1

(xp − x′p)
2

σ2
p

.

In the following tests the choice of the metric is up to the user. In many
situations it is reasonable to use the Mahalanobis distance, even though mod-
erate variations of the metric normally have little influence on the power of a
test.

10.3.10 The k-Nearest Neighbor Test

We consider two samples, one generated by a Monte Carlo simulation of a null
distribution f0 and the experimental sample. The test statistic is the number
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n(k) of observations of the mixed sample where all of its k nearest neighbors
belong to the same sample as the observation itself. This is illustrated in
Fig. 10.11 for an unrealistically simple configuration. We find n(1) = 4 and
n(2) = 4. The parameter k is a small number to be chosen by the user, in
most cases it is one, two or three.

Of course we expect n to be large if the two parent distributions are very
different. The k-nearest neighbor test is very popular and quite powerful. It has
one caveat: We would like to have the number M of Monte Carlo observations
much larger than the number N of experimental observations. In the situation
with M ≫ N each observation tends to have as next neighbor a Monte Carlo
observation and the test becomes less significant.

10.3.11 The Energy Test

A very general expression that measures the difference between two distribu-
tions f(r) and f0(r) in an n dimensional space is

φ =
1

2

∫
dr

∫
dr′ [f(r)− f0(r)] [f(r

′)− f0(r
′)]R(r, r′) . (10.12)

Here we call R the distance function. The factor 1/2 is introduced to
simplify formulas which we derive later. The special case R = δ(r − r′) leads
to the simple integrated quadratic deviation (10.11) of the L2 test

φ =
1

2

∫
dr [f(r)− f0(r)]

2
. (10.13)

However, we do not intend to compare two distributions but rather two
samples A {r1, . . . , rN}, B {r01, . . . , r0M}, which are extracted from the dis-
tributions f and f0, respectively. For this purpose we start with the more
general expression (10.12) which connects points at different locations. We re-
strict the function R in such a way that it is a function of the distance |r−r′|
only and that φ is minimum for f ≡ f0.

The function (10.12) with R = 1/|r−r′| describes the electrostatic energy
of the sum of two charge densities f and f0 with equal total charge but
different sign of the charge. In electrostatics the energy reaches a minimum
if the charge is zero everywhere, i.e. the two charge densities are equal up to
the sign. Because of this analogy we refer to φ as energy.

For our purposes the logarithmic function R(r) = − ln(r) and the bell
function R(r) ∼ exp(−cr2) are more suitable than 1/r.

We multiply the expressions in brackets in (10.12) and obtain

φ =
1

2

∫
dr

∫
dr′ [f(r)f(r′) + f0(r)f0(r

′)− 2f(r)f0(r
′)]R(|r − r′|) .

(10.14)
A Monte Carlo integration of this expression is obtained when we generate M
random points {r01 . . .r0M} of the distribution f0(r) and N random points
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{r1, . . . , rN} of the distribution f(r) and weight each combination of points
with the corresponding distance function. The Monte Carlo approximation is:

φ ≈ 1

N(N − 1)

∑

i

∑

j>i

R(|ri − rj |)−
1

NM

∑

i

∑

j

R(|ri − r0j |) +

+
1

M(M − 1)

∑

i

∑

j>i

R(|r0i − r0j |)

≈ 1

N2

∑

i

∑

j>i

R(|ri − rj |)−
1

NM

∑

i

∑

j

R(|ri − r0j |) +

+
1

M2

∑

i

∑

j>i

R(|r0i − r0j |) . (10.15)

This is the energy of a configuration of discrete charges. Alternatively we
can understand this result as the sum of three expectation values which are
estimated by the two samples. The value of φ from (10.15) thus is the estimate
of the energy of two samples that are drawn from the distributions f0 and f
and that have the total charge zero.

We can use the expression (10.15) as test statistic when we compare the ex-
perimental sample to a Monte Carlo sample, the null sample representing the
null distribution f0. Small energies signify a good, large ones a bad agreement
of the experimental sample with H0. To be independent of statistical fluctu-
ations of the simulated sample, we choose M large compared to N , typically
M ≈ 10N .

The test statistic energy φ is composed of three terms φ1, φ2, φ3 which
correspond to the interaction of the experimental sample with itself, to its
interaction with the null sample and with the interaction of the null sample
with itself:

φ = φ1 − φ2 + φ3 , (10.16)

φ1 =
1

N(N − 1)

∑

i<j

R(|ri − rj |) , (10.17)

φ2 =
1

NM

∑

i,j

R(|ri − r0j |) , (10.18)

φ3 =
1

M(M − 1)

∑

i<j

R(|r0i − r0j |) . (10.19)

The term φ3 is independent of the data and can be omitted but is normally
included to reduce statistical fluctuations.

The distance function R relates sample points and simulated points of the
null hypothesis to each other. Proven useful have the functions

Rl = − ln(r + ε) , (10.20)
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Rs = e−r2/(2s2) . (10.21)

The small positive constant ε suppresses the pole of the logarithmic dis-
tance function. Its value should be chosen approximately equal to the ex-
perimental resolution8 but variations of ε by a large factor have no sizable
influence on the result. With the function R1 = 1/r we get the special case of
electrostatics. With the Gaussian distance function Rs the test is very similar
to the χ2 test with bin width 2s but avoids the arbitrary binning of the lat-
ter. For slowly varying functions we propose to use the logarithmic distance
function.

Empirical studies have shown that the test statistic follows to a very good
approximation a distribution from the family of the extreme value distribu-
tions,

f(φ) =
1

σ

(
1 + ξ

φ− µ

σ

)−1/ξ−1

exp

{
−
(
1 + ξ

φ− µ

σ

)−1/ξ
}
,

with parameters µ, σ, ξ which we have discussed in Sect. 3.6.12. We have to
compute this distribution f0(φ) by a Monte Carlo simulation. To get a suffi-
cient precision for small p-values we have to generate a very large sample. We
gain computing time when we extract the first three moments of a relatively
modest Monte Carlo sample and compute from those the parameters of the
extreme value distribution.

The energy test is consistent [87]. It is quite powerful in many situations
and has the advantage that it is not required to sort the sample elements.

The energy test with Gaussian distance function is completely equivalent
to the L2 test. It is more general than the latter in that it allows to use various
distance functions.

10.3.12 Tests Designed for Specific Problems

The power of tests depends on the alternatives. If we have an idea of it,
even if it is crude, we can design a GOF test which is especially sensitive to
the deviations from H0 which we have in mind. The distribution of the test
statistic has to be produced by a Monte Carlo simulation.

Example 132. Designed test: three region test
Experimental distributions often show a local excess of observations which

are either just a statistical fluctuation or stem from a physical process. To
check whether an experimental sample is compatible with the absence of a
bump caused by a physical process, we propose the following three region test.

8Distances between two points that are smaller than the resolution are accidental
and thus insignificant.
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Fig. 10.12. Different admixtures to a uniform distribution.

We subdivide the domain of the variable in three regions with expected num-
bers of observations n10, n20, n30 and look for differences to the corresponding
experimental numbers n1, n2, n3. The subdivision is chosen such that the sum
of the differences is maximum. The test statistic R3 is

R3 = sup
n1,n2

[(n1 − n10) + (n2 − n20) + (n3 − n30)] .

Notice, that n3 = N − n1 − n2 is a function of n1 and n2. The generalization
to more than three regions is trivial. Like in the χ2 test we could also divide
the individual squared differences by their expected value:

R′
3 = sup

n1,n2

[
(n1 − n10)

2

n10
+

(n2 − n20)
2

n20
+

(n3 − n30)
2

n30

]
.

10.3.13 Comparison of Tests

Univariate Distributions

Whether a test is able to detect deviations from H0 depends on the distri-
bution f0 and on the kind of distortion. Thus there is no test which is most
powerful in all situations.

To get an idea of the power of different tests, we consider six different ad-
mixtures to a uniform distribution and compute the fraction of cases in which
the distortion of the uniform distribution is detected at a significance level of
5%. For each distribution constructed in this way, we generate stochastically
1000 mixtures with 100 observations each. The distributions which we add are
depicted in Fig. 10.12. One of them is linear, two are normal with different
widths, and three are parabolic. The χ2 test was performed with 12 bins fol-
lowing the prescription of Ref. [83], the parameter of Neyman’s smooth test
was k = 2 and the width of the Gaussian of the energy test was s = 1/8. The
sensitivity of different tests is presented in Fig. 10.13.

The histogram of Fig. 10.13 shows that none of the tests is optimum in
all cases. The χ2 test performs only mediocrely. Probably a lower bin num-
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 Fig. 10.14. Comparison of a normally distributed sample (circles) from H0 with a
linear admixture (triangles) with the normal distribution of H0.

ber would improve the result. The tests of Neyman, Anderson–Darling and
Kolmogorov–Smirnov are sensitive to a shift of the mean value while the
Anderson–Darling test reacts especially to changes at the borders of the dis-
tribution. The tests of Watson and Kuiper detect preferentially variations of
the variance. Neyman’s test and the energy test with logarithmic distance
function are rather efficient in most cases.

Multivariate Distributions

The goodness-of-fit of multivariate distributions cannot be tested very well
with simple tests. The χ2 test often suffers from the small number of entries
per bin. Here the k-nearest neighbor test and the energy test with the long
range logarithmic distance function are much more efficient.

Example 133. GOF test of a two-dimensional sample
Figure 10.14 shows a comparison of a sample H1 with a two-dimensional

normal distribution (H0). H1 corresponds to the distribution of H0 but con-
tains an admixture of a linear distribution. The p-value of the energy test is
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2%. With a χ2 test with 9 bins we obtain a p-value of 71%. It is unable to
identify the deformation of f0.

More detailed investigations can be found in [88].

10.4 Two-Sample Tests

10.4.1 The Problem

A standard situation in particle physics is that H0 cannot be compared di-
rectly to the data but has first to be transformed to a Monte Carlo sample,
to take into account acceptance losses and resolution effects. We have to com-
pare two samples, a procedure which we had already applied in the energy
test. Here the distribution of the test statistic needed to compute p-values can
be generated by a simple Monte Carlo program.

In other sciences, a frequently occurring problem is that the effectiveness
of two or several procedures have to be compared. This may concern drugs,
animal feed or the quality of fabrication methods. A similar problem is to test
whether a certain process is stable or whether its results have changed during
time. Also in the natural sciences we frequently come across the problem that
we observe an interesting phenomenon in one data sample which apparently
has disappeared in another sample taken at a later time. It is important to
investigate whether the two data samples are compatible with each other.
Sometimes it is also of interest to investigate whether a Monte Carlo sample
and an experimental sample are compatible. Thus we are interested in a statis-
tical procedure which tells us whether two samples A and B are compatible,
i.e. drawn from the same parent distribution. Thereby we assume that the
parent distribution itself is unknown. If it were known, we could apply one of
the GOF tests which we have discussed above. We have to invent procedures
to generate the distribution of the test statistic. In some cases this is trivial.
In the remaining cases, we have to use combinatorial methods.

10.4.2 The χ2 Test

To test whether two samples are compatible, we can apply the χ2test or the
Kolmogorov–Smirnov test with minor modifications.

When we calculate the χ2 statistic we have to normalize the two samples
A and B of sizes N and M to each other. For ai and bi entries in bin i,
ai/N−bi/M should be compatible with zero. With the usual error propagation
we obtain an estimate ai/N2 + bi/M

2 of the quadratic error of this quantity
and
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χ2 =

B∑

i=1

(ai/N − bi/M)2

(ai/N2 + bi/M2)
. (10.22)

It follows approximately a χ2 distribution of B−1 degrees of freedom, but
not exactly, as we had to replace the expected values by the observed numbers
in the error estimation. We have to be careful if the number of observations
per bin is small.

10.4.3 The Likelihood Ratio Test

The likelihood ratio test is less vulnerable to low event numbers than the χ2

test.
Setting r = M/N we compute the likelihood that we observe in a single

bin a entries with expectation λ and b entries with expectation ρλ, where the
hypothesis H0 is characterized by ρ = r:

L(λ, ρ|a, b) = e−λλa

a!

e−ρλ(ρλ)b

b!
.

Leaving out constant factors the log-likelihood is

lnL = −λ(1 + ρ) + (a+ b) lnλ+ b ln ρ .

We determine the conditional maximum likelihood value of λ under ρ = r and
the corresponding log-likelihood:

1 + r = (a+ b)
1

λ̂c
,

λ̂c =
a+ b

1 + r
,

lnLcmax = (a+ b)

[
−1 + ln

a+ b

1 + r

]
+ b ln r .

The unconditional maximum of the likelihood is found for λ̂ = a and ρ̂ = b/a:

lnLumax = −(a+ b) + a lna+ b ln b .

Our test statistic is VAB, the logarithm of the likelihood ratio, now summed
over all bins:

VAB = lnLcmax − lnLumax

=
∑

i

[
(ai + bi) ln

ai + bi
1 + r

− ai ln ai − bi ln bi + bi ln r

]
.

Note that VAB(r) = VBA(1/r), as it should.
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Now we need a method to determine the expected distribution of the test
statistic VAB under the assumption that both samples originate from the same
population.

To generate a distribution from a sample, the so-called bootstrap method
[89] (see Chap. 12.2) has been developed. In our situation a variant of it, a
simple permutation method is appropriate.

We combine the two samples to a new sample with M +N elements and
form new pairs of samples, the bootstrap samples, with M and N elements by
permutation: We draw randomly M elements from the combined sample and
associate them to A and the remaining elements to B. Computationally this is
easier than to use systematically all individual possibilities. For each generated
pair i we determine the statistic Vi. This procedure is repeated many times
and the values Vi form the reference distribution. Our experimental p-value
is equal to the fraction of generated Vi which are larger than VAB:

p =
Number of permutations with Vi > VAB

Total number of permutations
.

10.4.4 The Kolmogorov–Smirnov Test

Also the Kolmogorov–Smirnov test can easily be adapted to a comparison of
two samples. We construct the test statistic in an analogous way as above. The
test statistic is D∗ = D

√
Neff , where D is the maximum difference between

the two empirical distribution functions SA, SB, and Neff is the effective or
equivalent number of events, which is computed from the relation:

1

Neff
=

1

N
+

1

M
.

In a similar way other EDF multi-dimensional tests which we have discussed
above can be adjusted.

10.4.5 The Energy Test

For a binning-free comparison of two samples A and B with M and N obser-
vations we can again use the energy test [87] which in the multi-dimensional
case has only few competitors.

We compute the energy φAB in the same way as above, replacing the Monte
Carlo sample by one of the experimental samples. The expected distribution
of the test statistic φAB is computed in the same way as for the likelihood ratio
test from the combined sample using the bootstrap permutation technique.
Our experimental p-value is equal to the fraction of generated φi from the
bootstrap sample which are larger than φAB :

p =
Number of permutations with φi > φAB

Total number of permutations
.
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Fig. 10.15. Two-sample test. Left hand: the samples which are to be compared.
Right hand: distribution of test statistic and actual value.

Example 134. Comparison of two samples
We compare two two-dimensional samples with 15 and 30 observations

with the energy test. The two samples are depicted in a scatter plot at the
left hand side of Fig. 10.15. The energy of the system is φAB = −1.480 (The
negative value arises because we have omitted the term φ3). From the mixed
sample 10000 sample combinations have been selected at random. Its energy
distribution is shown as a histogram in the figure. The arrow indicates the
location of φAB . It corresponds to a p-value of 0.06. We can estimate the
error of the p-value p computing it from many permutation sets each with
a smaller number of permutations. From the variation of p from 100 times
100 permutations we find δp = 0.02. The p-value is small, indicating that the
samples belong to different populations. Indeed they have been drawn from
different distributions, a uniform distribution, −1.5 < x, y < 1.5 and a normal
distribution with standard deviations σx = σy = 1.

10.4.6 The k-Nearest Neighbor Test

The k-nearest neighbor test is per construction a two-sample test. The dis-
tribution of the test statistic is obtained in exactly the same way as in the
two-sample energy test which we have discussed in the previous section.

The performance of the k-nearest neighbor test is similar to that of the
energy test. The energy test (and the L2 test which is automatically included
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in the former) is more flexible than the k-nearest neighbor test and includes all
observation of the sample in the continuous distance function. The k-nearest
neighbor test on the other hand is less sensitive to variations of the density
which are problematic for the energy test with the Gaussian distance function
of constant width.

10.5 Significance of Signals

10.5.1 Introduction

Tests for signals are closely related to goodness-of-fit tests but their aim is
different. We are not interested to verify that H0 is compatible with a sample
but we intend to quantify the evidence of signals which are possibly present in
a sample which consists mainly of uninteresting background. Here not only the
distribution of the background has to be known but in addition we must be
able to parameterize the alternative which we search for. The null hypothesis
H0 corresponds to the absence of deviations from the background. The alter-
native Hs is not fully specified, otherwise it would be sufficient to compute
the simple likelihood ratio which we have discussed in Chap. 6.

Signal tests are applied when we search for rare decays or reactions like
neutrino oscillations. Another frequently occurring problem is that we want to
interpret a line in a spectrum as indication for a resonance or a new particle.
To establish the evidence of a signal, we usually require a very significant
deviation from the null hypothesis, i.e. the sum of background and signal has
to describe the data much better than the background alone because particle
physicists look in hundreds of histograms for more or less wide lines and thus
always find candidates9 which in most cases are just background fluctuations.
For this reason, signals are only accepted by the community if they have a
significance of at least four or five standard deviations. In cases where we
search more specifically for a certain phenomenon a smaller significance may
be sufficient. A high significance for a signal corresponds to a low p-value of
the null hypothesis.

To quote the p-value instead of the significance as expressed by the number
of standard deviations by which the signal exceeds the background expectation
is to be preferred because it is a measure which is independent of the form
of the distribution. However, the standard deviation scale is better suited
to illustrate the significance than the p-values scale where very small values
dominate. For this reason it has become customary to transform the p-value
p into the number of Gaussian standard deviations sG which are related
through

p = 1/
√
2π

∫ ∞

sG

exp(−x2/2)dx (10.23)

9This is the so-called look-else-where effect.
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Fig. 10.16. Transformation of p-values to one-sided number of standard deviations.

=
[
1− erf(sG/

√
2)
]
/2 . (10.24)

The function sG(p) is given in Fig. 10.16. Relations (10.23), (10.24) refer to
one-sided tests. For two-sided tests, p has to be multiplied by a factor two.

When we require very low p-values for H0 to establish signals, we have to
be especially careful in modeling the distribution of the test statistic. Often
the distribution corresponding to H0 is approximated by a polynomial and/or
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a signal by a Gaussian with some uncertainties in the parameters and assump-
tions which are difficult to implement in the test procedure. We then have to
be especially conservative. It is better to underestimate the significance of a
signal than to present evidence for a new phenomenon based on a doubtful
number.

To illustrate this problem we return to our standard example where we
search for a line in a one-dimensional spectrum. Usually, the background un-
der an observed bump is estimated from the number of events outside but
near the bump in the so-called side bands. If the side bands are chosen too
close to the signal they are affected by the tails of the signal, if they are cho-
sen too far away, the extrapolation into the signal region is sensitive to the
assumed shape of the background distribution which often is approximated
by a linear or quadratic function. This makes it difficult to estimate the size
and the uncertainty of the expected background with sufficient accuracy to
establish the p-value for a large (>4 st. dev.) signal. As numerical example
let us consider an expectation of 1000 background events which is estimated
by the experimenter too low by 2%, i.e. equal to 980. Then a 4.3 st. dev.
excess would be claimed by him as a 5 st. dev. effect and he would find too
low a p-value by a factor of 28. We also have to be careful with numerical
approximations, for instance when we approximate a Poisson distribution by
a Gaussian.

Usually, the likelihood ratio, i.e. the ratio of the likelihood which maximizes
Hs and the maximum likelihood for H0 is the most powerful test statistic. In
some situations a relevant parameter which characterizes the signal strength
is more informative.

10.5.2 The Likelihood Ratio Test

Definition

An obvious candidate for the test statistic is the likelihood ratio (LR) which
we have introduced and used in Sect. 10.3 to test goodness-of-fit of histograms,
and in Sect. 10.4 as a two-sample test. We repeat here its general definition:

λ =
sup [L0(θ0|x)]
sup [Ls(θs|x)]

,

lnλ = ln sup [L0(θ0|x)]− ln sup [Ls(θs|x)]

where L0, Ls are the likelihoods under the null hypothesis and the signal
hypothesis, respectively. The supremum is to be evaluated relative to the
parameters, i.e. the likelihoods are to be taken at the MLEs of the parameters.
The vector x represents the sample of the N observations x1, . . . , xN of a one-
dimensional geometric space. The extension to a multi-dimensional space is
trivial but complicates the writing of the formulas. The parameter space of
H0 is assumed to be a subset of that of Hs. Therefore λ will be smaller or
equal to one.
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For example, we may want to find out whether a background distribution
is described significantly better by a cubic than by a linear distribution:

f0 = α0 + α1x , (10.25)

fs = α0 + α1x+ α2x
2 + α3x

3 .

We would fit separately the parameters of the two functions to the observed
data and then take the ratio of the corresponding maximized likelihoods.

Frequently the data sample is so large that we better analyze it in form
of a histogram. Then the distribution of the number of events yi in bin i, i =
1, . . . , B can be approximated by normal distributions around the parameter
dependent predictions ti(θ). As we have seen in Chap. 6, Sect. 6.6 we then
get the log-likelihood

lnL = −1

2

B∑

i=1

[yi − ti]
2

ti
+ const.

which is equivalent to the χ2 statistic, χ2 ≈ −2 lnL. In this limit the likelihood
ratio statistic is equivalent to the χ2 difference, ∆χ2 = minχ2

0 − minχ2
s, of

the χ2 deviations, minχ2
0 with the parameters adjusted to the null hypothesis

H0, and minχ2
s with its parameters adjusted to the alternative hypothesis Hs,

background plus signal:

lnλ = ln sup [L0(θ0|y)]− ln sup [Ls(θs|y)] (10.26)

≈ −1

2
(minχ2

0 −minχ2
s) . (10.27)

The p-value derived from the LR statistic does not take into account that
a simple hypothesis is a priori more attractive than a composite one which
contains free parameters. Another point of criticism is that the LR is evaluated
only at the parameters that maximize the likelihood while the parameters
suffer from uncertainties. Thus conclusions should not be based on the p-value
only.

A Bayesian approach applies so-called Bayes factors to correct for the
mentioned effects but is not very popular because it has other caveats. Its
essentials are presented in the Appendix 13.15

Distribution of the Test Statistic

The distribution of λ under H0 in the general case is not known analytically;
however, if the approximation (10.27) is justified, the distribution of −2 lnλ
under certain additional regularity conditions and the conditions mentioned
at the end of Sect. 10.3.3 will be described by a χ2 distribution. In the example
corresponding to relations (10.25) this would be a χ2 distribution of 2 degrees
of freedom since fs compared to f0 has 2 additional free parameters. Knowing
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the distribution of the test statistic reduces the computational effort required
for the numerical evaluation of p-values considerably.

Let us look at a specific problem: We want to check whether an observed
bump above a continuous background can be described by a fluctuation or
whether it corresponds to a resonance. The two hypotheses may be described
by the distributions

f0 = α0 + α1x+ α2x
2, (10.28)

fs = α0 + α1x+ α2x
2 + α3N (x|µ, σ) ,

and we can again use lnλ or ∆χ2 as test statistic. Since we have to define the
test before looking at the data, µ and σ will be free parameters in the fit of
fs to the data. Unfortunately, now ∆χ2 no longer follows a χ2 distribution
of 3 degrees of freedom and has a significantly larger expectation value than
expected from the χ2 distribution. The reason for this dilemma is that for
α3 = 0 which corresponds to H0 the other parameters µ and σ are undefined
and thus part of the χ2 fluctuation in the fit to fs is unrelated to the difference
between fs and f0.

More generally, only if the following conditions are satisfied, ∆χ2 follows
in the large number limit a χ2 distribution with the number of degrees of
freedom given by the difference of the number of free parameters of the null
and the alternative hypotheses:

1. The distribution f0 of H0 has to be a special realization of the distribution
fs of Hs.

2. The fitted parameters have to be inside the region, i.e. off the boundary,
allowed by the hypotheses. For example, the MLE of the location of a
Gaussian should not be outside the range covered by the data.

3. All parameters of Hs have to be defined under H0.

If one of these conditions is not satisfied, the distribution of the test statis-
tic has to be obtained via a Monte Carlo simulation. This means that we gen-
erate many fictive experiments ofH0 and count how many of those have values
of the test statistic that exceed the one which has actually been observed. The
corresponding fraction is the p-value for H0. This is a fairly involved proce-
dure because each simulation includes fitting of the free parameters of the two
hypotheses. In Ref. [82] it is shown that the asymptotic behavior of the dis-
tribution can be described by an analytical function. In this way the amount
of simulation can be reduced.

Example 135. Distribution of the likelihood ratio statistic
We consider a uniform distribution (H0) of 1000 events in the interval

[0, 1] and as alternative a resonance with Gaussian width, σ = 0.05, and
arbitrary location µ in the range 0.2 ≤ µ ≤ 0.8 superposed to a uniform
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Fig. 10.17. Distributions of the test statistic under H0 and p-value as a function
of the test statistic.
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Fig. 10.18. Histogram of event sample used for the likelihood ratio test. The curve
is an unbinned likelihood fit to the data.
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distribution. The free parameters are ε, the fraction of resonance events and
µ. The logarithm of the likelihood ratio statistic is

lnλ = ln sup [L0(θ0|x)]− ln sup [Ls(θs|x)]

=

1000∑

i=1

ln(1)−
1000∑

i=1

ln

[
1− ε̂+

ε̂√
2πσ

exp

(
− (xi − µ̂)2

2σ2

)]

= −
1000∑

i=1

ln

[
1− ε̂+

ε̂√
2πσ

exp

(
− (xi − µ̂)2

2σ2

)]
,

essentially the negative logarithm of the likelihood of the MLE. Fig. 10.17
shows the results from a million simulated experiments. The distribution of
− lnλ under H0 has a mean value of −1.502 which corresponds to 〈∆χ2〉 =
3.004. The p-value as a function of − lnλ follows asymptotically an exponential
as is illustrated in the right hand plot of Fig. 10.17. Thus it is possible to
extrapolate the function to smaller p-values which is necessary to claim large
effects. Figure 10.18 displays the result of an experiment where a likelihood
fit finds a resonance at the energy 0.257. It contains a fraction of 0.0653 of
the events. The logarithm of the likelihood ratio is 9.277. The corresponding
p-value for H0 is pLR = 1.8 ·10−4. Hence it is likely that the observed bump is
a resonance. In fact it had been generated as a 7 % contribution of a Gaussian
distribution N (x|0.25, 0.05) to a uniform distribution.

We have to remember though that the p-value is not the probability that
H0 is true, it is the probability thatH0 simulates the resonance of the type seen
in the data. In a Bayesian treatment, see Appendix 13.15, we find betting odds
in favor of H0 of about 2% which is much less impressive. The two numbers
refer to different issues but nonetheless we have to face the fact that the two
different statistical approaches lead to different conclusions about how evident
the existence of a bump really is.

In experiments with a large number of events, the computation of the p-
value distribution based on the unbinned likelihood ratio becomes excessively
slow and we have to turn to histograms and to compute the likelihood ratio
of H0 and Hs from the histogram. Figure 10.19 displays some results from
the simulation of 106 experiments of the same type as above but with 10000
events distributed over 100 bins.

In the figure also the distribution of the signal fraction under H0 and for
experiments with 1.5% resonance added is shown. The large spread of the
signal distributions reflects the fact that identical experiments by chance may
observe a very significant signal or just a slight indication of a resonance.
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General Multi-Channel Case

It is easy to extend the likelihood ratio test to the multi-channel case. We as-
sume that the observations xk of the channels k = 1, . . . ,K are independent of
each other. The overall likelihood is the product of the individual likelihoods.
For the log-likelihood ratio we then have to replace (10.26) by

lnλ =

K∑

k=1

{ln sup [L0k(θ0k|xk)]− ln sup [Lsk(θsk|xk)]} .

As an example, we consider an experiment where we observe bumps at the
same mass in K different decay channels, bumps which are associated to the
same phenomenon, i.e. a particle decaying into different secondaries.

When we denote the decay contribution into channel k by εk, the p.d.f.
of the decay distribution by fk(xk|θk) and the corresponding background
distributions by f0k(xk|θ0k), the distribution under H0 is

f0(x1, . . . ,xK |θ01, . . . , θ0K) =

K∏

k=1

f0k(xk|θ0k)

and the alternative signal distribution is

fs(x1, . . . ,xK |θ01, . . . , θ0K ; θ1, . . . , θK ; ε1, . . . , εK) =
K∏

k=1

[ (1− εk)f0k(xk|θ0k) + εkfk(xk|θk)] .

The likelihood ratio is then

lnλ =

K∑

k=1

{
ln f0k(xk|θ̂0k)− ln

[
(1− ε̂k)f0k(xk|θ̂′

0k) + ε̂kfk(xk|θ̂k)
]}

.

Remark, that the MLEs of the parameters θ0k depend on the hypothesis.
They are different for the null and the signal hypotheses and, for this reason,
have been marked by an apostrophe in the latter.

10.5.3 Tests Based on the Signal Strength

Instead of using the LR statistic it is often preferable to use a parameter of
Hs as test statistic. In the simple example of (10.25) the test statistic t = α3

would be a sensible choice. When we want to estimate the significance of a
line in a background distribution, instead of the likelihood ratio the number
of events which we associate to the line (or the parameter α3 in our example
(10.28)) is a reasonable test statistic. Compared to the LR statistic it has the
advantage to represent a physical parameter but usually the corresponding
test is less powerful.
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Example 136. Example 135 continued
Using the fitted fraction of resonance events as test statistic, the p-value

for H0 is pf = 2.2 · 10−4, slightly less stringent than that obtained from the
LR. Often physicists compare the number of observed events directly to the
prediction from H0. In our example we have 243 events within two standard
deviations around the fitted energy of the resonance compared to the expecta-
tion of 200 from a uniform distribution. The probability to observe ≥ 243 for
a Poisson distribution with mean 200 is pp = 7.3 · 10−4. This number cannot
be compared directly with pLR and pf because the latter two values include
the look-else-where effect, i.e. that the simulated resonance may be located
at an arbitrary energy. A lower number for pp is obtained if the background
is estimated from the side bands, but then the computation becomes more
involved because the error on the expectation has to be included. Primitive
methods are only useful for a first crude estimate.

We learn from this example that the LR statistic provides the most power-
ful test among the considered alternatives. It does not only take into account
the excess of events of a signal but also its expected shape. For this reason
pLR is smaller than pf .

Often the significance of a signal s is stated in units of standard deviations
σ:

s =
Ns√
N0 + δ20

.

Here Ns is the number of events associated to the signal, N0 is the number
of events in the signal region expected from H0 and δ0 its uncertainty. In
the Gaussian approximation it can be transformed into a p-value via (10.23).
Unless N0 is very large and δ0 is very well known, this p-value has to be
considered as a lower limit or a rough guess.
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Statistical Learning

11.1 Introduction

In the process of its mental evolution a child learns to classify objects, persons,
animals, and plants. This process partially proceeds through explanations by
parents and teachers (supervised learning), but partially also by cognition of
the similarities of different objects (unsupervised learning). But the process
of learning – of children and adults – is not restricted to the development of
the ability merely to classify but it includes also the realization of relations
between similar objects, which leads to ordering and quantifying physical
quantities, like size, time, temperature, etc.. This is relatively easy, when the
laws of nature governing a specific relation have been discovered. If this is not
the case, we have to rely on approximations, like inter- or extrapolations.

Also computers, when appropriately programmed, can perform learning
processes in a similar way, though to a rather modest degree. The achieve-
ments of the so-called artificial intelligence are still rather moderate in most
areas, however a substantial progress has been achieved in the fields of super-
vised learning and classification and there computers profit from their ability
to handle a large amount of data in a short time and to provide precise
quantitative solutions to well defined specific questions. The techniques and
programs that allow computers to learn and to classify are summarized in the
literature under the term machine learning.

Let us now specify the type of problems which we discuss in this chapter:
For an input vector x we want to find an output ŷ. The input is also called pre-
dictor, the output response. Usually, each input consists of several components
(attributes, properties), and is written therefore in boldface letters. Normally,
it is a metric (quantifiable) quantity but it could also be a categorical quantity
like a color or a particle type. The output can also contain several components
or consists of a single real or discrete (Yes or No) variable. Like a human be-
ing, a computer program learns from past experience. The teaching process,
called training, uses a training sample {(x1,y1), (x2,y2) . . . (xN ,yN )}, where
for each input vector xi the response yi is known. When we ask for the re-
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sponse to an arbitrary continuous input x, usually its estimate ŷ(x) will be
more accurate when the distance to the nearest input vector of the training
sample is small than when it is far away. Consequently, the training sample
should be as large as possible or affordable. The region of interest should be
covered with input vectors homogeneously, and we should be aware that the
accuracy of the estimate decreases at the boundary of this region.

Learning which exceeds simple memorizing relies on the existence of more
or less simple relations between input and response: Similar input corresponds
to similar response. In our approach this translates into the requirement that
the responses are similar for input vectors which are close. We can not learn
much from erratic distributions.

Example 137. Simple empirical relations
The resistance R of a wire is used for a measurement of the temperature

T . In the teaching process which here is called calibration, a sample of cor-
responding values Ri, Ti is acquired. In the application we want to find for a
given input R an estimate of T . Usually a simple interpolation will solve this
problem.

For more complicated relations, approximations with polynomials, higher
spline functions or orthogonal functions are useful.

Example 138. Search for common properties
A certain class of molecules has a positive medical effect. The structure,

physical and chemical properties x of these molecules are known. In order to
find out which combination of the properties is relevant, the distribution of
all attributes of the molecules which represent the training objects is investi-
gated. A linear method for the solution of this task is the principal component
analysis.

Example 139. Two-class classification, SPAM mails
A sizable fraction of electronic mails are of no interest to the addressee

and considered by him as a nuisance. Many mailing systems use filter pro-
grams to eliminate these undesired so-called SPAM1 mails. After evaluation
of a training sample where the classification into Yes or No (accept or re-
ject) is done by the user, the programs are able to take over the classification
job. They identify certain characteristic words, like Viagra, sex, profit, advan-
tage, meeting, experiment, university and other attributes like large letters,
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colors to distinguish between SPAM and serious mails. This kind of problem
is efficiently solved by decision trees and artificial neural networks .

The attributes are here categorical variables. In the following we will re-
strict ourselves mainly to continuous variables.

Example 140. Multi-class classification, pattern recognition
Hand-written letters or figures have to be recognized. Again a sample for

which the relation between the written pixels and the letters is known, is
used to train the program. Also this problem can be treated by decision trees,
artificial neural networks, and by kernel methods . Here the attributes are the
pixel coordinates.

As we have observed also previously, multivariate applications suffer from
the curse of dimensionality. There are two reasons: i) With increasing number
d of dimensions, the distance between the input vectors increases and ii) the
surface effects are enhanced. When a fixed number of points is uniformly
distributed over a hyper-cube of dimension d, the mean distance between the
points is proportional to

√
d. The higher the dimension, the more empty is

the space. At the same time the region where estimates become less accurate
due to surface effects increases. The fraction of the volume taken by a hyper-
sphere inscribed into a hyper-cube is only 5.2% for d = 5, and the fraction of
the volume within a distance to the surface less than 10% of the edge length
increases like 1− 0.8d, this means from 20% for d = 1 to 67% for d = 5.

Example 141. Curse of dimensionality
A training sample of 1000 five-dimensional inputs is uniformly distributed

over a hyper-cube of edge length a. To estimate the function value at the
center of the region we take all sample elements within a distance of a/4 from
the center. These are on average one to two only ( 1000× 0.052× 0.55 = 1.6),
while in one dimension 500 elements would contribute.

In the following, we will first discuss the approximation of measurements
afflicted with errors by analytic functions and the interpolation by smoothing
techniques. Next we introduce the factor analysis, including the so-called prin-
cipal component analysis. The last section deals with classification methods,
based on artificial neural networks, kernel algorithms, and decision trees. In
recent years we observed a fast progress in this field due to new developments,
i.e. support vector machines, boosting, and the availability of powerful general
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computer algorithms. This book can only introduce these methods, without
claim of completeness. A nice review of the whole field is given in [16].

11.2 Smoothing of Measurements and Approximation by
Analytic Functions

We start with two simple examples, which illustrate applications:
i) In a sequence of measurements the gas amplification of an ionization

chamber as a function of the applied voltage has been determined. We would
like to describe the dependence in form of a smooth curve.

ii) With optical probes it is possible to scan a surface profile point-wise.
The objects may be workpieces, tools, or human bodies. The measurements
can be used by milling machines or cutting devices to produce replicates or
clothes. To steer these machines, a complete surface profile of the objects is
needed. The discrete points have to be approximated by a continuous function.
When the surface is sufficiently smooth, this may be achieved by means of a
spline approximation.

More generally, we are given a number N of measurements yi with uncer-
tainties δi at fixed locations xi, the independent variables, but are interested
in the values of the dependent or response variable y at different values of x,
that is, we search for a function f(x) which approximates the measurements,
improves their precision and inter- and extrapolates in x. The simplest way
to achieve this is to smooth the polygon connecting the data points.

More efficient is the approximation of the measurement by a parameter
dependent analytic function f(x, θ). We then determine the parameters by
a least square fit, i.e. minimize the sum over the squared and normalized
residuals

∑
[(yi − f(xi, θ)]

2
/δ2i with respect to θ. The approximation should

be compatible with the measurements within their statistical errors but the
number of free parameters should be as small as possible. The accuracy of
the measurements has a decisive influence on the number of free parameters
which we permit in the fit. For large errors we allow also for large deviations
of the approximation from the measurements. As a criterion for the number
of free parameters, we use statistical tests like the χ2 test. The value of χ2

should then be compatible with the number of constraints, i.e. the number of
measured points minus the number of fitted parameters. Too low a number
of parameters leads to a bias of the predictions, while too many parameters
reduce the accuracy, since we profit less from constraints.

Both approaches rely on the presumption that the true function is simple
and smooth. Experience tells us that these conditions are justified in most
cases.

The approximation of measurements which all have the same uncertainty
by analytic functions is called regression analysis. Linear regression had been
described in Chap. 7.3.3. In this section we treat the general non-linear case
with arbitrary errors.



11.2 Smoothing of Measurements and Approximation by Analytic Functions 345

In principle, the independent variable may also be multi-dimensional. Since
then the treatment is essentially the same as in the one-dimensional situation,
we will mainly discuss the latter.

11.2.1 Smoothing Methods

We use the measured points in the neighborhood of x to get an estimate of
the value of y(x). We denote the uncertainties of the output vectors of the
training sample by δj for the component j of y. When the points of the training
sample have large errors, we average over a larger region than in the case of
small errors. The better accuracy of the average for a larger region has to be
paid for by a larger bias, due to the possibility of larger fluctuations of the
true function in this region. Weighting methods work properly if the function
is approximately linear. Difficulties arise in regions with lot of structure and
at the boundaries of the region if there the function is not approximately
constant.

k-Nearest Neighbors

The simplest method for a function approximation is similar to the density
estimation which we treat in Chap. 9 and which uses the nearest neighbors in
the training sample. We define a distance di = |x− xi| and sort the elements
of the training sample in the order of their distances di < di+1. We choose
a number K of nearest neighbors and average over the corresponding output
vectors:

ŷ(x) =
1

K

K∑

i=1

yi .

This relation holds for constant errors. Otherwise for the component j of y
the corresponding weighted mean

ŷj(x) =

∑K
i=1 yij/δ

2
ij∑K

i=1 1/δ
2
ij

has to be used. The choice of K depends on the density of points in the
training sample and the expected variation of the true function y(x).

If all individual points in the projection j have mean square errors δ2j , the
error of the prediction δyj is given by

(δyj)
2 =

δ2j
K

+ 〈yj(x)− ŷj(x)〉2 . (11.1)

The first term is the statistical fluctuation of the mean value. The second
term is the bias which is equal to the systematic shift squared, and which
is usually difficult to evaluate. There is the usual trade-off between the two
error components: with increasing K the statistical term decreases, but the
bias increases by an amount depending on the size of the fluctuations of the
true function within the averaging region.
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k-Nearest Neighbors with Linear Approximation

The simple average suffers from the drawback that at the boundary of the
variable space the measurements contributing to the average are distributed
asymmetrically with respect to the point of interest x. If, for instance, the
function falls strongly toward the left-hand boundary of a one-dimensional
space, averaging over points which are predominantly located at the right
hand side of x leads to too large a result. (See also the example at the end of
this section). This problem can be avoided by fitting a linear function through
the K neighboring points instead of using the mean value of y.

Gaussian Kernels

To take all k-nearest neighbors into account with the same weight independent
of their distance to x is certainly not optimal. Furthermore, its output func-
tion is piecewise constant (or linear) and thus discontinuous. Better should
be a weighting procedure, where the weights become smaller with increasing
distances. An often used weighting or kernel function2 is the Gaussian. The
sum is now taken over all N training inputs:

ŷ(x) =

∑N
i=1 yie

−α|x−xi|2

∑N
i=1 e

−α|x−xi|2
.

The constant α determines the range of the correlation. Therefore the width
s = 1/

√
2α of the Gaussian has to be adjusted to the density of the points

and to the curvature of the function. If computing time has to be economized,
the sum may of course be truncated and restricted to the neighborhood of x,
for instance to the distance 2s. According to (11.1) the mean squared error
becomes3:

(δyj)
2 = δ2j

∑
e−2α|x−xi|2

[∑
e−α|x−xi|2

]2 + 〈yj(x)− ŷj(x)〉2 .

11.2.2 Approximation by Orthogonal Functions

Complete orthogonal function systems offer three attractive features: i) The
fitted function coefficients are uncorrelated, ii) The function systems are com-
plete and thus able to approximate any well behaved, i.e. square integrable,
function, iii) They are naturally ordered with increasing oscillation frequency4.
The function system to be used depends on the specific problem, i.e. on the

2The denotation kernel will be justified later, when we introduce classification
methods.

3This relation has to be modified if not all errors are equal.
4We use the term frequency also for spatial dimensions.
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domain of the variable and the asymptotic behavior of the function. Since the
standard orthogonal functions are well known to physicists, we will be very
brief and omit all mathematical details, they can be looked-up in mathemat-
ical handbooks.

Complete normalized orthogonal function systems {ui(x)} defined on the
finite or infinite interval [a, b] fulfil the orthogonality and the completeness
relations. To simplify the notation, we introduce the inner product (g, h)

(g, h) ≡
∫ b

a

g∗(x)h(x)dx

and have

(ui, uj) = δij ,∑

i

u∗i (x)ui(x
′) = δ(x− x′) .

For instance, the functions of the well known Fourier system for the interval
[a, b] = [−L/2, L/2] are un(x) = 1√

L
exp(i2πnx/L).

Every square integrable function can be represented by the series

f(x) =

∞∑

i=0

aiui(x) , with ai = (ui, f)

in the sense that the squared difference converges to zero with increasing
number of terms5:

lim
K→∞

[
f(x)−

K∑

i=0

aiui(x)

]2
= 0 . (11.2)

The coefficients ai become small for large i, if f(x) is smooth as compared
to the ui(x), which oscillate faster and faster for increasing i. Truncation of
the series therefore causes some smoothing of the function.

The approximation of measurements by orthogonal functions works quite
well for very smooth data. When the measurements show strong short range
variations, sharp peaks or valleys, then a large number of functions is required
to describe the data. Neglecting individually insignificant contributions may
lead to a poor approximation. Typically, their truncation may produce spuri-
ous oscillations (“ringing”) in regions near to the peaks, where the true function
is already flat.

For large data sets with equidistant points and equal errors the Fast
Fourier Transform, FFT, plays an important role, especially for data smooth-
ing and image processing. Besides the trigonometric functions, other orthog-
onal systems are useful, some of which are displayed in Table 11.2.2. The

5At eventual discontinuities, f(x) should be taken as [f(x+ 0) + f(x− 0)]/2.
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Table 11.1. Characteristics of orthogonal polynomials.

Polynomial Domain Weight function
Legendre, Pi(x) [−1,+1] w(x) = 1
Hermite, Hi(x) (−∞,+∞) w(x) = exp(−x2)
Laguerre, Li(x) [0,∞) w(x) = exp(−x)

orthogonal functions are proportional to polynomials pi(x) of degree i mul-
tiplied by the square root of a weight function w(x), ui(x) = pi(x)

√
w(x).

Specifying the domain [a, b] and w, and requiring orthogonality for ui,j,

(ui, uj) = ciδij ,

fixes the polynomials up to the somewhat conventional normalization factors√
ci.

The most familiar orthogonal functions are the trigonometric functions
used in the Fourier series mentioned above. From electrodynamics and quan-
tum mechanics we are also familiar with Legendre polynomials and spherical
harmonics. These functions are useful for data depending on variables de-
fined on the circle or on the sphere, e.g. angular distributions. For example,
the distribution of the intensity of the microwave background radiation which
contains information about the curvature of the space, the baryon density and
the amount of dark matter in the universe, is usually described as a function
of the solid angle by a superposition of spherical harmonics. In particle physics
the angular distributions of scattered or produced particles can be described
by Legendre polynomials or spherical harmonics. Functions extending to ±∞
are often approximated by the eigenfunctions of the harmonic oscillator con-
sisting of Hermite polynomials multiplied by the exponential exp(−x2/2) and
functions bounded to x ≥ 0 by Laguerre polynomials multiplied by e−x/2.

In order to approximate a given measurement by one of the orthogonal
function systems, one usually has to shift and scale the independent variable
x.

Polynomial Approximation

The simplest function approximation is achieved with a simple polynomial
f(x) =

∑
akx

k or more generally by f(x) =
∑

akuk where uk is a polynomial
of order k. Given data yν with uncertainties δν at locations xν we minimize

χ2 =

N∑

ν=1

1

δ2ν

[
yν −

K∑

k=0

akuk(xν)

]2
, (11.3)

in order to determine the coefficients ak. To constrain the coefficients, their
number K + 1 has to be smaller than the number N of measurements. All
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polynomial systems of the same order describe the data equally well but differ
in the degree to which the coefficients are correlated. The power of the poly-
nomial is increased until it is compatible within statistics with the data. The
decision is based on a χ2 criterion.

The purpose of this section is to show how we can select polynomials with
uncorrelated coefficients. In principle, these polynomials and their coefficients
can be computed through diagonalization of the error matrix but they can
also be obtained directly with the Gram–Schmidt method. This method has
the additional advantage that the polynomials and their coefficients are given
by simple algebraic relations.

For a given sample of measured points yν = f(xν) with errors δν , we fix
the weights in the usual way

wν = w(xν ) =
1

δ2ν
/
∑

j

1

δ2j
,

and now define the inner product of two functions g(x), h(x) by

(g, h) =
∑

ν

wνg(xν)h(xν )

with the requirement
(ui, uj) = δij .

Minimizing χ2 is equivalent to minimizing

X2 =

N∑

ν=1

wν

[
yν −

K∑

k=0

akuk(xν)

]2
.

For K = N − 1 the square bracket at the minimum of X2 is zero,

yν −
N−1∑

k=0

akuk(xν) = 0

for all ν, and forming the inner product with uj we get

(y, uj) = aj . (11.4)

This relation produces the coefficients also in the interesting case K < N − 1.
To construct the orthogonal polynomials, we set v0 = 1,

ui =
vi√

(vi, vi)
, (11.5)

vi+1 = xi+1 −
i∑

j=0

(uj , x
i+1)uj . (11.6)
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The first two terms in the corresponding expansion, a0u0 and a1u1, are
easily calculated. From (11.5), (11.6), (11.4) and the following definition of
the moments of the weighted sample

x =
∑

ν

wνxν , s
2
x =

∑

ν

wν(xν − x)2 , sxy =
∑

ν

wν(xνyν − xy)

we find the coefficients and functions which fix the polynomial expansion of
y:

y = y +
sxy
s2x

(x− x) .

We recover the well known result for the best fit by a straight line in the
form with independent coefficients: This is of course no surprise, as the func-
tions that are minimized are identical, namely χ2 in both cases, see Example
116 in Chap. 7. The calculation of higher order terms is straight forward but
tedious. The uncertainties δai of the coefficients are all equal independent of
i and given by the simple relation

(δai)
2 = 1/

N∑

ν=1

1

δ2ν
.

The derivation of this formula is given in the Appendix 13.12 together with
formulas for the polynomials in the special case where all measurements have
equal errors and are uniformly distributed in x.

The Gram–Charlier Series

The following example for the application of Hermite functions, strictly speak-
ing, does not concern the approximation of measurements by a function but
the approximation of an empirical p.d.f. (see Sect. 12.1.1 in the following
Chapter). We discuss it here since it is mathematically closely related to the
subject of this section.

The Gram–Charlier series is used to approximate empirical distributions
which do not differ very much from the normal distribution. It expresses
the quotient of an empirical p.d.f. f(x) to the standard normal distribution
N (x|0, 1) as an expansion in the slightly modified Hermite polynomials H̃i(x)
in the form

f(x) = N (x)

∞∑

i=0

aiH̃i(x) . (11.7)

Here, N (x) ≡ (2π)−1/2 exp(−x2/2), the standard normal distribution, dif-
fers somewhat from the weight function exp(−x2) used in the definition of the
Hermite polynomials H(x) given above in Table 11.2.2. The two definitions
of the polynomials are related by

H̃i(x) =
1√
2i
Hi

(
x√
2

)
.
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The orthogonality relation of the modified polynomials is

(H̃i, H̃j) =

∫ +∞

−∞
N (x)H̃i(x)H̃j(x)dx = i! δij , (11.8)

and their explicit form can be obtained by the simple recursion relation:

H̃i+1 = xH̃i − iH̃i−1 .

With H̃0 = 1 , H̃1 = x we get

H̃2 = x2 − 1 ,

H̃3 = x3 − 3x ,

H̃4 = x4 − 6x2 + 3 ,

and so on.
When we multiply both sides of (11.7) with H̃j(x) and integrate, we find,

according to (11.8), the coefficients ai from

ai =
1

i!

∫
f(x)H̃i(x)dx .

These integrals can be expressed as combinations of moments of f(x),
which are to be approximated by the sample moments of the experimental
distribution. First, the sample mean and the sample variance are used to
shift and scale the experimental distribution such that the transformed mean
and variance equal 0 and 1, respectively. Then a1,2 = 0, and the empirical
skewness and excess of the normalized sample γ1,2 as defined in Sect. 3.2 are
proportional to the parameters a3,4. The approximation to this order is

f(x) ≈ N (x)(1 +
1

3!
γ1H̃3(x) +

1

4!
γ2H̃4(x)) .

As mentioned, this approximation is well suited to describe distributions
which are close to normal distributions. This is realized, for instance, when the
variate is a sum of independent variates such that the central limit theorem
applies. It is advisable to check the convergence of the corresponding Gram–
Charlier series and not to truncate the series too early [3].

11.2.3 Wavelets

The trigonometric functions used in the Fourier series are discrete in the fre-
quency domain, but extend from minus infinity to plus infinity in the spatial
domain and thus are not very well suited to describe strongly localized func-
tion variations. To handle this kind of problems, the wavelet system has been
invented. Wavelets are able to describe pulse signals and spikes like those
generated in electrocardiograms, nuclear magnetic resonance (NMR) records
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Fig. 11.1. Nine orthonormalized wavelets with three different frequencies..

or seismic records, in data transmission, and for the coding of images and
hand-written text. For data reduction and storage they have become an in-
dispensable tool.

The simplest orthogonal system with the desired properties are the Haar
wavelets shown in Fig. 11.1. The lowest row shows three wavelets which are
orthogonal, because they have no overlap. The next higher row contains again
three wavelets with one half the length of those below. They are orthogonal to
each other and to the wavelets in the lower row. In the same way the higher
frequency wavelets in the following row are constructed. We label them with
two indices j, k indicating length and position. We define a mother function
ψ(x), the bottom left wavelet function of Fig. 11.1.

ψ(x) =





1, if 0 ≤ x < 1
2

−1, if 1
2 ≤ x < 1

0, else

and setW00 = ψ(x). The remaining wavelets are then obtained by translations
and dilatations in discrete steps from the mother function ψ(x):

Wjk(x) = 2j/2ψ(2jx− k) .

The factor 2j/2 provides the normalization in the orthonormality relation6.
∫ +∞

−∞
W ∗

ik(x)Wjl(x)dx = δijδkl . (11.9)

6The Haar wavelets are real, but some types of wavelets are complex.
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It is evident that wavelets are much better suited to fit local structures
than the sine and cosine functions of the Fourier expansion, since the wavelet
expansion coefficients cjk contain information on frequency and location of a
signal.

The simple Haar wavelets shown in Fig. 11.1 which we have introduced to
demonstrate the principal properties of wavelets are rarely used in applica-
tions as functions with infinitely sharp edges are usually absent in a realistic
phenomenon. More common are the smoother wavelets

ψ(x) = 1√
2πσ3

e−x2/(2σ2)(1− x2

σ2 ) (Mexican Hat) , (11.10)

ψ(x) = (eix − c)e−x2/(2σ2) (Morlet-Wavelet) , (11.11)

and many others. The first function, the Mexican hat, is the second derivative
of the Gaussian function, Fig. 11.2. The second, the Morlet function, is a
complex monochromatic wave, modulated by a Gaussian. The constant c =
exp(−σ2/2) in the Morlet function can usually be neglected by choosing a
wide lowest order function, σ >∼ 5. In both functions σ defines the width of
the window.

The mother function ψ has to fulfil apart from the trivial normalization
property 11.9, also the relation

∫
ψ(x)dx = 0 .

Any square integrable function f(x) fulfilling
∫
f(x)dx = 0 can be expanded

in the discrete wavelet series,

f(x) =
∑

j,k

cjkWjk(x) .

As usual, in order to regularize the function f(x), the expansion is trun-
cated when the coefficients become insignificant with increasing j, correspond-
ing to small details or large frequencies.

The calculation of the coefficients cjk is in principle analogous to the calcu-
lation of Fourier coefficients by convolution of f with the wavelets7. For given
measurements a least square fit can be applied. The success of the wavelet ap-
plications was promoted by the appearance of fast numerical algorithms, like
the multi-scale analysis. They work on a function f which need not integrate
to zero, sampled at equidistant points, similarly to the fast Fourier transform
(FFT).

An elementary introduction to the wavelet analysis is found in [90]. Pro-
grams are available in program libraries and in the internet.

7The wavelets (11.10), (11.11) are not orthogonal. Thus the coefficients are cor-
related.
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11.2.4 Spline Approximation

The mathematical and numerical treatment of polynomials is especially sim-
ple and effective. Therefore, they are often chosen for the approximation of
experimental data. A disadvantage of polynomials is however that they tend
to infinity for large absolute values of the independent variable. This difficulty
is resolved by using piecewise polynomial functions, the splines.

According to the degree of the polynomials used, we distinguish between
linear, quadratic, cubic etc. splines.

The simplest spline approximation is the linear one, consisting of a poly-
gon. The steps in the independent variable x between the knots are constant
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(Fig. 11.3). The lower the chosen number of knots and the spline order are,
the larger will be on average the deviations of the points from the fitted curve.
A sensible choice should take into account the mean squared dispersion of the
points, i.e. the χ2-sum should be of the order of the number of degrees of
freedom. When the response values y are exact and equidistant, the points
are simply connected by a polygon.

A smoother approximation with no kinks is obtained with quadratic
splines. A curve with continuous derivatives up to order n is produced with
splines of degree ≥ n + 1. Since a curve with continuous second derivatives
looks smooth to the human eye, splines of degree higher than cubic are rarely
used.

Spline approximations are widely used in technical disciplines. They have
also been successfully applied to the deconvolution problem [12, 67] (Chap.
9). Instead of adapting a histogram to the true distribution, the amplitudes
of spline functions can be fitted. This has the advantage that we obtain a
continuous function which incorporates the desired degree of regularization.
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For the numerical computations the so called B-splines (basis splines) are
especially useful. Linear, quadratic and cubic B-splines are shown in Fig. 11.4.
The superposition of B-splines fulfils the continuity conditions at the knots.
The superposition of the triangular linear B-splines produces a polygon, that
of quadratic and cubic B-splines a curve with continuous slope and curvature,
respectively.

A B-spline of given degree is determined by the step width b and the
position x0 of its center. Their explicit mathematical expressions are given in
Appendix 13.13.

The function is approximated by

f̂(x) =

K∑

k=0

akBk(x) . (11.12)

The amplitudes ak can be obtained from a least squares fit. For values of the
response function yi and errors δyi at the input points xi, i = 1, . . . , N , we
minimize

χ2 =

N∑

i=1

[
yi −

∑K
k=0 akBk(xi)

]2

(δyi)2
. (11.13)

Of course, the number N of input values has to be at least equal to the
number K of splines. Otherwise the number of degrees of freedom would
become negative and the approximation under-determined.

Spline Approximation in Higher Dimensions

In principle, the spline approximation can be generalized to higher dimensions.
However, there the difficulty is that a grid of intervals (knots) destroys the
rotation symmetry. It is again advantageous to work with B-splines. Their
definition becomes more complicated: In two dimensions we have instead
of triangular functions pyramids and for quadratic splines also mixed terms
∝ x1x2 have to be taken into account. In higher dimensions the number of
mixed terms explodes, another example of the curse of dimensionality.

11.2.5 Approximation by a Combination of Simple Functions

There is no general recipe for function approximation. An experienced scientist
would try, first of all, to find functions which describe the asymptotic behav-
ior and the rough distribution of the data, and then add further functions
to describe the details. This approach is more tedious than using programs
from libraries but will usually produce results superior to those of the general
methods described above.

Besides polynomials, a0+a1x+a2x2+ · · ·, rational functions can be used,
i.e. quotients of two polynomials (Padé approximation), the exponential func-
tion eαx, the logarithm b log x, the Gaussian e−ax2

, and combinations like
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xae−bx. In many cases a simple polynomial will do. The results usually im-
prove when the original data are transformed by translation and dilatation
x→ a(x+ b) to a normalized form.

11.2.6 Example

In order to compare different methods, we have generated at equidistant values
xi of the variable x, function values yi according to the function xe−xwith
superimposed Gaussian fluctuations. The measurements generated in this way
are smoothed, respectively fitted by different functions. The results are shown
in Fig. 10.9. All eight panels show the original function and the measured
points connected by a polygon.

In the upper two panels smoothing has been performed by weighting. Typi-
cal for both methods are that structures are washed-out and strong deviations
at the borders. The Gaussian weighting in the left hand panel performs better
than the method of nearest neighbors on the right hand side which also shows
spurious short range fluctuations which are typical for this method.

As expected, also the linear spline approximation is not satisfactory but the
edges are reproduced better than with the weighting methods. Both quadratic
and cubic splines with 10 free parameters describe the measurement points ad-
equately, but the cubic splines show some unwanted oscillations. The structure
of the spline intervals is clearly seen. Reducing the number of free parameters
to 5 suppresses the spurious fluctuations but then the spline functions cannot
follow any more the steep rise at small x. There is only a marginal difference
between the quadratic and the cubic spline approximations.

The approximation by a simple polynomial of fourth order, i.e. with 5 free
parameters, works excellently. By the way, it differs substantially from the
Taylor expansion of the true function. The polynomial can adapt itself much
better to regions of different curvature than the splines with their fixed step
width.

To summarize: The physicist will usually prefer to construct a clever
parametrization with simple analytic functions to describe his data and avoid
the more general standard methods available in program libraries. Those are
useful to get a fast overview and for the parametrization of a large amount of
data.

As we have already mentioned, the approximation of measurements by the
standard set of orthogonal functions works quite well for very smooth func-
tions where sharp peaks and valleys are absent. Peaks and bumps are bet-
ter described with wavelets than with the conventional orthogonal functions.
Smoothing results of measurements with the primitive kernel methods which
we have discussed are usually unsatisfactory. A better performance is obtained
with kernels with variable width and corrections for a possible boundary bias.
The reader is referred to the literature [91]. Spline approximations are useful
when the user has no idea about the shape of the function and when the
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measurements are able to constrain the function sufficiently to suppress fake
oscillations.

11.3 Linear Factor Analysis and Principal Components

Factor analysis and principal component analysis (PCA) both reduce a multi-
dimensional variate space to lower dimensions. In the literature there is no
clear distinction between the two techniques.

Often several features of an object are correlated or redundant, and we
want to express them by a few uncorrelated components with the hope to
gain deeper insight into latent relations. One would like to reduce the number
of features to as low a number of components, called factors, as possible.

Let us imagine that for 20 cuboids we have determined 6 geometrical and
physical quantities: volume, surface, basis area, sum of edge lengths, mass, and
principal moments of inertia. We submit these data which may be represented
by a 6-dimensional vector to a colleague without further information. He will
look for similarities and correlations, and he might guess that these data can
be derived for each cuboid from only 4 parameters, namely length, width,
height, and density. The search for these basis parameters, the components or
factors is called factor analysis [92, 93].

A general solution for this problem cannot be given, without an ansatz for
the functional relationship between the feature matrix, in our example build
from the 20 six-dimensional data vectors and its errors. Our example indicates
though, in which direction we might search for a solution of this problem. Each
body is represented by a point in a six-dimensional feature space. The points
are, however, restricted to a four-dimensional subspace, the component space.
The problem is to find this subspace. This is relatively simple if it is linear.

In general, and in our example, the subspace is not linear, but a linear
approximation might be justified if the cuboids are very similar such that
the components depend approximately linearly on the deviations of the input
vectors from a center of gravity. Certainly in the general situation it is reason-
able to look first for a linear relationship between features and parameters.
Then the subspace is a linear vector space and easy to identify. In the special
situation where only one component exists, all points lie approximately on a
straight line, deviations being due to measurement errors and non-linearity.
To identify the multi-dimensional plane, we have to investigate the correla-
tion matrix. Its transformation into diagonal form delivers the principal com-
ponents – linear combinations of the feature vectors in the direction of the
principal axes. The principal components are the eigenvectors of the correla-
tion matrix ordered according to decreasing eigenvalues. When we ignore the
principal components with small eigenvalues, the remaining components form
the planar subspace.

Factor analysis or PCA has been developed in psychology, but it is widely
used also in other descriptive fields, and there are numerous applications in
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Fig. 11.6. Scatter diagram of two attributes of 11 measured objects.

chemistry and biology. Its moderate computing requirements which are at
the expense of the restriction to linear relations, are certainly one of the
historical reasons for its popularity. We sketch it below, because it is still in
use, and because it helps to get a quick idea of hidden structures in multi-
dimensional data. When no dominant components are found, it may help to
disprove expected relations between different observations.

A typical application is the search for factors explaining similar properties
between different objects: Different chemical compounds may act similarly,
e.g. decrease the surface tension of water. The compounds may differ in various
features, as molecular size and weight, electrical dipole moment, and others.
We want to know which parameter or combination of parameters is relevant
for the interesting property. Another application is the search for decisive
factors for a similar curing effect of different drugs. The knowledge of the
principal factors helps to find new drugs with the same positive effect.

In physics factor analysis does not play a central role, mainly because its
results are often difficult to interpret and, as we will see below, not unam-
biguous. It is not easy, therefore, to find examples from our discipline. Here
we illustrate the method with an artificially constructed example taken from
astronomy.

Example 142. Principal component analysis
Galaxies show the well known red-shift of the spectrum which is due to

their escape velocity. Besides the measurement value or feature red-shift x1
we know the brightness x2 of the galaxies. To be independent of scales and
mean values, we transform these quantities in such a way that sample mean
and variance are zero, respectively unity. To demonstrate the concept, we
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have invented some date which are shown in Fig. 11.6. The two coordinates
are strongly correlated. The correlation is eliminated in a rotated coordinate
system where the objects have coordinates y1 and y2 which are linear combi-
nations of red-shift and brightness in the directions of the principal axes of the
correlation matrix. Now we consider as important those directions, where the
observed objects show the largest differences. In our case this is the direction
of y1, while y2 has apparently only a minor influence on both features. We
may conclude that red-shift and brightness have mainly one and the same
cause which determines the value of y1. In our example, we know that this is
the distance, both brightness and red shift depend on it. Since, apparently,
the distance determines y1, we can use it, after a suitable calibration, as a
measure for the distance.

We will now put these ideas into concrete terms.
The input data for the factor analysis are given in the form of a matrix X of

N rows and P columns. The element xnp is the measured value of the feature p
of the object n, thus X is a rectangular matrix. In a first step we determine the
correlations between the P input attributes. By a simple transformation, we
obtain uncorrelated linear combinations of the features. The hope is that there
are few dominant combinations and that the others can be neglected. Then
the data can be described by a small number of Q < P linear combinations,
the principal components.

We first transform the data Xnp into standardized form where the sam-
ple mean and variance are zero, respectively unity. We get the normalized
variables8

xnp =
Xnp −Xp

δp

with

Xp =
1

N

N∑

n=1

Xnp ,

δ2p =
1

N − 1

N∑

n=1

(Xnp −Xp)
2 .

The quantity xnp is the normalized deviation of the measurement value of type
p for the object n from the average over all objects for this measurement.

In the same way as in Chap. 4 we construct the correlation matrix for our
sample by averaging the P × P products of the components xn1 . . . xnP over
all N objects:

8The normalization (division by δp) is not always required.



362 11 Statistical Learning

R =
1

N − 1
XTX ,

Rpq =
1

N − 1

N∑

n=1

xnpxnq .

It is a symmetric positive definite P × P matrix. Due to the normalization
the diagonal elements are equal to unity.

Then this matrix is brought into diagonal form by an orthogonal transfor-
mation corresponding to a rotation in the P -dimensional feature space.

R → V
T
RV = diag(λ1 . . . λP ) .

The uncorrelated feature vectors in the rotated space yn = {yn1, . . . , ynP } are
given by

yn = VTxn , xn = Vyn .

To obtain eigenvalues and -vectors we solve the linear equation system

(R− λpI)vp = 0 , (11.14)

where λp is the eigenvalue belonging to the eigenvector vp:

Rvp = λpvp .

The P eigenvalues are found as the solutions of the characteristic equation

det(R− λI) = 0 .

In the simple case described above of only two features, this is a quadratic
equation ∣∣∣∣

R11 − λ R12

R21 R22 − λ

∣∣∣∣ = 0 ,

that fixes the two eigenvalues. The eigenvectors are calculated from (11.14)
after substituting the respective eigenvalue. As they are fixed only up to an
arbitrary factor, they are usually normalized. The rotation matrix V is con-
structed by taking the eigenvectors vp as its columns: vqp = (vp)q.

Since the eigenvalues are the diagonal elements in the rotated, diagonal
correlation matrix, they correspond to the variances of the data distribution
with respect to the principal axes. A small eigenvalue means that the pro-
jection of the data on this axis has a narrow distribution. The respective
component is then, presumably, only of small influence on the data, and may
perhaps be ignored in a model of the data. Large eigenvalues belong to the
important principal components.

Factors fnp are obtained by standardization of the transformed variables
ynp by division by the square root of the eigenvalues λp:

fnp =
ynp√
λp

.
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By construction, these factors represent variates with zero mean and unit
variance. In most cases they are assumed to be normally distributed. Their
relation to the original data xnp is given by a linear (not orthogonal) trans-
formation with a matrix A, the elements of which are called factor loadings.
Its definition is

xn = Afn , or XT = AFT . (11.15)

Its components show, how strongly the input data are influenced by certain
factors.

In the classical factor analysis, the idea is to reduce the number of fac-
tors such that the description of the data is still satisfactory within tolerable
deviations ε:

x1 = a11f1 + · · ·+ a1QfQ + ε1

x2 = a21f1 + · · ·+ a2QfQ + ε2

...
...

xP = aP1f1 + · · ·+ aPQfQ + εP

with Q < P , where the “factors” (latent random variables) f1, . . . , fQ are
considered as uncorrelated and distributed according to N(0, 1), plus uncor-
related zero-mean Gaussian variables εp, with variances σ2

p, representing the
residual statistical fluctuations not described by the linear combinations. As
a first guess, Q is taken as the index of the smallest eigenvalue λQ which is
considered to be still significant. In the ideal case Q = 1 only one decisive
factor would be the dominant element able to describe the data.

Generally, the aim is to estimate the loadings apq, the eigenvalues λp, and
the variances σ2

p from the sampling data, in order to reduce the number of
relevant quantities responsible for their description.

The same results as we have found above by the traditional method by
solving the eigenvalue problem for the correlation matrix9 can be obtained
directly by using the singular value decomposition (SVD) of the matrix X

(remember that it has N rows and P columns):

X = UDVT ,

where U and V are orthogonal. U is not a square matrix, nevertheless UTU = I,
where the unit matrix I has dimension P . D is a diagonal matrix with elements√
λp, ordered according to decreasing values, and called here singular values.

The decomposition (11.15) is obtained by setting F = U and A = VD.
The decomposition (11.15) is not unique: If we multiply both F and A with

a rotation matrix R from the right we get an equivalent decomposition:

X = F̃ ÃT = FR(AR)T = FRRTAT = UDVT , (11.16)

9Physicists may find the method familiar from the discussion of the inertial
momentum tensor and many similar problems.
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which is the same as (11.15), with factors and loadings being rotated.
There exist program packages which perform the numerical calculation of

principal components and factors.
Remarks:

1. The transformation of the correlation matrix to diagonal form makes
sense, as we obtain in this way uncorrelated inputs. The new variables help
to understand better the relations between the various measurements.

2. The silent assumption that the principal components with larger eigenval-
ues are the more important ones is not always convincing, since starting
with uncorrelated measurements, due to the scaling procedure, would re-
sult in eigenvalues which are all identical. An additional difficulty for in-
terpreting the data comes from the ambiguity (11.16) concerning rotations
of factors and loadings.

11.4 Classification

We have come across classification already when we have treated goodness-of-
fit. There the problem was either to accept or to reject a hypothesis without a
clear alternative. Now we consider a situation where we dispose of information
of two or more classes of events.

The assignment of an object according to some quality to a class or cat-
egory is described by a so-called categorical variable. For two categories we
can label the two possibilities by discrete numbers; usually the values ±1 or 1
and 0 are chosen. In most cases it makes sense, to give as a result instead of
a discrete classification a continuous variable as a measure for the correctness
of the classification. The classification into more than two cases can be per-
formed sequentially by first combining classes such that we have a two class
system and then splitting them further.

Classification is indispensable in data analysis in many areas. Examples
in particle physics are the identification of particles from shower profiles or
from Cerenkov ring images, beauty, top or Higgs particles from kinematics
and secondaries and the separation of rare interactions from frequent ones. In
astronomy the classification of galaxies and other stellar objects is of interest.
But classification is also a precondition for decisions in many scientific fields
and in everyday life.

We start with an example: A patient suffers from certain symptoms:
stomach-ache, diarrhoea, temperature, head-ache. The doctor has to give a
diagnosis. He will consider further factors, as age, sex, earlier diseases, possi-
bility of infection, duration of the illness, etc.. The diagnosis is based on the
experience and education of the doctor.

A computer program which is supposed to help the doctor in this matter
should be able to learn from past cases, and to compare new inputs in a
sensible way with the stored data. Of course, as opposed to most problems



11.4 Classification 365

in science, it is not possible here to provide a functional, parametric relation.
Hence there is a need for suitable methods which interpolate or extrapolate
in the space of the input variables. If these quantities cannot be ordered, e.g.
sex, color, shape, they have to be classified. In a broad sense, all this problems
may be considered as variants of function approximation.

The most important methods for this kind of problems are the discriminant
analysis, artificial neural nets, kernel or weighting methods, and decision trees.
In the last years, remarkable progress in these fields could be realized with the
development of support vector machines, boosted decision trees, and random
forests classifiers.

Before discussing these methods in more detail let us consider a further
example.

Example 143. Classification of particles with calorimeters
The interactions of electrons and hadrons in calorimeter detectors of parti-

cle physics differ in a many parameters. Calorimeters consist of a large number
of detector elements, for which the signal heights are evaluated and recorded.
The system should learn from a training sample obtained from test mea-
surements with known particle beams to classify electrons and hadrons with
minimal error rates.

An optimal classification is possible if the likelihood ratio is available which
then is used as a cut variable. The goal of intelligent classification methods is
to approximate the likelihood ratio or an equivalent variable which is a unique
function of the likelihood ratio. The relation itself need not be known.

When we optimize a given method, it is not only the percentage of right
decisions which is of interest, but we will also consider the consequences of
the various kinds of errors. It is less serious if a SPAM has not been detected,
as compared to the loss of an important message. In statistics this is taken
into account by a loss function which has to be defined by the user. In the
standard situation where we want to select a certain class of events, we have to
consider efficiency and contamination10. The larger the efficiency, the larger
is also the relative contamination by wrongly assigned events. A typical curve
showing this relation if plotted in Fig. 11.7. The user will select the value of
his cut variable on the bases of this curve.

The loss has to be evaluated from the training sample. It is recommended
to use a part of the training sample to develop the method and to reserve
a certain fraction to validate it. As statistics is nearly always too small, also
more economic methods of validation, cross validation and bootstrap ( see
Sect.12.2), have been developed which permit to use the full sample to adjust
the parameters of the method. In an n-fold cross validation the whole sample

10One minus the contamination is called purity.
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Fig. 11.7. Fraction of wrongly assigned events as a function of the efficiency.

is randomly divided into n equal parts of N/n events each. In turn one of
the parts is used for the validation of the training result from the other n− 1
parts. All n validation results are then averaged. Typical choices are n equal
to 5 or 10.

11.4.1 The Discriminant Analysis

The classical discriminant analysis as developed by Fisher is a special case of
the classification method that we introduce in the following. We follow our
discussions of Chap. 6, Sect. 6.3.

If we know the p.d.f.s f1(x) and f2(x) for two classes of events it is easy
to assign an observation x to one of the two classes in such a way that the
error rate is minimal (case 1):

x → class 1, if f1(x) > f2(x) ,

x → class 2, if f1(x) < f2(x) .

Normally we will get a different number of wrong assignments for the two
classes: observations originating from the broader distribution will be miss-
assigned more often, see Fig. 11.8) than those of the narrower distribution.
In most cases it will matter whether an input from class 1 or from class 2 is
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the error rate is minimal, the dotted line such that the wrongly assigned events are
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wrongly assigned. An optimal classification is then reached using an appro-
priately adjusted likelihood ratio:

x → class 1, if f1(x)/f2(x) > c ,

x → class 2, if f1(x)/f2(x) < c .

If we want to have the same error rates (case 2), we must choose the
constant c such that the integrals over the densities in the selected regions are
equal: ∫

f1/f2>c

f1(x)dx =

∫

f1/f2<c

f2(x)dx . (11.17)

This assignment has again a minimal error rate, but now under the constraint
(11.17). We illustrate the two possibilities in Fig. 11.8 for univariate functions.

For normal distributions we can formulate the condition for the classifi-
cation explicitly: For case 2 we choose that class for which the observation x

has the smallest distance to the mean measured in standard deviations. This
condition can then be written as a function of the exponents. With the usual
notations we get

(x− µ1)
T
V1(x− µ1)− (x− µ2)

T
V2(x− µ2) < 0 → class 1 ,

(x− µ1)
TV1(x− µ1)− (x− µ2)

TV2(x− µ2) > 0 → class 2 .
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This condition can easily be generalized to more than two classes; the
assignment according to the standardized distances will then, however, no
longer lead to equal error rates for all classes.

The classical discriminant analysis sets V1 = V2. The left-hand side in
the above relations becomes a linear combination of the xp. The quadratic
terms cancel. Equating it to zero defines a hyperplane which separates the
two classes. The sign of this linear combination thus determines the class
membership. Note that the separating hyperplane is cutting the line connect-
ing the distribution centers under a right angle only for spherical symmetric
distributions.

If the distributions are only known empirically from representative sam-
ples, we approximate them by continuous distributions, usually by a normal
distribution, and fix their parameters to reproduce the empirical moments.
In situations where the empirical distributions strongly overlap, for instance
when a narrow distribution is located at the center of a broad one, the simple
discriminant analysis does no longer work. The classification methods intro-
duced in the following sections have been developed for this and other more
complicated situations and where the only source of information on the pop-
ulation is a training sample. The various approaches are all based on the con-
tinuity assumption that observations with similar attributes lead to similar
outputs.

11.4.2 Artificial Neural Networks

Introduction

The application of artificial neural networks, ANN, has seen a remarkable
boom in the last decades, parallel to the exploding computing capacities.
From its many variants, in science the most popular are the relatively simple
forward ANNs with back-propagation, to which we will restrict our discus-
sion. The interested reader should consult the broad specialized literature on
this subject, where fascinating self organizing networks are described which
certainly will play a role also in science, in the more distant future. It could
e.g. be imagined that a self-organizing ANN would be able to classify a data
set of events produced at an accelerator without human intervention and thus
would be able to discover new reactions and particles.

The species considered here has a comparably more modest aim: The net-
work is trained in a first step to ascribe a certain output (response) to the
inputs. In this supervised learning scheme, the response is compared with the
target response, and then the network parameters are modified to improve the
agreement. After a training phase the network is able to classify new data.

ANNs are used in many fields for a broad variety of problems. Examples
are pattern recognition, e.g. for hand-written letters or figures, or the forecast
of stock prices. They are successful in situations where the relations between
many parameters are too complex for an analytical treatment. In particle



11.4 Classification 369

physics they have been used, among other applications, to distinguish electron
from hadron cascades and to identify reactions with heavy quarks.

With ANNs, many independent computing steps have to be performed.
Therefore specialized computers have been developed which are able to eval-
uate the required functions very fast by parallel processing.

Primarily, the net approximates an algebraic function which transforms
the input vector x into the response vector y,

y = f(x|w) .

Here w symbolizes a large set of parameters, typically there are, depending
on the application, 103−104 parameters. The training process corresponds to
a fitting problem. The parameters are adjusted such that the response agrees
within the uncertainties with a target vector yt which is known for the events
of the training sample.

There are two different applications of neural nets, simple function ap-
proximation11 and classification. The net could be trained, for instance, to
estimate the energy of a hadronic showers from the energies deposited in dif-
ferent cells of the detector. The net could also be trained to separate electron
from hadron showers. Then it should produce a number close to 1 for electrons
and close to 0 for hadrons.

With the large number of parameters it is evident that the solution is
not always unique. Networks with different parameters can perform the same
function within the desired accuracy.

For the fitting of the large number of parameters minimizing programs like
simplex (see Appendix 13.10) are not suited. The gradient descent method is
much more practicable here. It is able to handle a large number of parameters
and to process the input data sequentially.

A simple, more detailed introduction to the field of ANN is given in [94]

Network Structure

Our network consists of two layers of knots (neurons), see Fig. 11.9. Each
component xk of the n-component input vector x is transmitted to all knots,
labeled i = 1, . . . ,m, of the first layer. Each individual data line k → i is
ascribed a weight W (1)

ik . In each unit the weighted sum ui =
∑

kW
(1)
ik xk

of the data components connected to it is calculated. Each knot symbolizes
a non-linear so-called activation function x′i = s(ui), which is identical for
all units. The first layer produces a new data vector x′. The second layer,
with m′ knots, acts analogously on the outputs of the first one. We call the
corresponding m ×m′ weight matrix W(2). It produces the output vector y.
The first layer is called hidden layer, since its output is not observed directly.

11Here function approximation is used to perform calculations. In the previous
section its purpose was to parametrize data.
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Fig. 11.9. Back propagation. At each knot the sigmoid function of the sum of the
weighted inputs is computed.

In principle, additional hidden layers could be implemented but experience
shows that this does not improve the performance of the net.

The net executes the following functions:

x′j = s

(∑

k

W
(1)
jk xk

)
,

yi = s


∑

j

W
(2)
ij x′j


 .

This leads to the final result:

yi = s




∑

j

W
(2)
ij s

(∑

k

W
(1)
jk xk

)
 . (11.18)

Sometimes it is appropriate to shift the input of each unit in the first layer
by a constant amount (bias). This is easily realized by specifying an artificial
additional input component x0 ≡ 1.

The number of weights (the parameters to be fitted) is, when we include
the component x0, (n+ 1)×m+mm′.

Activation Function

The activation function s(x) has to be non-linear, in order to achieve that
the superposition (11.18) is able to approximate widely arbitrary functions.
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It is plausible that it should be more sensitive to variations of the arguments
near zero than for very large absolute values. The input bias x0 helps to shift
input parameters which have a large mean value into the sensitive region. The
activation function is usually standardized to vary between zero and one. The
most popular activation function is the sigmoid function

s(u) =
1

e−u + 1
,

which is similar to the Fermi function. It is shown in Fig. 11.10.

The Training Process

In the training phase the weights will be adapted after each new input object.
Each time the output vector of the network y is compared with the target
vector yt. We define again the loss function E:

E = (y − yt)
2, (11.19)

which measures for each training object the deviation of the response from
the expected one.

To reduce the error E we walk downwards in the weight space. This means,
we change each weight component by ∆W , proportional to the sensitivity
∂E/∂W of E to changes of W :

∆W = −1

2
α
∂E

∂W

= −α(y − yt) ·
∂y

∂W
.

The proportionality constant α, the learning rate, determines the step width.
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We now have to find the derivatives. Let us start with s:

ds

du
=

e−u

(e−u + 1)2
= s(1− s) . (11.20)

From (11.18) and (11.20) we compute the derivatives with respect to the
weight components of the first and the second layer,

∂yi

∂W
(2)
ij

= yi(1− yi)x
′
j ,

and
∂yi

∂W
(1)
jk

= yi(1 − yi)x
′
jW

(2)
ij (1− x′j)xk .

It is seen that the derivatives depend on the same quantities which have
already been calculated for the determination of y (the forward run through
the net). Now we run backwards, change first the matrix W(2) and then with
already computed quantities also W(1). This is the reason why this process is
called back propagation. The weights are changed in the following way:

W
(1)
jk → W

(1)
jk − α(y − yt)

∑

i

yi(1− yi)x
′
jW

(2)
ij (1− x′j)xk ,

W
(2)
ij → W

(2)
ij − α(y − yt)yi(1− yi)x

′
j .

Testing and Interpreting

The gradient descending minimum search has not necessarily reached the
minimum after processing the training sample a single time, especially when
the available sample is small. Then the should be used several times (e.g.
10 or 100 times). On the other hand it may happen for too small a training
sample that the net performs correctly for the training data, but produces
wrong results for new data. The network has, so to say, learned the training
data by heart. Similar to other minimizing concepts, the net interpolates and
extrapolates the training data. When the number of fitted parameters (here
the weights) become of the same order as the number of constraints from the
training data, the net will occasionally, after sufficient training time, describe
the training data exactly but fail for new input data. This effect is called
over-fitting and is common to all fitting schemes when too many parameters
are adjusted.

It is therefore indispensable to validate the network function after the
optimization, with data not used in the training phase or to perform a cross
validation. If in the training phase simulated data are used, it is easy to
generate new data for testing. If only experimental data are available with no
possibility to enlarge the sample size, usually a certain fraction of the data is
reserved for testing. If the validation result is not satisfactory, one should try
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to solve the problem by reducing the number of network parameters or the
number of repetitions of the training runs with the same data set.

The neural network generates from the input data the response through
the fairly complicated function (11.18). It is impossible by an internal analysis
of this function to gain some understanding of the relation between input and
resulting response. Nevertheless, it is not necessary to regard the ANN as a
“black box”. We have the possibility to display graphically correlations between
input quantities and the result, and all functional relations. In this way we
gain some insight into possible connections. If, for instance, a physicist would
have the idea to train a net with an experimental data sample to predict for
a certain gas the volume from the pressure and the temperature, he would
be able to reproduce, with a certain accuracy, the results of the van-der-
Waals equation. He could display the relations between the three quantities
graphically. Of course the analytic form of the equation and its interpretation
cannot be delivered by the network.

Often a study of the optimized weights makes it possible to simplify the
net. Very small weights can be set to zero, i.e. the corresponding connections
between knots are cut. We can check whether switching off certain neurons
has a sizable influence on the response. If this is not the case, these neurons
can be eliminated. Of course, the modified network has to be trained again.

Practical Hints for the Application

Computer Programs for ANNs with back-propagation are relatively simple
and available at many places but the effort to write an ANN program is also
not very large. The number of input vector components n and the number of
knots m and m′ are parameters to be chosen by the user, thus the program
is universal, only the loss function has to be adapted to the specific problem.

• The number of units in each layer should more or less match the number
of input components. Some experts plead for a higher number. The user
should try to find the optimal number.

• The sigmoid function has values only between zero and unity. Therefore
the output or the target value has to be appropriately scaled by the user.

• The raw input components are usually correlated. The net is more efficient
if the user orthogonalizes them. Then often some of the new components
have negligible effect on the output and can be discarded.

• The weights have to be initialized at the beginning of the training phase.
This can be done by a random number generator or they can be set to
fixed values.

• The loss function E (11.19) has be adjusted to the problem to be solved.
• The learning rate α should be chosen relatively high at the beginning of

a training phase, e.g. α = 10. In the course of fitting it should be reduced
to avoid oscillations.
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• The convergence of minimizing process is slow if the gradient is small. If
this is the case, and the fit is still bad, it is recommended to increase the
learning constant for a certain number of iterations.

• In order to check whether a minimum is only local, one should train the
net with different start values of the weights.

• Other possibilities for the improvement of the convergence and the elimi-
nation of local minima can be found in the substantial literature. An ANN
program package that proceeds automatically along many of the proposed
steps is described in [95].

Example: Čerenkov circles

Charged, relativistic particles can emit photons by the Čerenkov effect. The
photons hit a detector plane at points located on a circle. Of interest are ra-
dius and center of this circle, since they provide information on direction and
velocity of the emitting particle. The number of photons and the coordinates
where they hit the detector fluctuate statistically and are disturbed by spuri-
ous noise signals. It has turned out that ANNs can reconstruct the parameters
of interest from the available coordinates with good efficiency and accuracy.

We study this problem by a Monte Carlo simulation. In a simplified model,
we assume that exactly 5 photons are emitted by a particle and that the
coordinate pairs are located on a circle and registered. The center, the radii,
and the hit coordinates are generated stochastically. The input vector of the
net thus consists of 10 components, the 5 coordinate pairs. The output is a
single value, the radius R. The loss function is (R − Rtrue)

2, where the true
value Rtrue is known from the simulation.

The relative accuracy of the reconstruction as a function of the iteration
step is shown in Fig. 11.11. Different sequences of the learning rate have been
tried. Typically, the process is running by steps, where after a flat phase
follows a rather abrupt improvement. The number of iterations required to
reach the minimum is quite large.

Hardware Realization

The structure of back propagation network can be implemented by a hard-
ware network. The weights are stored locally at the units which are realized by
rather simple microprocessors. Each microprocessor performs the knot func-
tion, e.g. the sigmoid function. A trained net can then calculate the fitted
function very fast, since all processors are working in parallel. Such proces-
sors can be employed for the triggering in experiments where a quick decision
is required, whether to accept an event and to store the corresponding data.

11.4.3 Weighting Methods

For the decision whether to assign an observation at the location x to a
certain class, an obvious option is to do this according to the classification
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of neighboring objects of the training sample. One possibility is to consider a
certain region around x and to take a “majority vote” of the training objects
inside this region to decide about the class membership of the input. The
region to be considered here can be chosen in different ways; it can be a fixed
volume around x, or a variable volume defined by requiring that it contains
a fixed number of observations, or an infinite volume, introducing weights for
the training objects which decrease with their distance from x.

In any case we need a metric to define the distance. The choice of a metric
in multi-dimensional applications is often a rather intricate problem, espe-
cially if some of the input components are physically of very different nature.
A way-out seems to be to normalize the different quantities to equal variance
and to eliminate global correlations by a linear variable transformation. This
corresponds to the transformation to principal components discussed above
(see Sect. 11.3) with subsequent scaling of the principal components. An al-
ternative but equivalent possibility is to use a direction dependent weighting.
The same result is achieved when we apply the Mahalanobis metric, which we
have introduced in Sect. 10.3.9.
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For a large training sample the calculation of all distances is expensive
in computing time. A drastic reduction of the number of distances to be
calculated is in many cases possible by the so-called support vector machines
which we will discuss below. Those are not machines, but programs which
reduce the training sample to a few, but decisive inputs, without impairing
the results.

K-Nearest Neighbors

We choose a number K which of course will depend on the size of the training
sample and the overlap of the classes. For an input x we determine the K
nearest neighbors and the numbers k1, k2 = K − k1, of observations that
belong to class I and II, respectively. For a ratio k1/k2 greater than α, we
assign the new observation to class I, in the opposite case to class II:

k1/k2 > α =⇒ class I ,

k1/k2 < α =⇒ class II .

The choice of α depends on the loss function. When the loss function treats all
classes alike, then α will be unity and we get a simple majority vote. To find
the optimal value of K we minimize the average of the loss function computed
for all observations of the training sample.

Distance Dependent Weighting

Instead of treating all training vector inputs x′ within a given region in the
same way, one should attribute a larger weight to those located nearer to the
input x. A sensible choice is again a Gaussian kernel,

K(x,x′) ∼ exp

(
− (x− x′)2

2s2

)
.

With this choice we obtain for the class β the weight wβ ,

wβ =
∑

i

K(x,xβi) , (11.21)

where xβi are the locations of the training vectors of the class β.
If there are only two classes, writing the training sample as

{x1, y1 . . .xN , yN}

with the response vector yi = ±1, the classification of a new input x is done
according to the value ±1 of the classifier ŷ(x), given by

ŷ(x) = sign

( ∑

yi=+1

K(x,xi)−
∑

yi=−1

K(x,xi)

)
= sign

(∑

i

yiK(x,xi)

)
.

(11.22)
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For a direction dependent density of the training sample, we can use a
direction dependent kernel, eventually in the Mahalanobis form mentioned
above:

K(x,x′) ∼ exp

[
−1

2
(x− x′)TV(x− x′)

]
.

with the weight matrix V. When we first normalize the sample, this compli-
cation is not necessary. The parameter s of the matrix V, which determines
the width of the kernel function, again is optimized by minimizing the loss for
the training sample.

Support Vector Machines

Support vector machines (SVMs) produce similar results as ordinary distance
depending weighting methods, but they require less memory for the storage
of learning data and the classification is extremely fast. Therefore, they are
especially useful in on-line applications.

The class assignment usually is the same for all elements in large con-
nected regions of the variable x. Very often, in a two case classification, there
are only two regions separated by a hypersurface. For short range kernels it
is obvious then that for the classification of observations, the knowledge of
only those input vectors of the training sample is essential which are located
in the vicinity of the hypersurface. These input vectors are called support vec-
tors [96]. SVMs are programs which try to determine them, respectively their
weights, in an optimal way, setting the weights of all other inputs vectors to
zero.

In the one-dimensional case with non-overlapping classes it is sufficient to
know those inputs of each class which are located nearest to the dividing limit
between the classes. Sums like (11.21) are then running over one element only.
This, of course, makes the calculation extremely fast.

In higher dimensional spaces with overlapping classes and for more than
two classes the problem to determine support vectors is of course more compli-
cated. But also in these circumstances the number of relevant training inputs
can be reduced drastically. The success of SVMs is based on the so-called
kernel trick, by which non-linear problems in the input space are treated as
linear problems in some higher-dimensional space by well known optimiza-
tion algorithms. For the corresponding algorithms and proofs we refer to the
literature, e.g. [16, 97, 98]. A short introduction is given in Appendix 13.14.

Example and Discussion

In Fig. 11.12 are shown in the top panel two overlapping training samples
of 500 inputs each. The loss function is the number of wrong assignments
independent of the respective class. Since the distributions are quite similar
in both coordinates we do not change the metric. We use a Gaussian kernel.
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Fig. 11.12. Separation of two classes. Top: learning sample, bottom: wrongly as-
signed events of a test sample.

The optimization of the parameter s by means of the training sample shows
only a small change of the error rate for a change of s by a factor four. The
lower panel displays the result of the classification for a test sample of the
same size (500 inputs per class). Only the wrong assignments are shown.

We realize that wrongly assigned training observations occur in two sepa-
rate, non overlapping regions which can be separated by a curve or a polygon
chain as indicated in the figure. Obviously all new observations would be as-
signed to the class corresponding to the region in which they are located. If
we would have used instead of the distance-depending weighting the k-nearest
neighbors method, the result would have been almost identical. In spite of the
opposite expectation, this more primitive method is more expensive in both
the programming and in the calculation, when compared to the weighting
with a distance dependent kernel.



11.4 Classification 379

Since for the classification only the separation curve between the classes is
required, it must be sufficient to know the class assignment for those training
observations which lie near this curve. They would define the support vectors
of a SVM. Thus the number of inputs needed for the assignment of new obser-
vations would be drastically reduced. However, for a number of assignments
below about 106 the effort to determine support vectors usually does not pay.
The SVMs are useful for large event numbers in applications where computing
time is relevant.

11.4.4 Decision Trees

Simple Trees

We consider the simple case, the two class classification, i.e. the assignment
of inputs to one of two classes I and II, and N observations with P features
x1, x2, . . . , xP , which we consider, as before, as the components of an input
vector.

In the first step we consider the first component x11, x21, . . . , xN1 for all N
input vectors of the training sample. We search for a value xc1 which optimally
divides the two classes and obtain a division of the training sample into two
parts A and B. Each of these parts which belong to two different subspaces,
will now be further treated separately. Next we take the subspace A, look at
the feature x2, and divide it, in the same way as before the full space, again
into two parts. Analogously we treat the subspace B. Now we can switch to
the next feature or return to feature 1 and perform further splittings. The
sequence of divisions leads to smaller and smaller subspaces, each of them
assigned to a certain class. This subdivision process can be regarded as the
development of a decision tree for input vectors for which the class membership
is to be determined. The growing of the tree is stopped by a pruning rule. The
final partitions are called leaves.

In Fig. 11.13 we show schematically the subdivision into subspaces and
the corresponding decision tree for a training sample of 32 elements with only
two features. The training sample which determines the decisions is indicated.
At the end of the tree (here at the bottom) the decision about the class
membership is taken.

It is not obvious, how one should optimize the sequence of partitions and
the position of cuts, and also not, under which circumstances the procedure
should be stopped.

For the optimization of splits we must again define a loss function which
will depend on the given problem. A simple possibility in the case of two classes
is, to maximize for each splitting the difference ∆N = Nr −Nf between right
and wrong assignments. We used this in our example Fig. 11.13. For the first
division this quantity was equal to 20− 12 = 8. To some extend the position
of the splitting hyperplane is still arbitrary, the loss function changes its value
only when it hits the nearest input. It could, for example, be put at the



380 11 Statistical Learning

0 1 2 3 4 5

2

4

6

8

10

 

 X2

X1

Fig. 11.13. Decision tree (bottom) corresponding to the classification shown below.

center between the two nearest points. Often the importance of efficiency and
purity is different for the two classes. Then we would chose an asymmetric
loss function.

Very popular is the following, slightly more complicated criterion: We de-
fine the impurity PI of class I

PI =
NI

NI +NII
, (11.23)

which for optimal classification would be 1 or 0. The quantity

G = PI(1− PI) + PII(1− PII) (11.24)

the Gini-index, should be as small as possible. For each separation of a parent
node E with Gini indexGE into two children nodesA, B with GA, respectively
GB, we minimize the sum GA +GB.

The difference
D = GE −GA −GB

is taken as stopping or pruning parameter. The quantity D measures the
increase in purity, it is large for a parent node with large G and two children
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nodes with small G. When D becomes less than a certain critical value Dc

the branch will not be split further and ends at a leave. The leave is assigned
to the class which has the majority in it.

Besides the Gini index, also other measures for the purity or impurity are
used [16]. An interesting quantity is entropy S = −PI lnPI−PII lnPII , a well
known measure of disorder, i.e. of impurity.

The purity parameter, e.g. G, is also used to organize the splitting se-
quence. We choose always that input vector component in which the splitting
produces the most significant separation.

A further possibility would be to generalize the orthogonal splitting by
allowing also non-orthogonal planes to reach better separations. But in the
standard case all components are treated independently.

Unfortunately, the classification by decision trees is usually not perfect.
The discontinuity at the boundaries and the fixed splitting sequence impair
the accuracy. On the other hand, they are simple, transparent and the corre-
sponding computer programs are extremely fast.

Boosted Decision Trees

Boosting [99] is based on a simple idea: By a weighted superposition of many
moderately effective classifiers it should be possible to reach a fairly precise
assignment. Instead of only one decision tree, many different trees are grown.
Each time, before the development of a new tree is started, wrongly assigned
training inputs are boosted to higher weights in order to lower their probability
of being wrongly classified in the following tree. The final class assignment is
then done by averaging the decisions from all trees. Obviously, the computing
effort for these boosted decision trees is increased, but the precision is signif-
icantly enhanced. The results of boosted decision trees are usually as good
as those of ANNs. Their algorithm is very well suited for parallel processing.
There are first applications in particle physics [100].

Before the first run, all training inputs have the weight 1. In the follow-
ing run each input gets a weight wi, determined by a certain boosting algo-
rithm (see below) which depends on the particular method. The definition of
the node impurity P for calculating the loss function, see (11.23), (11.24), is
changed accordingly to

P =

∑
I wi∑

I wi +
∑

II wi
,

where the sums
∑

I ,
∑

II run over all events in class I or II, respectively.
Again the weights will be boosted and the next run started. Typically M ≈
1000 trees are generated in this way.

If we indicate the decision of a tree m for the input xi by Tm(xi) = 1 (for
class I) and = −1 (for class II), the final result will be given by the sign of
the weighted sum over the results from all trees
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TM (xi) = sign

(
M∑

m=1

αmTm(xi)

)
.

We proceed in the following way: To the first tree we assign a weight
α1 = 1. The weights of the wrongly assigned input vectors are increased.
The weight12 α2 of the second tree T2(x) is chosen such that the overall loss
from all input vectors of the training sample is minimal for the combination
[α1T1(x) + α2T2(x)] / [α1 + α2]. We continue in the same way and add further
trees. For tree i the weight αi is optimized such that the existing trees are
complemented in an optimal way. How this is done depends of course on the
loss function.

A well tested recipe for the choice of weights is AdaBoost [99]. The training
algorithm proceeds as follows:

• The i-th input xi gets the weight wi = 1 and the value yi = 1, (= −1), if
it belongs to class I, (II).

• Tm(xi) = 1 (= −1), if the input ends in a leave belonging to class I (II).
Sm(xi) = (1− yiTm(xi))/2 = 1 (= 0), if the assignment is wrong (right).

• The fraction of the weighted wrong assignments εm is used to change the
weights for the next iteration:

εm =
∑

i

wiSm(xi)/
∑

i

wi ,

αm = ln
1− εm
εm

,

wi → wie
αmSm .

Weights of correctly assigned training inputs thus remain unchanged. For
example, for εm = 0.1, wrongly assigned inputs will be boosted by a factor
0.9/0.1 = 9. Note that αm > 0 if ε < 0.5; this is required because otherwise
the replacement Tm(xi) → −Tm(xi) would produce a better decision tree.

• The response for a new input which is to be classified is

TM (xi) = sign

(
M∑

m=1

αmTm(xi)

)
.

For εm = 0.1 the weight of the tree is αm = ln 9 ≈ 2.20. For certain
applications it may be useful to reduce the weight factors αm somewhat,
for instance αm = 0.5 ln ((1− εm)/εm) [100].

12We have two kinds of weight, weights of input vectors (wi) and weights of trees
(αm).
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11.4.5 Bagging and Random Forest

Bagging

The concept of bagging was first introduced by Breiman [101]. He has shown
that the performance of unstable classifiers can be improved considerably by
training many classifiers with bootstrap replicates and then using a majority
vote of those: From a training sample containing N input vectors, N vectors
are drawn at random with replacement. Some vectors will be contained several
times. This bootstrap13 sample is used to train a classifier. Many, 100 or 1000
classifiers are produced in this way. New inputs are run through all trees and
each tree “votes” for a certain classification. The classification receiving the
majority of votes is chosen. In a study of real data [101] a reduction of error
rates by bagging between 20% and 47% was found. There the bagging concept
had been applied to simple decision trees, however, the bagging concept is
quite general and can be adopted also to other classifiers.

Random Forest

Another new development [102] which includes the bootstrap idea, is the
extension of the decision tree concept to the random forest classifier.

Many trees are generated from bootstrap samples of the training sam-
ple, but now part of the input vector components are suppressed. A tree is
constructed in the following way: First m out of the M components or at-
tributes of the input vectors are selected at random. The tree is grown in a
m-dimensional subspace of the full input vector space. It is not obvious how
m is to be chosen, but the author proposes m≪ M and says that the results
show little dependence on m. With large m the individual trees are powerful
but strongly correlated. The value of m is the same for all trees.

From the N truncated bootstrap vectors, Nb are separated, put into a
bag and reserved for testing. A fraction f = Nb/N ≈ 1/3 is proposed. The
remaining ones are used to generate the tree. For each split that attribute
out of the m available attributes is chosen which gives the smallest number
of wrong classifications. Each leave contains only elements of a single class.
There is no pruning.

Following the bagging concept, the classification of new input vectors is
obtained by the majority vote of all trees.

The out-of-the-bag (oob) data are used to estimate the error rate. To this
end, each oob-vector of the k-th sample is run through the k-th tree and
classified. The fraction of wrong classifications from all oob vectors is the
error rate. (For T trees there are in total T ×Nb oob vectors.) The oob data
can also be used to optimize the constant m.

The random forest classifier has received quite some interest. The concept
is simple and seems to be similarly powerful as that of other classifiers. It is
especially well suited for large data sets in high dimensions.

13We will discuss bootstrap methods in the following chapter.
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11.4.6 Comparison of the Methods

We have discussed various methods for classification. Each of them has its
advantages and its drawbacks. It depends on the special problem, which one
is the most suitable.

The discriminant analysis offers itself for one- or two dimensional contin-
uous distributions (preferably Gaussians or other unimodal distributions). It
is useful for event selection in simple situations.

Kernel methods are relatively easy to apply. They work well if the division
line between classes is sufficiently smooth and transitions between different
classes are continuous. Categorical variables cannot be treated. The variant
with support vectors reduces computing time and the memory space for the
storage of the training sample. In standard cases with not too extensive statis-
tics one should avoid this additional complication. Kernel methods can per-
form event selection in more complicated environments than is possible with
the primitive discriminant analysis. For the better performance the possibility
of interpreting the results is diminished, however.

Artificial neural networks are, due to the enormous number of free pa-
rameters, able to solve any problem in an optimal way. They suffer from the
disadvantage that the user usually has to intervene to guide the minimizing
process to a correct minimum. The user has to check and improve the result
by changing the network structure, the learning constant and the start values
of the weights. New program packages are able to partially take over these
tasks. ANN are able to separate classes in very involved situations and extract
very rare events from large samples.

Decision trees are a very attractive alternative to ANN. One should use
boosted decision trees, random forest or apply bagging though, since those
discriminate much better than simple trees. The advantage of simple trees is
that they are very transparent and that they can be displayed graphically.
Like ANN, decision trees can, with some modifications, also be applied to
categorical variables.

At present, there is lack of theoretical framework and experimental infor-
mation on some of the new developments. We would like to know to what
extent the different classifiers are equivalent and which classifier should be se-
lected in a given situation. There will certainly be answers to these questions
in the near future.
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Auxiliary Methods

12.1 Probability Density Estimation

12.1.1 Introduction

In the subsection function approximation we have considered measurements
y at fixed locations x where y due to statistical fluctuations deviates from
an unknown function. Now we start from a sample {x1, . . . ,xN} which follow
an unknown statistical distribution which we want to approximate. We have
to estimate the density f̂(x) at the location x from the frequency of observa-
tions xi in the vicinity of x. The corresponding technique, probability density
estimation (PDE), is strongly correlated with function approximation. Both
problems are often treated together under the title smoothing methods. In
this section we discuss only non-parametric approaches; a parametric method,
where parameters are adjusted to approximate Gaussian like distributions has
been described in Sect. 11.2.2. We will essentially present results and omit the
derivations. For details the reader has to consult the specialized literature.

PDE serves mainly to visualize an empirical frequency distribution. Visu-
alization of data is an important tool of scientific research. It can lead to new
discoveries and often constitutes the basis of experimental decisions. PDE also
helps to classify data and sometimes the density which has been estimated
from some ancillary measurement is used in subsequent Monte Carlo simula-
tions of experiments. However, to solve certain problems like the estimation
of moments and other characteristic properties of a distribution, it is prefer-
able to deal directly with the sample instead of performing a PDE. This path
is followed by the bootstrap method which we will discuss in a subsequent
section. When we have some knowledge about the shape of a distribution,
then PDE can improve the precision of the bootstrap estimates. For instance
there may exist good reasons to assume that the distribution has only one
maximum and/or it may be known that the random variable is restricted to
a certain region with known boundary.
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The PDE f̂(x) of the true density f(x) is obtained by a smoothing pro-
cedure applied to the discrete experimental distribution of observations. This
means, that some kind of averaging is done which introduces a bias which is
especially large if the distribution f(x) varies strongly in the vicinity of x.

The simplest and most common way to measure the quality of the PDE
is to evaluate the integrated square error (ISE) L2

L2 =

∫ ∞

−∞

[
f̂(x)− f(x)

]2
dx

and its expectation value E(L2), the mean integrated square error (MISE )1.

The mean quadratic difference E(
[
f̂(x)− f(x)

]2
) has two components, ac-

cording to the usual decomposition:

E

([
f̂(x)− f(x)

]2)
= var

(
f̂(x)

)
+ bias2

(
f̂(x)

)
.

The first term, the variance, caused by statistical fluctuations, decreases with
increasing smoothing and the second term, the bias squared, decreases with
decreasing smoothing. The challenge is to find the optimal balance between
these two contributions.

We will give a short introduction to PDE mainly restricted to one-
dimensional distributions. The generalization of the simpler methods to multi-
dimensional distributions is straight forward but for the more sophisticated
ones this is more involved. A rather complete and comprehensive overview can
be found in the books by J.S. Simonoff [103], A.W. Bowman and A. Azzalini
[91], D. W. Scott [104] and W. Härdle et al. [107]. A summary is presented in
an article by D. W. Scott and S. R. Sain [105].

12.1.2 Fixed Interval Methods

Histogram Approximation

The simplest and most popular method of density estimation is histogramming
with fixed bin width. For the number νk of N events falling into bin Bk and
bin width h the estimated density is

f̂(x) =
νk
Nh

for x ∈ Bk .

It is easy to construct, transparent, does not contain hidden parameters which
often are included in other more sophisticated methods and indicates quite
well which distributions are compatible with the data. However it has, as we
have repeatedly stated, the disadvantage of the rather arbitrary binning and

1The estimate f̂(x) is a function of the set {x1, . . . ,xN} of random variables
and thus also a random variable.
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its discontinuity. Fine binning provides a good resolution of structures and
low bias but has to be paid for by large fluctuations. Histograms with wide
bins have the advantage of small statistical errors but are biased. A sensible
choice for the bin width h is derived from the requirement that the mean
squared integrated error should be as small as possible. The mean integrated
square error, MISE, for a histogram is

MISE =
1

Nh
+

1

12
h2
∫
f ′(x)2dx+O

(
h4

N

)
. (12.1)

The integral
∫
f ′(x)2dx = R(f ′) is called roughness. For a normal density

with variance σ2 it is R = (4
√
πσ3)−1. Neglecting the small terms (h→ 0) we

can derive [105] the optimal bin width h∗ and the corresponding asymptotic
mean integrated square error AMISE:

h∗ ≈
[

6

N
∫

f ′(x)2dx

]1/3
≈ 3.5σN−1/3, (12.2)

AMISE ≈
[
9
∫

f ′(x)2dx

16N2

]1/3
≈ 0.43N−2/3/σ.

The second part of relation (12.2) holds for a Gaussian p.d.f. with vari-
ance σ2 and is a reasonable approximation for a distribution with typical σ.
Even though the derivative f ′ and the bandwidth2 σ are not precisely known,
they can be estimated from the data. As expected, the optimal bin width is
proportional to the band width, whereas its N−1/3 dependence on the sample
size N is less obvious.

In d dimensions similar relations hold. Of course the N -dependence has to
be modified. For d-dimensional cubical bins the optimal bin width scales with
N−1/(d+2) and the mean square error scales with N−2/(d+2).

Example 144. PDE of a background distribution and signal fit
We analyze a signal sample containing a Gaussian signal N (x|µ, σ) with

unknown location and scale parameters µ, σ containing some unknown back-
ground. In addition, we dispose of a reference sample containing only back-
ground. From the data taking times and fluxes we know that the background
in the signal sample should nominally be half (r = 0.5) of that in the refer-
ence sample. In Fig. 12.1 we show the two experimental distributions. From
the shape of the experimental background distribution we estimate the slope
y′ = 0.05 of its p.d.f. h(x), and, using relation 12.2, find a bin width of 2

2Contrary to what is understood usually under bandwidth, in PDE this term
is used to describe the typical width of structures. For a Gaussian it equals the
standard deviation.
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Fig. 12.1. Experimental signal with some background (left) and background ref-
erence sample with two times longer exposure time (right). The fitted signal and
background functions are indicated.

units. The heights β1, β2, β3, β4 of the 4 equally wide bins of the histogram
distribution are left as free parameters in the fit. Because of the normalization,
we have β4 = 1 − β1 − β2 − β3. Further parameters are the expected rate of
background events in the reference sample ρ and the fraction φ of true signal
events in the signal sample. These 7 parameters are to be determined in a
likelihood fit. The log-likelihood function lnL = lnL1 + lnL2 + lnL3 + lnL4

comprises 4 terms, with: 1. L1, the likelihood of the ns events in the signal
sample (superposition of signal and background distribution):

lnL1(µ, σ, φ, β1, β2, β3) =

ns∑

i=1

ln [φN (xi|µ, σ) + (1− φ)h(xi|β1, β2, β3)] .

2. L2, the likelihood of the nr events of the reference sample (background
distribution):

lnL2(β1, β2, β3) =

nr∑

i=1

lnh(xi|β1, β2, β3) .

3. L3, the likelihood to observe nr reference events where ρ are expected
(Poisson distribution):



12.1 Probability Density Estimation 389

lnL3 = −ρ+ nr ln ρ− lnnr! .

4. L4, the likelihood to get ns(1−φ) background events3 in the signal sample
where rρ are expected (Poisson distribution):

lnL4 = −rρ+ ns(1 − φ) ln(rρ) − ln {[ns(1− φ)]!} .

The results of the fit are indicated in the Fig. 12.1 which is a histogram of the
observed events.The MLE of the interesting parameters are µ = −0.18±0.32,
σ = 0.85 ± 0.22, φ = 0.60+0.05

−0.09, the correlation coefficients are of the order
of 0.3. We abstain from showing the full error matrix. The samples have
been generated with the nominal parameter values µ0 = 0, σ0 = 1, φ = 0.6.
To check the influence of the background parametrization, we repeat the fit
with only two bins. The results change very little to µ = −0.12 ± 0.34, σ =
0.85 ± 0.22, φ = 0.57+0.07

−0.11. When we represent the background p.d.f. by a
polygon (see next chapter) instead of a histogram, the result again remains
stable. We then get µ = −0.20 ± 0.30, σ = 0.82 ± 0.21, φ = 0.60+0.05

−0.09. The
method which we have applied in the present example is more precise than
that of Sect. 6.9 but depends to a certain degree on the presumed shape of
the background distribution.

Linear and Higher Order Parabolic Approximation

In the previous chapter we had adjusted spline functions to measurements
with errors. Similarly, we can use them to approximate the probability density.
We will consider here only the linear approximation by a polygon but it is
obvious that the method can be extended to higher order parabolic functions.
The discontinuity corresponding to the steps between bins is avoided when
we transform the histogram into a polygon. We just have to connect the
points corresponding to the histogram functions at the center of the bins. It
can be shown that this reduces the MISE considerably, especially for large
samples. The optimum bin width in the one-dimensional case now depends
on the average second derivative f ′′ of the p.d.f. and is much wider than for a
histogram and the error is smaller [105] than in the corresponding histogram
case:

h∗ ≈ 1.6

[
1

N
∫

f ′′(x)2dx

]1/5
,

MISE∗ ≈ 0.5

[∫
f ′′(x)2dx

N4

]1/5
.

In d dimensions the optimal bin width for polygon bins scales with
N−1/(d+4) and the mean square error scales with N−4/(d+4).
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12.1.3 Fixed Number and Fixed Volume Methods

To estimate the density at a point x an obvious procedure is to divide the
number k of observations in the neighborhood of x by the volume V which
they occupy, f̂(x) = k/V . Either we can fix k and compute the correspond-
ing volume V (x) or we can choose V and count the number of observations
contained in that volume. The quadratic uncertainty is σ2 = k+ bias2, hence
the former emphasizes fixed statistical uncertainty and the latter rather aims
at small variations of the bias.

The k-nearest neighbor method avoids large fluctuations in regions where
the density is low. We obtain a constant statistical error if we estimate the
density from the spherical volume V taken by the k- nearest neighbors of
point x:

f̂(x) =
k

Vk(x)
. (12.3)

As many other PDE methods, the k-nearest neighbor method is problem-
atic in regions with large curvature of f and at boundaries of x.

Instead of fixing the number of observations k in relation (12.3) we can fix
the volume V and determine k. Strong variations of the bias in the k-nearest
neighbor method are somewhat reduced but both methods suffer from the
same deficiencies, the boundary bias and a loss of precision due to the sharp
cut-off due to either fixing k or V . Furthermore it is not guaranteed that the
estimated density is normalized to one. Hence a renormalization has to be
performed.

The main advantage of fixed number and fixed volume methods is their
simplicity.

12.1.4 Kernel Methods

We now generalize the fixed volume method and replace (12.3) by

f̂(x) =
1

NV

∑
K(x− xi)

where the kernel K is equal to 1 if xi is inside the sphere of volume V cen-
tered at x and 0 otherwise. Obviously, smooth kernel functions are more
attractive than the uniform kernel of the fixed volume method. An obvious
candidate for the kernel function K(u) in the one-dimensional case is the
Gaussian ∝ exp(−u2/2h2). A very popular candidate is also the parabolically
shaped Epanechnikov kernel ∝ (1 − c2u2), for |cu| ≤ 1, and else zero. Here
c is a scaling constant to be adjusted to the bandwidth of f . Under very
general conditions the Epanechnikov kernel minimizes the asymptotic mean
integrated square error AMISE obtained in the limit where the effective bin-
width tends to zero, but other kernels perform nearly as well. The AMISE
of the Gaussian kernel is only 5% larger and that of the uniform kernel by 8%
[103].
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The optimal bandwidth of the kernel function obviously depends on the
true density. For example for a Gaussian true density f(x) with variance σ2

the optimal bandwidth h of a Gaussian kernel is hG ≈ 1.06σN−1/5 [103] and
the corresponding constant c of the Epanechnikov kernel is c ≈ 2.2/(2hG). In
practice, we will have to replace the Gaussian σ in the relation for h0 by some
estimate depending on the structure of the observed data. AMISE of the
kernel PDE is converging at the rate N−4/5 while this rate was only N−2/3

for the histogram.

12.1.5 Problems and Discussion

The simple PDE methods sketched above suffer from several problems, some
of which are unavoidable:

1. The boundary bias: When the variable x is bounded, say x < a, then
f̂(x) is biased downwards unless f(a) = 0 in case the averaging process in-
cludes the region x > a where we have no data. When the averaging is re-
stricted to the region x < a, the bias is positive (negative) for a distribution
decreasing (increasing) towards the boundary. In both cases the size of the
bias can be estimated and corrected for, using so-called boundary kernels.

2. Many smoothing methods do not guarantee normalization of the es-
timated probability density. While this effect can be corrected for easily by
renormalizing f̂ , it indicates some problem of the method.

3. Fixed bandwidth methods over-smooth in regions where the density
is high and tend to produce fake bumps in regions where the density is
low. Variable bandwidth kernels are able to avoid this effect partially. Their
bandwidth is chosen inversely proportional to the square root of the density,
h(xi) = h0f(xi)

−1/2. Since the true density is not known, f must be replaced
by a first estimate obtained for instance with a fixed bandwidth kernel.

4. Kernel smoothing corresponds to a convolution of the discrete data
distribution with a smearing function and thus unavoidably tends to flatten
peaks and to fill-up valleys. This is especially pronounced where the distribu-
tion shows strong structure, that is where the second derivative f ′′ is large.
Convolution and thus also PDE implies a loss of some information contained
in the original data. This defect may be acceptable if we gain sufficiently due
to knowledge about f that we put into the smoothing program. In the simplest
case this is only the fact that the distribution is continuous and differentiable
but in some situations also the asymptotic behavior of f may be given, or we
may know that it is unimodal. Then we will try to implement this information
into the smoothing method.

Some of the remedies for the difficulties mentioned above use estimates
of f and its derivatives. Thus iterative procedures seem to be the solution.
However, the iteration process usually does not converge and thus has to be
supervised and stopped before artifacts appear.

In Fig. 12.2 three simple smoothing methods are compared. A sample of
1000 events has been generated from the function shown as a dashed curve
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Fig. 12.2. Estimated probability density. Left hand: Nearest neighbor, center: Gaus-
sian Kernel, right hand: Polygon.

in the figure. A k-nearest neighbor approximation of the p.d.f. of a sample
is shown in the left hand graph of Fig. 12.2. The value of k chosen was 100
which is too small to produce enough smoothing but too large to follow the
distribution at the left hand border. The result of the PDE with a Gaus-
sian kernel with fixed width is presented in the central graph and a polygon
approximation is shown in the right-hand graph. All three graphs show the
typical defects of simple smoothing methods, broadening of the peak and fake
structures in the region where the statistics is low.

Alternatively to the standard smoothing methods, complementary ap-
proaches often produce better results than the former. The typical smoothing
problems can partially be avoided when the p.d.f. is parametrized and ad-
justed to the data sample in a likelihood fit. A simple parametrization is the
superposition of normal distributions,

f(x) =
∑

αiN (x;µi,Σi) ,

with the free parameters, weights αi, mean values µi and covariance matrixes
Σi.

If information about the shape of the distribution is available, more specific
parametrizations which describe the asymptotic behavior can be applied. Dis-
tributions which resemble a Gaussian should be approximated by the Gram-
Charlier series (see last paragraph of Sect. 11.2.2). If the data sample is suffi-
ciently large and the distribution is unimodal with known asymptotic behavior
the construction of the p.d.f. from the moments as described in [106] is quite
efficient.

Physicists use PDE mainly for the visualization of the data. Here, in one
dimension, histogramming is the standard method. When the estimated dis-
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tribution is used to simulate an experiment, frequency polygons are to be
preferred. Whenever a useful parametrization is at hand, then PDE should be
replaced by an adjustment of the corresponding parameters in a likelihood fit.
Only in rare situations it pays to construct complicated kernels. For a quick
qualitative illustration of a distribution off-the-shelf programs may do. For
most quantitative evaluations of moments and parameters of the unknown
distribution we recommend to use the bootstrap method which is discussed
in the following section.

12.2 Resampling Techniques

12.2.1 Introduction

In the previous section we have discussed a method to construct a distribution
approximately starting from a sample drawn from it. Knowing the distribution
allows us to calculate certain parameters like moments or quantiles. In most
cases, however, it is preferable to determine the wanted quantities directly
from the sample. A trivial example for this approach is the estimation of
the mean value and the variance from a series of measurements as we have
discussed in Chap. 4 treating error calculation where we had used the sample
mean x =

∑
xi/N and the empirical variance s2 =

[∑
(xi − x)2

]
/(N − 1). In

a similar way we can also determine higher moments, correlations, quantiles
and other statistical parameters. However, the analytical derivation of the
corresponding expressions is often not as simple as that of the mean value
or the variance. Here the bootstrap concept helps, which to a large extend
has been developed by Efron. A comprehensive presentation of the method is
given in Ref. [89], which has served as bases for this section.

The name bootstrap goes back to the famous book of Erich Raspe in which
he narrates the adventures of the lying Baron von Münchhausen. Münch-
hausen had pretended to have saved himself out of a swamp by pulling himself
up with his own bootstraps4. In statistics, the expression bootstrap is used
because from a small sample the quasi complete distribution is generated.
There is not quite as much lying as in Münchhausen’s stories.

The bootstrap concept is based upon a simple idea: The sample itself re-
places the unknown distribution. The sample is the distribution from which
we draw individual observations. In fact, the bootstrap idea is also used when
we associate the errors to simple measurements, for example,

√
n to a mea-

surement of a Poisson distributed number n which is only an estimate of the
true mean value.

As already mentioned, the bootstrap method permits us, apart from er-
ror estimation, to compute p-values for significance tests and the error rate
in classifications. It relies, as will be shown in subsequent examples, on the
combination of randomly selected observations.

4In the original version he is pulling himself with his hair.
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A subvariant of the bootstrap technique is called jackknife which is mainly
used to estimate biases from subsets of the data.

In Chap. 10 where we had evaluated the distribution of the energy test
statistic in two-sample problems, we have used another resampling technique.
We had reshuffled the elements of two partitions applying random permu-
tations. Whereas in the bootstrap method, elements are drawn with replace-
ment, permutations generate samples where every element occurs only a single
time.

The reason for not using all possible permutations is simply that their
number is in most cases excessively large and a finite random sample provides
sufficiently precise results. While bootstrap techniques are used mainly to
extract parameters of an unknown distribution from a single sample, random-
ization methods serve to compare two or more samples taken under different
conditions.

Remark: We may ask with some right whether resampling makes sense
since randomly choosing elements from a sample does not seem to be as ef-
ficient as a systematic evaluation of the compete sample. Indeed, it should
always be optimal to evaluate the interesting parameter directly using all ele-
ments of the sample with the same weight, either analytically or numerically,
but, as in Monte Carlo simulations, the big advantage of parameter estima-
tion by randomly selecting elements relies on the simplicity of the approach.
Nowadays, lack of computing capacity is not a problem and in the limit of an
infinite number of drawn combinations of observations the complete available
information is exhausted.

12.2.2 Definition of Bootstrap and Simple Examples

We sort the N observations of a given data sample {x1, x2, . . . , xN} accord-
ing to their value, xi ≤ xi+1, and associate to each of them the probability
1/N . We call this discrete distribution P0(xi) = 1/N the sample distribution.
We obtain a bootstrap sample {x∗1, x∗2, . . . , x∗M} by generating M observations
following P0. Bootstrap observations are marked with a star "∗". A bootstrap
sample may contain the same observation several times. The evaluation of
interesting quantities follows closely that which is used in Monte Carlo sim-
ulations. The p.d.f. used for event generation in Monte Carlo procedures is
replaced by the sample distribution.

Example 145. Bootstrap evaluation of the accuracy of the estimated mean
value of a distribution

We dispose already of an efficient method to estimate the variance. Here
we present an alternative approach in order to introduce and illustrate the
bootstrap method. Given be the sample of N = 10 observations {0.83, 0.79,
0.31, 0.09, 0.72, 2.31, 0.11, 0.32, 1.11, 0.75}. The estimate of the mean value
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is obviously µ̂ = x =
∑
xi/N = 0.74. We have also derived in Sect. 3.2 a

formula to estimate the uncertainty, δµ = s/
√
N − 1 = 0.21. When we treat

the sample as representative of the distribution, we are able to produce an
empirical distribution of the mean value: We draw from the complete sample
sequentially N observations (drawing with replacement) and get for instance
the bootstrap sample {0.72, 0.32, 0.79, 0.32, 0.11, 2.31, 0.83, 0.83, 0.72, 1.11}.
We compute the sample mean and repeat this procedure B times and obtain
in this way B mean values µ∗

k. The number of bootstrap replicates should
be large compared to N , for example B typically equal to 100 or 1000 for
N = 10. From the distribution of the values µb, b = 1, . . . , B we can compute
again the mean value µ̂∗ and its uncertainty δµ:

µ̂∗ =
1

B

∑
µ∗
b ,

δ∗2µ =
1

B

∑
(µ∗

b − µ̂∗)2 .

Fig. 12.3 shows the sample distribution corresponding to the 10 observations
and the bootstrap distribution of the mean values. The bootstrap estimates
µ̂∗ = 0.74, δ∗µ = 0.19, agree reasonably well with the directly obtained values.
The larger value of δµ compared to δ∗µ is due to the bias correction in its evalu-
ation. The bootstrap values correspond to the maximum likelihood estimates.
The distribution of Fig. 12.3 contains further information. We realize that
the distribution is asymmetric, the reason being that the sample was drawn
from an exponential. We could, for example, also derive the skewness or the
frequency that the mean value exceeds 1.0 from the bootstrap distribution.

While we know the exact solution for the estimation of the mean value and
mean squared error of an arbitrary function u(x), it is difficult to compute
the same quantities for more complicated functions like the median or for
correlations.

Example 146. Error of mean distance of stochastically distributed points in a
square

Fig. 12.4 shows 20 points drawn from an unknown p.d.f. distributed in a
square. The mean distance is 0.55. We determine the standard deviation for
this quantity from 104 bootstrap samples and obtain the value 0.10. This ex-
ample is rather abstract and has been chosen because it is simple and demon-
strates that the bootstrap method is able to solve problems which are hardly
accessible with other methods.
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Fig. 12.3. Sample distribution (left) and distribution of bootstrap sample mean
values (right).
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Fig. 12.4. Distribution of points in a unit square. The right hand graph shows the
bootstrap distribution of the mean distance of the points.

Example 147. Acceptance of weighted events
We resume an example from Sect. 4.4.7 where we had presented an analytic

solution. Now we propose a simpler solution: We dispose of a sample of N
Monte Carlo generated events with weights wi, i = 1, . . . , N , where we know
for each of them whether it is accepted, εi = 1, or not, εi = 0. The mean
acceptance is ε =

∑
wiεi/

∑
wi. Now we draw from the sample randomly B
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new bootstrap samples {(w∗
1 , ε

∗
1), . . . , (w

∗
N , ε

∗
N)} and compute in each case ε∗.

The empirical variance σ2of the distribution of ε∗ is the bootstrap estimate
of the error squared, δ2ε = σ2, of the acceptance ε.

12.2.3 Precision of the Error Estimate

Usually we are not interested in the uncertainty σδ of the error estimate δ.
This is a higher order effect, yet we want to know how many bootstrap samples
are required to avoid additional error contributions related to the method.

The standard deviation has two components, σt, which depends on the
shape of the true distribution and the sample size N , and, σB , which depends
on the number B of bootstrap replicates. Since the two causes are independent
and of purely statistical nature, we can put

σ2
δ = σ2

t + σ2
B ,

σ2
δ

δ2
=
c1
N

+
c2
B
.

We can only influence the second term, N being given. Obviously it is
sufficient to choose the number B of bootstrap replicates large compared to
the number N of experimental observations. For a normal distribution the
two constants c1, c2 are both equal to 1/2. (A derivation is given in [89].) For
distributions with long tails, i.e. large excess γ2, they are larger. (Remember:
γ2 = 0 for the normal distribution.) The value of c2 is in the general case
given by [89]:

c2 =
γ2 + 2

4
.

An estimate for γ2 can be derived from the empirical fourth moment of
the sample. Since error estimates are rather crude anyway, we are satisfied
with the choice B ≫ N .

12.2.4 Confidence Limits

To compute confidence limits or the p-value of a parameter we generate its
distribution from bootstrap samples. In a preceding example where we com-
puted the mean distance of random points, we extract from the distribution of
Fig. 12.4 that the probability to find a distance less than 0.4 is approximately
equal to 10%. Exact confidence intervals can only be derived from the exact
distribution.
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12.2.5 Precision of Classifiers

Classifiers like decision trees and ANNs usually subdivide the learning sample
in two parts, one part is used to train the classifier and a smaller part is
reserved to test the classifier. The precision can be enhanced considerably by
using bootstrap samples for both training and testing.

12.2.6 Random Permutations

In Chap. 10 we have treated the two-sample problem: “Do two experimental
distributions belong to the same population?” In one of the tests, the energy
test, we had used permutations of the observations to determine the distri-
bution of the test quantity. The same method can be applied to an arbitrary
test quantity which is able to discriminate between samples.

Example 148. Two-sample test with a decision tree
Let us assume that we want to test whether the two samples {x1, . . . ,xN1},

{x1, . . . ,xN2} of sizes N1 and N2 belong to the same population. This is our
null hypothesis. Instead of using one of the established two-sample methods
we may train a decision tree to separate the two samples. As a test quantity
serves the number of misclassifications Ñ which of course is smaller than
(N1 + N2)/2, half the size of the total sample. Now we combine the two
samples, draw from the combined sample two new random samples of sizes
N1 and N2, train again a decision tree to identify for each element the sample
index and count the number of misclassifications. We repeat this procedure
many, say 1000, times and obtain this way the distribution of the test statistic
under the null hypothesis. The fraction of cases where the random selection
yields a smaller number of misclassifications than the original samples is equal
to the p-value of the null hypothesis.

Instead of a decision tree we can use any other classifier, for instance a
ANN. The corresponding tests are potentially very powerful but also quite in-
volved. Even with nowadays computer facilities, training of some 1000 decision
trees or artificial neural nets is quite an effort.

12.2.7 Jackknife and Bias Correction

Jackknife is mainly used for bias removal. It is assumed that in first order
the bias decreases with N , i.e. that it is proportional to 1/N . How jackknife
works, is explained in the following simple example where we know the exact
result from Chap. 3.

When we estimate the mean squared error of a quantity x from a sample
of size N , using the formula
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δ2N =
∑

(xi − x)2/N

then δ2N is biased. We assume that the expected bias decreases linearly with
N . Thus it is possible to estimate the bias by changing N . We remove one
observation at a time and compute each time the mean squared error δ2N−1,i

and average the results:

δ2N−1 =
1

N

N∑

i=1

δ2N−1,i .

A linear dependence of the average bias bN on 1/N implies

bNN = bN−1(N − 1) (12.4)[
E(δ2N )− σ2

]
N =

[
E(δ2N−1)− σ2

]
(N − 1) ,

σ2 = NE(δ2N )− (N − 1)E(δ2N−1) .

Thus an improved estimate is δ2c = Nδ2N − (N − 1)δ2N−1.
Inserting the known expectation values (see Chap. 3),

E(δ2N ) = σ2N − 1

N
, E(δ2N−1) = σ2N − 2

N − 1
,

we confirm the bias corrected result E(δ2c ) = σ2.
This result can be generalized to any estimate t with a dominantly linear

bias, b ∝ 1/N .
tc = NtN − (N − 1)tN−1

The remaining bias is zero, of order 1/N2, or of higher order.
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Appendix

13.1 Large Number Theorems

13.1.1 Chebyshev Inequality and Law of Large Numbers

For a probability density f(x) with expected value µ, finite variance σ and
arbitrary given positive δ, the following inequality, known as Chebyshev in-
equality, is valid:

P{|x− µ| ≥ δ} ≤ σ2

δ2
. (13.1)

This very general theorem says that a given, fixed deviation from the
expected value becomes less probable when the variance becomes smaller. It
is also valid for discrete distributions.

To prove the inequality, we use the definition

PI ≡ P{x ∈ I} =

∫

I

f(x)dx ,

where the domain of integration I is given by 1 ≤ |x − µ|/δ. The assertion
follows from the following inequalities for the integrals:

∫

I

f(x)dx ≤
∫

I

(
x− µ

δ

)2

f(x)dx ≤
∫ ∞

−∞

(
x− µ

δ

)2

f(x)dx = σ2/δ2 .

Applying (13.1) to the arithmetic mean x from N independent identical dis-
tributed random variables x1, . . . , xN results in one of the so-called laws of
large numbers:

P{|x− 〈x〉| ≥ δ} ≤ var(x)/(Nδ2) , (13.2)

with the relations 〈x〉 = 〈x〉 , var(x) = var(x)/N obtained in Sects. 3.2.2
and 3.2.3. The right-hand side disappears for N → ∞, thus in this limit the
probability to observe an arithmetic mean value outside an arbitrary interval
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centered at the expected value approaches zero. We talk about stochastic
convergence or convergence in probability, here of the arithmetic mean against
the expected value.

We now apply (13.2) to the indicator function II(x) = 1 for x ∈ I, else
0. The sample mean II =

∑II(xi)/N is the observed relative frequency of
events x ∈ I in the sample. The expected value and the variance are

〈II〉 =
∫

II(x)f(x)dx

= PI ,

var(II) =
∫

I2
I (x)f(x)dx − 〈II〉2

= PI(1 − PI) ≤ 1/4 ,

where, as above, PI is the probability P {x ∈ I} to find x in the set I. When
we insert these results into (13.2), we obtain

P{|II − PI | ≥ δ} ≤ 1/(4Nδ2) . (13.3)

The relative frequency of events of a certain type in a sample converges with
increasing N stochastically to the probability to observe an event of that
type1.

13.1.2 Central Limit Theorem

The central limit theorem states that the distribution of the sample mean x,

x =
1

N

N∑

i=1

xi ,

ofN i.i.d. variables xi with finite variance σ2 in the limitN → ∞ will approach
a normal distribution with variance σ2/N independent of the form of the
distribution f(x). The following proof assumes that its characteristic function
exists.

To simplify the notation, we transform the variable to y = (x−µ)/(
√
Nσ),

where µ is the mean of x. The characteristic function of a p.d.f. with mean
zero and variance 1/N and thus also the p.d.f. of y is of the form

φ(t) = 1− t2

2N
+ c

t3

N3/2
+ · · ·

The characteristic function of the sum z =

N∑

i=1

yi is given by the product

1This theorem was derived by the Dutch-Swiss mathematician Jakob I. Bernoulli
(1654-1705).
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φz =

[
1− t2

2N
+ c

t3

N3/2
+ · · ·

]N

which in the limit N → ∞, where only the first two terms survive, approaches
the characteristic function of the standard normal distribution N(0, 1):

lim
N→∞

φz = lim
N→∞

[
1− t2

2N

]N
= e−t2/2 .

It can be shown that the convergence of characteristic functions implies the
convergence of the distributions. The distribution of x for large N is then
approximately

f(x) ≈
√
N√
2πσ

exp

[
−N(x− µ)2

σ2

]
.

Remark: The law of large numbers and the central limit theorem can be
generalized to sums of independent but not identically distributed variates.
The convergence is relatively fast when the variances of all variates are of
similar size.

13.2 Consistency, Bias and Efficiency of Estimators

The following estimator properties are essential in frequentist statistics. We
will discuss their relevance in Appendix 13.6.

Throughout this chapter we assume that samples consist of N i.i.d. vari-
ables xi, the true parameter value is θ0, estimates are θ̂ or t.

13.2.1 Consistency

We expect from an useful estimator that it becomes more accurate with in-
creasing size of the sample, i.e. larger deviations from the true value should
become more and more improbable.

A sequence of estimators tN of a parameter θ is called consistent, if their
p.d.f.s for N → ∞ are shrinking towards a central value equal to the true
parameter value θ0, or, expressing it mathematically, if

lim
N→∞

P{|tN − θ0| > ε} = 0 (13.4)

is valid for arbitrary ε. A sufficient condition for consistency which can be
easier checked than (13.4), is the combination of the two requirements

lim
N→∞

〈tN 〉 = θ0 , lim
N→∞

var(tN ) = 0 ,

where of course the existence of mean value and variance for the estimator tN
has to be assumed.
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For instance, as implied by the law of large numbers, the sample moments

tm =
1

N

N∑

i=1

xmi

are consistent estimators for the respective m-th moments µm of f(x) if this
moments exist.

13.2.2 Bias of Estimates

The bias of an estimate has been already introduced in Sect. 7.2.3: An estimate
tN for θ is unbiased if already for finite N (eventually N > N0) and all
parameter values considered, the estimator satisfies the condition

〈tN 〉 = θ .

The bias of an estimate is defined as:

b = 〈tN 〉 − θ .

Obviously, consistent estimators are asymptotically unbiased:

lim
N→∞

b(N) = 0 .

The bias of a consistent estimator can be removed without affecting the
consistency by multiplying the estimate with a factor like (N + a)/(N + b)
which approaches unity for N → ∞.

13.2.3 Efficiency

An important characteristics is of course the accuracy of the statistical esti-
mate. A useful measure for accuracy is the mean square deviation 〈(t− θ0)

2〉
of the estimate from the true value of the parameter. According to (3.11) it
is related to the variance of the estimator and the bias by

〈
(t− θ0)

2
〉
= var(t) + b2 . (13.5)

Definition: An estimator t is (asymptotically) efficient for the parameter
θ if for all permitted parameter values it fulfils the following conditions for
N → ∞:

1.
√
N(t− θ) approaches a normal distribution of constant width and mean

equal to zero.
2. var(t) ≤ var(t′) for any other estimator t′ which satisfies condition 1.
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In other words, an efficient estimate is asymptotically normally distributed
and has minimal variance. According to condition 1, its variance decreases
with 1/N . An efficient estimator therefore reaches the same accuracy as a
competing one with a smaller sample size N , and is therefore economically
superior. Not in all situations an efficient estimator exists.

Example 149. Efficiency of different estimates of the location parameter of a
Gaussian [108]

Let us compare three methods to estimate the expected value µ of a Gaus-
sian N (x|µ, σ) with given width σ from a sample {xi} , i = 1, . . . , N . For large
N we obtain for var(t):

Method 1: sample mean σ2/N
Method 2: sample median σ2/N · π/2
Method 3: (xmin + xmax)/2 σ2/N ·Nπ2/(12 lnN)
Obviously methods 2 and 3 are not efficient. Especially the third method,

taking the mean of the two extremal values found in the sample, performs
badly here. For other distributions, different results will be found. For the
rather exotic two-sided exponential distribution (an exponential distribution
of the absolute value of the variate, also called Laplace distribution) method
2 would be efficient and equal to the MLE. For a uniform distribution the
estimator of method 3 would be efficient and also equal to the MLE.

While it is of interest to find the estimator which provides the smallest
variance, it is not obvious how we could prove this property, since a compar-
ison with all thinkable methods is of course impossible. Here a useful tool is
the Cramer–Rao inequality. It provides a lower bound of the variance of an
estimator. If we reach this minimum, we can be sure that the optimal accuracy
is obtained.

The Cramer–Rao inequality states:

var(t) ≥ [1 + (db/dθ)]2

N〈(∂ ln f/∂θ)2〉 . (13.6)

The denominator of the right-hand side is also called, after R. A. Fisher, the
information2 about the parameter θ from a sample of size N of i.i.d. variates.

To prove this inequality, we define the random variable y =
∑
yi with

yi =
∂ ln fi
∂θ

, fi ≡ f(xi|θ) . (13.7)

It has the expected value

2This is a special use of the word information as a technical term.
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〈yi〉 =
∫

1

fi

∂fi
∂θ

fi dxi

=

∫
∂fi
∂θ

dxi

=
∂

∂θ

∫
fi dxi

=
∂

∂θ
1 = 0 . (13.8)

Because of the independence of the yi we have 〈yiyj〉 = 〈yi〉〈yj〉 = 0 and

var(y) = N〈y2i 〉 = N

〈(
∂ ln f

∂θ

)2
〉
. (13.9)

Using the definition L =
∏
fi, we find for cov(ty) = 〈(t− 〈t〉)(y − 〈y〉)〉:

cov(ty) =
∫
t
∂ lnL

∂θ
L dx1 · · · dxN

=

∫
t
∂

∂θ
L dx1 · · · dxN

=
∂

∂θ
〈t〉

= 1 +
db

dθ
. (13.10)

From the Cauchy–Schwarz inequality

[cov(ty)]2 ≤ var(t)var(y)

and (13.9), (13.10) follows (13.6).
The equality sign in (13.6) is valid if and only if the two factors t, y in

the covariance are proportional to each other. In this case t is called a Mini-
mum Variance Bound (MVB) estimator. It can be shown to be also minimal
sufficient.

In most of the literature efficiency is defined by the stronger condition: An
estimator is called efficient, if it is bias-free and if it satisfies the MVB.

13.3 Properties of the Maximum Likelihood Estimator

13.3.1 Consistency

The maximum likelihood estimator (MLE) is consistent under mild assump-
tions.

To prove this, we consider the expected value of
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lnL(θ|x) =
N∑

i=1

ln f(xi|θ) (13.11)

which is to be calculated by integration over the variables3 x using the true
p.d.f. (with the true parameter θ0). First we prove the inequality

〈lnL(θ|x)〉 < 〈lnL(θ0|x)〉 , (13.12)

for θ 6= θ0: Since the logarithm is a strongly convex function, there is always
〈ln(. . .)〉 < ln〈(. . .)〉, hence

〈
ln

L(θ|x)
L(θ0|x)

〉
< ln

〈
L(θ|x)
L(θ0|x)

〉
= ln

∫
L(θ|x)
L(θ0|x)

L(θ0|x)dx = ln 1 = 0 .

In the last step we used
∫
L(θ|x)dx =

∫ ∏
f(xi|θ)dx1 · · ·dxN = 1 .

Since lnL(θ|x)/N =
∑

ln f(xi|θ)/N is an arithmetic sample mean which,
according to the law of large numbers (13.2), converges stochastically to the
expected value for N → ∞, we have also (in the sense of stochastic conver-
gence)

lnL(θ|x)/N → 〈ln f(x|θ)〉 =
∑

〈ln f(xi|θ)〉 /N = 〈lnL(θ|x)〉 /N ,

and from (13.12)

lim
N→∞

P{lnL(θ|x) < lnL(θ0|x)} = 1 , θ 6= θ0 . (13.13)

On the other hand, the MLE θ̂ is defined by the extremum condition

lnL(θ̂|x) ≥ lnL(θ0|x) .

A contradiction to (13.13) can be avoided only, if also

lim
N→∞

P{|θ̂ − θ0| < ε} = 1

is valid. This means consistency of the MLE.

3We keep the form of the argument list of L, although now x is not considered
as fixed to the experimentally sampled values, but as a random vector with given
p.d.f..
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13.3.2 Efficiency

Since the MLE is consistent, it is unbiased asymptotically for N → ∞. Under
certain assumptions in addition to the usually required regularity4 the MLE
is also efficient asymptotically.

Proof :
With the notations of the last paragraph with L =

∏
fi and using (13.8),

the expected value and variance of y =
∑
yi = ∂ lnL/∂θ are given by the

following expressions:

〈y〉 =
∫
∂ lnL

∂θ
L dx = 0 , (13.14)

σ2
y = var(y) =

〈(
∂ lnL

∂θ

)2
〉

= −
〈
∂2

∂θ2
lnL

〉
. (13.15)

The last relation follows after further differentiation of (13.14) and from the
relation

∫
∂2 lnL

∂θ2
L dx = −

∫
∂ lnL

∂θ

∂L

∂θ
dx = −

∫
∂ lnL

∂θ

∂ lnL

∂θ
L dx .

From the Taylor expansion of ∂ lnL/∂θ|θ=θ̂ which is zero by definition and
with (13.15) we find

0 =
∂ lnL

∂θ
|θ=θ̂ ≈ ∂ lnL

∂θ |θ=θ0 + (θ̂ − θ0)
∂2 lnL
∂θ2 |θ=θ0

≈ y − (θ̂ − θ0)σ
2
y , (13.16)

where the consistency of the MLE guaranties the validity of this approxima-
tion in the sense of stochastic convergence. Following the central limit theorem,
y/σy being the sum of i.i.d. variables, is asymptotically normally distributed
with mean zero and variance unity. The same is then true for (θ̂−θ0)σy, i.e. θ̂
follows asymptotically a normal distribution with mean θ0 and asymptotically
vanishing variance 1/σ2

y ∼ 1/N , as seen from (13.9).

13.3.3 Asymptotic Form of the Likelihood Function

A similar result as derived in the last paragraph for the p.d.f. of the MLE θ̂
can be derived for the likelihood function itself.

If one considers the Taylor expansion of y = ∂ lnL/∂θ around the MLE θ̂,
we get with y(θ̂) = 0

y(θ) ≈ (θ − θ̂)y′(θ̂) . (13.17)

4The boundaries of the domain of x must not depend on θ and the maximum of
L should not be reached at the boundary of the range of θ.
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As discussed in the last paragraph, we have for N → ∞

y′(θ̂) → y′(θ0) → 〈y′〉 = −σ2
y = const .

Thus y′(θ̂) is independent of θ̂ and higher derivatives disappear. After inte-
gration of (13.17) over θ we obtain a parabolic form for lnL:

lnL(θ) = lnL(θ̂)− 1

2
σ2
y(θ − θ̂)2 ,

where the width of the parabola decreases with σ−2
y ∼ 1/N (13.9). Up to

the missing normalization, the likelihood function has the same form as the
distribution of the MLE with θ̂ − θ0 replaced by θ − θ̂.

13.3.4 Properties of the Maximum Likelihood Estimate for Small
Samples

The criterion of asymptotic efficiency, fulfilled by the MLE for large samples,
is usually extended to small samples, where the normal approximation of
the sampling distribution does not apply, in the following way: A bias-free
estimate t is called a minimum variance (MV) estimate if var(t) ≤ var(t′)
for any other bias-free estimate t′. If, moreover, the Cramer–Rao inequality
(13.6) is fulfilled as an equality, one speaks of a minimum variance bound
(MVB) estimate, often also called efficient or most efficient, estimate (not to
be confused with the asymptotic efficiency which we have considered before
in Appendix 13.2). The latter, however, exists only for a certain function τ(θ)
of the parameter θ if it has a one-dimensional sufficient statistic (see 7.1.1). It
can be shown [3] that under exactly this condition the MLE for τ will be this
MVB estimate, and therefore bias-free for any N . The MLE for any non-linear
function of τ will in general be biased, but still optimal in the following sense:
if bias-corrected, it becomes an MV estimate, i.e. it will have the smallest
variance among all unbiased estimates.

Example 150. : Efficiency of small sample MLEs
The MLE for the variance σ2 of a normal distribution with known mean

µ,

σ̂2 =
1

N

∑
(xi − µ)2 ,

is unbiased and efficient, reaching the MVB for all N . The MLE for σ is of
course

σ̂ =

√
σ̂2 ,

according to the relation between σ and σ2. It is biased and thus not efficient
in the sense of the above definition. A bias-corrected estimator for σ is (see
for instance [109])
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σ̂corr =

√
N

2

Γ
(
N
2

)

Γ
(
N+1
2

) σ̂ .

This estimator can be shown to have the smallest variance of all unbiased
estimators, independent of the sample size N .

In the above example a one-dimensional sufficient statistic exists. If this
is not the case, the question whether the MLE is optimal for small samples,
from a frequentist point of view cannot be answered.

In summary, also for finite N the MLE for a certain parameter achieves the
optimal – from the frequentist point of view – properties of an MVB estimator,
if the latter does exist. Of course these properties cannot be preserved for other
parametrizations, since variance and bias are not invariant properties.

13.4 Error of Background-Contaminated Parameter
Estimates

In order to calculate the additional uncertainty of a parameter estimate due to
the presence of background, if the latter is taken from a reference experiment
in the way described in Sect. 6.9, we consider the general definition of the
pseudo log-likelihood

ln L̃ =

N∑

i=1

ln f(xi|θ)− r

M∑

i=1

ln f(x′i|θ) ,

restricting ourselves at first to a single parameter θ, see (6.32). The general-
ization to multi-dimensional parameter spaces is straight forward, and will be
indicated later. From ∂ ln L̃/∂θ|θ̂ = 0, we find

[
S∑

i=1

∂ ln f(x
(S)
i |θ)

∂θ
+

B∑

i=1

∂ ln f(x
(B)
i |θ)

∂θ
− r

M∑

i=1

∂ ln f(x′i|θ)
∂θ

]

θ̂

= 0 .

This formula defines the background-corrected estimate θ̂. It differs from the
“ideal” estimate θ̂(S) which would be obtained in the absence of background,
i.e. by equating to zero the first sum on the left hand side. Writing θ̂ =
θ̂(S) +∆θ̂ in the first sum, and Taylor expanding it up to the first order, we
get

S∑

i=1

∂2 ln f(x
(S)
i |θ)

∂θ2
|θ̂(S)∆θ̂ +

[
B∑

i=1

∂ ln f(x
(B)
i |θ)

∂θ
− r

M∑

i=1

∂ ln f(x′i|θ)
∂θ

]

θ̂

= 0 .

(13.18)
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The first sum, if taken with a minus sign, is the Fisher information of the signal
sample on θ(S), and equals −1/var(θ̂(S)), asymptotically. The approximation
relies on the assumption that

∑
ln f(xi|θ) is parabolic in the region θ̂(S)±∆θ̂.

Then we have

∆θ̂ ≈ var(θ̂(S))

[
B∑

i=1

∂ ln f(x
(B)
i |θ)

∂θ
− r

M∑

i=1

∂ ln f(x′i|θ)
∂θ

]

θ̂

. (13.19)

We take the expected value with respect to the background distribution and
obtain

〈∆θ̂〉 = var(θ̂(S))〈B − rM〉〈∂ ln f(x|θ)
∂θ

|θ̂〉 .

Since 〈B − rM〉 = 0, the background correction is asymptotically bias-free.
Squaring (13.19), and writing the summands in short hand as yi, y′i, we

get

(∆θ̂)2 = (var(θ̂(S)))2

[
B∑

i=1

yi − r

M∑

i=1

y′i

]2
,

[· · ·]2 =

B∑

i

B∑

j

yiyj + r2
M∑

i

M∑

j

y′iy
′
j − 2r

B∑

i

M∑

j

yiy
′
j

=

B∑

i

y2i + r2
M∑

i

y′2i +

B∑

j 6=i

yiyj + r2
M∑

j 6=i

y′iy
′
j − 2r

B∑

i

M∑

j

yiy
′
j ,

= (var(θ̂(S)))2
[
〈B + r2M〉〈(y2〉 − 〈y〉2) + 〈(B − rM)2〉〈y〉2

]
.(13.20)

In physics experiments, the event numbers M , B, S are independently
fluctuating according to Poisson distributions with expected values 〈M〉 =
〈B〉/r, and 〈S〉. Then 〈B + r2M〉 = 〈B〉(1 + r) and

〈(B − rM)2〉 = 〈B2〉+ 〈r2M2〉 − 2r〈B〉〈M〉 = 〈B〉+ r2〈M〉 = 〈B〉(1 + r) .

Adding the contribution from the uncontaminated estimate, var(θ̂(S)), to
(13.20) leads to the final result

var(θ̂) = var(θ̂(S)) +
〈
(∆θ̂)2

〉

= var(θ̂(S)) + (1 + r)(var(θ̂(S)))2〈B〉〈y2〉 (13.21)

= var(θ̂(S)) + r(1 + r)(var(θ̂(S)))2〈M〉〈y2〉 .

But 〈M〉, the expected number of background events in both the main- and
the control sample, is not known and can only be estimated by the empirical
value M . In the same way we have to use empirical estimates for the expected
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values 〈y〉 and 〈y2〉, since the distribution of background events is unknown.
Thus we replace

〈M〉 →M , 〈y〉 →
M∑

i=1

yi/M , 〈y2〉 →
M∑

i=1

y2i /M

where yi = ∂ ln f(x′i|θ)/∂θ. As usual in error calculation, the dependence of
yi on the true value of θ has to be approximated by a dependence on the
estimated value θ̂. Similarly, we approximate var(θ̂(S)):

−1/var(θ̂(S)) =

S∑

i=1

∂2 ln f(xi|θ)
∂θ2

|θ̂(S)

≈
[∑N

i=1
∂2 ln f(xi|θ)

∂θ2 − r
∑M

i=1
∂2 ln f(x′

i|θ)
∂θ2

]
θ̂
.

We realize from (13.21) that it is advantageous to take a large reference
sample, i.e. r small. The variance 〈(∆θ̂)2〉 increases with the square of the
error of the uncontaminated sample. Via the quantity 〈y2〉 it depends also on
the shape of the background distribution.

For a P -dimensional parameter space θ we see from (13.18) that the first
sum is given by the weight matrix V(S) of the estimated parameters in the
absence of background

−
P∑

l=1

S∑

i=1

∂2 ln f(x
(S)
i |θ)

∂θk∂θl
|
θ̂
(S)∆θ̂l =

P∑

l=1

(V(S))kl∆θ̂l .

Solving the linear equation system for ∆θ̂ and constructing from its com-
ponents the error matrix E, we find in close analogy to the one-dimensional
case

E = C(S)YC(S) ,

with C(S) = V(S)−1 being the covariance matrix of the background-free esti-
mates and Y defined as

Ykl = r(1 + r)〈M〉〈ykyl〉 ,

with yk = yk(xi) short hand for ∂ ln f(x′i|θ)/∂θk. As in the one-dimensional
case, the total covariance matrix of the estimated parameters is the sum

cov(θ̂k, θ̂l) = C
(S)
kl + Ekl .

The following example illustrates the error due to background contamina-
tion for the above estimation method.
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Example 151. Parameter uncertainty for background contaminated signals
We investigate how well our asymptotic error formula works in a specific

example. To this end, we consider a Gaussian signal distribution with width
unity and mean zero over a background modeled by an exponential distribu-
tion with decay constant γ = 0.2 of the form c exp[−γ(x + 4)] where both
distributions are restricted to the range [−4, 4]. The numbers of signal events
S, background events B and reference events M follow Poisson distributions
with mean values 〈S〉 = 60, 〈B〉 = 40 and 〈M〉 = 100. This implies a correc-
tion factor r = 〈B〉/〈M〉 = 0.4 for the reference experiment. From 104 MC
experiments we obtain a distribution of µ̂, with mean value and width 0.019
and 0.34, respectively. The pure signal µ̂(S) has mean and width 0.001 and
0.13 (= 1/

√
60). From our asymptotic error formula (13.21) we derive an error

of 0.31, slightly smaller than the MC result. The discrepancy will be larger
for lower statistics. It is typical for Poisson fluctuations.

13.5 Frequentist Confidence Intervals

We associate error intervals to measurements to indicate that the parameter
of interest has a reasonably high probability to be located inside the interval.
However to compute the probability a prior probability has to be introduced
with the problem which we have discussed in Sect. 6.1. To circumvent this
problem, J. Neyman has proposed a method to construct intervals without
using prior probabilities. Unfortunately, as it is often the case, one problem is
traded for another one.

Neyman’s confidence intervals have the following defining property: The
true parameter lies in the interval on the average in the fraction C of intervals
of confidence level C. In other words: Given a true value θ, a measurement t
will include it in its associated confidence interval [t1, t2] – “cover” it – with
probability C. (Remark that this does not necessarily imply that given a
certain confidence interval the true value is included in it with probability C.)

Traditionally chosen values for the confidence level are 68.3%, 90%, 95%
– the former corresponds to the standard error interval of the normal distri-
bution.

Confidence intervals are constructed in the following way:
For each parameter value θ a probability interval [t1(θ), t2(θ)] is defined,

such that the probability that the observed value t of θ is located in the
interval is equal to the confidence level C:

P{t1(θ) ≤ t ≤ t2(θ)} =

∫ t2

t1

f(t|θ)dt = C . (13.22)
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Fig. 13.1. Confidence belt. The shaded area is the confidence belt, consisting of the
probability intervals [t1(θ), t2(θ)] for the estimator t. The observation t = 4 leads to
the confidence interval [θmin, θmax].

Of course the p.d.f. f(t|θ) or error distribution of the estimator t must be
known. To fix the interval completely, an additional condition is applied. In
the univariate case, a common procedure is to choose central intervals,

P{t < t1} = P{t > t2} =
1− C

2
.

Other conventions are minimum length and equal probability intervals defined
by f(t1) = f(t2). The confidence interval consists of those parameter values
which include the measurement t̂ within their probability intervals. Somewhat
simplified: Parameter values are accepted, if the observation is compatible with
them.

The one-dimensional case is illustrated in Fig. 13.1. The pair of curves t =
t1(θ) , t = t2(θ) in the (t, θ)-plane comprise the so-called confidence belt . To
the measurement t̂ = 4 then corresponds the confidence interval [θmin, θmax]
obtained by inverting the relations t1,2(θmax,min) = t̂, i.e. the section of the
straight line t = t̂ parallel to the θ axis.

The construction shown in Fig. 13.1 is not always feasible: It has to be
assumed that t1,2(θ) are monotone functions. If the curve t1(θ) has a maximum
say at θ = θ0, then the relation t1(θ) = t̂ cannot always be inverted: For
t̂ > t1(θ0) the confidence belt degenerates into a region bounded from below,
while for t̂ < t1(θ0) there is no unique solution. In the first case one usually
declares a lower confidence bound as an infinite interval bounded from below.
In the second case one could construct a set of disconnected intervals, some
of which may be excluded by other arguments.
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Fig. 13.2. Confidence interval. The shaded area is the confidence region for the two-
dimensional measurement (θ̂1,θ̂2). The dashed curves indicate probability regions
associated to the locations denoted by capital letters.

The construction of the confidence contour in the two-parameter case is
illustrated in Fig. 13.2 where for simplicity the parameter and the observa-
tion space are chosen such that they coincide. For each point θ1, θ2 in the
parameter space we fix a probability contour which contains a measurement
of the parameters with probability C. Those parameter points with probabil-
ity contours passing through the actual measurement θ̂1, θ̂2 are located at the
confidence contour. All parameter pairs located inside the shaded area contain
the measurement in their probability region.

Frequentist statistics avoids prior probabilities. This feature, while desir-
able in general, can have negative consequences if prior information exists.
This is the case if the parameter space is constrained by mathematical or phys-
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ical conditions. In frequentist statistics it is not possible to exclude un-physical
parameter values without introducing additional complications. Thus, for in-
stance, a measurement could lead for a mass to a 90% confidence interval
which is situated completely in the negative region, or for an angle to a com-
plex angular region. The problem is mitigated somewhat by a newer method
[110], but not without introducing other complications [111], [112].

13.6 Comparison of Different Inference Methods

13.6.1 A Few Examples

Before we compare the different statistical philosophies let us look at a few
examples.

Example 152. Performance of magnets
A company produces magnets which have to satisfy the specified field

strength within certain tolerances. The various measurement performed by
the company are fed into a fitting procedure producing a 99% confidence
intervals which are used to accept or reject the product before sending it
off. The client is able to repeat the measurement with high precision and
accepts only magnets within the agreed specification. To calculate the price
the company must rely on the condition that the confidence interval in fact
covers the nominal value with the presumed confidence level.

Example 153. Mass of a resonance
The mass and the width of a strongly decaying particle are determined

from the mass distribution of many events. Somewhat simplified, the mass
is computed in each event from the energy E and the momentum p, mc2 =√
E2 − p2c2. A bias in the momentum fit has to be avoided, because it would

lead to a systematic shift of the resulting mass estimate.

Example 154. Inference with known prior
We repeat an example presented in Sect. 6.2.2. In the reconstruction of

a specific, very interesting event, for instance a SUSY candidate, we have to
infer the distance θ between the production and decay vertices of an unstable
particle produced in the reaction. From its momentum and its known mean life
we calculate its expected decay length λ. The prior density for the actual decay
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length θ is π(θ) = exp(−θ/λ)/λ. The experimental distance measurement
which follows a Gaussian with standard deviation s yields d. According to
(6.2.2), the p.d.f. for the actual distance is given by

f(θ|d) = e(−(d−θ)2)/(2s2)e−θ/λ

∫∞
0

e−(d−θ)2/(2s2)e−θ/λdθ
.

This is an ideal situation. We can determine for instance the mean value and
the standard deviation or the mode of the θ distribution and an asymmetric
error interval with well defined probability content, for instance 68.3%. The
confidence level is of no interest and due to the application of the prior the
estimate of θ is biased, but this is irrelevant.

Example 155. Bias introduced by a prior
We now modify and extend our example. Instead of the decay length we

discuss the lifetime of the particle. The reasoning is the same, we can apply
the prior and determine an estimate and an error interval. We now study N
decays, to improve our knowledge of the mean lifetime τ of the particle species.
For each individual decay we use a prior with an estimate of τ as known from
previous experiments, determine each time the lifetime t̂i and the mean value
t̄ =

∑
t̂i/N from all measurements. Even though the individual time estimates

are improved by applying the prior the average t̄ is a very bad estimate of τ
because the t̂i are biased towards low values and consequently also their mean
value is shifted. (Remark that in this and in the second example we have two
types of parameters which we have to distinguish. We dicuss the effect of a
bias of the primary parameter set)

Example 156. Comparing predictions with strongly differing accuracies: Earth
quake

Two theories H1, H2 predict the time θ of an earth quake. The predictions
differ in the expected values as well as in the size of the Gaussian errors:

H1 : θ1 = (7.50± 2.25)h ,

H2 : θ2 = (50± 100)h .

To keep the discussion simple, we do not exclude negative times t. The earth-
quake then takes place at time t = 10 h. In Fig. 13.3 are shown both hypo-
thetical distributions in logarithmic form together with the actually observed
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Fig. 13.3. Two hypotheses compared to an observation. The likelihood ratio sup-
ports hypothesis 1 while the distance in units of st.dev. supports hypothesis 2.

time. The first predictionH1 differs by more than one standard deviation from
the observation, prediction H2 by less than one standard deviation. Is then
H2 the more probable theory? Well, we cannot attribute probabilities to the
theories but the likelihood ratio R which here has the value R = 26, strongly
supports hypothesis H1. We could, however, also consider both hypotheses as
special cases of a third general theory with the parametrization

f(t) =
25√
2πθ2

exp

[
−625(t− θ)2

2θ4

]

and now try to infer the parameter θ and its error interval. The observation
produces the likelihood function shown in the lower part of Fig. 13.3. The usual
likelihood ratio interval contains the parameter θ1 and excludes θ2 while the
frequentist standard confidence interval [7.66,∞] would lead to the reverse
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conclusion which contradicts the likelihood ratio result and also our intuitive
conclusions.

The presented examples indicate that depending on the kind of problem,
different statistical methods are to be applied.

13.6.2 The Frequentist approach

The frequentist approach emphasizes efficiency, unbiasedness and coverage.
These quantities are defined through the expected fluctuations of the parameter
of interest given its true value. The compute these quantities we need to know
the full p.d.f.. Efficiency and bias are related to point estimation. A bias has
to be avoided whenever we average over several estimates like in the second
and the forth example. Frequentist interval estimation guarantees coverage5.
A producer of technical items has to guarantee that a certain fraction of a
sample fulfils given tolerances. He will choose, for example, a 99 % confidence
interval for the lifetime of a bulb and then be sure that complaints will occur
only in 1 % of the cases. Insurance companies want to estimate their risk and
thus have to know, how frequently damage claims will occur.

Common to frequentist parameter inference (examples 1, 2 and 4) is that
we are interested in the properties of a set of parameter values. The param-
eters are associated to many different objects, events or accidents e.g. the
magnet strengths, momenta of different events or individual lifetimes. Here
coverage and unbiasedness are essential and efficiency is an important quan-
tity. As seen in the forth example the application of prior information – even
when it is known exactly – would be destructive. Physicists usually impose
transformation invariance to important parameters (The estimates of the life-
time τ̂ and the decay rate γ̂ of a particle should satisfy γ̂ = 1/τ̂ but only one
of these two parameters can be unbiased.) but in many situations the fact
that bias and efficiency are not invariant under parameter transformations do
not matter. In a business contract in the bulb example an agreement would
be on the lifetime and the decay rate would be of no interest. The combina-
tion of the results from different measurement is difficult but mostly of minor
interest.

13.6.3 The Bayesian Approach

The Bayesian statistics defines probability or credibility intervals. The interest
is directed towards the true value given the observed data. As the probability of
data that are not observed is irrelevant, the p.d.f. is not needed, the likelihood
principle applies, only the prior and the likelihood function are relevant. The

5In the frequentist statistics point and interval estinmation are unrelated.
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Bayesian approach is justified if we are interested in a constant of nature,
a particle mass, a coupling constant or in a parameter describing a unique
event like in examples three and five. In these situations we have to associate
to the measurement an error in a consistent way. Point and interval estimation
cannot be treated independently. Coverage and bias are of no importance – in
fact it does not make much sense to state that a certain fraction of physical
constants are covered by their error intervals and it is of no use to know
that out of 10 measurements of a particle mass one has to expect that about
7 contain the true value within their error intervals. Systematic errors and
nuisance parameters for which no p.d.f. is available can only be treated in the
Bayesian framework.

The drawback of the Bayesian method is the need to invent a prior prob-
ability. In example three the prior is known but this is one of the rare cases.
In the fifth example, like in many other situations, a uniform prior would be
acceptable to most scientists and then the Bayesian interval would coincide
with a likelihood ratio interval.

13.6.4 The Likelihood Ratio Approach

To avoid the introduction of prior probabilities, physicists are usually satisfied
with the information contained in the likelihood function. In most cases the
MLE and the likelihood ratio error interval are sufficient to summarize the re-
sult. Contrary to the frequentist confidence interval this concept is compatible
with the maximum likelihood point estimation as well as with the likelihood
ratio comparison of discrete hypotheses and allows to combine results in a con-
sistent way. As in the Bayesian method, parameter transformation invariance
holds. However, there is no coverage guarantee and an interpretation in terms
of probability is possible only for small error intervals, where prior densities
can be assumed to be constant within the accuracy of the measurement.

13.6.5 Conclusion

The choice of the statistical method has to be adapted to the concrete appli-
cation. The frequentist reasoning is relevant in rare situations like event selec-
tion, where coverage could be of some importance or when secondary statistics
is performed with estimated parameters. In some situations Bayesian tools are
required to proceed to sensible results. In all other cases the likelihood func-
tion, or as a summary of it, the MLE and a likelihood ratio interval are the
best choice.

13.6.6 Consistency, Efficiency, Bias

These properties are related to important issues in frequentist statistics and
of limited interest in the Bayesian and the likelihood ratio approaches. Since
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the latter rely on the likelihood principle, they base parameter and interval
inference solely on the likelihood function and these parameters cannot and
need not be considered. Nevertheless it is of some interest, to investigate how
the classical statistics reacts to the MLE and it is reassuring that asymptot-
ically for large samples the frequentist approach is in accordance with the
likelihood ratio method. This manifests itself in the consistency of the MLE.
Also for small samples, the MLE has certain optimal frequentist properties,
but there the methods provide different solutions.

Efficiency is defined through the variance of the estimator for given values
of the true parameter (independent of the measured value). In inference prob-
lems, however, the true value is unknown and of interest is the deviation of
the true parameter from a given estimate. Efficiency is not invariant against
parameter transformation. For example, the MLE of the lifetime θ̂ with an
exponential decay distribution is an efficient estimator while the MLE of the
decay rate γ̂ = 1/θ̂ is not.

Similar problems exist for the bias which also depends on the parame-
ter metric. Frequentists usually correct estimates for a bias. This is justified
again in commercial applications, where many replicates are considered. If in
a long-term business relation the price for a batch of some goods is agreed
to be proportional to some product quality (weight, mean lifetime...) which
is estimated for each delivery from a small sample, this estimate should be
unbiased, as otherwise gains and losses due to statistical fluctuations would
not cancel in the long run. It does not matter here that the quantity bias
is not invariant against parameter transformations. In the business example
the mentioned agreement would be on weight or on size and not on both.
In the usual physics application where experiments determine constants of
nature, the situation is different, there is no justification for bias corrections,
and invariance is an important issue.

Somewhat inconsistent in the frequentist approach is that confidence in-
tervals are invariant against parameter transformations while efficiency and
bias are not and that the aim for efficiency supports the MLE for point esti-
mation which goes along with likelihood ratio intervals and not with coverage
intervals.

13.7 P-Values for EDF-Statistics

The formulas reviewed here are taken from the book of D’Agostino and
Stephens [113] and generalized to include the case of the two-sample com-
parison.

Calculation of the Test Statistics

The calculation of the supremum statistics D and of V = D+ +D− is simple
enough, so we will skip a further discussion.
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The quadratic statistics W 2, U2 and A2 are calculated after a probability
integral transformation (PIT). The PIT transforms the expected theoretical
distribution of x into a uniform distribution. The new variate z is found from
the relation z = F (x), whereby F is the integral distribution function of x.

With the transformed observations zi, ordered according to increasing val-
ues, we get for W 2, U2 and A2:

W 2 =
1

12N
+

N∑

i=1

(zi −
2i− 1

2N
)2 , (13.23)

U2 =

N∑

i=2

(zi − zi−1)
2

∑N
i=1 z

2
i

,

A2 = −N +

N−1∑

i=1

(zi − 1) (ln zi + ln(1 − zN+1−i)) . (13.24)

If we know the distribution function not analytically but only from a
Monte-Carlo simulation, the z-value for an observation x is approximately
z ≈ (number of Monte-Carlo observations with xMC < x) /(total number
of Monte Carlo observations). (Somewhat more accurate is an interpolation).
For the comparison with a simulated distribution is N to be taken as the
equivalent number of observations

1

N
=

1

Nexp
+

1

NMC
.

Here Nexp and NMC are the experimental respectively the simulated sample
sizes.

Calculation of p-Values

After normalizing the test variables with appropriate powers of N they follow
p.d.f.s which are independent of N . The test statistics’ D∗, W 2∗, A2∗ modified
in this way are defined by the following empirical relations

D∗ = Dmax(
√
N + 0.12 +

0.11√
N

) , (13.25)

W 2∗ = (W 2 − 0.4

N
+

0.6

N2
)(1.0 +

1.0

N
) , (13.26)

A2∗ = A2 . (13.27)

The relation between these modified statistics and the p-values is given in
Fig. 13.4.
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Fig. 13.4. P-values for empirical test statistics.
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13.8 Comparison of two Histograms containing weighted
events, Goodness-of-Fit and Parameter Estimation

In the main text we have treated goodness-of-fit and parameter estimation
from a comparison of two histograms in the simple situation where the statis-
tical errors of one of the histograms (generated by Monte Carlo simulation)
was negligible compared to the uncertainties of the other histogram. Here
we take the errors of both histograms into account and also permit that the
histogram bins contain weighted entries.

13.8.1 Comparison of two Poisson Numbers with Different
Normalization

We compare cnn with cmm where the normalization constants cn, cm are
known and n,m are Poisson distributed. Only cn/cm matters and for example
cn could be set equal to one, but we prefer to keep both constants because
then the formulas are more symmetric. The null hypothesis H0 is that n is
drawn from a distribution with mean λ/cn and m from a distribution with
mean λ/cm. We form a χ2 expression

χ2 =
(cnn− cmm)2

δ2
(13.28)

where the denominator δ2 is the expected variance of the parenthesis in the
numerator under the null hypothesis. To compute δ we have to estimate λ.
The p.d.f. of n and m is P(n|λ/cn)P(m|λ/cm) leading to the corresponding
log-likelihood of λ

lnL(λ) = n ln
λ

cn
− λ

cn
+m ln

λ

cm
− λ

cm
+ const.

with the MLE
λ̂ =

n+m

1/cn + 1/cm
= cncm

n+m

cn + cm
. (13.29)

Assuming now that n is distributed according to a Poisson distribution with
mean n̂ = λ̂/cn and respectively, mean m̂ = λ̂/cm we find

δ2 = c2nn̂+ c2mm̂

= (cn + cm)λ̂

= cncm(n+m)

and inserting the result into (13.28), we obtain

χ2 =
1

cncm

(cnn− cmm)2

n+m
. (13.30)

As mentioned, only the relative normalization cn/cm is relevant.



13.8 Comparison of two Histograms containing weighted events, Goodness-of-Fit and Parameter Estimation 425

13.8.2 Comparison of Weighted Sums

When we compare experimental data to a Monte Carlo simulation, the simu-
lated events frequently are weighted. We generalize our result to the situation
where both numbers n,m consist of a sums of weights, vk, respectively wk,
n =

∑
vk, m =

∑
wk. In Appendix 13.9.1 it is shown that the sum of weights

for not too small event numbers can be approximated by a scaled Poisson dis-
tribution and that this approximation is superior to the approximation with
a normal distribution. Now the equivalent numbers of unweighted events ñ
and m̃,

ñ =

[∑
vk

]2

∑
v2k

, m̃ =

[∑
wk

]2

∑
w2

k

, (13.31)

are approximately Poisson distributed. We simply have to replace (13.30) by

χ2 =
1

c̃nc̃m

(c̃nñ− c̃mm̃)2

ñ+ m̃
(13.32)

where now c̃n, c̃m are the relative normalization constants for the equivalent
numbers of events. We summarize in short the relevant relations, assuming
that and as before cnn is supposed to agree with cmm as before. As discussed
in 3.7.3 we find with c̃nñ = cnn, c̃mm̃ = cmm:

c̃n = cn

∑
v2k∑
vk

, c̃m = cm

∑
w2

k∑
wk

. (13.33)

13.8.3 χ2 of Histograms

We have to evaluate the expression (13.32) for each bin and sum over all B
bins

χ2 =

B∑

i=1

[
1

c̃nc̃m

(c̃nñ− c̃mm̃)2

ñ+ m̃

]

i

(13.34)

where the prescription indicated by the index i means that all quantities
in the bracket have to be evaluated for bin i. In case the entries are not
weighted the tilde is obsolete. The constants cn, cm in (13.33) usually are
overall normalization constants and equal for all bins of the corresponding
histogram. If the histograms are normalized with respect to each other, we
have cnΣni = cmΣmi and we can set cn = Σmi =M and cm = Σni = N .

χ2 Goodness-of-Fit Test

This expression can be used for goodness-of-fit tests. In case the normalization
constants are given externally, for instance through the luminosity, χ2 follows
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approximately a χ2 distribution of B degrees of freedom. Frequently the his-
tograms are normalized with respect to each other. Then we have one degree
of freedom less, i.e. B − 1. If P parameters have been adjusted in addition,
then we have B − P − 1 degrees of freedom.

Likelihood Ratio Test

In Chap. 10, Sect. 10.3.4 we have introduced the likelihood ratio test for
histograms. For a pair of Poisson numbers n,m the likelihood ratio is the ratio
of the maximal likelihood under the condition that the two numbers are drawn
from the same distribution to the unconditioned maximum of the likelihood
for the observation of n. The corresponding difference of the logarithms is our
test statistic V (see likelihood ratio test for histograms)

V = n ln
λ

cn
− λ

cn
− lnn! +m ln

λ

cm
− λ

cm
− lnm!− [n lnn− n− lnn!]

= n ln
λ

cn
− λ

cn
+m ln

λ

cm
− λ

cm
− lnm!− n lnn+ n .

We now turn to weighted events and perform the same replacements as
above:

V = ñ ln
λ̃

c̃n
− λ̃

c̃n
+ m̃ ln

λ̃

c̃m
− λ̃

c̃m
− ln m̃!− ñ ln ñ+ ñ .

Here the parameter λ̃ is the MLE corresponding to (13.29) for weighted events.

λ̃ = c̃nc̃m
ñ+ m̃

c̃n + c̃m
(13.35)

The test statistic of the full histogram is the sum of the contributions from
all bins.

V =

B∑

i=1

[
ñ ln

λ̃

c̃n
− λ̃

c̃n
+ m̃ ln

λ̃

c̃m
− λ̃

c̃m
− ln m̃!− ñ ln ñ+ ñ

]

i

.

The variables and parameters of this formula are given in relations (13.35),
(13.31) and (13.33) and depend on cn, cm. As stated above, only the ratio
cn, cm matters. The ratio is either given or obtained from the normalization
cnΣni = cmΣmi.

The distribution of the test statistic under H0 for large event number
follows approximately a χ2 distribution of B degrees of freedom if the nor-
malization is given or of B − 1 degrees of freedom in the usual case where
the histograms are normalized to each other. For small event numbers the
distribution of the test statistic has to be obtained by simulation.
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13.8.4 Parameter Estimation

When we compare experimental data to a parameter dependent Monte Carlo
simulation, one of the histograms depends on the parameter, e.g.m(θ) and the
comparison is used to determine the parameter. During the fitting procedure,
the parameter is modified and this implies a change of the weights of the
Monte Carlo events. The experimentally observed events are not weighted.
Then (13.34) simplifies with ñi = ni, c̃n = cn, c̃m = cmw and m̃i is just the
number of unweighted Monte Carlo events in bin i.

χ2 =

B∑

i=1

[
1

cnc̃m

(cnn− c̃mm̃)2

(n+ m̃)

]

i

For each minimization step we have to recompute the weights and with (13.31)
and (13.33) the LS parameter χ2. If the relative normalization of the simulated
and observed data is not known the ratio cn/cm is a free parameter in the fit.
As only the ratio matters, we can set for instance cm = 1.

We do not recommend to apply a likelihood fit, because the approximation
of the distribution of the sum of weights by a scaled Poisson distribution is
not valid for small event numbers where the statistical errors of the simulation
are important.

13.9 The Compound Poisson Distribution and
Approximations of it [26]

13.9.1 Equivalence of two Definitions of the CPD

The CPD describes
i) the sum x =

∑N
i=1 kiwi , with a given discrete, positive weight distribu-

tion, wi, i = 1, 2, .., N and Poisson distributed numbers ki with mean values
λi,

ii) the sum x =
∑k

i=1 wi of a Poisson distributed number k of independent
and identical distributed positive weights wi.

The equivalence of the two definitions is related to the following identity:

N∏

i=1

Pλi(ki) = Pλ(k)Mk
ε1,...,εN (k1, ..., kN ) . (13.36)

The left hand side describes N independent Poisson processes with mean
values λi and random variables ki, and the right hand side corresponds to a
single Poisson process with λ = Σλi and the random variable k = Σki where
the numbers ki follow a multinomial distribution
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Mn
λ1,...,λN

(k1, ..., kN ) =
k!

N∏

i=1

ki!

N∏

i=1

εki

i .

Here k is distributed to the N different classes with probabilities εi = λi/λ.
The validity of (13.36) for the binomial case

PλMk
λ1/λ,λ2/λ

=
e−λλk

k!

k!

k1!k2!

λk1
1 λ

k2
2

λk1λk2
=
e−(λ1+λ2)λk1

1 λ
k2
2

k1!k2!
= Pλ1Pλ2 (13.37)

can easily be generalized to several Poisson processes. The multinomial distri-
bution describes a random distribution of k events into N classes. If to each
class i is attributed a weight wi, then to the k events are randomly associated
weights wi with probabilities λi/λ.

If all probabilities are equal, εi = 1/N , the multinomial distribution de-
scribes a random selection of the weights wi out of the N weights with equal
probabilities 1/N . It does not matter whether we describe the distribution of
x = Σwi by independent Poisson distributions or by the product of a Poisson
distribution with a multinomial distribution. To describe a continuous weight
distribution f(w), the limit N → ∞ has to be considered. The formulas (3.64),
(3.65) remain valid with εN = 1.

13.9.2 Approximation by a Scaled Poisson Distribution

The scaled Poisson distribution (SPD) is fixed by the requirement that the
first two moments of the weighted sum have to be reproduced. We define an
equivalent mean value λ̃,

λ̃ =
λE(w)2

E(w2)
, (13.38)

an equivalent random variable k̃ ∼ Pλ̃ and a scale factor s,

s =
E(w2)

E(w)
, (13.39)

such that the expected value E(sk̃) = µ and var(sk̃) = σ2. The cumulants of
the scaled distribution are κ̃m = smλ̃.

We compare the cumulants of the two distributions and form the ratios
κm/κ̃m. Per definition the ratios for m = 1, 2 agree because the two lowest
moments agree.

The skewness and excess for the two distributions are in terms of the
moments E(wm) of w:

γ1 =
E(w3)

σ3
=

E(w3)

λ1/2E(w2)3/2
, (13.40)
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γ2 =
E(w4)

σ4
=

E(w4)

λE(w2)2
(13.41)

γ̃1 =

[
E(w2)

λE(w)2

]1/2
; , (13.42)

γ̃2 =
E(w2)

λE(w)2
, (13.43)

and the ratios are

γ1
γ̃1

=
E(w3)E(w)

E(w2)2
≥ 1 , (13.44)

γ2
γ̃2

=
E(w4)E(w)2

E(w2)3
≥ 1 . (13.45)

To proof these relations, we use Hölders inequality,

∑

i

aibi ≤
(∑

i

api

)1/p(∑

i

b
p/(p−1)
i

)(p−1)/p

,

where ai, bi are non-negative and p > 1. For p = 2 one obtains the Cauchy–
Schwartz inequality. Setting ai = w

3/2
i , respectively bi = w

1/2
i , we get imme-

diately the relation (13.44) for the skewness:

(∑

i

w2
i

)2

≤
∑

i

w3
i

∑

i

wi .

In general, with p = n−1 and ai = w
n/(n−1)
i , bi = w

(n−2)/(n−1)
i , the inequality

becomes (∑

i

w2
i

)n−1

≤
∑

i

wn
i

(∑

i

wi

)n−2

which includes (13.45).
The values γ̃1, γ̃2 of the SPD lie between those of the CPD and the normal

distribution. Thus, the SPD is expected to be a much better approximation
of the CPD than the normal distribution [26].

Example 157. Comparison of the CPD with the SPD approximation and the
normal distribution.

In Figure 1 the results of a simulation of CPDs with two different weight
distributions is shown. The simulated events are collected into histogram bins
but the histograms are displayed as line graphs which are easier to read than
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column graphs. Corresponding SPD distributions are generated with the pa-
rameters chosen according to the relations (13.38) and (13.39). They are indi-
cated by dotted lines. The approximations by normal distributions are shown
as dashed lines. In the lefthand graph the weights are exponentially distributed
and the weight distribution of the righthand graph is a truncated, renormal-
ized normal distribution Nt(x|1, 1) = cN (x|1, 1), x > 0 with mean and vari-
ance equal to 1 where negative values are cut. In this case the approximation
by the SPD is hardly distinguishable from the CPD. The exponential weight
distribution includes large weights with low frequency where the approxima-
tion by the SPD is less good. Still it models the CPD reasonably well. The
examples show, that the approximation by the SPD is close to the CPD and
superior to the approximation by the normal distribution.

13.9.3 The Poisson Bootstrap

In standard bootstrap [111] samples are drawn from the observed observations
xi, i = 1, 2, ..., n, with replacement. Poisson bootstrap is a special re-sampling
technique where to all n observation xi Poisson distributed numbers ki ∼
P1(ki) = 1/(eki!) are associated. More precisely, for a bootstrap sample the
value xi is taken ki times where ki is randomly chosen from the Poisson
distribution with mean equal to one. Samples where the sum of outcomes is
different from the observed sample size k, i.e. Σk

i=1ki 6= k are rejected. Poisson
bootstrap is completely equivalent to the standard bootstrap. It has attractive
theoretical properties [114].
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In applications of the CPD the situation is different. One does not dispose
of a sample of CPD outcomes but only of a single observed value of x which
is accompanied by a sample of weights. As the distribution of the number of
weights is known up to the Poisson mean, the bootstrap technique is used
to infer parameters depending on the weight distribution, To generate obser-
vations xk, we have to generate the numbers ki ∼ P1(ki) and form the sum
x = Σkiwi. All results are kept. The resulting Poisson bootstrap distribution
(PBD) permits to estimate uncertainties of parameters and quantiles of the
CPD.

13.10 Extremum Search

If we apply the maximum-likelihood method for parameter estimation, we
have to find the maximum of a function in the parameter space. This is, as a
rule, not possible without numerical tools. An analogous problem is posed by
the method of least squares. Minimum and maximum search are principally
not different problems, since we can invert the sign of the function. We restrict
ourselves to the minimum search.

Before we engage off-the-shelf computer programs, we should obtain some
rough idea of their function. The best way in most cases is a graphical presen-
tation. It is not important for the user to know the details of the programs,
but some knowledge of their underlying principles is helpful.

13.10.1 Monte Carlo Search

In order to obtain a rough impression of the function to be investigated, and
of the approximate location of its minimum, we may sample the parameter
stochastically. A starting region has to be selected. Usual programs will then
further restrict the parameter space in dependence of the search results. An
advantage of this method is that the probability to end up in a relative mini-
mum is rather small. In the literature this rather simple and not very effective
method is sometimes sold under the somewhat pretentious name genetic al-
gorithm. Since it is fairly inefficient, it should be used only for the first step
of a minimization procedure.

13.10.2 The Simplex Algorithm

Simplex is a quite slow but robust algorithm, as it needs no derivatives. For
an n-dimensional parameter space n+ 1 starting points are selected, and for
each point the function values calculated. The point which delivers the largest
function value is rejected and replaced by a new point. How this point is found
is demonstrated in two dimensions.

Fig. 13.5 shows in the upper picture three points. let us assume that A
has the lowest function value and point C the largest f(xC , yC). We want to
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Fig. 13.5. Simplex algorithm.

eliminate C and to replace it by a superior point C′. We take its mirror image
with respect to the center of gravity of points A,B and obtain the test point
CT . If f(xCT , yCT ) < f(xC , yC) we did find a better point, thus we replace C
by CT and continue with the new triplet. In the opposite case we double the
step width (13.5b) with respect to the center of gravity and find C′. Again we
accept C′, if it is superior to C. If not, we compare it with the test point CT

and if f(xCT , yCT ) < f(xC′ , yC′) holds, the step width is halved and reversed
in direction (13.5a). The point C′ now moves to the inner region of the simplex
triangle. If it is superior to C it replaces C as above. In all other cases the
original simplex is shrunk by a factor two in the direction of the best point A
(13.5c). In each case one of the four configurations is chosen and the iteration
continued.

13.10.3 Parabola Method

Again we begin with starting points in parameter space. In the one-dimensional
case we choose 3 points and put a parabola through them. The point with
the largest function value is dropped and replaced by the minimum of the
parabola and a new parabola is computed. In the general situation of an n-
dimensional space, 2n+ 1 points are selected which determine a paraboloid.
Again the worst point is replaced by the vertex of the paraboloid. The itera-
tion converges for functions which are convex in the search region.
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Fig. 13.6. Method of steepest decent.

13.10.4 Method of Steepest Descent

A traveler, walking in a landscape unknown to him, who wants to find a lake,
will chose a direction down-hill perpendicular to the curves of equal height
(if there are no insurmountable obstacles). The same method is applied when
searching for a minimum by the method of steepest descent. We consider this
local method in more detail, as in some cases it has to be programmed by the
user himself.

We start from a certain point λ0 in the parameter space, calculate the
gradient ∇λf(λ) of the function f(λ) which we want to minimize and move
by ∆λ downhill.

∆λ = −α∇λf(λ) .

The step length depends on the learning constant α which is chosen by the
user. This process is iterated until the function remains essentially constant.
The method is sketched in Fig. 13.6.

The method of steepest descent has advantages as well as drawbacks:

• The decisive advantage is its simplicity which permits to handle a large
number of parameters at the same time. If convenient, for the calculation
of the gradient rough approximations can be used. Important is only that
the function decreases with each step. As opposed to the simplex and
parabola methods its complexity increases only linear with the number of
parameters. Therefore problems with huge parameter sets can be handled.

• It is possible to evaluate a sample sequentially, element by element, which
is especially useful for the back-propagation algorithm of neural networks.
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• Unsatisfactory is that the learning constant is not dimensionless. In other
words, the method is not independent of the parameter scales. For a space-
time parameter set the gradient path will depend, for instance, on the
choice whether to measure the parameters in meters or millimeters, re-
spectively hours or seconds.

• In regions with flat parameter space the convergence is slow. In a narrow
valley oscillations may appear. For too large values of α oscillations will
make exact minimizing difficult.

The last mentioned problems can be reduced by various measures where
the step length and direction partially depend on results of previous steps.
When the function change is small and similar in successive steps α is in-
creased. Oscillations in a valley can be avoided by adding to the gradient in
step i a fraction of the gradient of step i− 1:

∆λi = α (∇λf(λi) + 0.5∇λf(λi−1)) .

Oscillations near the minimum are easily recognized and removed by decreas-
ing α.

The method of steepest descent is applied in ANN and useful in the up-
dating alignment of tracking detectors [115].

13.10.5 Stochastic Elements in Minimum Search

A physical system which is cooled down to the absolute zero point will princi-
pally occupy an energetic minimum. When cooled down fast it may, though,
be captured in a local (relative) minimum. An example is a particle in a
potential wall. For somewhat higher temperature it may leave the local min-
imum, thanks to the statistical energy distribution (Fig. 13.7). This is used
for instance in the stimulated annealing of defects in solid matter.

This principle can be used for minimum search in general. A step in the
wrong direction, where the function increases by ∆f , can be accepted, when
using the method of steepest descent, e.g. with a probability

P (∆f) =
1

1 + e∆f/T
.

The scale factor T (“temperature”) steers the strength of the effect. It has
been shown that for successively decreasing T the absolute minimum will be
reached.

13.11 Linear Regression with Constraints

We considerN measurements y at known locations x, with aN×N covariance
matrix CN and a corresponding weight matrix VN = C

−1
N . (We indicate the

dimensions of quadratic matrices with an index).
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Fig. 13.7. Stochastic annealing. A local minimum can be left with a certain prob-
ability.

In the linear model the measurements are described by P < N parameters
θ in form of linear relations

〈y〉 = A(x)θ , (13.46)

with the rectangular N × P “design” matrix A.
In 7.3.3 we have found that the corresponding χ2 expression is minimized

by
θ̂ = (ATVNA)−1ATVNy .

We now include constraints between the parameters, expressed by K < P
linear relations:

Hθ = ρ ,

with H(x) a given rectangular K × P matrix and ρ a K-dimensional vector.
This problem is solved by introducing K Lagrange multipliers α and look-

ing for a stationary point of the lagrangian

Λ = (y − Aθ)TVN (y − Aθ) + 2αT (Hθ − ρ) .

Differentiating with respect to θ and α gives the normal equations

ATVNAθ + HTα = ATVNy , (13.47)

Hθ = ρ (13.48)

to be solved for θ̂ and α̂. Note that Λ is minimized only with respect to θ, but
maximized with respect to α: The stationary point is a saddle point, which
complicates a direct extremum search. Solving (13.47) for θ and inserting it
into (13.48), we find

α̂ = C
−1
K (HCPA

TVNy − ρ)
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and, re-inserting the estimates into (13.47), we obtain

θ̂ = CP [A
T
VNy − H

T
C
−1
K (HCPA

T
VNy − ρ)] ,

where the abbreviations CP = (ATVNA)−1, CK = HCPH
T have been used.

As in the case of no constraints 7.3.3 the estimate θ̂ is linear in y and
unbiased, which is easily seen by taking the expectation value in the above
equation and using (13.46) and (13.48).

The covariance matrix is found from linear error propagation, after a some-
what lengthy calculation, as

cov(θ̂) = DCND
T = (IP − CPH

T
C
−1
K H)CP ,

where
D = CP (IP − H

T
C
−1
K HCP )T

T
VN

has been used. The covariance matrix is symmetric positive definite. Without
constraints, it equals CP , the negative term is absent. Of course, the intro-
duction of constraints reduces the errors and thus improves the parameter
estimation.

13.12 Formulas Related to the Polynomial
Approximation

Errors of the Expansion Coefficients

In Sect. 11.2.2 we have discussed the approximation of measurements by or-
thogonal polynomials and given the following formula for the error of the
expansion coefficients ak,

var(ak) = 1/
N∑

ν=1

1

δ2ν

which is valid for all k = 1, . . . ,K. Thus all errors are equal to the error of
the weighted mean of the measurements yν .

Proof: from linear error propagation we have, for independent measure-
ments yν ,

var(ak) = var

(∑

ν

wνuk(xν)yν

)

=
∑

ν

w2
ν(uk(xν))

2δ2ν

=
∑

ν

wνu
2
k(xν)/

∑

ν

1

δ2ν

= 1/
∑

ν

1

δ2ν
,
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where in the third step we used the definition of the weights, and in the last
step the normalization of the polynomials uk.

Polynomials for Data with Uniform Errors

If the errors δ1, . . . , δN are uniform, the weights become equal to 1/N , and for
certain patterns of the locations x1, . . . , xN , for instance for an equidistant
distribution, the orthogonalized polynomials uk(x) can be calculated. They
are given in mathematical handbooks, for instance in Ref. [116]. Although the
general expression is quite involved, we reproduce it here for the convenience
of the reader. For x defined in the domain [−1, 1] (eventually after some
linear transformation and shift), and N = 2M + 1 equidistant (with distance
∆x = 1/M) measured points xν = ν/M, ν = 0,±1, . . . ,±M , they are given
by

uk(x) =

(
(2M + 1)(2k + 1)[(2M)!]2

(2M + k + 1)!(2M − k)!

)1/2 k∑

i=0

(−1)i+k (i + k)[2i](M + t)[i]

(i!)2(2M)[i]
,

for k = 0, 1, 2, . . .2M , where we used the notation t = x/∆x = xM and the
definitions

z[i] = z(z − 1)(z − 2) · · · (z − i+ 1)

z[0] = 1, z ≥ 0, 0[i] = 0, i = 1, 2, . . . .

13.13 Formulas for B-Spline Functions

13.13.1 Linear B-Splines

Linear B-splines cover an interval 2b and overlap with both neighbors:

B(x;x0) = 2
x− x0 − b

b
for x0 − b ≤ x ≤ x0 ,

= 2
−x− x0 + b

b
for x0 ≤ x ≤ x0 + b ,

= 0 else .

They are normalized to unit area. Since the central values are equidistant,
we fix them by the lower limit xmin of the x-interval and count them as
x0(k) = xmin+kb, with the index k running from kmin = 0 to kmax = (xmax−
xmin)/b = K.

At the borders only half of a spline is used.
Remark: The border splines are defined in the same way as the other

splines. After the fit the part of the function outside of its original domain is
ignored. In the literature the definition of the border splines is often different.
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13.13.2 Quadratic B-Splines

The definition of quadratic splines is analogous:

B(x;x0) =
1

2b

(
x− x0 + 3/2b

b

)2

for x0 − 3b/2 ≤ x ≤ x0 − b/2 ,

=
1

2b

[
3

2
− 2

(
x− x0
b

)2
]

for x0 − b/2 ≤ x ≤ x0 + b/2 ,

=
1

2b

(
x− x0 − 3/2b

b

)2

for x0 + b/2 ≤ x ≤ x0 + 3b/2 ,

= 0 else .

The supporting points x0 = xmin + (k − 1/2)b lie now partly outside of
the x-domain. The index k runs from 0 to kmax = (xmax − xmin)/b+2. Thus,
the number K of splines is by two higher than the number of intervals. The
relations (11.13) and (11.12) are valid as before.

13.13.3 Cubic B-Splines

Cubic B-splines are defined as follows:

B(x;x0) =
1

6b

(
2 +

x− x0
b

)3

for x0 − 2b ≤ x ≤ x0 − b ,

=
1

6b

[
−3

(
x− x0
b

)3

− 6

(
x− x0
b

)2

+ 4

]
for x0 − b ≤ x ≤ x0 ,

=
1

6b

[
3

(
x− x0
b

)3

− 6

(
x− x0
b

)2

+ 4

]
for x0 ≤ x ≤ x0 + b ,

=
1

6b

(
2− x− x0

b

)3

for x0 + b ≤ x ≤ x0 + 2b ,

= 0 else .

The shift of the center of the spline is performed as before: x0 = xmin +
(k− 1)b. The index k runs from 0 to kmax = (xmax−xmin)/b+3. The number
kmax + 1 of splines is equal to the number of intervals plus 3.

13.14 Support Vector Classifiers

Support vector machines are described some detail in Refs. [16, 98, 97, 96].
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Fig. 13.8. The red hyperplane separates squares from circles. Shown are the convex
hulls and the support vectors in red.

13.14.1 Linear Classifiers

Linear classifiers6 separate the two training samples by a hyperplane. Let us
initially assume that in this way a complete separation is possible. Then an
optimal hyperplane is the plane which divides the two samples with the largest
margin. This is shown in Fig. 13.8. The hyperplane can be constructed in the
following way: The shortest connection∆ between the convex hulls7 of the two
non-overlapping classes determines the direction w/|w| of the normal w of
this plane which cuts the distance at its center. We represent the hyperplane
in the form

w · x+ b = 0 , (13.49)

where b fixes its distance from the origin. Note that w is not normalized, a
common factor in w and b does not change condition (13.49). Once we have
found the hyperplane {w, b} which separates the two classes yi = ±1 of the
training sample {(x1, y1), . . . , (xN , yN )} we can use it to classify new input:

ŷ = f(x) = sign(w · x+ b) . (13.50)

To find the optimal hyperplane which divides ∆ into equal parts, we define
the two marginal planes which touch the hulls:

w · x+ b = ±1 .

If x+,x− are located at the two marginal hyperplanes, the following relations
hold which also fix the norm of w:

6A linear classification scheme was already introduced in Sect. 11.4.1.
7The convex hull is the smallest polyhedron which contains all points and their

connecting straight lines.
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w · (x+ − x−) = 2 ⇒ ∆ =
w

|w| · (x
+ − x−) =

2

|w| .

The optimal hyperplane is now found by solving a constrained quadratic op-
timization problem

|w|2 = minimum , subject to yi(w · xi + b) ≥ 1 , i = 1, . . . , N .

For the solution, only the constraints with equals sign are relevant. The vectors
corresponding to points on the marginal planes form the so-called active set
and are called support vectors (see Fig. 13.8). The optimal solution can be
written as

w =
∑

i

αiyixi

with αi > 0 for the active set, else αi = 0, and furthermore
∑
αiyi = 0. The

last condition ensures translation invariance: w(xi − a) = w(xi). Together
with the active constraints, after substituting the above expression for w,
it provides just the required number of linear equations to fix αi and b. Of
course, the main problem is to find the active set. For realistic cases this
requires the solution of a large quadratic optimization problem, subject to
linear inequalities. For this purpose an extended literature as well as program
libraries exist.

This picture can be generalized to the case of overlapping classes. Assuming
that the optimal separation is still given by a hyperplane, the picture remains
essentially the same, but the optimization process is substantially more com-
plex. The standard way is to introduce so called soft margin classifiers. There
some points on the wrong side of their marginal plane are tolerated, but with
a certain penalty in the optimization process. It is chosen proportional to the
sum of their distances or their square distance from their own territory. The
proportionality constant is adjusted to the given problem.

13.14.2 General Kernel Classifiers

All quantities determining the linear classifier ŷ (13.50) depend only on inner
products of vectors of the input space. This concerns not only the dividing
hyperplane, given by (13.49), but also the expressions for w, b and the factors
αi associated to the support vectors. The inner product x · x′ which is a
bilinear symmetric scalar function of two vectors, is now replaced by another
scalar function K(x,x′) of two vectors, the kernel, which need not be bilinear,
but should also be symmetric, and is usually required to be positive definite.
In this way a linear problem in an inner product space is mapped into a very
non-linear problem in the original input space where the kernel is defined. We
then are able to separate the classes by a hyperplane in the inner product
space that may correspond to a very complicated hypersurface in the input
space. This is the so-called kernel trick.
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To illustrate how a non-linear surface can be mapped into a hyperplane,
we consider a simple example. In order to work with a linear cut, i.e. with a
dividing hyperplane, we transform our input variables x into new variables:
x → X(x). For instance, if x1, x2, x3 are momentum components and a cut in
energy, x21+x

2
2+x

2
3 < r2, is to be applied, we could transform the momentum

space into a space
X = {x21, x22, x23, . . .} .

where the cut corresponds to the hyperplane X1 + X2 + X3 = r2. Such a
mapping can be realized by substituting the inner product by a kernel:

x · x′ → K(x,x′) = X(x) ·X(x′).

In our example a kernel of the so-called monomial form is appropriate:

K(x,x′) = (x · x′)d with d = 2 ,

(x · x′)2 = (x1x
′
1 + x2x

′
2 + x3x

′
3)

2 = X(x) ·X(x′) (13.51)

with
X(x) = {x21, x22, x23,

√
2x1x2,

√
2x1x3,

√
2x2x3} .

The sphere x21 + x22 + x23 = r2 in x-space is mapped into the 5-dimensional
hyperplane X1 +X2 +X3 = r2 in 6-dimensional X-space. (A kernel inducing
instead of monomials of order d (13.51), polynomials of all orders, up to order
d is K(x,x′) = (1 + x · x′)d.)

The most common kernel used for classification is the Gaussian (see Sect.
11.2.1):

K(x,x′) = exp

(
− (x− x′)2

2s2

)
.

It can be shown that it induces a mapping into a space of infinite dimensions
[98] and that nevertheless the training vectors can in most cases be replaced
by a relatively small number of support vectors. The only free parameter is
the penalty constant which regulates the degree of overlap of the two classes.
A high value leads to a very irregular shape of the hypersurface separating
the training samples of the two classes to a high degree in the original space
whereas for a low value its shape is much smoother and more minority obser-
vations are tolerated.

In practice, this mapping into the inner product space is not performed
explicitly, in fact it is even rarely known. All calculations are performed in
x-space, especially the determination of the support vectors and their weights
α. The kernel trick merely serves to prove that a classification with support
vectors is feasible. The classification of new input then proceeds with the
kernel K and the support vectors directly:

ŷ = sign

( ∑

yi=+1

αiK(x,xi)−
∑

yi=−1

αiK(x,xi)

)
.
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The use of a relatively small number of support vectors (typically only
about 5% of all αi are different from zero) drastically reduces the storage
requirement and the computing time for the classification. Remark that the
result of the support vector classifier is not identical to that of the original
kernel classifier but very similar.

13.15 Bayes Factor

In Chap. 6 we have introduced the likelihood ratio to discriminate between
simple hypotheses. For two composite hypotheses H1 and H2 with free pa-
rameters, in the Bayesian approach the simple ratio is to be replaced by the
so-called Bayes factors.

Let us assume for a moment that H1 applies. Then the actual param-
eters will follow a p.d.f. proportional to L1(θ1|x)π1(θ1) where L1(θ1|x) is
the likelihood function and π1(θ1) the prior density of the parameters. The
same reasoning is valid for H2. The probability that H1 (H2) is true is
proportional to the integral over the parameter space,

∫
L1(θ1|x)π1(θ1)dθ1

(
∫
L2(θ2|x)π2(θ2)dθ2). The relative betting odds thus are given by the Bayes

factor B,

B =

∫
L1(θ1|x)π1(θ1)dθ1∫
L2(θ2|x)π2(θ2)dθ2

.

In the case with no free parameters, B reduces to the simple likelihood ratio
L1/L2.

The two terms forming the ratio are called marginal likelihoods. The in-
tegration automatically introduces a penalty for additional parameters and
related overfitting: The higher the dimensionality of the parameter space is,
the larger is in average the contribution of low likelihood regions to the inte-
gral. In this way the concept follows the philosophy of Ockham’s razor8 which
in short states that from different competing theories, the one with the fewest
assumptions, i.e. the simplest, should be preferred.

The Bayes factor is intended to replace the p-value of frequentist statistics.
H. Jeffreys [22] has suggested a classification of Bayes factors into different

categories ranging from < 3 (barely worth mentioning) to > 100 (decisive).
For the example of Chap. 10 Sect. 10.5, Fig.10.18 with a resonance above

a uniform background for uniform prior densities in the signal fraction t,
0 ≤ t ≤ 0.5 and the location µ, 0.2 ≤ µ ≤ 0.8 the Bayes factor is B = 54
which is considered as very significant. This result is inversely proportional to
the range in µ as is expected because the probability to find a fake signal in
a flat background is proportional to its range. In the cited example we had
found a likelihood ratio of 1.1 · 104 taken at the MLE. The corresponding p-
value was p = 1.8 · 10−4 for the hypothesis of a flat background, much smaller
than the betting odds of 1/54 for this hypothesis. While the Bayes factor

8Postulated by William of Ockham, English logician in the 14th century.
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takes into account the uncertainty of the parameter estimate, the uncertainty
is completely neglected in the p-value derived from the likelihood ratio taken
simply at the MLE. On the other hand, for the calculation of the Bayes factor
an at least partially subjective prior probability has to be included.

For the final rating the Bayes factor has to be multiplied by the prior
factors of the competing hypotheses:

R = B
πH1

πH2
=

∫
L1(θ1|x)π1(θ1)dθ1∫
L2(θ2|x)π2(θ2)dθ2

πH1

πH2
.

The posterior rating is equal to the prior rating times the Bayes factor.
The Bayes factor is a very reasonable and conceptually attractive concept

which requires little computational effort. It is to be preferred to the frequen-
tist p-value approach in decision making. However, for the documentation of
a measurement it has the typical Bayesian drawback that it depends on prior
densities and unfortunately there is no objective way to fix those.

13.16 Robust Fitting Methods

13.16.1 Introduction

If one or a few observations in a sample are separated from the bulk of the
data, we speak of outliers. The reasons for their existence range from trivial
mistakes or detector failures to important physical effects. In any case, the
assumed statistical model has to be questioned if one is not willing to admit
that a large and very improbable fluctuation did occur.

Outliers are quite disturbing: They can change parameter estimates by
large amounts and increase their errors drastically.

Frequently outliers can be detected simply by inspection of appropriate
plots. It goes without saying, that simply dropping them is not a good advice.
In any case at least a complete documentation of such an event is required.
Clearly, objective methods for their detection and treatment are preferable.

In the following, we restrict our treatment to the simple one-dimensional
case of Gaussian-like distributions, where outliers are located far from the
average, and where we are interested in the mean value. If a possible outlier
is contained in the allowed variate range of the distribution – which is always
true for a Gaussian – a statistical fluctuation cannot be excluded as a logical
possibility. Since the outliers are removed on the basis of a statistical proce-
dure, the corresponding modification of results due to the possible removal of
correct observations can be evaluated.

We distinguish three cases:

1. The standard deviations of the measured points are known.
2. The standard deviations of the measured points are unknown but known

to be the same for all points.
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3. The standard deviations are unknown and different.

It is obvious that case 3 of unknown and unequal standard deviations
cannot be treated.

The treatment of outliers, especially in situations like case 2, within the
LS formalism is not really satisfying. If the data are of bad quality we may
expect a sizeable fraction of outliers with large deviations. These may distort
the LS fit to such an extend that outliers become difficult to define (masking
of outliers). This kind of fragility of the LS method, and the fact that in higher
dimensions the outlier detection becomes even more critical, has lead statisti-
cians to look for estimators which are less disturbed by data not obeying the
assumed statistical model (typical are deviations from the assumed normal
distribution), even when the efficiency suffers. In a second – not robust – fit
procedure with cleaned data it is always possible to optimize the efficiency.

In particle physics, a typical problem is the reconstruction of particle tracks
from hits in wire or silicon detectors. Here outliers due to other tracks or noise
are a common difficulty, and for a first rough estimate of the track parameters
and the associated hit selection for the pattern recognition, robust methods
are useful.

13.16.2 Robust Methods

Truncated Least Square Fits

The simplest method to remove outliers is to eliminate those measurements
which contribute excessively to the χ2 of a least square (LS) fit. In this
truncated least square fit (LST) all observations that deviate by more than a
certain number of standard deviations from the mean are excluded. Reason-
able values lie between 1.5 and 2 standard deviations, corresponding to a χ2

cut χ2
max = 2. 25 to 4. The optimal value of this cut depends on the expected

amount of background or false measurements and the number of observations.
In case 2 the variance has to be estimated from the data and the estimated
variance δ̂2 is, according to Chap. 3.2.3, given by

δ̂2 =
∑

(yi − µ̂)2/(N − 1) .

This method can be improved by removing outliers sequentially (LSTS).
In a first step we use all measurements y1, . . . , yN , with standard devia-
tions δ1, . . . , δN to determine the mean value µ̂ which in our case is just
the weighted mean. Then we compute the normalized residuals, also called
pulls, ri = (yi − µ̂)/δi and select the measurement with the largest value of
r2i . The value of χ2 is computed with respect to the mean and variance of
the remaining observations and the measurement is excluded if it exceeds the
parameter χ2

max
9. The fit is repeated until all measurements are within the

9If the variance has to be estimated from the data its value is biased towards
smaller values because for a genuine Gaussian distribution eliminating the measure-
ment with the largest pull reduces the expected variance.
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margin. In case that all measurements are genuine Gaussian measurements,
this procedure only marginally reduces the precision of the fit.

In both methods LST and LSTS a minimum fraction of measurements has
to be retained. A reasonable value is 50 % but depending on the problem
other values may be appropriate.

The Sample Median

A first step (already proposed by Laplace) in the direction to estimators more
robust than the sample mean is the introduction of the sample median as
estimator for location parameters. While the former follows to an extremely
outlying observation up to ±∞, the latter stays nearly unchanged in this case.
This change can be expressed as a change of the objective function, i.e. the
function to be minimized with respect to µ, from

∑
i(yi − µ)2 to

∑
i |yi − µ|

which is indeed minimized if µ̂ coincides with the sample median in case of
N odd. For even N , µ̂ is the mean of the two innermost points. Besides the
slightly more involved computation (sorting instead of summing), the median
is not an optimal estimator for a pure Gaussian distribution:

var(median) =
π

2
var(mean) = 1.571 var(mean) ,

but it weights large residuals less and therefore performs better than the arith-
metic mean for distributions which have longer tails than the Gaussian. In-
deed for large N we find for the Cauchy distribution var(median) = π2/(4N),
while var(mean) = ∞ (see 3.6.9), and for the two-sided exponential (Laplace)
distribution var(median) = var(mean)/2.

M-Estimators

The objective function of the LS approach can be generalized to

∑

i

ρ

(
yi − t(xi, θ)

δi

)
(13.52)

with ρ(z) = z2 for the LS method which is optimal for Gaussian errors. For the
Laplace distribution mentioned above the optimal objective function is based
on ρ(z) = |z|, derived from the likelihood analog which suggests ρ ∝ ln f .
To obtain a more robust estimation the function ρ can be modified in various
ways but we have to retain the symmetry, ρ(z) = ρ(−z) and to require a single
minimum at z = 0. This kind of estimators with objective functions ρ different
from z2 are called M-estimators, “M” reminding maximum likelihood. The best
known example is due to Huber, [117]. His proposal is a kind of mixture of
the appropriate functions of the Gauss and the Laplace cases:

ρ(z) =

{
z2/2 if |z| ≤ c
c(|z| − c/2) if |z| > c .
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The constant c has to be adapted to the given problem. For a normal
population the estimate is of course not efficient. For example with c = 1.345
the inverse of the variance is reduced to 95% of the standard value. Obviously,
the fitted objective function (13.52) no longer follows a χ2 distribution with
appropriate degrees of freedom.

Estimators with High Breakdown Point

In order to compare different estimators with respect to their robustness,
the concept of the breakdown point has been introduced. It is the smallest
fraction ε of corrupted data points which can lead the fitted values to differ
by an arbitrary large amount from the correct ones. For LS, ε approaches
zero, but for M-estimators or truncated fits, changing a single point would be
not sufficient to shift the fitted parameter by a large amount. The maximal
value of ε is smaller than 50% if the outliers are the minority. It is not difficult
to construct estimators which approach this limit, see [118]. This is achieved,
for instance, by ordering the residuals according to their absolute value (or
ordering the squared residuals, resulting in the same ranking) and retaining
only a certain fraction, at least 50%, for the minimization. This so-called least
trimmed squares (LTS) fit is to be distinguished from truncated least square
fit (LST, LSTS) with a fixed cut against large residuals.

An other method relying on rank order statistics is the so-called least me-
dian of squares (LMS) method. It is defined as follows: Instead of minimizing
with respect to the parameters µ the sum of squared residuals,

∑
i r

2
i , one

searches the minimum of the sample median of the squared residuals:

minimizeµ
{
median(r2i (µ))

}
.

This definition implies that for N data points, N/2 + 1 points enter for
N even and (N + 1)/2 for N odd. Assuming equal errors, this definition can
be illustrated geometrically in the one-dimensional case considered here: µ̂ is
the center of the smallest interval (vertical strip in Fig. 13.9) which covers
half of all x values. The width 2∆ of this strip can be used as an estimate of
the error. Many variations are of course possible: Instead of requiring 50% of
the observations to be covered, a larger fraction can be chosen. Usually, in a
second step, a LS fit is performed with the retained observations, thus using
the LMS only for outlier detection. This procedure is chosen, since it can be
shown that, at least in the case of normal distributions, ranking methods are
statistically inferior as compared to LS fits.

Example 158. Fitting a mean value in the presence of outliers
In Fig.13.9 a simple example is presented. Three data points, representing

the outliers, are taken from N (3, 1) and seven from N (10, 1). The LS fit
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Fig. 13.9. Estimates of the location parameter for a sample with three outliers.

Table 13.1. Root mean squared deviation of different estimates from the nominal
value.

method background

asymm. uniform none
simple LS 2.12 0.57 0.32
median 0.72 0.49 0.37

LS trimmed 0.60 0.52 0.37
LS sequentially truncated 0.56 0.62 0.53
least median of squares 0.55 0.66 0.59

(7.7 ± 1.1) is quite disturbed by the outliers. The sample median is here
initially 9.5, and becomes 10.2 after excluding the outliers. It is less disturbed
by the outliers. The LMS fit corresponds to the thick line, and the minimal
strip of width 2∆ to the dashed lines. It prefers the region with largest point
density and is therefore a kind of mode estimator. While the median is a
location estimate which is robust against large symmetric tails, the mode is
also robust against asymmetric tails, i.e. skew distributions of outliers.A more
quantitative comparison of different fitting methods is presented in Table 13.1.
We have generated 100000 samples with a 7 point signal given by N (10, 1)
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and 3 points of background, a) asymmetric: N (3, 1) (the same parameters as
used in the example before), b) uniform in the interval [5, 15], and in addition
c) pure normally distributed points following N (10, 1) without background.
The table contains the root mean squared deviation of the mean values from
the nominal value of 10. To make the comparison fair, as in the LMS method
also in the trimmed LS fit 6 points have been retained and in the sequentially
truncated LS fit a minimum of 6 points was used.

With the asymmetric background, the first three methods lead to biased
mean values (7.90 for the simple LS, 9.44 for the median and 9.57 for the
trimmed LS) and thus the corresponding r.m.s. values are relatively large.
As expected the median suffers much less from the background than a stan-
dard LS fit. The results of the other two methods, LMS and LS sequentially
truncated perform reasonable in this situation, they succeed to eliminate the
background completely without biasing the result but are rather weak when
little or no background is present. The result of LMS is not improved in our
example when a least square fit is performed with the retained data.

The methods can be generalized to the multi-parameter case. Essentially,
the r.m.s deviation is replaced by χ2. In the least square fits, truncated or
trimmed, the measurements with the largest χ2 values are excluded. The LMS
method searches for the parameter set where the median of the χ2 values is
minimal.

More information than presented in this short and simplified introduction
into the field of robust methods can be found in the literature cited above and
the newer book of R. Maronna, D. Martin and V. Yohai [119].



References

1. M. G. Kendall and W. R. Buckland, A Dictionary of Statistical Terms, Long-
man, London (1982).

2. L. Lyons, Bayes and frequentism: A particle physicist’s perspective,
arXiv:1301.1273v1 (2013).

3. M. G. Kendall and A. Stuart, The Advanced Theory of Statistics, Griffin, London
(1979).

4. S. Brandt, Data Analysis, Springer, Berlin (1999).
5. A. G. Frodesen, O. Skjeggestad, M. Tofte, Probability and Statistics in Particle

Physics, Universitetsforlaget, Bergen (1979).
6. R. Barlow, Statistics, Wiley, Chichester (1989).
7. L. Lyons, Statistics for Nuclear and Particle Physicists, Cambridge University

Press (1992).
8. W. T. Eadie et al., Statistical Methods in Experimental Physics, North-Holland,

Amsterdam, (1982).
9. F. James, Statistical Methods in Experimental Physics, World Scientific Pub-

lishing, Singapore (2007).
10. Data Analysis in High Energy Physics: A Practical Guide to Statistical Methods,

ed. O. Behnke et. al, J. Wiley & Sons (2013)
11. Statistical Analysis Techniques in Particle Physics: Fits, Density Estimation

and Supervised Learning, J. Wiley & Sons (2013)
12. V. Blobel, E. Lohrmann, Statistische und numerische Methoden der Datenanal-

yse, Teubner, Stuttgart (1998).
13. B. P. Roe, Probability and Statistics in Experimental Physics, Springer, Berlin

(2001).
14. G. Cowan, Statistical Data Analysis, Clarendon Press, Oxford (1998).
15. G. D’Agostini, Bayesian Reasoning in Data Analysis: A Critical Introduction,

World Scientific Pub., Singapore (2003).
16. T. Hastie, R. Tibshirani, J. H. Friedman, The Elements of Statistical Learning,

Springer, Berlin (2001).
17. G. E. P. Box and G. C. Tiao, Bayesian Inference in Statistical Analysis, Addison-

Weseley, Reading (1973).
18. R. A. Fisher, Statistical Methods, Experimental Design and Scientific Inference,

Oxford University Press (1990). (First publication 1925).



450 References

19. A. W. F. Edwards, Likelihood, The John Hopkins University Press, Baltimore
(1992).

20. I. J. Good, Good Thinking, The Foundations of Probability and its Applications,
Univ. of Minnesota Press, Minneapolis (1983).

21. L. J. Savage, The Writings of Leonard Jimmie Savage - A Memorial Selection,
ed. American Statistical Association, Washington (1981).

22. H. Jeffreys, Theory of Probability, Clarendon Press, Oxford (1983).
23. L. J. Savage, The Foundation of Statistical Inference, Dover Publ., New York

(1972).
24. Proceedings of PHYSTAT03, Statistical Problems in Particle Physics, Astro-

physics and Cosmology ed. L. Lyons et al., SLAC, Stanford (2003) Proceedings
of PHYSTAT05, Statistical Problems in Particle Physics, Astrophysics and Cos-
mology ed. L. Lyons et al., Imperial College Press, Oxford (2005).

25. M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions, Dover Pub-
lications,inc., New York (1970).

26. G. Bohm, G.Zech, Statistics of weighted Poisson events and its applications,
Nucl. Instr. and Meth. A 748 (2014) 1.

27. Bureau International de Poids et Mesures, Rapport du Groupe de travail sur
l’expression des incertitudes, P.V. du CIPM (1981) 49, P. Giacomo, On the ex-
pression of uncertainties in quantum metrology and fundamental physical con-
stants, ed. P. H. Cutler and A. A. Lucas, Plenum Press (1983), International
Organization for Standardization (ISO), Guide to the expression of uncertainty
in measurement, Geneva (1993).

28. P. Sinervo, Definition and Treatment of Systematic Uncertainties in High Energy
Physics and Astrophysics, Proceedings of PHYSTAT2003, P123, ed. L. Lyons,
R. Mount, R. Reitmeyer, Stanford, Ca (2003).

29. R. J. Barlow, Systematic Errors, Fact and Fiction, hep-ex/0207026 (2002).
30. R. Wanke, How to Deal with Sytematic Uncertainties in Data Analysis in High

Energy Physics: A Practical Guide to Statistical Methods, ed. O. Behnke et. al,
J. Wiley Sons (2013)

31. R.M. Neal, Probabilistic Inference Using Markov Chain Monte Carlo Methods,
University of Toronto, Department of Computer Science, Tech, Rep. CRG-TR-9
3-1 (1993).

32. N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, and E. Teller
Equation of state calculations by fast computing machines, J. Chem. Phys. 21
(1953) 1087.

33. R. J. Barlow, Extended maximum likelihood, Nucl. Instr. and Meth. A 297 (1990)
496.

34. P.E. Condon and P.L. Cowell, Channel likelihood: An extension of maximum
likelihood to multibody final states, Phys. Rev. D 9 (1974)2558.

35. M. Casarsa et al., A statistical prescription to estimate properly normalized dis-
tributions of different particle species, Nucl. Instr. and Meth. A640 (2010) 219.

36. V. S. Kurbatov and A. A. Tyapkin, in Russian edition of W. T. Eadie et al.,
Statistical Methods in Experimental Physics, Atomisdat, Moscow (1976).

37. B. List, Constrained Fits in Data Analysis in High Energy Physics: A Practical
Guide to Statistical Methods, ed. O. Behnke et. al, J. Wiley & Sons (2013)

38. G. Zech, Reduction of Variables in Parameter Inference, Proceedings of PHYS-
TAT2005, ed. L. Lyons, M. K. Unel, Oxford (2005).

39. G. Zech, A Monte Carlo Method for the Analysis of Low Statistic Experiments,
Nucl. Instr. and Meth. 137 (1978) 551.



References 451

40. M. Diehl and O. Nachtmann, Optimal observables for the measurement of the
three gauge boson couplings in e+e− → W+W−, Z. f. Phys. C 62, (1994, 397.

41. O. E. Barndorff-Nielsen, On a formula for the distribution of a maximum like-
lihood estimator, Biometrika 70 (1983), 343.

42. D. R. Cox and N. Reid, Parameter Orthogonality and Approximate Conditional
Inference, J. R. Statist. Soc. B 49, No 1, (1987) 1, D. Fraser and N. Reid,
Likelihood inference with nuisance parameters, Proc. of PHYSTAT2003, ed. L.
Lyons, R. Mount, R. Reitmeyer, SLAC, Stanford (2003) 265.

43. G. A. Barnard, G.M. Jenkins and C.B. Winstein, Likelihood inference and time
series, J. Roy. Statist. Soc. A 125 (1962).

44. A. Birnbaum, More on the concepts of statistical evidence, J. Amer. Statist.
Assoc. 67 (1972), 858.

45. D. Basu, Statistical Information and Likelihood, Lecture Notes in Statistics 45,
ed. J. K. Ghosh, Springer, Berlin (1988).

46. J. O. Berger and R. L. Wolpert, The Likelihood Principle, Lecture Notes of Inst.
of Math. Stat., Hayward, Ca, ed. S. S. Gupta (1984).

47. L. G. Savage, The Foundations of Statistics Reconsidered, Proceedings of the
forth Berkeley Symposium on Mathematical Statistics and Probability, ed. J.
Neyman (1961) 575.

48. C. Stein, A remark on the likelihood principle, J. Roy. Statist. Soc. A 125 (1962)
565.

49. A. B. Balantekin et al., Review of Particle Physics, J. of Phys. G 33 (2006),1.
50. R. Barlow, Asymmtric Errors, arXiv:physics/0401042v1 (2004), Proceedings of

PHYSTAT2005, ed. L. Lyons, M. K. Unel, Oxford (2005),56.
51. S. Chiba and D. L. Smith, Impacts of data transformations on least-squares

solutions and their significance in data analysis and evaluation, J. Nucl. Sci.
Technol. 31 (1994) 770.

52. H. J. Behrendt et al., Determination of αs, and sin2θ from measurements of the
total hadronic cross section in e+e− annihilation at PETRA, Phys. Lett. 183B
(1987) 400.

53. R. W. Peelle, Peelle’s Pertinent Puzzle, Informal memorendum dated October
13, 1987, ORNL, USA (1987)

54. G. Bohm, G.Zech, Comparison of experimental data to Monte Carlo simulation
- Parameter estimation and goodness-of-fit testing with weighted events, Nucl.
Instr. and Meth. A691 (2012), 171.

55. V. B. Anykeyev, A. A. Spiridonov and V. P. Zhigunov, Comparative investiga-
tion of unfolding methods, Nucl. Instr. and Meth. A303 (1991) 350.

56. G. Zech, Comparing statistical data to Monte Carlo simulation - parameter fit-
ting and unfolding, Desy 95-113 (1995).

57. D.M. Titterington, Some aspects of statistical image modeling and restoration,
Proceedings of PHYSTAT 05, ed. L. Lyons and M.K. Ünel, Oxford (2005).

58. V. Blobel, Unfolding methods in particle physics, Proceedings of the PHYSTAT
2011 Workshop on Statistical Issues Related to Discovery Claims in Search
Experiments and Unfolding, CERN, Geneva, Switzerland, ed. H. B. Prosper
and L. Lyons (2011).

59. V. Blobel, Unfolding in Data Analysis in High Energy Physics: A Practical
Guide to Statistical Methods, ed. O. Behnke et. al, J. Wiley and Sons (2013)

60. H. N. Mülthei and B. Schorr, On an iterative method for the unfolding of spectra,
Nucl. Instr. and Meth. A257 (1986) 371.



452 References

61. M. Schmelling, The method of reduced cross-entropy - a general approach to
unfold probability distributions, Nucl. Instr. and Meth. A340 (1994) 400.

62. L. Lindemann and G. Zech, Unfolding by weighting Monte Carlo events, Nucl.
Instr. and Meth. A354 (1994) 516.

63. G. D’Agostini, A multidimensional unfolding method based on Bayes’ theorem,
Nucl. Instr. and Meth. A 362 (1995) 487.

64. G. D’Agostini, Improved iterative Bayesian unfolding, arXiv:1010.632v1 (2010).
65. A. Hoecker and V. Kartvelishvili, SVD approach to data unfolding, Nucl. Instr.

and Meth. A 372 (1996), 469.
66. Proceedings of the PHYSTAT 2011 Workshop on Statistical Issues Related

to Discovery Claims in Search Experiments and Unfolding, CERN, Geneva,
Switzerland, ed. H. B. Prosper and L. Lyons (2011).

67. N. Milke et al. Solving inverse problems with the unfolding program TRUEE:
Examples in astroparticle physics, Nucl. Instr. and Meth. A697 (2013) 133.

68. G. Zech, Iterative unfolding with the Richardson-Lucy algorithm, Nucl. Instr.
and Meth. A716 (2013) 1.

69. P. C. Hansen, Discrete Inverse Problems: Insight and Algorithms, SIAM, (2009)
Springer, Berlin (1975).

70. W.H. Richardson, Bayesian based Iterative Method of Image restoration Journal.
of the Optical Society of America 62 (1972) 55.

71. L.B. Lucy, An iterative technique for the rectification of observed distributions,
Astron. Journ. 79 (1974) 745

72. L. A. Shepp and Y. Vardi, Maximum likelihood reconstruction for emission to-
mography, IEEE trans. Med. Imaging MI-1 (1982) 113

73. Y. Vardi, L. A. Shepp and L. Kaufmann, A statistical model for positron emis-
sion tomography, J. Am. Stat. Assoc.80 (1985) 8, Y. Vardi and D. Lee, From
image deblurring to optimal investments: Maximum likelihood solution for posi-
tive linear inverse problems (with discussion), J. R. Statist. Soc. B55, 569 (1993)

74. A. Kondor, Method of converging weights - an iterative procedure for solving
Fredholm’s integral equations of the first kind, Nucl. Instr. and Meth. 216 (1983)
177.

75. H. N. Mülthei, B. Schorr, On properties of the iterative maximum likelihood
reconstruction method, Math. Meth. Appl. Sci. 11 (2005) 331.

76. ROOT, An object oriented data analysis framework, CERN, Geneva, Switzer-
land.

77. A.N. Tichonoff, Solution of incorrectly formulated problems and the regulariza-
tion method, translation of the original article (1963) in Soviet Mathematics 4,
1035.

78. R. Narayan, R. Nityananda, Maximum entropy image restoration in astronomy,
Ann. Rev. Astrophys. 24 (1986) 127.

79. P. Magan, F. Courbin and S. Sohy, Deconvolution with correct sampling, Astro-
phys. J. 494 (1998) 472.

80. B. Aslan and G.Zech, Statistical energy as a tool for binning-free, multivari-
ate goodness-of-fit tests, two-sample comparison and unfolding, Nucl. Instr. and
Meth. A 537 (2005) 626.

81. R. B. D’Agostino and M. A. Stephens (editors), Goodness of Fit Techniques, M.
Dekker, New York (1986).

82. L. Demortier, P Values: What They Are and How to Use Them,
CDF/MEMO/STATISTICS/PUBLIC (2006).



References 453

83. D. S. Moore, Tests of Chi-Squared Type in Goodness of Fit Techniques, ed. R.
B. d’Agostino and M. A. Stephens, M. Dekker, New York (1986).

84. J. Neyman, "Smooth test" for goodness of fit, Scandinavisk Aktuaristidskrift 11
(1037),149.

85. E. S. Pearson, The Probability Integral Transformation for Testing Goodness
of Fit and Combining Independent Tests of Significance, Biometrika 30 (1938),
134.

86. A. W. Bowman, Density based tests for goodness-of-fit, J. Statist. Comput.
Simul. 40 (1992) 1.

87. B. Aslan and G. Zech, New Test for the Multivariate Two-Sample Problem based
on the concept of Minimum Energy, J. Statist. Comput. Simul. 75, 2 (2004), 109.

88. B. Aslan, The concept of energy in nonparametric statistical inference -
goodness-of-fit tests and unfolding, Dissertation, Siegen (2004).

89. B. Efron and R. T. Tibshirani, An Introduction to the Bootstrap, Chapman &
Hall, London (1993).

90. S. G. Mallat, A Wavelet Tour of Signal Processing, Academic Press, New York
(1999), A. Graps, An introduction to wavelets, IEEE, Computational Science and
Engineering, 2 (1995) 50 und www.amara.com /IEEEwave/IEEEwavelet.html.

91. A. W. Bowman and A. Azzalini, Applied Smoothing Techniques for Data Anal-
ysis: The Kernel Approach with S-Plus Illustration, Oxford University Press
(1997).

92. I.T. Jolliffe, Principal Component Analysis, Springer, Berlin (2002).
93. P.M. Schulze, Beschreibende Statistik, Oldenburg Verlag (2003).
94. R. Rojas, Theorie der neuronalen Netze, Springer, Berlin (1991).
95. M. Feindt and U. Kerzel, The NeuroBayes neural network package, Nucl. Instr.

and Meth A 559 (2006) 190
96. V. Vapnik, The Nature of Statistical Learning Theory, Springer, Berlin (1995),

V. Vapnik, Statistical Lerning Theory, Wiley, New York (1998), B. Schölkopf
and A. Smola, Lerning with Kernels, MIT press, Cambridge, MA (2002).

97. B. Schölkopf, Statistical Learning and Kernel Methods,
http://research.microsoft.com.

98. J. H. Friedman, Recent Advances in Predictive (Machine) Learning Proceed-
ings of PHYSTAT03, Statistical Problems in Particle Physics, Astrophysics and
Cosmology ed. L. Lyons et al., SLAC, Stanford (2003).

99. Y. Freund and R. E. Schapire, Experiments with a new boosting algorithm, Proc.
COLT, Academic Press, New York (1996) 209.

100. B.P. Roe et. al., Boosted decision trees as an alternative to artificial neural
networks for particle identification, Nucl. Instr. and Meth. A543 (2005) 577.

101. L. Breiman, Bagging predictors, Technical Report No. 421, Department of
Statistics, University of California, Berkeley, Ca, (1994).

102. L. Breiman, Random Forests, Technical Report, Department of Statistics, Uni-
versity of California, Berkeley, Ca (2001).

103. J. S. Simonoff, Smoothing Methods in Statistics, Springer, Berlin (1996).
104. D. W. Scott, Multivariate Density Estimation: Theory, Practice, and Visual-

ization, John Wiley, New York (1992).
105. D. W. Scott, and S. R. Sain, Multi-Dimensional Density Estimation, in Hand-

book of Statistics, Vol 24: Data Mining and Computational Statistics, ed. C.R.
Rao and E.J. Wegman, Elsevier, Amsterdam (2004).

106. E. L. Lehmann, Elements of Large-Sample Theory,



454 References

107. W. Härdle, M. Müller, S. Sperlich, A. Werwatz, Nonparametric and Semipara-
metric Models, Springer, Berlin (2004).

108. T. A. Bancroft and Chien-Pai Han, Statistical Theory and Inference in Re-
search, ed. D. B. Owen, Dekker, New York (1981).

109. M. Fisz, Probability Theorie and Mathematical Statistics, R.E. Krieger Pub-
lishing Company, Malabre, Florida (1980) 464.

110. G. J. Feldman, R. D. Cousins, Unified approach to the classical statistical anal-
ysis of small signals. Phys. Rev. D 57 (1998) 3873.

111. B. Efron, Why isn’t Everyone a Bayesian? Am. Stat. 40 (1986) 1, R. D.
Cousins, Why Isn’t Every Physicist a Bayesian? Am. J. Phys. 63 (1995) 398,
D. V. Lindley, Wald Lectures: Bayesian Statistics, Statistical Science, 5 (1990)
44.

112. G. Zech, Frequentist and Bayesian confidence intervals,EPJdirect C12 (2002)
1.

113. M. A. Stephens, Tests based on EDF Statistics, in Goodness of Fit Techniques,
ed. R. B. d’Agostino and M. A. Stephens, Dekker, New York (1986).

114. G.J. Babu et al., Second-order correctness of the Poisson bootstrap,The Annals
of Statistics Vol 27, No. 5 (1999) 1666-1683).

115. G. Zech, A Simple Iterative Alignment Method using Gradient Descending
Minimum Search, Proceedings of PHYSTAT03, Statistical Problems in Parti-
cle Physics, Astrophysics and Cosmology, ed. L. Lyons et al., SLAC, Stanford
(2003), 226.

116. G. A. Korn and Th. M. Korn, Mathematical Handbook for Scientists and En-
gineers, McGraw-Hill, New York (1961)

117. P. J. Huber, Robust Statistics, John Wiley, New York (1981).
118. P. J. Rousseeuw, Robust Regression and Outlier Detection, John Wiley, New

York (1987).
119. R. Maronna, D. Martin and V. Yohai, Robust Statistics – Theory and Methods,

John Wiley, New York (2006).
120. Some useful internet links:

- http://www.stats.gla.ac.uk/steps/glossary/basic-definitions.html, Statistics
Glossary (V. J. Easton and J. H. McColl)
- http://www.nu.to.infn.it/Statistics/, Useful Statistics Links for Particle
Physicists
- http://www.statsoft.com/textbook/stathome.html, Electonic Textbook Stat-
soft
- http://wiki.stat.ucla.edu/socr/index.php/EBook, Electronic Statistics Book
- http://www.york.ac.uk/depts /maths/histstat/lifework.htm,Life and Work of
Statisticians (University of York, Dept. of Mathematics)
- http://www.montefiore.ulg.ac.be/services/stochastic/pubs/2000/Geu00/geurts-
pkdd2000-bagging.pdf, Some enhancements of Decision Tree Bagging (P.
Geurts):
- http://www.math.ethz.ch/ blatter/Waveletsvortrag.pdf, Wavelet script (in
German)
- http://www.xmarks.com/site/www.umiacs.umd.edu/ joseph/support-vector-
machines4.pdf, A Tutorial on Support Vector Machines for Pattern Recognition
(Ch. J. C. Burges)
- http://www-stat.stanford.edu /∼jhf/ftp/machine.pdf, Recent Advances in
Predictive (Machine) Learning (J. B. Friedman)



Table of Symbols

Symbol Explanation

A , B Events
A Negation of A
Ω / ∅ Certain / impossible event
A ∪B ,A ∩B ,A ⊂ B A OR B, A AND B, A implies B etc.
P{A} Probability of A
P{A|B} Conditional probability of A

(for given B)
x , y , z ; k , l ,m (Continuous; discrete) random variable (variate)
θ , µ , σ Parameter of distributions
f(x) , f(x|θ) Probability density function
F (x) , F (x|θ) Integral (probability-) distribution function

(for parameter value θ, respectively)(p. 15)
f(x) , f(x|θ) Respective multidimensional generalizations (p. 46)
A , Aji Matrix, matrix element in column i, row j
AT , AT

ji = Aij Transposed matrix
a, a · b ≡ aT b Column vector, inner (dot-) product
L(θ) , L(θ|x1, . . . , xN ) Likelihood function (p. 155)
L(θ|x1, . . . , xN ) Generalization to more dimensional parameter space
θ̂ Statistical estimate of the parameter θ(p. 162)
E(u(x)) , 〈u(x)〉 Expected value of u(x)
u(x) Arithmetic sample mean, average (p. 21)
δx Measurement error of x (p. 93)
σx Standard deviation of x
σ2
x , var(x) Variance (dispersion) of x (p. 23)

cov(x, y) , σxy Covariance (p. 50)
ρxy Correlation coefficient
µi Moment of order i with respect to origin 0, initial moment
µ′
i Central moment (p. 34)
µij , µ

′
ij etc. Two-dimensional generalizations (p. 48)

γ1 , β2 , γ2 Skewness , kurtosis , excess (p. 27)
κi Semiinvariants (cumulants) of order i, (p. 38)
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k-nearest neighbor test, 329
two-sample, 319

k-nearest neighbors, 345, 376
p-value, 294, 299

combination of, 301

acceptance fluctuations, 64
activation function, 370
AdaBoost, 382
ancillary statistic, 217
Anderson–Darling statistic, 422
Anderson-Darling test, 315
angular distribution, 59

generation, 128
ANN, see artificial neural network
approximation of functions, see function

approximation
artificial neural network, see neural

network
asymptotic mean integrated square

error
of histogram approximation, 387

attributes, 341
averaging measurements, 242

B-splines, 356
back propagation of ANN, 372
bagging, 383
Bayes factor, 333, 442

Bayes’ postulate, 6
Bayes’ probability, 6
Bayes’ theorem, 11, 152–154

for probability densities, 48
Bayesian statistics, 4

Bernoulli distribution, 63
bias

bias of estimate, 223
of estimate, 404, 419
of measurement, 115

binomial distribution, 62
Poisson limit, 67
weighted observations, 64

boosting, 381
bootstrap, 328, 393

confidence limits, 397
estimation of variance, 394
jackknife, 398
precision, 397
two-sample test, 398

breakdown point, 446
Breit-Wigner distribution, 79

generation, 128
brownian motion, 31

categorical variables, 364
Cauchy distribution, 79

generation of, 128
central limit theorem, 70, 78, 402
characteristic function, 35

of binomial distribution, 63
of Cauchy distribution, 80
of exponential distribution, 40
of extremal value distribution, 85
of normal distribution, 70
of Poisson distribution, 39
of uniform distribution, 69

Chebyshev inequality, 401
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chi-square, 173, 231

of histograms, 177
of histograms of weighted events, 425

chi-square distribution, 44, 75

chi-square probability, 301
chi-square test, 302

binning, 305
composite hypothesis, 308
generalized, 307
small samples, 309
two-sample, 326

classification, 342, 364

k-nearest neighbors, 376
decision tree, 379
kernel methods, 374

support vector machines, 377
weighting, 375, 376

classifiers
training and testing, 398

combining measurements, 172, 242
compound distribution, 85
compound Poisson distribution, 88, 427
conditional probability, 11
conditionality principle, 217
confidence belt, 414
confidence interval, 116, 238

classical, 413
unphysical parameter values, 257
upper limits, 253

confidence level, 413
confidence region, 415
consistency

of estimate, 403, 419
of test, 295

constrained fit, 190
constraints, 434
convolution, 261
convolution integral, 52

correlation, 50, 58
coefficient, 50, 105

covariance, 50
covariance matrix, 105
coverage probability, 413
Cramer–Rao inequality, 405
Cramer–von Mises test, 314
Cramer–von-Mises statistic, 422
credibility interval, 238
critical region, 293
cross validation, 365

cumulants, 38
curse of dimensionality, 343

decision tree, 343, 379, 384
boosted, 381

deconvolution, see ufolding259, 261
degree of belief, 3
degrees of freedom, 75, 77, 303
diffusion, 31
digital measurements, 33
direct probability, 157
discriminant analysis, 366
distribution

angular, 59
continuous, 17
discrete, 16
multivariate, 57
sample width, 76

distribution function, 15

EDF statistics, 421
efficiency

of estimator, 419
of estimators, 224, 404

efficiency fluctuations, 64
empirical distribution function, 312
empirical moments, 98
energy test, 320

distance function, 320, 321

two-sample, 328
Epanechnikov kernel, 390
error, 91, 237

declaration of, 92
definition, 93, 241
determination of, 95
of a product, 249
of a sum, 249, 251
of average, 107
of correlated measurements, 108
of empirical variance, 98
of error, 98
of ratio, 244
of weighted sum, 114
one-sided, 253
parabolic, 239
propagation of, 103, 103, 242, 248
relative, 92
several variables, 111
statistical, 94
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unphysical parameter values, 257
verification of, 101

error ellipsoid, 106
error interval, 239
error matrix, 106
error of the first kind, 293
error of the second kind, 293
error propagation, 103, 103, 242, 248
estimate, 3
estimator

minimum variance bound, 406
event, 3, 9
excess, 27
expected value, 20

definition, 21
exponential distribution, 74

generation, 127
generation from uniform distribution,

46
moments of, 30

extended likelihood, 178
extreme value distribution, 83

generation, 128
extremum search, 431

method of steepest descent, 433
Monte Carlo methods, 431
parabola method, 432
Simplex algorithm, 431
stochastic, 434

factor analysis, 359
Fisher information, 405
Fisher’s spherical distribution, 61
Fisher–Tippett distribution, 84
folding integral, 260
folding matrix, 279
frequentist confidence intervals, 413
frequentist statistics, 4
function approximation, 344

k-nearest neighbors, 345
adapted functions, 356
Gaussian weighting, 346
orthogonal functions, 346
polynomial, 348, 436
splines, 354
wavelets, 351
weighting methods, 345

gamma distribution, 77

Gauss distribution, 69
Gauss–Markov theorem, 235
Gini-index, 380
goodness-of-fit test, 296, 425
Gram–Charlier series, 350
Gram–Schmidt method, 349
Gumbel distribution, 85

Haar wavelet, 352
Hermite polynomial, 348
histogram, comparison of, 424
hypothesis

composite, 292
simple, 292

hypothesis test, 291
multivariate, 317

i.i.d., 58
importance sampling, 131
incompatible measurements, 246
independence, 58
independence of variates, 50
independent, identically distributed

variables, 58
information, 218
input vector, 341
integrated square error, 386
interval estimation, 237, 416
inverse probability, 157
ISE, see integrated square error
iterative unfolding, 269

jackknife, 398

kernel method, 384
kernel methods, 343, 390

classification, 374
kernel trick, 440
kinematical fit, 193
Kolmogorov–Smirnov test, 312, 328
Kuiper test, 314
kurtosis, 27

coeffizient of, 27

L2 test, 317
Laguerre polynomial, 348
law of large numbers, 78, 401
learning, 341
least square fit, 230, 427
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truncated, 444
least square method, 230

counter example, 231
Legendre polynomial, 348
lifetime distribution

Monte Carlo adjustment, 186
likelihood, 155

definition, 155
extended, 178
histograms, 174
histograms with background, 177
map, 172

likelihood function, 156
approximation, 245
asymptotic form, 408
parametrization, 245
transformation invariance, 162

likelihood principle, 218
likelihood ratio, 156, 156, 159

examples, 159
likelihood ratio test, 310, 332

for histograms, 311, 426
two-samples, 327

linear distribution
generation, 127

linear regression, 234, 344
with constraints, 434

literature, 7
loadings, 363
location parameter, 27
log-likelihood, 158
log-normal distribution, 80, 250
log-Weibull distribution, 84

generation, 128
look-else-where effect, 330, 339
Lorentz distribution, 79

generation, 128
loss function

decision tree, 381

machine learning, 341
Mahalanobis distance, 318
marginal distribution, 47
marginal likelihood, 442
Markov chain Monte Carlo, 136
maximum likelihood estimate, 162

bias of, 223
consistency, 406
efficiency, 408

small sample properties, 409
maximum likelihood method, 162

examples, 165
recipe, 162
several parameters, 169
signal with background, 172

MCMC, see Markov chain Monte Carlo
mean integrated square error, 386, 389

of histogram approximation, 387
of linear spline approximation, 389

mean value, 22
measurement, 3

average, 242
bias, 115
combination of correlated results, 108
combining, 107, 172, 239, 242

measurement error, see error
measurement uncertainty, see error
median, 28, 445
method of steepest descent, 433
Mexican hat wavelet, 353
minimal sufficient statistic, 216
minimum search, 431
minimum variance estimate, 409
MISE, see mean integrated square error
mixed distribution, 85
MLE, see maximum likelihood estimate
mode, 28
moments, 34

exponential distribution, 41
higher-dimensional distributions, 48
of Poisson distribution, 39

Monte Carlo integration, 140
accuracy, 64
advantages of, 147
expected values, 145
importance sampling, 144
selection method, 140
stratified sampling, 146
subtraction method, 145
weighting method, 144
with improved selection, 143

Monte Carlo search, 431
Monte Carlo simulation, 121

additive distributions, 134
by variate transformation, 125
discrete distributions, 129
generation of distributions, 123
histogram distributions, 130
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importance sampling, 131
Markov chain Monte Carlo, 136
Metropolis algorithm, 137
parameter inference, 180, 181
Planck distribution, 133
rejection sampling, 130
with weights, 135

Morlet wavelet, 353
multinomial distribution, 65
multivariate distributions

correlation, 58
correlaton matrix, 58
covariance matrix, 58
expected values, 57
independence, 58
transformation, 58

neural network, 343, 368, 384
activation function, 370
loss function, 371
testing, 372
training, 371

Neyman’s smooth test, 315
normal distribution, 69

generation, 128
generation from uniform p.d.f., 56
in polar coordinates, 51
two-dimensional, 72
two-dimensional rotation, 72

nuisance parameter, 204
dependence on, 212
elimination, 204
elimination by factorization, 207
elimination by integration, 212
elimination by restructuring, 207
profile likelihood, 210

null hypothesis, 292, 292

number of degrees of freedom, 75, 77,
303

observation, 3
Ockham’s razor, 442
optimal variable method, 201
orthogonal functions, 346

parameter inference, 149
approximated likelihood estimator,

201
least square method, 230

moments method, 227
Monte Carlo simulation, 180
optimal variable method, 201
reduction of number of variates, 197
weighted Monte Carlo , 181
with constraints, 190
with given prior, 151

PDE, see probability density estimation
Pearson test, 305
Peelle’s pertinent puzzle, 251
PIT, 315, 422
Planck distribution

generation, 133
Poisson distribution, 67

weighted observations, 88
polynomial approximation, 348
population, 3
power law distribution

generation, 127
principal component analysis, 342, 359

principal components, 361
prior probability, 152, 154

for particle mass, 6
probability, 3

assignment of, 5
axioms, 10
conditional, 11
independent, 11

probability density, 17
conditional, 47
two-dimensional, 46

probability density estimation, 317, 385

by Gram–Charlier series, 350
fixed volume, 390
histogram approximation, 386
k-nearest neighbors, 390
kernel methods, 390
linear spline approximation, 389

probability integral transformation,
315, 422

probability of causes, 157
profile likelihood, 210
propagation of errors, 103, 103

linear, 103
several variables, 104

pseudo random number, 124

quantile, 28
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random event, 3, 9
random forest, 383
random number, 124
random variable, 10
random walk, 31
reduction of number of variables, 52
regression, 230
regression analysis, 344
regularization, 268

entropy, 278
explicit, 268
implicit, 267
minimize curvature, 276
norm regularization, 276
selective SVD, 274
Tikhonov regularization, 274, 276

regularization function, 276
resampling techniques, 393
resolution function, 261
response, 341
response function, 261
response matrix, 279
robust fitting methods, 443

breakdown point, 446
least median of squares, 446
least trimmed squares, 446
M-estimator, 445
sample median, 445
truncated least square fit, 444

sample, 1
sample mean, 23
sample width, 25, 76

relation to variance, 25
scale parameter, 27
scaled Poisson distribution, 89, 428
shape parameter, 27
sigmoid function, 371
signal test, 292

multi-channel, 338
signal with background, 68
significance level, 293
significance test, 291

small signals, 330
Simplex, 431
singular value decomposition, 363
skewness, 27

coefficient of, 27
soft margin classifier, 440

solid angle, 61
spline approximation, 354
spline functions, 437

cubic, 438
linear, 437
normalized, 356
quadratic, 438

stability, 40
standard deviation, 23
statistic, 164

ancillary, 217
minimal sufficient, 216
sufficient, 215

statistical learning, 341
statistics

Bayesian, 4
frequentist, 4
goal of, 1

stimulated annealing, 434
stopping rule paradox, 220
stopping rules, 220
straight line fit, 210, 232

Student’s t distribution, 81
sufficiency, 166, 215

sufficiency principle, 215
sufficient statistic, 215
support vector, 379
support vector machine, 343, 377, 438
SVD, see singular value decomposition
SVM, see support vector machine
systematic error, 99

definition, 99
detection of, 100

test, 291
bias, 295
comparison, 323
consistency, 295
distribution-free, 298
goodness-of-fit, 296, 425
power, 294
significance, 291
size, 293
uniformly most powerful, 294

test statistic, 293
training sample, 341
transfer function, 261
transformation of variables, 41

multivariate, 51
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transformation function, 56
truncated least square fit, 444
two-point distribution, 63
two-sample test, 292, 326

k-nearest neighbor test, 329
chi-square test, 326
energy test, 328
Kolmogorov–Smirnov test, 328
likelihood ratio, 327

UMP test, see test, uniformly most
powerful

unfolding, 259
bin-by-bin correction, 261
binning, 279
binning-free, 283
eigendecomposition, see deconvolu-

tion
iterative, 269
migration method, 285
penalty regularization, 274
regularization, 268

regularization strength, 269
response matrix, 279
Richardson-Lucy method, 269
SVD, 267
truncated SVD, 273
with background, 280

uniform distribution, 33, 69

upper limit, 253
Poisson statistics with background,

255
Posson statistics, 254

v. Mises distribution, 59
variables

independent, identically distributed,
58

variance, 23
estimation by bootstrap, 394
of a sum, 24
of a sum of distributions, 26
of sample mean, 25

variate, 10
transformation, 45

Venn diagram, 11, 153

Watson statistic, 422
Watson test, 315
wavelets, 351
Weibull distribution, 84
weight matrix, 74
weighted events, 88
weighted observations, 88
width of sample, 25

relation to variance, 25
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Chapter 1

1. Uniform prior for a particle mass
Chapter 2

2. Card game, independent events
3. Random coincidences, measuring the efficiency of a counter
4. Bayes’ theorem, fraction of women among students
5. Bayes’ theorem, beauty filter

Chapter 3
6. Discrete probability distribution (dice)
7. Probability density of an exponential distribution
8. Probability density of the normal distribution
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143. Classification of particles with calorimeters
Chapter 12

144. PDE of a background distribution and signal fit
145. Bootstrap evaluation of the accuracy of the estimated mean value of a
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