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Preface

There is a large number of excellent statistic books. Nevertheless, we think that it is
justified to complement them by another textbook with the focus on modern appli-
cations in nuclear and particle physics. To this end we have included a large number
of related examples and figures in the text. We emphasize less the mathematical
foundations but appeal to the intuition of the reader.

Data analysis in modern experiments is unthinkable without simulation tech-
niques. We discuss in some detail how to apply Monte Carlo simulation to parameter
estimation, deconvolution, goodness-of-fit tests. We sketch also modern developments
like artificial neural nets, bootstrap methods, boosted decision trees and support vec-
tor machines.

Likelihood is a central concept of statistical analysis and its foundation is the
likelihood principle. We discuss this concept in more detail than usually done in
textbooks and base the treatment of inference problems as far as possible on the
likelihood function only, as is common in the majority of the nuclear and particle
physics community. In this way point and interval estimation, error propagation,
combining results, inference of discrete and continuous parameters are consistently
treated. We apply Bayesian methods where the likelihood function is not sufficient to
proceed to sensible results, for instance in handling systematic errors, deconvolution
problems and in some cases when nuisance parameters have to be eliminated, but
we avoid improper prior densities. Goodness-of-fit and significance tests, where no
likelihood function exists, are based on standard frequentist methods.

Our textbook is based on lecture notes from a course given to master physics
students at the University of Siegen, Germany, a few years ago. The content has
been considerably extended since then. A preliminary German version is published
as an electronic book at the DESY library. The present book is addressed mainly to
master and Ph.D. students but also to physicists who are interested to get an intro-
duction into recent developments in statistical methods of data analysis in particle
physics. When reading the book, some parts can be skipped, especially in the first
five chapters. Where necessary, back references are included.

We welcome comments, suggestions and indications of mistakes and typing errors.
We are prepared to discuss or answer questions to specific statistical problems.

We acknowledge the technical support provided by DESY and the University of
Siegen.

February 2010,

Gerhard Bohm, Günter Zech
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1

Introduction: Probability and Statistics

Though it is exaggerated to pretend that in our life only the taxes and the death are
certain, it is true that the majority of all predictions suffer from uncertainties. Thus
the occupation with probabilities and statistics is useful for everybody, for scientists
of experimental and empirical sciences it is indispensable.

1.1 The Purpose of Statistics

Whenever we perform an experiment and want to interpret the collected data, we
need statistical tools. The accuracy of measurements is limited by the precision of
the equipment which we use, and thus the results emerge from a random process. In
many cases also the processes under investigation are of stochastic nature, i.e. not
predictable with arbitrary precision, such that we are forced to present the results
in form of estimates with error intervals. Estimates accompanied by an uncertainty
interval allow us to test scientific hypotheses and by averaging the results of different
experiments to improve continuously the accuracy. It is by this procedure that a
constant progress in experimental sciences and their applications was made possible.

Inferential statistics provides mathematical methods to infer the properties of
a population from a randomly selected sample taken from it. A population is an
arbitrary collection of elements, a sample just a subset of it.

A trivial, qualitative case of an application of statistics in every day life is the
following: To test whether a soup is too salted, we taste it with a spoon. To obtain a
reliable result, we have to stir the soup thoroughly and the sample contained in the
spoon has to be large enough: Samples have to be representative and large enough
to achieve a sufficiently precise estimate of the properties of the population.

Scientific measurements are subject to the same scheme. Let us look at a few
statistical problems:

1. From the results of an exit poll the allocation of seats among the different parties
in the parliament is predicted. The population is the total of the votes of all
electors, the sample a representative selection from it. It is relatively simple to
compute the distribution of the seats from the results of the poll, but one wants
to know in addition the accuracy of the prognosis, respectively how many electors
have to be asked in order to issue a reasonably precise statement.
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2. In an experiment we record the lifetimes of 100 decays of an unstable nucleus. To
determine the mean life of the nucleus, we take the average of the observed times.
Here the uncertainty has its origin in the quantum mechanical random process.
The laws of physics tell us, that the lifetimes follow a random exponential distri-
bution. The sample is assumed to be representative of the total of the infinitely
many decay times that could have occurred.

3. From 10 observations the period of a pendulum is to be determined. We will take
as estimate the mean value of the replicates. Its uncertainty has to be evaluated
from the dispersion of the individual observations. The actual observations form
a sample from the infinite number of all possible observations.

These examples are related to parameter inference. Further statistical topics are
testing, deconvolution, and classification.

4. A bump is observed in a mass distribution. Is it a resonance or just a background
fluctuation?

5. An angular distribution is predicted to be linear in the cosine of the polar angle.
Are the observed data compatible with this hypothesis?

6. It is to be tested whether two experimental setups perform identically. To this end,
measurement samples from both are compared to each other. It is tested whether
the samples belong to the same population, while the populations themselves are
not identified explicitly.

7. A frequency spectrum is distorted by the finite resolution of the detector. We
want to reconstruct the true distribution.

8. In a test beam the development of shower cascades produced by electrons and
pions is investigated. The test samples are characterized by several variables like
penetration depth and shower width. The test samples are used to develop proce-
dures which predict the identity of unknown particles from their shower param-
eters.

A further, very important part of statistics is decision theory. We shall not cover
this topic.

1.2 Event, Observation and Measurement

Each discipline has its own terminology. The notations used in statistics are some-
what different from those used by physicists, and even physicists from different fields
do not always use the same language. To avoid confusion, we will fix the meaning of
some terms which we need in the following.

We will distinguish between event, observation and measurement . A random
event1 or in short an event is the possible outcome of an experiment governed by
some stochastic process. This could be the decay of a nucleus in a certain time inter-
val or the coincidence that two pupils of a class have their birthdays the same day.
An observation is the element of a sample, the realization of an event.

1At some occasions we will use the term event in the way physicists do. This will become
clear from the context.
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As indicated above, a population is the set of all possible events, i.e. all potential
observations. In the natural sciences, ideally experiments can be repeated infinitely
often, thus we usually deal with infinite populations.

When we infer properties, i.e. parameters characterizing the population, from the
sample, we talk about an estimate or a measurement. The decay times of 10 pion
decays correspond to a sample of observations from the population of all possible
events, the decay times. The estimation of the mean life of pions from the sample
is a measurement. An observation as such – the reading of a meter, a decay time,
the number of detected cosmic muons – has no error associated with it. Its value
is fixed by a random process. On the contrary, the measurement which corresponds
to parameter inference is afflicted with an uncertainty. In many simple situations,
observation and measurement coincide numerically, in other cases the measurement
is the result of an extensive analysis based on a large amount of observations.

1.3 How to Define Probability?

Statistics is at least partially based on experience which is manifest in fields like
deconvolution and pattern recognition. It applies probability theory but should not
be confounded with it. Probability theory, contrary to statistics, is a purely math-
ematical discipline and based on simple axioms. On the other hand, all statistical
methods use probability theory. Therefore, we will deal in the first part of this book
with simple concepts and computational rules of this field.

In statistics, there exist several different notions on what probability means. In
the Dictionary of Statistical Terms of Kendall and Buckland [1] we find the following
definition:

“probability, a basic concept which may be taken as undefinable, express-
ing in some way a degree of belief, or as the limiting frequency in an infinite
random series. Both approaches have their difficulties and the most con-
venient axiomatization of probability theory is a matter of personal taste.
Fortunately both lead to much the same calculus of probability.”

We will try to extend this short explanation:

In the frequentist statistics, sometimes also called classical statistics, the proba-
bility of an event, the possible outcome of an experiment, is defined as the frequency
with which it occurs in the limit of an infinite number of repetitions of the exper-
iment. If in throwing dice the result five occurs with frequency 1/6 in an infinite
number of trials, the probability to obtain five is defined to be 1/6.

In the more modern, so-called Bayesian statistics2 this narrow notion of proba-
bility is extended. Probability is also ascribed to fixed but incompletely known facts
and to processes that cannot be repeated. It may be assigned to deterministic phys-
ical phenomena when we lack sufficient information. We may roll a dice and before
looking at the result, state that the result is “5” with probability 1/6. Similarly, a
probability can be attributed to the fact that the electron mass is located within
a certain mass interval. That in the context of a constant like the electron mass
probability statements are applied, is due to our limited knowledge of the true facts.

2Thomas Bayes was a mathematician and theologian who lived in the 18th century.
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It would be more correct, but rather clumsy, to formulate: “The probability that we
are right with the proposition that the electron mass is located in that error interval
is such and such.” The assignment of probabilities sometimes relies on assumptions
which cannot be proved but usually they are well founded on symmetry arguments,
physical laws or on experience3. The results obviously depend on these assumptions
and can be interpreted only together with those.

The frequentist concept as compared to the Bayesian one has the advantage that
additional not provable assumptions are obsolete but the disadvantages that its field
of application is rather restricted. Important parts of statistics, like deconvolution,
pattern recognition and decision theory are outside its reach. The Bayesian statistics
exists in different variants. Its extreme version permits very subjective assignments
of probabilities and thus its results are sometimes vulnerable and useless for scientific
applications. Anyway, these very speculative probabilities do not play a significant
role in the scientific practice.

Both schools, the classical frequentist oriented and the modern Bayesian have
developed important statistical concepts. In most applications the results are quite
similar. A short compariaon of the two approaches will be presented in the appendix.

For completeness we mention a third classical interpretation of probability which
is appreciated by mathematicians4: If an experiment has N equally likely and mu-
tually exclusive outcomes, and if the event A can occur in P of them, then the
probability of event A is equal to P/N . It has the difficulty that it can hardly be
translated into real situations and a slight logical problem in that the term equally
likely already presumes some idea of what probability means.

Independent of the statistical approach, in order to be able to apply the results of
probability theory, it is necessary that the statistical probability follows the axioms
of the mathematical probability theory, i.e. it has to obey Kolmogorov’s axioms. For
example, probabilities have to be positive and smaller or equal to one. We will discuss
these axioms below.

In this book we will adopt a moderately Bayesian point of view. This means that
in some cases we will introduce sensible assumptions without being able to prove
their validity. However, we will establish fixed, simple rules that have to be applied
in data analysis. In this way we achieve an objective parametrization of the data.
This does not exclude that in some occasions as in goodness-of-fit tests we favor
methods of frequentist statistics.

1.4 Assignment of Probabilities to Events

The mathematician assumes that the assignment of probabilities to events exists. To
achieve practical, useful results in the natural sciences, in sociology, economics or
medicine, statistical methods are required and a sensible assignment has to be made.

There are various possibilities to do so:

3Remark, also probability assignments based on experience have a frequency back-
ground.

4For two reasons: The proof that the Kolmogorov’s axioms are fulfilled is rather easy,
and the calculation of the probability for complex events is possible by straight forward
combinatorics.
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• Symmetry properties are frequently used to assign equal probabilities to events.
This is done in gambling, examples are rolling dice, roulette and card games. The
isotropy of space predicts equal probabilities for radiation from a point source
into different directions.

• Laws of nature like the Boltzmann’s law of thermodynamics, the exponential
decay law of quantum mechanics or Mendel’s laws allow us to calculate the prob-
abilities for certain events.

• From the observed frequencies of certain events in empirical studies we can esti-
mate their probabilities, like those of female and male births, of muons in cosmic
rays, or of measurement errors in certain repeatable experiments. Here we derive
frequencies from a large sample of observations from which we then derive with
sufficient accuracy the probability of future events.

• In some situations we are left with educated guesses or we rely on the opinion
of experts, when for example the weather is to be predicted or the risk of an
accident of a new oil-ship has to be evaluated.

• In case of absolute ignorance often a uniform probability distribution is assumed.
This is known as Bayes’ postulate. When we watch a tennis game and do not
know the players, we will assign equal probabilities of winning to both players.

To illustrate the last point in a more scientific situation, let us look at a common
example in particle physics:

Example 1. Uniform prior for a particle mass

Before a precise measurement of a particle mass is performed, we only know
that a particle mass m lies between the values m1 and m2. We may assume
initially that all values of the mass inside the interval are equally likely. Then
the a priori probability P{m0 ≤ m < m2} (or prior probability) that m it is
larger than m0, with m0 located between m1 and m2, is equal to:

P{m0 ≤ m < m2} =
m2 −m0

m2 −m1
.

This assertion relies on the assumption of a uniform distribution of the mass
within the limits and is obviously assailable, because, had we assumed – with
equal right – a uniform distribution for the mass squared, we had obtained
a different result:

P{m2
0 ≤ m2 < m2

2} =
m2

2 −m2
0

m2
2 −m2

1

6= P{m0 ≤ m < m2} .

Of course, the difference is small, if the interval is small, m2 −m1 ≪ m, for
then we have:

m2
2 −m2

0

m2
2 −m2

1

=
m2 −m0

m2 −m1
× m2 +m0

m2 +m1

=
m2 −m0

m2 −m1

(
1 +

m0 −m1

m2 +m1

)

≈ m2 −m0

m2 −m1
.
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When the Z0 mass and its error were determined, a uniform prior probability
in the mass was assumed. If instead a uniform probability in the mass squared had
been used, the result had changed only by about 10−3 times the uncertainty of the
mass determination. This means that applying Bayes’ assumption to either the mass
or the mass squared makes no difference within the precision of the measurement in
this specific case.

In other situations prior probabilities which we will discuss in detail in Chap. 6
can have a considerable influence on a result.

1.5 Outline of this Book

After a short chapter on probability axioms and theorems we present properties of
probability distributions in Chapter 3, and its application to simple error calculus
and Monte Carlo simulation in Chapters 4 and 5.

The statistics part starts in Chapters 6 and 7 with point estimation followed by
interval estimation, Chapter 8

Chapter 9 deals with deconvolution problems.

In Chapter 10 significance and goodness-of-fit tests are discussed.

Chapter 11 with the title Statistical Learning summarizes some approximation
and classification techniques.

In Chapter 12 a short introduction into probability density estimation and boot-
strap techniques is given.

Finally, the Appendix contains some useful mathematical or technical objects,
introduces important frequentist concepts and theorems and presents a short com-
parison of the different statistical approaches.

Recommendations for Ancillary Literature

- The standard book of Kendall and Stuart “The Advanced Theory of Statistics” [2],
consisting of several volumes provides a excellent and rather complete presentation of
classical statistics with all necessary proofs and many references. It is a sort of Bible
of conservative statistics, well suited to look up specific topics. Modern techniques,
like Monte Carlo methods are not included.

- The books of Brandt “Data Analysis” [3] and Frodesen et. al. “ Probability and
Statistics in Particle Physics” [4] give a pretty complete overview of the standard
statistical methods as used by physicists.

- Less formal, very intuitive and also well suited for beginners is the thinner book
by Lyons [5], “Statistics for Nuclear and Particle Physicists”. It reflects the large
practical experience of the author.

- Larger, very professional and more ambitious is the book of Eadie et al. “Sta-
tistical Methods in Experimental Physics” [6], also intended mainly for particle and
nuclear physicists and written by particle physicists and statisticians. A new edition
has appeared recently [7]. Modern techniques of data analysis are not discussed.
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- Very useful especially for the solution of numerical problems is a book by Blobel
and Lohrman “Statistische und numerische Methoden der Datenanalyse” [8] written
in German.

- Other useful books written by particle physicists are found in Refs. [9, 10, 11, 12].
The books by Roe and Barlow are more conventional while Cowan and D’Agostini
favor a moderate Bayesian view.

- Modern techniques of statistical data analysis are presented in a book written
by professional statisticians for non-professional users, Hastie et al. “The Elements
of Statistical Learning”[13]

- A modern professional treatment of Bayesian statistics is the textbook by Box
and Tiao “Bayesian Inference in Statistical Analysis” [14].

The interested reader will find work on the foundations of statistics, on basic
principles and on the standard theory in the following books:

- Fisher’s book [15] “Statistical Method, Experimental Design and Scientific In-
ference” provides an interesting overview of his complete work.

- Edward’s book “Likelihood” [16] stresses the importance of the likelihood func-
tion, contains many useful references and the history of the Likelihood Principle.

- Many basic considerations and a collection of personal contributions from a
moderate Bayesian view are contained in the book “Good Thinking” by Good [17].
A collection of work by Savage [18], presents a more extreme Baysian point of view.

- Somewhat old fashioned textbooks of Bayesian statistic which are of historical
interest are the books of Jeffreys [19] and Savage [20].

Recent statistical work by particle physicists and astrophysicists can be found in
the proceedings of the PHYSTAT Conferences [21] held during the past few years.
Many interesting and well written articles can be found also in the internet.

This personal selection of literature is obviously in no way exhaustive.
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Basic Probability Relations

2.1 Random Events and Variables

Events are processes or facts that are characterized by a specific property, like ob-
taining a “3” with a dice. A goal in a soccer play or the existence of fish in a lake are
events. Events can also be complex facts like rolling two times a dice with the results
three and five or the occurrence of a certain mean value in a series of measurements
or the estimate of the parameter of a theory. There are elementary events, which
mutually exclude each other but also events that correspond to a class of elementary
events, like the result greater than three when throwing a dice. We are concerned
with random events which emerge from a stochastic process as already introduced
above.

When we consider several events, then there are events which exclude each other
and events which are compatible. We stick to our standard example dice. The ele-
mentary events three and five exclude each other, the events greater than two and
five are of course compatible. An other common example: We select an object from
a bag containing blue and red cubes and spheres. Here the events sphere and cube
exclude each other, the events sphere and red may be compatible.

The event A is called the complement of event A if either event A or event A
applies, but not both at the same time (exclusive or). Complementary to the event
three in the dice example is the event less than three or larger than three (inclusive
or). Complementary to the event red sphere is the event cube or blue sphere.

The event consisting of the fact that an arbitrary event out of all possible events
applies, is called the certain event. We denote it with Ω. The complementary event
is the impossible event, that none of all considered events applies: It is denoted with
∅, thus ∅ = Ω.

Some further definitions are useful:

Definition 1: A ∪B means A or B.

The event A∪B has the attributes of event A or event B or those of both A and
B (inclusive or). (The attribute cube ∪ red corresponds to the complementary event
blue sphere.)

Definition 2: A ∩B means A and B.
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The event A∩B has the attributes of event A as well as those of event B. (The
attribute cube ∩ red corresponds to red cube.) If A ∩ B = ∅, then A, B mutually
exclude each other.

Definition 3: A ⊂ B means that A implies B.

It is equivalent to both A ∪B = B and A ∩B = A.

From these definitions follow the trivial relations

A ∪ A = Ω , A ∩ A = ∅ ,

and
∅ ⊂ A ⊂ Ω . (2.1)

For any A, B we have

A ∪B = A ∩B , A ∩B = A ∪B .

To the random event A we associate the probability P{A} as discussed above.
In all practical cases random events can be identified with a variable, the random
variable or variate. Examples for variates are the decay time in particle decay, the
number of cosmic muons penetrating a body in a fixed time interval and measurement
errors. When the random events involve values that cannot be ordered, like shapes
or colors, then they can be associated with classes or categorical variates.

2.2 Probability Axioms and Theorems

2.2.1 Axioms

The assignment of probabilities P{A} to members A, B, C, ... of a set of events
has to satisfy the following axioms1. Only then the rules of probability theory are
applicable.

• Axiom 1 0 ≤ P{A}
The probability of an event is a positive real number.

• Axiom 2 P{Ω} = 1
The probability of the certain event is one.

• Axiom 3 P{A ∪B} = P{A}+ P{B} if A ∩B = ∅
The probability that A or B applies is equal to the sum of the probabilities that
A or that B applies, if the events A and B are mutually exclusive.

These axioms and definitions imply the following theorems whose validity is rather
obvious. They can be illustrated with so-called Venn diagrams, Fig. 2.1. There the
areas of the ellipses and their intersection are proportional to the probabilities.

P{A} = 1− P{A} , P{∅} = 0 ,

P{A ∪B} = P{A}+ P{B} − P{A ∩B} ,
if A ⊂ B ⇒ P{A} ≤ P{B} . (2.2)

1They are called Kolmogorov axioms, after the Russian mathematician A. N. Kol-
mogorov (1903-1987).
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Relation (2.1) together with (2.2) and axioms 1, 2 imply 0 ≤ P{A} ≤ 1. For arbitrary
events we have

P{A ∪B} ≥ P{A} , P{B} ; P{A ∩B} ≤ P{A} , P{B} .

If all events with the attribute A possess also the attribute B, A ⊂ B, then we have
P{A ∩B} = P{A}, and P{A ∪B} = P{B}.

2.2.2 Conditional Probability, Independence, and Bayes’ Theorem

In the following we need two further definitions:

Definition: P{A | B} is the conditional probability of event A under the condition
that B applies. It is given, as is obvious from Fig. 2.1, by:

P{A | B} =
P{A ∩B}
P{B} , P{B} 6= 0 . (2.3)

A conditional probability is, for example, the probability to find a sphere among
the red objects. The notation A | B expresses that B is considered as fixed, while A
is the random event to which the probability refers. Contrary to P{A}, which refers
to arbitrary events A, we require that also B is valid and therefore P{A ∩ B} is
normalized to P{B}.

Among the events A | B the event A = B is the certain event, thus P{B | B} = 1.
More generally, from definition 3 of the last section and (2.3) follows P{A|B} = 1 if
B implies A:

B ⊂ A⇒ A ∩B = B ⇒ P{A|B} = 1 .

Definition: If P{A ∩ B} = P{A} × P{B}, the events A and B (more precisely:
the probabilities for their occurrence) are independent.

From (2.3) then follows P{A | B} = P{A}, i.e. the conditioning on B is irrelevant
for the probability of A. Likewise P{B | A} = P{B}.

In Relation (2.3) we can exchange A and B and thus P{A | B}P{B} = P{A ∩
B} = P{B | A}P{A} and we obtain the famous Bayes’ theorem:

P{A | B}P{B} = P{B | A}P{A} . (2.4)

Bayes’ theorem is frequently used to relate the conditional probabilities P{A | B}
and P{B | A}, and, as we will see, is of some relevance in parameter inference.

The following simple example illustrates some of our definitions. It assumes that
each of the considered events is composed of a certain number of elementary events
which mutually exclude each other and which because of symmetry arguments all
have the same probability.

Example 2. Card game, independent events

The following table summarizes some probabilities for randomly selected
cards from a card set consisting of 32 cards and 4 colors.
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Fig. 2.1. Venn diagram.

P{king}: 4/32 = 1/8 (prob. for king)
P{heart}: 1/4 (prob. for heart)
P{heart ∩ king}: 1/8 · 1/4 = 1/32 (prob. for heart king)
P{heart ∪ king}: 1/8 + 1/4− 1/32 = 11/32 (prob. for heart or king)
P{heart | king}: 1/4 (prob. for heart if king)

The probabilities P{heart} and P{heart | king} are equal as required from
the independence of the events A and B.

The following example illustrates how we make use of independence.

Example 3. Random coincidences, measuring the efficiency of a counter

When we want to measure the efficiency of a particle counter (1), we combine
it with a second counter (2) in such a way that a particle beam crosses both
detectors. We record the number of events n1, n2 in the two counters and
in addition the number of coincidences n1∩2. The corresponding efficiencies
relate these numbers2 to the unknown number of particles n crossing the
detectors.

n1 = ε1n , n2 = ε2n , n1∩2 = ε1∩2n .

For independent counting efficiencies we have ε1∩2 = ε1ε2 and we get

ε1 =
n1∩2

n2
, ε2 =

n1∩2

n1
, n =

n1n2

n1∩2
.

This scheme is used in many analog situations.

Bayes’ theorem is applied in the next two examples, where the attributes are not
independent.

Example 4. Bayes’ theorem, fraction of women among students
2Here we ignore the statistical fluctuations of the observations.
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From the proportion of students and women in the population and the frac-
tion of students among women we compute the fraction of women among
students:

P{A} = 0.02 (fraction of students in the population)
P{B} = 0.5 (fraction of women in the population)
P{A | B} = 0.018 (fraction of students among women)
P{B | A} =? (fraction of women among students)

The dependence of the events A and B manifests itself in the difference of
P{A} and P{A | B}. Applying Bayes’ theorem we obtain

P{B | A} =
P{A | B}P{B}

P{A}

=
0.018 · 0.5

0.02
= 0.45 .

About 45% of the students are women.

Example 5. Bayes’ theorem, beauty filter

The probability P{A} that beauty quark production occurs in a colliding
beam reaction be 0.0001. A filter program selects beauty reactions A with
efficiency P{b | A} = 0.98 and the probability that it falsely assumes that
beauty is present if it is not, be P{b | A} = 0.01. What is the probability
P{A | b} to have genuine beauty production in a selected event? To solve
the problem, first the probability P{b} that a random event is selected has
to be evaluated,

P{b} = P{b}
[
P{A | b}+ P{A | b}

]

= P{b | A}P{A}+ P{b | A}P{A}

where the bracket in the first line is equal to 1. In the second line Bayes’
theorem is applied. Applying it once more, we get

P{A | b} =
P{b | A}P{A}

P{b}

=
P{b | A}P{A}

P{b | A}P{A}+ P{b | A}P{A}

=
0.98 · 0.0001

0.98 · 0.0001 + 0.01 · 0.9999 = 0.0097 .

About 1% of the selected events corresponds to b quark production.

Bayes’ theorem is rather trivial, thus the results of the last two examples could
have easily been written down without referring to it.
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Probability Distributions and their Properties

A probability distribution assigns probabilities to random variables. As an example
we show in Fig. 3.1 the distribution of the sum s of the points obtained by throwing
three ideal dice. Altogether there are 63 = 216 different combinations. The random
variable s takes values between 3 and 18 with different probabilities. The sum s = 6,
for instance, can be realized in 10 different ways, all of which are equally probable.
Therefore the probability for s = 6 is P {s = 6} = 10/216 ≈ 4.6%. The distribution
is symmetric with respect to its mean value 10.5. It is restricted to discrete values of
s, namely natural numbers.

In our example the variate is discrete. In other cases the random variables are
continuous. Then the probability for any fixed value is zero, we have to describe
the distribution by a probability density and we obtain a finite probability when we
integrate the density over a certain interval.
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Fig. 3.1. Probability distribution of the sum of the points of three dice.
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3.1 Definition of Probability Distributions

We define a distribution function, also called cumulative or integral distribution
function, F (t), which specifies the probability P to find a value of x smaller than t:

F (t) = P {x < t} , with −∞ < t <∞ .

The probability axioms require the following properties of the distribution function:

a) F (t) is a non-decreasing function of t ,

b) F (−∞) = 0 ,

c) F (∞) = 1 .

We distinguish between

• Discrete distributions (Fig. 3.2)

• Continuous distributions (Fig. 3.3)

3.1.1 Discrete Distributions

If not specified differently, we assume in the following that discrete distributions
assign probabilities to an enumerable set of different events, which are characterized
by an ordered, real variate xi, with i = 1, . . . , N , where N may be finite or infinite.
The probabilities p(xi) to observe the values xi satisfy the normalization condition:

N∑

i=1

p(xi) = 1 .

It is defined by

p(xi) = P {x = xi} = F (xi + ǫ)− F (xi − ǫ) ,

with ǫ positive and smaller than the distance to neighboring variate values.

Example 6. Discrete probability distribution (dice)

For a fair die, the probability to throw a certain number k is just one-sixth:
p(k) = 1/6 for k = 1, 2, 3, 4, 5, 6.

It is possible to treat discrete distributions with the help of Dirac’s δ-function
like continuous ones. Therefore we will often consider only the case of continuous
variates.

3.1.2 Continuous Distributions

We replace the discrete probability distribution by a probability density1 f(x), ab-
breviated as p.d.f. (probability density function). It is defined as follows:

1We will, however, use the notations probability distribution and distribution for discrete
as well as for continuous distributions.
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Fig. 3.2. Discrete probability distribution and distribution function.

f(x) =
dF (x)

dx
. (3.1)

Remark that the p.d.f. is defined in the full range −∞ < x <∞. It may be zero
in certain regions.

It has the following properties:

a) f(−∞) = f(+∞) = 0 ,

b)
∫∞
−∞ f(x)dx = 1 .

The probability P {x1 ≤ x ≤ x2} to find the random variable x in the interval
[x1, x2] is given by

P {x1 ≤ x ≤ x2} = F (x2)− F (x1) =

∫ x2

x1

f(x)dx .

We will discuss specific distributions in Sect. 3.6 but we introduce two common
distributions already here. They will serve us as examples in the following sections.

Example 7. Probability density of an exponential distribution

The decay time t of an instable particles follows an exponential distribution
with the p.d.f.
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Fig. 3.3. Probability density and distribution function of a continuous distribution.

f(t) ≡ f(t|λ) = λe−λt for t ≥ 0 , (3.2)

where the parameter2 λ > 0, the decay constant, is the inverse of the mean
lifetime τ = 1/λ. The probability density and the distribution function

F (t) =

∫ t

−∞
f(t′)dt′ = 1− e−λt

are shown in Fig. 3.4. The probability of observing a lifetime longer than τ
is

P {t > τ} = F (∞)− F (τ) = e−1 .

Example 8. Probability density of the normal distribution

An oxygen atom is drifting in argon gas, driven by thermal scattering. It
starts at the origin. After a certain time its position is (x, y, z). Each projec-

2We use the bar | to separate random variables (x, t) from parameters (λ) which specify
the distribution. This notation will be discussed below in Chap. 6, Sect. 6.3.
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Fig. 3.4. Probability density and distribution function of an exponential distribution.

tion, for instance x, has approximately a normal distribution (see Fig. 3.5),
also called Gauss distribution3

f(x) = N(x|0, s) ,

N(x|x0, s) =
1√
2πs

e−(x−x0)
2/(2s2) . (3.3)

The width constant s is, as will be shown later, proportional to the square root
of the number of scattering processes or the square root of time. When we descent
by the factor 1/

√
e from the maximum, the full width is just 2s. A statistical drift

motion, or more generally a random walk, is met frequently in science and also in
every day life. The normal distribution also describes approximately the motion of
snow flakes or the erratic movements of a drunkard in the streets.

3In the formula we separate parameters from variates by a bar.
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Fig. 3.5. Normal distribution.

3.1.3 Empirical Distributions

Many processes are too complex or not well enough understood to be described
by a distribution in form of a simple algebraic formula. In these cases it may be
useful to approximate the underlying distribution using an experimental data sample.
The simplest way to do this, is to histogram the observations and to normalize the
frequency histogram. More sophisticated methods of probability density estimation
will be sketched in Chap. 12. The quality of the approximation depends of course on
the available number of observations.

3.2 Expected Values

In this section we will consider some general characteristic quantities of distribu-
tions, like mean value, width, and asymmetry or skewness. Before introducing the
calculation methods, we turn to the general concept of the expected value.

The expected value E(u) of a quantity u(x), which depends on the random vari-
able x, can be obtained by collecting infinitely many random values xi from the
distribution f(x), calculating ui = u(xi), and then averaging over these values. Ob-
viously, we have to assume the existence of such a limiting value.

In quantum mechanics, expected values of physical quantities are the main results
of theoretical calculations and experimental investigations, and provide the connec-
tion to classical mechanics. Also in statistical mechanics and thermodynamics the
calculation of expected values is frequently needed. We can, for instance, calculate
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from the velocity distribution of gas molecules the expected value of their kinetic
energy, that means essentially their temperature. In probability theory and statistics
expected values play a central role.

3.2.1 Definition and Properties of the Expected Value

Definition:

E(u(x)) =

∞∑

i=1

u(xi)p(xi) (discrete distribution) , (3.4)

E(u(x)) =

∫ ∞

−∞
u(x)f(x) dx (continuous distribution) . (3.5)

Here and in what follows, we assume the existence of integrals and sums. This
condition restricts the choice of the allowed functions u, p, f .

From the definition of the expected value follow the relations (c is a constant, u,
v are functions of x):

E(c) = c, (3.6)

E(E(u)) = E(u), (3.7)

E(u + v) = E(u) + E(v), (3.8)

E(cu) = cE(u) . (3.9)

They characterize E as a linear functional.

For independent (see also Chap. 2 and Sect. 3.5) variates x, y the following
important relation holds:

E (u(x)v(y)) = E(u)E(v) . (3.10)

Often expected values are denoted by angular brackets:

E(u) ≡ 〈u〉 .

Sometimes this simplifies the appearance of the formulas. We will use both notations.

In case of a nonlinear function u(x), its expected value differs, in general, from
its value at the argument 〈x〉:

〈u〉 6= u(〈x〉) .

Example 9. Relation between the expected values of the track momentum
and of its curvature

In tracking detectors the momentum p of a charged particle is usually
determined from the curvature ρ in a magnetic field, p(ρ) = c/ρ. Here
〈p(ρ)〉 > p(〈ρ〉) = c/〈ρ〉. In fact the momentum determined from the cur-
vature is biased to large values. More generally, if u(x) is the inverse of a
positive function v(x), its expected value is always greater than (or equal to)
the inverse expected value of v:

〈u〉 = 〈1/v〉 ≥ 1/ 〈v〉 ,
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where equality is only possible in the degenerate case of a one-point distri-
bution f(x) = δ(x− c).

To show this assertion, we define an inner product of two positive functions
g(x), h(x) of a random variable x with p.d.f. f(x):

(g, h) =

∫
g(x)h(x)f(x)dx

and apply the Cauchy–Schwarz inequality

(g, h)2 ≤ (g, g)(h, h)

to g(x) =
√
u(x) and h(x) = 1/

√
u(x), giving

〈u〉 〈1/u〉 ≥ 1 .

The equality requires g ∝ h, or f(x) = δ(x− c).

3.2.2 Mean Value

The expected value of the variate x is also called the mean value. It can be visualized
as the center of gravity of the distribution. Usually it is denoted by the Greek letter
µ. Both names, mean value, and expected value4 of the corresponding distribution
are used synonymously.

Definition:

E(x) ≡ 〈x〉 = µ =
∑∞

i=1 xip(xi) (discrete distribution) ,

E(x) ≡ 〈x〉 = µ =
∫∞
−∞ x f(x) dx (continuous distribution) .

The mean value of the exponential distribution (3.2) is

〈t〉 =
∫ ∞

0

λte−λt dt = 1/λ = τ .

We will distinguish 〈x〉 from the average value of a sample, consisting of a finite
number N of variate values, x1, . . . , xN , which will be denoted by x:

x =
1

N

∑

i

xi .

It is called sample mean. It is a random variable and has the expected value

〈x〉 = 1

N

∑

i

〈xi〉 = 〈x〉 ,

as follows from (3.8), (3.9).

4The notation expected value may be somewhat misleading, as the probability to obtain
it can be zero (see the example “dice” in Sect. 3.2.7).
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3.2.3 Variance

The variance σ2 measures the spread of a distribution, defined as the mean quadratic
deviation of the variate from its mean value. Usually, we want to know not only the
mean value of a stochastic quantity, but require also information on the dispersion
of the individual random values relative to it. When we buy a laser, we are of course
interested in its mean energy per pulse, but also in the variation of the single energies
around that mean value. The mean value alone does not provide information about
the shape of a distribution. The mean height with respect to sea level of Switzerland
is about 700 m, but this alone does not say much about the beauty of that country,
which, to a large degree, depends on the spread of the height distribution.

The square root σ of the variance is called standard deviation and is the standard
measure of stochastic uncertainties.

A mechanical analogy to the variance is the moment of inertia for a mass distri-
bution along the x-axis for a total mass equal to unity.

Definition:
var(x) = σ2 = E

[
(x− µ)2

]
.

From this definition follows immediately

var(cx) = c2var(x) ,

and σ/µ is independent of the scale of x.

Very useful is the following expression for the variance which is easily derived
from its definition and (3.8), (3.9):

σ2 = E(x2 − 2xµ+ µ2)

= E(x2)− 2µ2 + µ2

= E(x2)− µ2.

Sometimes this is written more conveniently as

σ2 = 〈x2〉 − 〈x〉2 = 〈x2〉 − µ2 . (3.11)

In analogy to Steiner’s theorem for moments of inertia, we have

〈(x − a)2〉 = 〈(x− µ)2〉+ 〈(µ− a)2〉
= σ2 + (µ− a)2 ,

implying (3.11) for a = 0.

The variance is invariant against a translation of the distribution by a:

x→ x+ a , µ→ µ+ a⇒ σ2 → σ2 .

Variance of a Sum of Random Numbers

Let us calculate the variance σ2 for the distribution of the sum x of two independent
random numbers x1 and x2, which follow different distributions with mean values
µ1, µ2 and variances σ2

1 , σ
2
2 :
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x = x1 + x2,

σ2 = 〈(x− 〈x〉)2〉
= 〈((x1 − µ1) + (x2 − µ2))

2〉
= 〈(x1 − µ1)

2 + (x2 − µ2)
2 + 2(x1 − µ1)(x2 − µ2)〉

= 〈(x1 − µ1)
2〉+ 〈(x2 − µ2)

2〉+ 2〈x1 − µ1〉〈x2 − µ2〉
= σ2

1 + σ2
2 .

In the fourth step the independence of the variates (3.10) was used.

This result is important for all kinds of error estimation. For a sum of two indepen-
dent measurements, their standard deviations add quadratically. We can generalize
the last relation to a sum x =

∑
xi of N variates or measurements:

σ2 =

N∑

i=1

σ2
i . (3.12)

Example 10. Variance of the convolution of two distributions

We consider a quantity x with the p.d.f. g(x) with variance σ2
g which is

measured with a device which produces a smearing with a p.d.f. h(y) with
variance σ2

h. We want to know the variance of the “smeared” value x′ = x+y.
According to 3.12, this is the sum of the variances of the two p.d.f.s:

σ2 = σ2
g + σ2

h .

Variance of the Sample Mean of Independent Identically Distributed
Variates

From the last relation we obtain the variance σ2
x of the sample mean x from N

independent random numbers xi, which all follow the same distribution5 f(x), with
expected value µ and variance σ2:

x =

N∑

i=1

xi/N ,

var(Nx) = N2 var(x) = Nσ2 ,

σx =
σ√
N

. (3.13)

The last two relations (3.12), (3.13) have many applications, for instance in ran-
dom walk, diffusion, and error propagation. The root mean square distance reached
by a diffusing molecule after N scatters is proportional to

√
N and therefore also to√

t, t being the diffusion time. The total length of 100 aligned objects, all having the
same standard deviation σ of their nominal length, will have a standard deviation of
only 10 σ. To a certain degree, random fluctuations compensate each other.

5The usual abbreviation is i.i.d. variates for independent identically distributed.
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Width v of a Sample and Variance of the Distribution

Often, as we will see in Chap. 6, a sample is used to estimate the variance σ2 of the
underlying distribution. In case the mean value µ is known, we calculate the quantity

v2µ =
1

N

∑

i

(xi − µ)
2

which has the correct expected value 〈v2µ〉 = σ2. Usually, however, the true mean
value µ is unknown – except perhaps in calibration measurements – and must be
estimated from the same sample as is used to derive v2µ. We then are obliged to use
the sample mean x instead of µ and calculate the mean quadratic deviation v2 of
the sample values relative to x. In this case the expected value of v2 will depend not
only on σ, but also on N . In a first step we find

v2 =
1

N

∑

i

(xi − x)2

=
1

N

∑

i

(
x2i − 2xix+ x2

)

=
1

N

∑

i

x2i − x2 . (3.14)

To calculate the expected value, we use (3.11) and (3.13),

〈x2〉 = σ2 + µ2 ,

〈x2〉 = var(x) + 〈x〉2

=
σ2

N
+ µ2

and get with (3.14)

〈v2〉 = 〈x2〉 − 〈x2〉 = σ2

(
1− 1

N

)
,

σ2 =
N

N − 1
〈v2〉 = 〈∑i (xi − x)

2〉
N − 1

. (3.15)

The expected value of the mean squared deviation is smaller than the variance of
the distribution by a factor of (N − 1)/N .

The relation (3.15) is widely used for the estimation of measurement errors, when
several independent measurements are available. The variance σ2

x of the sample mean
x itself is approximated, according to (3.13), by

v2

N − 1
=

∑
i (xi − x)2

N(N − 1)
.

Mean Value and Variance of a Superposition of two Distributions

Frequently a distribution consists of a superposition of elementary distributions. Let
us compute the mean µ and variance σ2 of a linear superposition of two distributions
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f(x) = αf1(x) + βf2(x) , α+ β = 1 ,

where f1, f2 may have different mean values µ1, µ2 and variances σ2
1 , σ

2
2 :

µ = αµ1 + βµ2 ,

σ2 = E
(
(x− E(x))2

)

= E(x2)− µ2

= αE1(x
2) + βE2(x

2)− µ2

= α(µ2
1 + σ2

1) + β(µ2
2 + σ2

2)− µ2

= ασ2
1 + βσ2

2 + αβ(µ1 − µ2)
2 .

Here, E, E1, E2 denote expected values related to the p.d.f.s f , f1, f2. In the last
step the relation α + β = 1 has been used. Of course, the width increases with the
distance of the mean values. The result for σ2 could have been guessed by considering
the limiting cases, µ1 = µ2, σ1 = σ2 = 0.

3.2.4 Skewness

The skewness coefficient γ1 measures the asymmetry of a distribution with respect to
its mean. It is zero for the normal distribution, but quite sizable for the exponential
distribution. There it has the value γ1 = 2, see Sect. 3.3.3 below.

Definition:
γ1 = E

[
(x− µ)3

]
/σ3 .

Similarly to the variance, γ1 can be expressed by expected values of powers of
the variate x:

γ1 = E
[
(x− µ)3

]
/σ3

= E
[
x3 − 3µx2 + 3µ2x− µ3

]
/σ3

=
{
E(x3)− 3µ

[
E(x2)− µE(x)

]
− µ3

}
/σ3

=
E(x3)− 3µσ2 − µ3

σ3
.

The skewness coefficient is defined in such a way that it satisfies the requirement
of invariance under translation and dilatation of the distribution. Its square is usually
denoted by β1 = γ21 .

3.2.5 Kurtosis (Excess)

A fourth parameter, the kurtosis β2, measures the tails of a distribution.

Definition:
β2 = E

[
(x− µ)4

]
/σ4 .

A kurtosis coefficient or excess γ2,

γ2 = β2 − 3 ,

is defined such that it is equal to zero for the normal distribution which is used as a
reference. (see Sect. 3.6.5).



3.2 Expected Values 27

-5 0 5
1E-3

0.01

0.1

-5 0 5
0.0

0.2

0.4

0.6

0.8

 

f(x)

x

g1 = 0
g2 = 2

g1 = 2
g2 = 8

g1 =  0
g2 = 17

 

f(x)

Fig. 3.6. Three distribution with equal mean and variance but different skewness and
kurtosis.

3.2.6 Discussion

The mean value of a distribution is a so-called position or location parameter, the
standard deviation is a scale parameter . A translation of the variate x→ y = x+ a
changes the mean value correspondingly, 〈y〉 = 〈x〉 + a. This parameter is therefore
sensitive to the location of the distribution (like the center of gravity for a mass
distribution). The variance (corresponding to the moment of inertia for a mass dis-
tribution), respectively the standard deviation remain unchanged. A change of the
scale (dilatation) x → y = cx entails, besides 〈y〉 = c〈x〉 also σ(y) = cσ(x). Skew-
ness and kurtosis remain unchanged under both transformations. They are shape
parameters .

The four parameters mean, variance, skewness, and kurtosis, or equivalently the
expected values of x, x2, x3and x4, fix a distribution quite well if in addition the
range of the variates and the behavior of the distribution at the limits is given. Then
the distribution can be reconstructed quite accurately [74].

Fig. 3.6 shows three probability densities, all with the same mean µ = 0 and stan-
dard deviation σ = 1, but different skewness and kurtosis. The apparently narrower
curve has clearly longer tails, as seen in the lower graph with logarithmic scale.

Mainly in cases, where the type of the distribution is not well known, i.e. for em-
pirical distributions, other location and scale parameters are common. These are the
mode xmod, the variate value, at which the distribution has its maximum, and the
median, defined as the variate value x0.5, at which P{x < x0.5} = F (x0.5) = 0.5, i.e.
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the median subdivides the domain of the variate into two regions with equal proba-
bility of 50%. More generally, we define a quantile xa of order a by the requirement
F (xa) = a.

A well known example for a median is the half-life t0.5 which is the time at
which 50% of the nuclei of an unstable isotope have decayed. From the exponential
distribution (3.2) follows the relation between the half-life and the mean lifetime τ

t0.5 = τ ln 2 ≈ 0.693 τ .

The median is invariant under non-linear transformations y = y(x) of the variate,
y0.5 = y(x0.5) while for the mean value µ and the mode xmod this is usually not the
case, µy 6= y(µx), ymod 6= y(xmod). The reason for these properties is that probabili-
ties but not probability densities are invariant under variate transformations. Thus
the mode should not be considered as the “most probable value”. The probability
to obtain exactly the mode value is zero. To obtain finite probabilities, we have to
integrate the p.d.f. over some range of the variate as is the case for the median.

In statistical analyses of data contaminated by background the sample median
is more “robust” than the sample mean as estimator of the distribution mean. (see
Appendix, Sect. 13.15). Instead of the sample width v, often the full width at half
maximum (f.w.h.m.) is used to characterize the spread of a distribution. It ignores
the tails of the distribution. This makes sense for empirical distributions, e.g. in the
investigation of spectral lines over a sizable background. For a normal distribution
the f.w.h.m. is related to the standard deviation by

f.w.h.m.gauss ≈ 2.36 σgauss .

This relation is often used to estimate quickly the standard deviation σ for an empir-
ical distribution given in form of a histogram. As seen from the examples in Fig.3.6,
which, for the same variance, differ widely in their f.w.h.m., this procedure may lead
to wrong results for non-Gaussian distributions.

3.2.7 Examples

In this section we compute expected values of some quantities for different distribu-
tions.

Example 11. Expected values, dice

We have p(k) = 1/6, k = 1, . . . , 6.

〈x〉 = (1 + 2 + 3 + 4 + 5 + 6) 1/6 = 7/2 ,

〈x2〉 = (1 + 4 + 9 + 16 + 25 + 36) 1/6 = 91/6 ,

σ2 = 91/6− (7/2)2 = 35/12 ,

σ ≈ 1.71 ,

γ1 = 0 .

The expected value has probability zero.

Example 12. Expected values, lifetime distribution

f(t) = 1
τ e−t/τ , t ≥ 0,
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〈tn〉 =
∫ ∞

0

tn

τ
e−t/τ dt = n! τn ,

〈t〉 = τ ,

〈t2〉 = 2τ2 ,

〈t3〉 = 6τ3 ,

σ = τ ,

γ1 = 2 .

Example 13. Mean value of the volume of a sphere with a normally dis-
tributed radius

The normal distribution is given by

f(x) =
1√
2πs

e−(x−x0)
2/(2s2) .

It is symmetric with respect to x0. Thus the mean value is µ = x0, and the
skewness is zero. For the variance we obtain

σ2 =
1√
2πs

∫ ∞

−∞
dx(x − x0)

2 e−(x−x0)
2/(2s2)

= s2 .

The parameters x0, s of the normal distribution are simply the mean value
and the standard deviation µ, σ, and the p.d.f. with these parameters is
abbreviated as N(x|µ, σ).
We now assume that the radius r0 of a sphere is smeared according to a
normal distribution around the mean value r0 with standard deviation s. This
assumption is certainly only approximately valid for r0 ≫ s, since negative
radii are of course impossible. Let us calculate the expected value of the
volume V (r) = 4/3 πr3:

〈V 〉 =
∫ ∞

−∞
dr V (r)f(r)

=
4

3

π√
2πs

∫ ∞

−∞
dr r3e−

(r−r0)2

2 s2

=
4

3

π√
2πs

∫ ∞

−∞
dz (z + r0)

3e−
z2

2 s2

=
4

3

π√
2πs

∫ ∞

−∞
dz (z3 + 3z2r0 + 3zr20 + r30)e

− z2

2 s2

=
4

3
π(r30 + 3s2r0) .

The mean volume is larger than the volume calculated using the mean radius.

Example 14. Playing poker until the bitter end

Two players are equally clever, but dispose of different capital K1, respec-
tively K2 . They play, until one of the players is left without money. We
denote the probabilities for player 1, (2) to win finally with w1 (w2). The
probability, that one of the two players wins, is unity6:

6That the game ends if the time is not restricted can be proven in game theory and is
supported by experience.
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Fig. 3.7. Brownian motion.

w1 + w2 = 1 .

Player 1 gains the capital K2 with probability w1 and looses K1 with proba-
bility w2. Thus his mean gain is w1K2 − w2K1. The same is valid for player
two, only with reversed sign. As both players play equally well, the expected
gain should be zero for both

w1K2 − w2K1 = 0 .

From the two relation follows:

w1 =
K1

K1 +K2
; w2 =

K2

K1 +K2
.

The probability to win is proportional to the capital disposed of. However,
the greater risk of the player with the smaller capital comes along with the
possibility of a higher gain.

Example 15. Diffusion (random walk)

A particle is moving stochastically according to the Brownian motion, where
every step is independent of the previous ones (Fig. 3.7). The starting point
has a distance d1 from the wall 1 and d2 from the opposite wall 2. We want to
know the probabilities w1, w2 to hit wall 1 or 2. The direct calculation of w1

and w2 is a quite involved problem. However, using the properties of expected
values, it can be solved quite simply, without even knowing the probability
density. The problem here is completely analogous to the previous one:

w1 =
d2

d1 + d2
, w2 =

d1
d1 + d2

.
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Example 16. Mean kinetic energy of a gas molecule

The velocity of a particle in x-direction vx is given by a normal distribution

f(vx) =
1

s
√
2π

e−v2
x/(2s

2) ,

with
s2 =

kT

m
,

where k, T , m are the Boltzmann constant, the temperature, and the mass
of the molecule. The kinetic energy is

ǫkin =
m

2
(v2x + v2y + v2z)

with the expected value

E(ǫkin) =
m

2

(
E(v2x) + E(v2y) + E(v2z)

)
=

3m

2
E(v2x),

where in the last step the velocity distribution was assumed to be isotropic.
It follows:

E(v2x) =
1

s
√
2π

∫ ∞

−∞
dvxv

2
xe

−v2
x/(2s

2) = s2 = kT/m,

E(ǫkin) =
3

2
kT.

Example 17. Reading accuracy of a digital clock

For an accurate digital clock which displays the time in seconds, the deviation
of the reading from the true time is maximally ± 0.5 seconds. After the
reading, we may associate to the true time a uniform distribution with the
actual reading as its central value. To simplify the calculation of the variance,
we set the reading equal to zero. We thus have

f(t) =

{
1 if − 0.5 < t < 0.5
0 else

and

σ2 =

∫ 0.5

−0.5

t2 dt =
1

12
. (3.16)

The root mean square measurement uncertainty (standard deviation) is σ =
1 s/

√
12 ≈ 0.29 s.

The variance of a uniform distribution, which covers a range of a, is ac-
cordingly σ2 = a2/12. This result is widely used for the error estimation of
digital measurements. A typical example from particle physics is the coordi-
nate measurement with a wire chamber.

Example 18. Efficiency fluctuations of a detector

A counter registers on average the fraction ε = 0.9 of all traversing electrons.
How large is the relative fluctuation σ of the the registered number N1 for
N particles passing the detector? The exact solution of this problem requires
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the knowledge of the probability distribution, in this case the binomial dis-
tribution. But also without this knowledge we can derive the dependence on
N with the help of relation (3.13):

σ

(
N1

N

)
∼ 1√

N
.

The whole process can be split into single processes, each being associated
with the passing of a single particle. Averaging over all processes leads to the
above result. (The binomial distribution gives σ(N1/N) =

√
ε(1− ε)/N , see

Sect. 3.6.1).

All stochastic processes, which can be split into N identical, independent elemen-
tary processes, show the typical 1/

√
N behavior of their relative fluctuations.

3.3 Moments and Characteristic Functions

The characteristic quantities of distributions considered up to now, mean value, vari-
ance, skewness, and kurtosis, have been calculated from expected values of the lower
four powers of the variate. Now we will investigate the expected value of arbitrary
powers of the random variable x for discrete and continuous probability distributions
p(x), f(x), respectively. They are called moments of the distribution. Their calcula-
tion is particularly simple, if the characteristic function of the distribution is known.
The latter is just the Fourier transform of the distribution.

3.3.1 Moments

Definition: The n-th moments of f(x), respectively p(x) are

µn = E(xn) =

∫ ∞

−∞
xnf(x) dx ,

and

µn = E(xn) =

∞∑

k=1

xnkp(xk)

where n is a natural number7.

Apart from these moments, called moments about the origin, we consider also the
moments about an arbitrary point a where xn is replaced by (x − a)n. Of special
importance are the moments about the expected value of the distribution. They are
called central moments.

Definition: The n-th central moment about µ = µ1 of f(x), p(x) is:

µ′
n = E ((x − µ)n) =

∫ ∞

−∞
(x − µ)nf(x) dx ,

respectively

7In one dimension the zeroth moment is irrelevant. Formally, it is equal to one.
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µ′
n = E ((x− µ)n) =

∞∑

k=1

(xk − µ)np(xk) .

Accordingly, the first central moment is zero: µ′
1 = 0. Generally, the moments are

related to the expected values introduced before as follows:
First central moment: µ′

1 = 0
Second central moment: µ′

2 = σ2

Third central moment: µ′
3 = γ1σ

3

Fourth central moment: µ′
4 = β2σ

4

Under conditions usually met in practise, a distribution is uniquely fixed by its
moments. This means, if two distributions have the same moments in all orders,
they are identical. We will present below plausibility arguments for the validity of
this important assertion.

3.3.2 Characteristic Function

We define the characteristic function φ(t) of a distribution as follows:

Definition: The characteristic function φ(t) of a probability density f(x) is

φ(t) = E(eitx) =

∫ ∞

−∞
eitxf(x) dx , (3.17)

and, respectively for a discrete distribution p(xk)

φ(t) = E(eitx) =

∞∑

k=1

eitxkp(xk) . (3.18)

For continuous distributions, φ(t) is the Fourier transform of the p.d.f..

From the definition of the characteristic function follow several useful properties.

φ(t) is a continuous, in general complex-valued function of t, −∞ < t < ∞
with |φ(t)| ≤ 1, φ(0) = 1 and φ(−t) = φ∗(t). φ(t) is a real function, if and only if
the distribution is symmetric, f(x) = f(−x). Especially for continuous distributions
there is limt→∞ φ(t) = 0. A linear transformation of the variate x → y = ax + b
induces a transformation of the characteristic function of the form

φx(t) → φy(t) = eibtφx(at) . (3.19)

Further properties are found in handbooks on the Fourier transform.

The transformation is invertible: With (3.17) it is
∫ ∞

−∞
φ(t)e−itx dt =

∫ ∞

−∞
e−itx

∫ ∞

−∞
eitx

′

f(x′) dx′ dt

=

∫ ∞

−∞
f(x′)

(∫ ∞

−∞
eit(x

′−x) dt

)
dx′

= 2π

∫ ∞

−∞
f(x′) δ(x′ − x) dx′

= 2πf(x) ,
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f(x) =
1

2π

∫ ∞

−∞
φ(t)e−itx dt .

The same is true for discrete distributions, as may be verified by substituting (3.18):

p(xk) = lim
T→∞

1

2T

∫ T

−T

φ(t)e−itxk dt .

In all cases of practical relevance, the probability distribution is uniquely deter-
mined by its characteristic function.

Knowing the characteristic functions simplifies considerably the calculation of
moments and of the distributions of sums or linear combinations of variates. For
continuous distributions moments are found by n-fold derivation of φ(t):

dnφ(t)

dtn
=

∫ ∞

−∞
(ix)neitxf(x) dx .

With t = 0 follows
dnφ(0)

dtn
=

∫ ∞

−∞
(ix)nf(x) dx = inµn . (3.20)

The Taylor expansion of φ(t),

φ(t) =

∞∑

n=0

1

n!
tn

dnφ(0)

dtn
=

∞∑

n=0

1

n!
(it)nµn , (3.21)

generates the moments of the distribution.

The characteristic function φ(t) is closely related to the moment generating func-
tion which is defined through M(t) = E(etx). In some textbooks M is used instead
of φ for the evaluation of the moments.

We realize that the moments determine φ uniquely, and, since the Fourier trans-
form is uniquely invertible, the moments also determine the probability density, as
stated above.

In the same way we obtain the central moments:

φ′(t) = E(eit(x−µ)) =

∫ ∞

−∞
eit(x−µ)f(x) dx = e−itµφ(t) , (3.22)

dnφ′(0)

dtn
= inµ′

n . (3.23)

The Taylor expansion is

φ′(t) =
∞∑

n=0

1

n!
(it)nµ′

n. (3.24)

The results (3.20), (3.21), (3.23), (3.24) remain valid also for discrete distribu-
tions. The expansion of the right hand side of relation (3.22) allows us to calculate
the central moments from the moments about the origin and vice versa:

µ′
n =

n∑

k=0

(−1)k
(
n

k

)
µn−kµ

k , µn =

n∑

k=0

(
n

k

)
µ′
n−kµ

k .

Note, that for n = 0 , µ0 = µ′
0 = 1.



3.3 Moments and Characteristic Functions 35

In some applications we have to compute the distribution f(z) where z is the sum
z = x+y of two independent random variables x and y with the probability densities
g(x) and h(y). The result is given by the convolution integral, see Sect. 3.5.4,

f(z) =

∫
g(x)h(z − x) dx =

∫
h(y)g(z − y) dy

which often is difficult to evaluate analytically. It is simpler in most situations to
proceed indirectly via the characteristic functions φg(t), φh(t) and φf (t) of the three
p.d.f.s which obey the simple relation

φf (t) = φg(t)φh(t) . (3.25)

Proof:

According to (3.10)we get

φf (t) = E(eit(x+y))

= E(eitxeity)

= E(eitx)E(eity)

= φg(t)φh(t) .

The third step requires the independence of the two variates. Applying the inverse
Fourier transform to φf (t), we get

f(z) =
1

2π

∫
e−itzφf (t) dt .

The solution of this integral is not always simple. For some functions it can be found
in tables of the Fourier transform.

In the general case where x is a linear combination of independent random vari-
ables, x =

∑
cjxj , we find in an analogous way:

φ(t) =
∏

φj(cjt) .

Cumulants

As we have seen, the characteristic function simplifies in many cases the calculation of
moments and the convolution of two distributions. Interesting relations between the
moments of the three distributions g(x), h(y) and f(z) with z = x+ y are obtained
from the expansion of the logarithm K(t) of the characteristic functions into powers
of it:

K(t) = lnφ(t) = ln 〈exp(itx)〉 = κ1(it) + κ2
(it)2

2!
+ κ3

(it)3

3!
+ · · · .

Since φ(0) = 1 there is no constant term. The coefficients κi, defined in this way,
are called cumulants or semiinvariants. The second notation was chosen, since the
cumulants κi, with the exception of κ1, remain invariant under the translations x→
x+b of the variate x. Of course, the cumulant of order i can be expressed by moments
about the origin or by central moments µk, µ

′
k up to the order i. We do not present

the general analytic expressions for the cummulants which can be derived from the
power expansion of expK(t) and give only the remarkably simple relations for i ≤ 6
as a function of the central moments:
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κ1 = µ1 ≡ µ = 〈x〉 ,
κ2 = µ′

2 ≡ σ2 = var(x) ,

κ3 = µ′
3 ,

κ4 = µ′
4 − 3µ′

2
2 ,

κ5 = µ′
5 − 10µ′

2µ
′
3 ,

κ6 = µ′
6 − 15µ′

2µ
′
4 − 10µ′

3
2 + 30µ′

2
3 . (3.26)

Besides expected value and variance, also skewness and excess are easily expressed
by cumulants:

γ1 =
κ3

κ
3/2
2

, γ2 =
κ4
κ22

. (3.27)

Since the product of the characteristic functions φ(t) = φ(1)(t)φ(2)(t) turns into
the sum K(t) = K(1)(t)+K(2)(t), the cumulants are additive, κi = κ

(1)
i +κ

(2)
i . In the

general case, where x is a linear combination of independent variates, x =
∑
cjx

(j),
the cumulants of the resulting x-distribution, κi, are derived from those of the various
x(j) distributions according to

κi =
∑

j

cijκ
(j)
i . (3.28)

We have met examples for this relation already in Sect. 3.2.3 where we have
computed the variance of the distribution of a sum of variates. We will use it again
in the discussion of the Poisson distribution in the following example and in Sect.
3.6.3.

3.3.3 Examples

Example 19. Characteristic function of the Poisson distribution

The Poisson distribution

Pλ(k) =
λk

k!
e−λ

has the characteristic function

φ(t) =

∞∑

k=0

eitk
λk

k!
e−λ

which can be simplified to

φ(t) =

∞∑

k=0

1

k!
(eitλ)ke−λ

= exp(eitλ)e−λ

= exp
(
λ(eit − 1)

)
,

from which we derive the moments:

dφ

dt
= exp

(
λ(eit − 1)

)
λieit ,

dφ(0)

dt
= iλ ,
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d2φ

dt2
= exp

(
λ(eit − 1)

) (
(λieit)2 − λeit

)
,

d2φ(0)

dt2
= −(λ2 + λ) .

Thus, the two lowest moments are

µ = 〈k〉 = λ ,

µ2 = 〈k2〉 = λ2 + λ

and the mean value and the standard deviation are given by

〈k〉 = λ ,

σ =
√
λ .

Expanding

K(t) = lnφ(t) = λ(eit − 1) = λ[(it) +
1

2!
(it)2 +

1

3!
(it)3 + · · ·] ,

we find for the cumulants the simple result

κ1 = κ2 = κ3 = · · · = λ .

The calculation of the lower central moments is then trivial. For example,
skewness and excess are simply given by

γ1 = κ3/κ
3/2
2 = 1/

√
λ , γ2 = κ4/κ

2
2 = 1/λ .

Example 20. Distribution of a sum of independent, Poisson distributed vari-
ates

We start from the distributions

P1(k1) = Pλ1(k1),

P2(k2) = Pλ2(k2)

and calculate the probability distribution P (k) for k = k1 + k2. When we
write down the characteristic function for P (k),

φ(t) = φ1(t)φ2(t)

= exp
(
λ1(e

it − 1)
)
exp

(
λ2(e

it − 1)
)

= exp
(
(λ1 + λ2)(e

it − 1)
)
,

we observe that φ(t) is just the characteristic function of the Poisson dis-
tribution Pλ1+λ2(k). The sum of two Poisson distributed variates is again
Poisson distributed, the mean value being the sum of the mean values of the
two original distributions. This property is sometimes called stability.

Example 21. Characteristic function and moments of the exponential distri-
bution

For the p.d.f.
f(x) = λe−λx
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we obtain the characteristic function

φ(t) =

∫ ∞

0

eitx λe−λx dx

=
λ

−λ+ it
e(−λ+it)x

∣∣∞
0

=
λ

λ− it

and deriving it with respect to t, we get from

dφ(t)

dt
=

iλ

(λ − it)2
,

dnφ(t)

dtn
=

n! inλ

(λ − it)n+1
,

dnφ(0)

dtn
=
n! in

λn

the moments of the distribution:

µn = n!λ−n .

From these we obtain the mean value

µ = 1/λ ,

the standard deviation

σ =
√
µ2 − µ2 = 1/λ ,

and the skewness
γ1 = (µ3 − 3σ2µ− µ3)/σ3 = 2 .

Contrary to the Poisson example, here we do not gain in using the charac-
teristic function, since the moments can be calculated directly:

∫ ∞

0

xnλe−λxdx = n!λ−n .

3.4 Transformation of Variables

In one of the examples of Sect. 3.2.7 we had calculated the expected value of the
energy from the distribution of velocity. Of course, for certain applications it may be
necessary to know not only the mean value of the energy but its complete distribution.
To derive it, we have to perform a variable transformation.

For discrete distributions, this is a trivial exercise: The probability that the event
“u has the value u(xk)” occurs, where u is an uniquely invertible function of x, is of
course the same as for “x has the value xk”:

P {u = u(xk)} = P {x = xk} .

For continuous distributions, the probability densities are transformed according
to the usual rules as applied for example for mass or charge densities.
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Fig. 3.8. Transformation of a probability density f(x) into g(u) via u(x). The shaded
areas are equal.

3.4.1 Calculation of the Transformed Density

We consider a probability density f(x) and a monotone, i.e. uniquely invertible func-
tion u(x). We we are interested in the p.d.f. of u, g(u) (Fig. 3.8).

The relation P {x1 < x < x2} = P {u1 < u < u2} with u1 = u(x1), u2 = u(x2)
has to hold, and therefore

P {x1 < x < x2} =

∫ x2

x1

f(x′) dx′

=

∫ u2

u1

g(u′) du′ .

This may be written in differential form as

|g(u)du| = |f(x)dx| , (3.29)

g(u) = f(x)

∣∣∣∣
dx

du

∣∣∣∣ .

Taking the absolute value guarantees the positivity of the probability density. In-
tegrating (3.29), we find numerical equality of the cumulative distribution func-
tions,F (x) = G(u(x)).

If u(x) is not a monotone function, then, contrary to the above assumption, x(u)
is not a unique function (Fig. 3.9) and we have to sum over the contributions of the
various branches of the inverse function:

g(u) =

{
f(x)

∣∣∣∣
dx

du

∣∣∣∣
}

branch1

+

{
f(x)

∣∣∣∣
dx

du

∣∣∣∣
}

branch2

+ · · · . (3.30)

Example 22. Calculation of the p.d.f. for the volume of a sphere from the
p.d.f. of the radius
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Fig. 3.9. Transformation of a p.d.f. f(x) into g(u) with u = x2. The sum of the shaded
areas below f(x) is equal to the shaded area below g(u).
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Fig. 3.10. Transformation of a uniform distribution of the radius into the distribution of
the volume of a sphere.

Given a uniform distribution for the radius r

f(r) =

{
1/(r2 − r1) if r1 < r < r2
0 else .

we ask for the distribution g(V ) of the volume V (r). With

g(V ) = f(r)

∣∣∣∣
dr

dV

∣∣∣∣ ,
dV

dr
= 4πr2

we get

g(V ) =
1

r2 − r1

1

4π r2
=

1

V
1/3
2 − V

1/3
1

1

3
V −2/3.
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Example 23. Distribution of the quadratic deviation

For a normal distributed variate x with mean value x0 and variance s2 we
ask for the distribution g(u), where

u = (x− x0)
2/s2

is the normalized quadratic deviation. The expected value of u is unity, since
the expected value of (x − µ)2 per definition equals σ2 for any distribution.
The function x(u) has two branches. With

f(x) =
1

s
√
2π

e−(x−x0)
2/(2s2)

and
dx

du
=

s

2
√
u

we find

g(u) =

{
1

2
√
2πu

e−u/2

}

branch1

+

{
· · ·
}

branch2

.

The contributions from both branches are the same, thus

g(u) =
1√
2πu

e−u/2 . (3.31)

The function g(u) is the so-called χ2 - distribution (chi-square distribution)
for one degree of freedom.

Example 24. Distribution of kinetic energy in the one-dimensional ideal gas

Be v the velocity of a particle in x direction with probability density

f(v) =

√
m

2πkT
e−mv2/(2kT ).

Its kinetic energy is E = v2/(2m), for which we want to know the distribution
g(E). The function v(E) has again two branches. We get, in complete analogy
to the example above,

dv

dE
=

1√
2mE

,

g(E) =

{
1

2
√
πkTE

e−E/kT

}

branch1

+

{
· · ·
}

branch2

.

The contributions of both branches are the same, hence

g(E) =
1√

πkTE
e−E/kT .

3.4.2 Determination of the Transformation Relating two Distributions

In the computer simulation of stochastic processes we are frequently confronted with
the problem that we have to transform the uniform distribution of a random num-
ber generator into a desired distribution, e.g. a normal or exponential distribution.
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More generally, we want to obtain for two given distributions f(x) and g(u) the
transformation u(x) connecting them.

We have ∫ x

−∞
f(x′) dx′ =

∫ u

−∞
g(u′) du′ .

Integrating, we get F (x) and G(u):

F (x) = G(u) ,

u(x) = G−1 (F (x)) .

G−1 is the inverse function of G. The problem can be solved analytically, only if f
and g can be integrated analytically and if the inverse function of G can be derived.

Let us consider now the special case mentioned above, where the primary distri-
bution f(x) is uniform, f(x) = 1 for 0 ≤ x ≤ 1. This implies F (x) = x and

G(u) = x,

u = G−1(x) . (3.32)

Example 25. Generation of an exponential distribution starting from a uni-
form distribution

Given are the p.d.f.s

f(x) =

{
1 for 0 < x < 1
0 else ,

g(u) =

{
λe−λu for 0 < u
0 else .

The desired transformation u(x), as demonstrated above in the general case,
is obtained by integration and inversion:

∫ u

0

g(u′) du′ =

∫ x

0

f(x′) dx′ ,

∫ u

0

λe−λu′

du′ =

∫ x

0

f(x′) dx′ ,

1− e−λu = x ,

u = − ln(1 − x)/λ .

We could have used, of course, also the relation (3.32) directly. Obviously in
the last relation we could substitute 1 − x by x, since both quantities are
uniformly distributed.

When we transform the uniformly distributed random numbers x delivered by
our computer according to the last relation into the variable u, the latter will
be exponentially distributed. This is the usual way to simulate the lifetime
distribution of instable particles and other decay processes (see Chap. 5).

3.5 Multivariate Probability Densities

The results of the last sections are easily extended to multivariate distributions. We
restrict ourself here to the case of continuous distributions8.

8An example of a multivariate discrete distribution will be presented in Sect. 3.6.2.
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3.5.1 Probability Density of two Variables

Definitions

As in the one-dimensional case we define an integral distribution function F (x, y),
now taken to be the probability to find values of the variates x′, y′ smaller than x,
respectively y

F (x, y) = P {(x′ < x) ∩ (y′ < y)} . (3.33)

The following properties of this distribution function are satisfied:

F (∞,∞) = 1,

F (−∞, y) = F (x,−∞) = 0 .

In addition, F has to be a monotone increasing function of both variables. We define
a two-dimensional probability density, the so-called joined probability density, as the
partial derivation of f with respect to the variables x, y:

f(x, y) =
∂2F

∂x ∂y
.

From these definitions follows the normalization condition
∫ ∞

−∞

∫ ∞

−∞
f(x, y) dxdy = 1 .

The projections fx(x) respectively fy(y) of the joined probability density onto the
coordinate axes are called marginal distributions :

fx(x) =

∫ ∞

−∞
f(x, y) dy ,

fy(y) =

∫ ∞

−∞
f(x, y) dx .

The marginal distributions are one-dimensional (univariate) probability densities.

The conditional probability densities for fixed values of the second variate and
normalized with respect to the first one are denoted by fx(x|y) and fy(y|x) for given
values of y or x, respectively. We have the following relations:

fx(x|y) =
f(x, y)∫∞

−∞ f(x, y) dx

=
f(x, y)

fy(y)
, (3.34)

fy(y|x) =
f(x, y)∫∞

−∞ f(x, y) dy

=
f(x, y)

fx(x)
. (3.35)

Together, (3.34) and (3.35) express again Bayes’ theorem:

fx(x|y)fy(y) = fy(y|x)fx(x) = f(x, y) . (3.36)
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Example 26. Superposition of two two-dimensional normal distributions9

The marginal distributions fx(x), fy(y) and the conditional p.d.f.

fy(y|x = 1)

for the joined two-dimensional p.d.f.

f(x, y) =
1

2π

[
0.6 exp

(
−x

2

2
− y2

2

)
+

0.4√
3
exp

(
− (x− 2)2

3
− (y − 2.5)2

4

)]

are

fx(x) =
1√
2π

[
0.6 exp

(
−x

2

2

)
+

0.4√
1.5

exp

(
− (x− 2)2

3

)]
,

fy(y) =
1√
2π

[
0.6 exp

(
−y

2

2

)
+

0.4√
2
exp

(
− (y − 2.5)2

4

)]
,

f(y, x = 1) =
1

2π

[
0.6 exp

(
−1

2
− y2

2

)
+

0.4√
3
exp

(
−1

3
− (y − 2.5)2

4

)]
,

fy(y|x = 1) = 0.667

[
0.6 exp

(
−1

2
− y2

2

)
+

0.4√
3
exp

(
−1

3
− (y − 2.5)2

4

)]
.

fy(y|1) and f(y, 1) differ in the normalization factor, which results from the
requirement

∫
fy(y|1) dy = 1.

Graphical Presentation

Fig. 3.11 shows a similar superposition of two Gaussians together with its marginal
distributions and one conditional distribution. The chosen form of the graphical
representation as a contour plot for two-dimensional distributions is usually to be
favored over three-dimensional surface plots.

3.5.2 Moments

Analogously to the one-dimensional case we define moments of two-dimensional dis-
tributions:

µx = E(x) ,

µy = E(y) ,

σ2
x = E

[
(x− µx)

2
]
,

σ2
y = E

[
(y − µy)

2
]
,

σxy = E [(x− µx)(y − µy)] ,

µlm = E(xlym),

µ′
lm = E

[
(x− µx)

l(y − µy)
m
]
.

Explicitly,

9The two-dimensional normal distribution will be discussed in Sect. 3.6.5.
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Fig. 3.11. Two-dimensional probability density. The lower left-hand plot shows the con-
ditional p.d.f. of y for x = 2. The lower curve is the p.d.f. f(y, 2). It corresponds to the
dashed line in the upper plot. The right-hand side displays the marginal distributions.

µx =

∫ ∞

−∞

∫ ∞

−∞
xf(x, y) dxdy =

∫ ∞

−∞
xfx(x) dx ,

µy =

∫ ∞

−∞

∫ ∞

−∞
yf(x, y) dxdy =

∫ ∞

−∞
yfy(y) dy ,

µlm =

∫ ∞

−∞

∫ ∞

−∞
xlymf(x, y) dxdy ,

µ′
lm =

∫ ∞

−∞

∫ ∞

−∞
(x − µx)

l(y − µy)
mf(x, y) dxdy .

Obviously, µ′
x, µ′

y (= µ′
10, µ

′
01) are zero.

Correlations, Covariance, Independence

The mixed moment σxy is called covariance of x and y, and sometimes also denoted as
cov(x, y). If σxy is different from zero, the variables x and y are said to be correlated.
The mean value of y depends on the value chosen for x and vice versa. Thus, for
instance, the weight of a man is positively correlated with its height.

The degree of correlation is quantified by the dimensionless quantity

ρxy =
σxy
σxσy

,
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Fig. 3.12. Curves f(x, y) = const. with different correlation coefficients.

the correlation coefficient. Schwarz’ inequality insures |ρxy| ≤ 1.

Figure 3.12 shows lines of constant probability for various kinds of correlated
distributions. In the extreme case |ρ| = 1 the variates are linearly related.

If the correlation coefficient is zero, this does not necessarily mean statistical
independence of the variates. The dependence may be more subtle, as we will see
shortly. As defined in Chap. 2, two random variables x, y are called independent or
orthogonal, if the probability to observe one of the two variates x, y is independent
from the value of the other one, i.e. the conditional distributions are equal to the
marginal distributions, fx(x|y) = fx(x), fy(y|x) = fy(y). Independence is realized
only if the joined distribution f(x, y) factorizes into its marginal distributions (see
Chap. 2):

f(x, y) = fx(x)fy(y) .

Clearly, correlated variates cannot be independent.

Example 27. Correlated variates

A measurement uncertainty of a point in the xy-plane follows independent
normal distributions in the polar coordinates r, ϕ (the errors are assumed
small enough to neglect the regions r < 0 and |ϕ| > π ). A line of constant
probability in the xy-plane would look similar to the second graph of Fig.
3.12. The cartesian coordinates are negatively correlated, although the origi-
nal polar coordinates have been chosen as uncorrelated, in fact they are even
independent.

Example 28. Dependent variates with correlation coefficient zero

For the probability density

f(x, y) =
1

2π
√
x2 + y2

e−
√

x2+y2

we find σxy = 0. The curves f = const. are circles, but x and y are not
independent, the conditional distribution fy(y|x) of y depends on x.

3.5.3 Transformation of Variables

The probability densities f(x, y) and g(u, v) are transformed via the transformation
functions u(x, y), v(x, y), analogously to the univariate case
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g(u, v) du dv = f(x, y) dxdy ,

g(u, v) = f(x, y)

∣∣∣∣
∂(x, y)

∂(u, v)

∣∣∣∣ ,

with the Jacobian determinant replacing the differential quotient dx/du.

Example 29. Transformation of a normal distribution from cartesian into po-
lar coordinates

A two-dimensional normal distribution

f(x, y) =
1

2π
e−(x2+y2)/2

is to be transformed into polar coordinates

x = r cosϕ ,

y = r sinϕ .

The Jacobian is
∂(x, y)

∂(r, ϕ)
= r .

We get

g(r, ϕ) =
1

2π
re−r2/2

with the marginal distributions

gr =

∫ 2π

0

g(r, ϕ) dϕ = re−r2/2 ,

gϕ =

∫ ∞

0

g(r, ϕ) dr =
1

2π
.

The joined distribution factorizes into its marginal distributions (Fig. 3.13).
Not only x, y, but also r, ϕ are independent.

3.5.4 Reduction of the Number of Variables

Frequently, we are faced with the problem to find from a given joined distribution
f(x, y) the distribution g(u) of a dependent random variable u(x, y). We can reduce
it to that of a usual transformation, by inventing a second variable v = v(x, y),
performing the transformation f(x, y) −→ h(u, v) and, finally, by calculating the
marginal distribution in u,

g(u) =

∫ ∞

−∞
h(u, v) dv .

In most cases, the choice v = x is suitable. More formally, we might use the equivalent
reduction formula

g(u) =

∫ ∞

−∞
f(x, y)δ (u− u(x, y)) dxdy . (3.37)
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Fig. 3.13. Transformation of a two-dimensional normal distribution of cartesian coordinates
into the distribution of polar coordinates: (a) lines of constant probability; b) cartesian
marginal distributions; c), d) marginal distributions of the polar coordinates.

For the distribution of a sum u = x + y of two independent variates x, y, i.e.
f(x, y) = fx(x)fy(y), after integration over y follows

g(u) =

∫
f(x, u− x) dx =

∫
fx(x)fy(u− x) dx .

This is called the convolution integral or convolution product of fx and fy.

Example 30. Distribution of the difference of two digitally measured times

The true times t1, t2 are taken to follow a uniform distribution

f(t1, t2) =

{
1/Delta2 for |t1 − T1| , |t2 − T2| < ∆/2

0 else

around the readings T1, T2. We are interested in the probability density of the
difference t = t1−t2. To simplify the notation, we choose the case T1 = T2 = 0
and ∆ = 2 (Fig. 3.14). First we transform the variables according to

t = t1 − t2 ,

t1 = t1

with the Jacobian
∂(t1, t2)

∂(t1, t)
= 1 .

The new distribution is also uniform:
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Fig. 3.14. Distribution of the difference t between two times t1 and t2 which have both
clock readings equal to zero.

h(t1, t) = f(t1, t2) = 1/∆2 ,

and has the boundaries shown in Fig. 3.14. The form of the marginal distri-
bution is found by integration over t1, or directly by reading it off from the
figure:

g(t) =





( t− T +∆)/∆2 for t− T < 0
(−t+ T +∆)/∆2 for 0 < t− T
0 else .

where T = T1 − T2 now for arbitrary values of T1 and T2.

Example 31. Distribution of the transverse momentum squared of particle
tracks

The projections of the momenta are assumed to be independently normally
distributed,

f(px, py) =
1

2πs2
e−(p2

x+p2
y)/(2s

2) ,

with equal variances
〈
p2x
〉

=
〈
p2y
〉

= s2. For the transverse momentum
squared we set q = p2 and calculate its distribution. We transform the dis-
tributions into polar coordinates

px =
√
q cosϕ ,

py =
√
q sinϕ

with
∂(px, py)

∂(q, ϕ)
=

1

2

and obtain
h(q, ϕ) =

1

4πs2
e−q/(2s2)

with the marginal distribution

hq(q) =

∫ 2π

0

1

4πs2
e−q/(2s2) dϕ

=
1

2s2
e−q/(2s2) ,

g(p2) =
1

〈p2〉e
−p2/〈p2〉 .
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The result is an exponential distribution in p2 with mean
〈
p2
〉
=
〈
p2x
〉
+
〈
p2y
〉
.

Example 32. Quotient of two normally distributed variates

For variates x, y, independently and identically normally distributed, i.e.

f(x, y) = f(x)f(y) =
1

2π
exp(−x

2 + y2

2
) ,

we want to find the distribution g(u) of the quotient u = y/x. Again, we
transform first into new variates u = y/x , v = x, or, inverted, x = v , y = uv
and get

h(u, v) = f(x(u, v), y(u, v))
∂(x, y)

∂(u, v)
,

with the Jacobian
∂(x, y)

∂(u, v)
= −v ,

hence

g(u) =

∫
h(u, v) dv

=
1

2π

∫ ∞

−∞
exp(−v

2 + u2v2

2
)|v| dv

=
1

π

∫ ∞

0

e−(1+u2)z dz

=
1

π

1

1 + u2
,

where the substitution z = v2/2 has been used. The result g(u) is the Cauchy
distribution (see Sect. 3.6.9). Its long tails are caused here by the finite prob-
ability of arbitrary small values in the denominator. This effect is quite im-
portant in experimental situations when we estimate the uncertainty of quan-
tities which are the quotients of normally distributed variates in cases, where
the p.d.f. in the denominator is not negligible at the value zero.

The few examples given above should not lead to the impression that transfor-
mations of variates always yield more or less simple analytical expressions for the
resulting distributions. This is not the rule, but rather the exception. However, as
we will learn in Chap. 5, a simple, straight forward numerical solution is provided
by Monte Carlo methods.

3.5.5 Determination of the Transformation between two Distributions

As in the one-dimensional case, for the purpose of simulation, we frequently need to
generate some required distribution from the uniformly distributed random numbers
delivered by the computer. The general method of integration and inversion of the
cumulative distribution can be used directly, only if we deal with independent vari-
ates. Often, a transformation of the variates is helpful. We consider here a special
example, which we need later in Chap. 5.
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Example 33. Generation of a two-dimensional normal distribution starting
from uniform distributions

We use the result from example 29 and start with the representation of the
two-dimensional Gaussian in polar coordinates

g(ρ, ϕ) dρ dϕ =
1

2π
dϕρ e−ρ2/2 dρ ,

which factorizes in ϕ and ρ. With two in the interval [0, 1] uniformly dis-
tributed variates r1, r2, we obtain the function ρ(r1):

∫ ρ

0

ρ′e−ρ′2/2 dρ′ = r1 ,

−e−ρ′2/2
∣∣∣
ρ

0
= r1 ,

1− e−ρ2/2 = r1 ,

ρ =
√
−2 ln(1− r1) .

In the same way we get ϕ(r2):

ϕ = 2πr2 .

Finally we find x and y:

x = ρ cosϕ =
√
−2 ln(1 − r1) cos(2πr2) , (3.38)

y = ρ sinϕ =
√
−2 ln(1− r1) sin(2πr2) . (3.39)

These variables are independent and distributed normally about the origin
with variance unity:

f(x, y) =
1

2π
e−(x2+y2)/2 .

(We could replace 1− r1 by r1, since 1− r1 is uniformly distributed as well.)

3.5.6 Distributions of more than two Variables

It is not difficult to generalize the relations just derived for two variables to multivari-
ate distributions, of N variables. We define the distribution function F (x1, . . . , xN )
as the probability to find values of the variates smaller than x1, . . . , xN ,

F (x1, . . . , xN ) = P {(x′1 < x) ∩ · · · ∩ (x′N < xN )} ,

and the p.d.f.

f(x1, . . . , xN ) =
∂NF

∂x1, . . . , ∂xN
.

Often it is convenient to use the vector notation, F (x), f(x) with

x = {x1, x2, . . . , xN} .
These variate vectors can be represented as points in an N -dimensional space.

The p.d.f. f(x) can also be defined directly, without reference to the distribution
function F (x), as the density of points at the location x, by setting

f(x1, . . . xN )dx1 · · · dxN = dP{(x1 −
dx1
2

≤ x′1 ≤ x1 +
dx1
2

) ∩ · · ·

· · · ∩(xN − dxN
2

≤ x′N ≤ xN +
dxN
2

)}
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Expected Values and Correlation Matrix

The expected value of a function u(x) is

E(u) =

∫ ∞

−∞
· · ·
∫ ∞

−∞
u(x)f(x)

N∏

i=1

dxi .

Because of the additivity of expected values this relation also holds for vector func-
tions u(x).

The dispersion of multivariate distributions is now described by the so-called
covariance matrix C:

Cij = 〈(xi − 〈xi〉)(xj − 〈xj〉)〉 = 〈xixj〉 − 〈xi〉〈xj〉 .
The correlation matrix is given by

ρij =
Cij√
CiiCjj

.

Transformation of Variables

We multiply with the absolute value of the N -dimensional Jacobian

g(y) = f(x)

∣∣∣∣
∂(x1, . . . , xN )

∂(y1, . . . , yN )

∣∣∣∣ .

Correlation and Independence

As in the two-dimensional case two variables xi, xj are called uncorrelated if their
correlation coefficient ρij is equal to zero. The two variates xi, xj are independent
if the conditional p.d.f. of xi conditioned on all other variates does not depend on
xj . The combined density f then has to factorize into two factors where one of
them is independent of xi and the other one is independent of xj10. All variates are
independent of each other, if

f(x1, x2, . . . , xN ) =
N∏

i=1

fxi(xi) .

3.5.7 Independent, Identically Distributed Variables

One of the main topics of statistics is the estimation of free parameters of a distribu-
tion from a random sample of observations all drawn from the same population. For
example, we might want to estimate the mean lifetime τ of a particle from N inde-
pendent measurements ti where t follows an exponential distribution depending on
τ . The probability density f̃ for N independent and identically distributed variates
(abbreviated as i.i.d. variates) xi, each distributed according to f(x), is, according
to the definition of independence,

f̃(x1, . . . , xN ) =

N∏

i=1

f(xi) .

The covariance matrix of i.i.d. variables is diagonal, with Cii = var(xi) = var(x1).
10we omit the formulas because they are very clumsy.
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3.5.8 Angular Distributions

In physics applications we are often interested in spatial distributions. Fortunately
our problems often exhibit certain symmetries which facilitate the description of
the phenomena. Depending on the kind of symmetry of the physical process or the
detector, we choose appropriate coordinates, spherical, cylindrical or polar. These
coordinates are especially well suited to describe processes where radiation is emitted
by a local source or where the detector has a spherical or cylindrical symmetry.
Then the distance, i.e. the radius vector, is not the most interesting parameter and
we often describe the process solely by angular distributions. In other situations,
only directions enter, for example in particle scattering, when we investigate the
polarization of light crossing an optically active medium, or of a particle decaying
in flight into a pair of secondaries where the orientation of the normal of the decay
plane contains relevant information. Similarly, distributions of physical parameters
on the surface of the earth are expressed as functions of the angular coordinates.

Distribution of the Polar Angle

As already explained above, the expressions

x = r cosϕ ,

y = r sinϕ

relate the polar coordinates r, ϕ to the cartesian coordinates x , y. Since we have
periodic functions, we restrict the angle ϕ to the interval [−π, π]. This choice is
arbitrary to a certain extent.

For an isotropic distribution all angles are equally likely and we obtain the uniform
distribution of ϕ

g(ϕ) =
1

2π
.

Since we have to deal with periodic functions, we have to be careful when we
compute moments and in general expected values. For example the mean of the two
angles ϕ1 = π/2, ϕ2 = −π is not (ϕ1 + ϕ2)/2 = −π/4, but 3π/4. To avoid this kind
of mistake it is advisable to go back to the unit vectors {xi, yi} = {cosϕi, sinϕi}, to
average those and to extract the resulting angle.

Example 34. The v. Mises distribution

We consider the Brownian motion of a particle on the surface of a liquid.
Starting from a point r0 its position r after some time will be given by the
expression

f(r) =
1

2πσ2
exp

(
−|r − r0|2

2σ2

)
.

Taking into account the Jacobian ∂(x, y)/∂(r, ϕ) = r, the distribution in
polar coordinates is:

g(r, ϕ) =
r

2πσ2
exp

(
−r

2 + r20 − 2rr0 cosϕ

2σ2

)
.

For convenience we have chosen the origin of ϕ such that ϕ0 = 0. For fixed
r we obtain the conditional distribution
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g̃(ϕ) = g(ϕ|r) = cN (κ) exp (κ cosϕ)

with κ = rr0/σ
2 and cN (κ) the normalization constant. This is the v. Mises

distribution. It is symmetric in ϕ, unimodal with its maximum at ϕ = 0. The
normalization

cN (κ) =
1

2πI0(κ)

contains I0, the modified Bessel function of order zero [22].

For large values of κ the distribution approaches a Gaussian with variance
1/κ. To demonstrate this feature, we rewrite the distribution in a slightly
modified way,

g̃(ϕ) = cN(κ)eκe[−κ(1−cosϕ)] ,

and make use of the asymptotic form limx→∞ I0(x) ∼ ex/
√
2πx (see [22]).

The exponential function is suppressed for large values of (1 − cosϕ), and
small values can be approximated by ϕ2/2. Thus the asymptotic form of the
distribution is

g̃ =

√
κ

2π
e−κϕ2/2 . (3.40)

In the limit κ = 0, which is the case for r0 = 0 or σ → ∞, the distribution
becomes uniform, as it should.

Distribution of Spherical Angles

Spatial directions are described by the polar angle θ and the azimuthal angle ϕ which
we define through the transformation relations from the cartesian coordinates:

x = r sin θ cosϕ , −π ≤ ϕ ≤ π

y = r sin θ sinϕ , 0 ≤ θ ≤ π

z = r cos θ .

The Jacobian is ∂(x, y, z)/∂(r, θ, ϕ) = r2 sin θ. A uniform distribution inside a sphere
of radius R in cartesian coordinates

fu(x, y, z) =

{
3/(4πR3) if x2 + y2 + z2 ≤ R2 ,
0 else

thus transforms into

hu(r, θ, ϕ) =
3r2

4πR3
sin θ if r ≤ R .

We obtain the isotropic angular distribution by marginalizing or conditioning on r:

hu(θ, ϕ) =
1

4π
sin θ . (3.41)

Spatial distributions are usually expressed in the coordinates z̃ = cos θ and ϕ,
because then the uniform distribution simplifies further to

gu(z̃, ϕ) =
1

4π
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with |z̃| ≤ 1.

The p.d.f. g(z̃, ϕ) of an arbitrary distribution of z̃, ϕ is defined in the standard way
through the probability d2P = g(z̃, ϕ)dz̃dϕ. The product dz̃dϕ = sin θdθdϕ = d2Ω
is called solid angle element and corresponds to an infinitesimal area at the surface
of the unit sphere. A solid angle Ω defines a certain area at this surface and contains
all directions pointing into this area.

Example 35. Fisher’s spherical distribution

Instead of the uniform distribution considered in the previous example we
now investigate the angular distribution generated by a three-dimensional
rotationally symmetric Gaussian distribution with variances σ2 = σ2

x = σ2
y =

σ2
z . We put the center of the Gaussian at the z-axis, r0 = {0, 0, 1}. In spherical

coordinates we then obtain the p.d.f.

f(r, θ, ϕ) =
1

(2π)3/2σ3
r2 sin θ exp

(
−r

2 + r20 − 2rr0 cos θ

2σ2

)
.

For fixed distance r we obtain a function of θ and ϕ only which for our choice
of r0 is also independent of ϕ:

g(θ, ϕ) = cN (κ) sin θ exp(κ cos θ) .

The parameter κ is again given by κ = rr0/σ
2. Applying the normalization

condition
∫
gdθdϕ = 1 we find cN (κ) = κ/(4π sinhκ) and

g(θ, ϕ) =
κ

4π sinhκ
eκ cos θ sin θ (3.42)

a two-dimensional, unimodal distribution, known as Fisher’s spherical distri-
bution. As in the previous example we get in the limit κ → 0 the uniform
distribution (3.41) and for large κ the asymptotic distribution

g̃(θ, ϕ) ≈ 1

4π
κθ e−κθ2/2 ,

which is an exponential distribution of θ2. As a function of z̃ = cos θ the
distribution (3.42) simplifies to

h(z̃, ϕ) =
κ

4π sinhκ
eκz̃ .

which illustrates the spatial shape of the distribution much better than (3.42).

3.6 Some Important Distributions

3.6.1 The Binomial Distribution

What is the probability to get with ten dice just two times a six? The answer is
given by the binomial distribution:

B10
1/6(2) =

(
10

2

)(
1

6

)2 (
1− 1

6

)8

.
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The probability to get with 2 particular dice six, and with the remaining 8 dice
not the number six, is given by the product of the two power factors. The binomial
coefficient (

10

2

)
=

10!

2! 8!

counts the number of possibilities to distribute the 2 sixes over the 10 dice. This are
just 45. With the above formula we obtain a probability of about 0.29.

Considering, more generally, n randomly chosen objects (or a sequence of n in-
dependent trials), which have with probability p the property A, which we will call
success, the probability to find k out of these n objects with property A is Bn

p (k),

Bn
p (k) =

(
n

k

)
pk(1 − p)n−k , k = 0, . . . , n .

Since this is just the term of order pk in the power expansion of [p + (1 − p)]n, we
have the normalization condition

[p+ (1− p)]n = 1 , (3.43)
n∑

k=0

Bn
p (k) = 1 .

Since the mean number of successes in one trial is given by p, we obtain, following
the rules for expected values, for n independent trials

E(k) = np .

With a similar argument we can find the variance: For n = 1, we can directly compute
the expected quadratic difference, i.e. the variance σ2

1 . Using 〈k〉 = p and that k = 1
is found with probability11 P{1} = p and k = 0 with P{0} = 1− p, we find:

σ2
1 = 〈(k − 〈k〉)2〉
= p(1− p)2 + (1− p)(0 − p)2

= p(1− p).

According to (3.12) the variance of the sum of n i.i.d. random numbers is

σ2 = nσ2
1 = np(1− p) .

The characteristic function has the form:

φ(t) =
[
1 + p

(
eit − 1

)]n
. (3.44)

It is easily derived by substituting in the expansion of (3.43) in the kth term pk

with
(
p eit

)k
. From (3.25) follows the property of stability, which is also convincing

intuitively:

The distribution of a sum of numbers k = k1 + . . .+ kN obeying binomial distri-
butions Bni

p (ki), is again a binomial distribution Bn
p (k) with n = n1 + · · ·+ nN .

11For n = 1 the binomial distribution is also called two-point or Bernoulli distribution.
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There is no particularly simple expression for higher moments; they can of course
be calculated from the Taylor expansion of φ(t), as explained in Sect. 3.3.2. We give
only the results for the coefficients of skewness and excess:

γ1 =
1− 2p√
np(1− p)

, γ2 =
1− 6p(1− p)

np(1− p)
.

Example 36. Efficiency fluctuations of a Geiger counter

A Geiger counter with a registration probability of 90% (p = 0.9) detects
n′ out of n = 1000 particles crossing it. On average this will be 〈n′〉 =
np = 900. The mean fluctuation (standard deviation) of this number is σ =√
np(1− p) =

√
90 ≈ 9.5. The observed efficiency ε = n′/n will fluctuate by

σε = σ/n =
√
p(1− p)/n ≈ 0.0095

Example 37. Accuracy of a Monte Carlo integration

We want to estimate the value of π by a Monte Carlo integration. We dis-
tribute randomly n points in a square of area 4 cm2, centered at the origin.
The number of points with a distance less than 1 cm from the origin is k = np
with p = π/4. To reach an accuracy of 1% requires

σ

np
= 0.01 ,

√
np(1− p)

np
= 0.01 ,

n =
(1− p)

0.012p
=

(4− π)

0.012π
≈ 2732 ,

i.e. we have to generate n = 2732 pairs of random numbers.

Example 38. Acceptance fluctuations for weighted events

The acceptance of a complex detector is determined by Monte Carlo sim-
ulation which depends on a probability density f0(x) where x denotes all
relevant kinematical variables. In order to avoid the repetition of the sim-
ulation for a different physical situation (e.g. a different cross section) de-
scribed by a p.d.f. f(x), it is customary to weight the individual events with
wi = f(x)/f0(x), i = 1, . . . , N for N generated events. The acceptance εi for
event i is either 1 or 0. Hence the overall acceptance is

εT =

∑
wiεi∑
wi

.

The variance for each single term in the numerator is w2
i εi(1− εi). Then the

variance σ2
T of εT becomes

σ2
T =

∑
w2

i εi(1− εi)

(
∑
wi)

2 .
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3.6.2 The Multinomial Distribution

When a single experiment or trial has not only two, but N possible outcomes with
probabilities p1, p2, . . . , pN , the probability to observe in n experiments k1, k2, . . . , kN
trials belonging to the outcomes 1, . . . , N is equal to

Mn
p1,p2,...,pN

(k1, k2, . . . , kN ) =
n!

∏N
i=1 ki!

N∏

i=1

pki

i ,

where
∑N

i=1 pi = 1 and
∑N

i=1 ki = n are satisfied. Hence we have N − 1 independent
variates. The value N = 2 reproduces the binomial distribution.

In complete analogy to the binomial distribution, the multinomial distribution
may be generated by expanding the multinom

(p1 + p2 + . . .+ pN )n = 1

in powers of pi, see (3.43). The binomial coefficients are replaced by multinomial
coefficients which count the number of ways in which n distinguishable objects can
be distributed into N classes which contain k1, . . . , kN objects.

The expected values are
E(ki) = npi

and the covariance matrix is given by

Cij = npi(δij − pj) .

They can be derived from the characteristic function

φ(t1, . . . , tN−1) =

(
1 +

N−1∑

1

pi
(
eiti − 1

)
)n

which is a straight forward generalization of the 1-dimensional case (3.44). The cor-
relations are negative: If, for instance, more events ki as expected fall into class i,
the mean number of kj for any other class will tend to be smaller than its expected
value E(kj).

The multinomial distribution applies for the distribution of events into histogram
bins. For total a number n of events with the probability pi to collect an event in
bin i, the expected number of events in that bin will be ni = npi and the variance
Cii = npi(1−pi). Normally a histogram has many bins and pi ≪ 1 for all i. Then we
approximate Cij ≈ niδij . The correlation between the bin entries can be neglected
and the fluctuation of the entries in a bin is described by the Poisson distribution
which we will discuss in the following section.

3.6.3 The Poisson Distribution

When a certain reaction happens randomly in time with an average frequency λ in a
given time interval, then the number k of reactions in that time interval will follow
a Poisson distribution (Fig. 3.15)

Pλ(k) = e−λ λ
k

k!
.
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Fig. 3.15. Poisson distributions with different expected values.
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Its expected value and variance have already been calculated above (see p. 36):

E(k) = λ , var(k) = λ .

The characteristic function and cumulants have also been derived in Sect. 3.3.2 :

φ(t) = exp
(
λ(eit − 1)

)
, (3.45)

κi = λ , i = 1, 2, . . . .

Skewness and excess,

γ1 =
1√
λ
, γ2 =

1

λ

indicate that the distribution becomes more Gaussian-like with increasing λ (see Fig.
3.15).

The Poisson distribution itself can be considered as the limiting case of a binomial
distribution with np = λ, where n approaches infinity (n → ∞) and, at the same
time, p approaches zero, p→ 0. The corresponding limit of the characteristic function
of the binomial distribution (3.44) produces the characteristic function of the Poisson
distribution (3.45): With p = λ/n we then obtain

lim
n→∞

[
1 +

λ

n
(eit − 1)

]n
= exp

(
λ(eit − 1)

)
.

For the Poisson distribution, the supply of potential events or number of trials is
supposed to be infinite while the chance of a success, p, tends to zero. It is often used
in cases where in principle the binomial distribution applies, but where the number
of trials is very large.

Example 39. Poisson limit of the binomial distribution

A volume of 1 l contains 1016 hydrogen ions. The mean number of ions in a
sub-volume of 1µm3 is then λ = 10 and its standard deviation for a Poisson
distribution is σ =

√
10 ≈ 3. The exact calculation of the standard deviation

with the binomial distribution would change σ only by a factor
√
1− 10−15.

Also the number of radioactive decays in a given time interval follows a Poisson
distribution, if the number of nuclei is big and the decay probability for a single
nucleus is small.

The Poisson distribution is of exceptional importance in nuclear and particle
physics, but also in the fields of microelectronics (noise), optics, and gas discharges
it describes the statistical fluctuations.

Specific Properties of the Poisson Distribution

The sum k = k1 + k2 of Poisson distributed numbers k1, k2 with expected values
λ1, λ2 is again a Poisson distributed number with expected value λ = λ1 + λ2. This
property, which we called stability in connection with the binomial distribution fol-
lows formally from the structure of the characteristic function, or from the additivity
of the cumulants given above. It is also intuitively obvious.
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Example 40. Fluctuation of a counting rate minus background

Expected are S signal events with a mean background B. The mean fluctu-
ation (standard deviation) of the observed number k is

√
S +B. This is also

the fluctuation of k−B, because B is a constant. For a mean signal S = 100
and an expected background B = 50 we will observe on average 150 events
with a fluctuation of

√
150. After subtracting the background, this fluctua-

tion will remain. Hence, the background corrected signal is expected to be
100 with the standard deviation σ =

√
150. The uncertainty would even be

larger, if also the mean value B was not known exactly.

If from a Poisson-distributed number n with expected value λ0 on the average only
a fraction ε is registered, for instance when the size of a detector is reduced by a factor
of ε, then the expected rate is λ = λ0ε and the number of observed events k follows
the Poisson distribution Pλ(k). This intuitive result is also obtained analytically:
The number k follows a binomial distribution Bn

ε (k) where n is a Poisson-distributed
number. The probability p(k) is:

p(k) =

∞∑

n=k

Bn
ε (k)Pλ0(n)

=

∞∑

n=k

n!

k!(n− k)!
εk(1 − ε)n−ke−λ0

λn0
n!

= e−λ0
(ελ0)

k

k!

∞∑

n=k

1

(n− k)!
(λ0 − λ0ε)

n−k

= e−ελ0
(ελ0)

k

k!
= Pλ(k) .

Of interest is also the following mathematical identity

k∑

i=0

Pλ(i) =

∫ ∞

λ

dλ′Pλ′(k) ,

k∑

i=0

λi

i!
e−λ =

∫ ∞

λ

(λ′)k

k!
e−λ′

dλ′ ,

which allows us to calculate the probability P {i ≤ k} to find a number i less or
equal k via a well known integral (described by the incomplete gamma function). It
is applied in the estimation of upper and lower interval limits in Chap. 8.

Weighted Poisson Distributed Events

Let us assume that we measure the activity of a β-source with a Geiger counter. The
probability that it fires, the detection probability, depends on the electron energy
which varies from event to event. We can estimate the true number of decays by
weighting each observation with the inverse of its detection probability. The statistics
of their weighted sum is rather complex.

The statistics of weighted events plays also a role in some Monte Carlo integra-
tion methods, and sometimes also in parameter inference, if weighted observations
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Fig. 3.16. Comparison of Poisson distributions (histograms) and scaled distribution of
weighted events (dots) with a mixture of weights of one and ten.

are given in the form of histograms. The probability distribution of the corrected
numbers does not have a simple analytical expression. It can, as we will see, be ap-
proximately described by a Poisson distribution. However, the cumulants and thus
also the moments of the distribution can be calculated exactly.

Let us consider the definite case that on average λ1 observations are obtained
with probability ε1 and λ2 observations with probability ε2. We correct the losses
by weighting the observed numbers with w1 = 1/ε1 and w2 = 1/ε2. For the Poisson-
distributed numbers k1, k2
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Pλ1(k1) =
λk1
1

k1!
e−λ1 ,

Pλ2(k2) =
λk2
2

k2!
e−λ2 ,

k = w1k1 + w2k2 ,

we get the mean value λ of the variate k and its variance with var(cx) = c2var(x):

λ = w1λ1 + w2λ2 ,

σ2 = w2
1λ1 + w2

2λ2 .

According to (3.28), the cumulant κi of order i of the distribution of k is related to
the cumulants κ(1)i , κ

(2)
i of the corresponding distributions of k1, k2 through

κi = wi
1κ

(1)
i + wi

2κ
(2)
i . (3.46)

As mentioned above, there is no simple closed expression for the distribution
of k. It can be constructed approximately using the lower moments, but this is
rather tedious. Therefore we try to describe it approximately by a scaled Poisson
distribution

Pλ̃(k̃) =
λ̃k̃

k̃!
e−λ̃ ,

such that the ratio of standard deviation to mean value is the same as for the weighted
sum. We obtain

√
λ̃

λ̃
=
σ

λ
,

λ̃ =
(w1λ1 + w2λ2)

2

w2
1λ1 + w2

2λ2
,

where we have to scale the random variable k̃ to obtain the acceptance corrected
number k:

k = k̃
λ

λ̃

= k̃
w2

1λ1 + w2
2λ2

w1λ1 + w2λ2
.

The approximate distribution of k that we have obtained in this way has by
construction the right mean value and width, but differs from the exact distribution
in details. The quantity k̃ is called equivalent number of events. A number k of
observations which has been corrected for acceptance losses has the same statistical
significance as k̃ un-weighted observations. (The statistical significance is the ratio of
mean value to standard deviation µ/σ). The accuracy of our approximation can be
checked by comparing the skewness and excess γ1,2 as obtained from the cumulants
(3.46) according to (3.27) with the results of a Poisson distribution, namely γ̃1 =

1/
√
λ̃ , γ2 = 1/λ̃.

Example 41. Distribution of weighted, Poisson distributed observations

We expect on average λ1 = 20 observations registered with the probabil-
ity ε1 = 0.1 (w1 = 10), and λ2 = λ1 = 20 observations with acceptance
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Fig. 3.17. Comparison of a Poisson distribution (histogram) with a scaled distribution of
weighted events (dots). The weights are uniformly distributed between zero and one.

ε1 = 1. The expected value of the acceptance corrected number is λ = 220.
We approximate the distribution of the observed numbers k by the Poisson
distribution with the mean value λ̃,

λ̃ =
(10 · 20 + 1 · 20)2
102 · 20 + 12 · 20 = 24.0 ,

in order to describe the distribution of k̃. The statistical significance of the 40
expected observations is the same as that of 24 unweighted observations. We
obtain the approximate distribution of k = k̃λ/λ̃ = k̃ · 220/24 by generating
the distribution of k̃ and equating the probabilities of k and k̃. Fig. 3.16
shows a comparison between the equivalent Poisson distribution and the
true distribution of kλ̃/λ. By construction, mean value and variance are the
same; also skewness and excess are similar in both cases: The approximate
(exact) values are, respectively, γ1 = 0.204 (0.221), γ2 = 0.042 (0.049). The
differences are partially due to the fact that we compare two different discrete
distributions which have discrete parameters γ1, γ2.

The generalization of the above procedure to the addition of more than two
weighted Poisson distributions is trivial:

λ̃ =
(
∑
wiλi)

2

∑
w2

i λi
,

k ≈ k̃

∑
w2

i λi∑
wiλi

.

For the sum of N accidental weights which follow a continuous distribution g(w),
we obtain the expected value λ = 〈k〉 = N

∫
g(w)w dw and with λi = 1

λ̃ = N

(∫
g(w)w dw

)2
∫
g(w)w2 dw

,



3.6 Some Important Distributions 65

k ≈ k̃

∫
g(w)w2 dw∫
g(w)w dw

.

In Fig. 3.17, a scaled distribution with uniformly distributed weights between zero
and one is compared to the corresponding approximating Poisson distribution. The
agreement is quite good.

3.6.4 The Uniform Distribution

The uniform distribution is the simplest continuous distribution. It describes, for
instance, digital measurements where the random variable is tied to a given interval
and where inside the interval all its values are equally probable.

Given an interval of length α centered at the mean value ξ the p.d.f. reads

f(x|ξ, α) =
{
1/α if |x− ξ| < α/2
0 else . (3.47)

Mean value and variance are 〈x〉 = ξ and σ2 = α2/12, respectively. The characteristic
function is

φ(t) =
1

α

∫ ξ+α/2

ξ−α/2

eitxdx =
2

αt
sin

αt

2
eiξt . (3.48)

Using the power expansion of the sinus function we find from (3.48) for ξ = 0 the
even moments (the odd moments vanish):

µ′
2k =

1

2k + 1

(α
2

)2k
, µ′

2k−1 = 0 .

The uniform distribution is the basis for the computer simulation of all other
distributions because random number generators for numbers uniformly distributed
between 0 and 1 are implemented on all computers used for scientific purposes. We
will discuss simulations in some detail in Chap. 5.

3.6.5 The Normal Distribution

The normal or Gauss distribution which we introduced already in Sect. 3.2.7,

N(x|µ, σ) = 1√
2πσ

e−(x−µ)2/(2σ2) ,

enjoys great popularity among statisticians. This has several reasons which, however,
are not independent from each other.

1. The sum of normally distributed quantities is again normally distributed (sta-
bility), with µ =

∑
µi, σ2 =

∑
σ2
i , in obvious notation.

2. The discrete binomial- and Poisson distributions and also the χ2-distribution,
in the limit of a large number, a large mean value and many degrees of freedom,
respectively, approach the normal distribution.

3. Many distributions met in natural sciences are well approximated by normal
distributions. We have already mentioned some examples: velocity components of gas



66 3 Probability Distributions and their Properties

molecules, diffusion, Brownian motion and many measurement errors obey normal
distributions to good accuracy.

4. Certain analytically simple statistical procedures for parameter estimation and
propagation of errors are valid exactly only for normally distributed errors.

The deeper reason for point 2 and 3 is explained by the central limit theorem:
The mean value of a large number N of independent random variables, obeying the
same distribution with variance σ2

0 , approaches a normal distribution with variance
σ2 = σ2

0/N . The important point is that this theorem is valid for quite arbitrary
distributions, provided they have a finite variance, a condition which practically
always can be fulfilled, if necessary by cutting off large absolute values of the variates.
Instead of a formal proof12, we show in Fig. 3.18, how with increasing number of
variates the distribution of their mean value approaches the normal distribution
better and better.

As example we have chosen the mean values for uniformly resp. exponentially
distributed numbers. For the very asymmetrical exponential distribution on the left
hand side of the figure the convergence to a normal distribution is not as fast as for
the uniform distribution, where already the distribution of the mean of five random
numbers is in good agreement with the normal distribution. The central limit theorem
applies also when the individual variates follow different distributions provided that
the variances are of the same order of magnitude.

The characteristic function of the normal distribution is

φ(t) = exp(−1

2
σ2t2 + iµt) .

It is real and also of Gaussian shape for µ = 0. The stability (see point 1 above) is
easily proven, using the convolution theorem (3.25) and the exponential form of φ(t).

Differentiating the characteristic function, setting µ = 0, we obtain the central
moments of the normal distribution:

µ′
2j =

(2j)!

2jj!
σ2j .

Cumulants, with the exception of κ1 = µ and κ2 = σ2, vanish. Also the odd central
moments are zero.

The Normal Distribution in Higher Dimensions

The normal distribution in two dimensions with its maximum at the origin has the
general form

N0(x, y) =
1√

1− ρ22πsxsy
exp

[
− 1

2(1− ρ2)

(
x2

s2x
− 2ρ

xy

sxsy
+
y2

s2y

)]
. (3.49)

The notation has been chosen such that it indicates the moments:
〈
x2
〉
= s2x ,〈

y2
〉
= s2y ,

〈xy〉 = ρsxsy .

12A simplified proof is presented in the Appendix 13.1.
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Fig. 3.18. Illustration of the central limit theorem. The mean values of n exponential or
uniformly distributed variates approach with increasing n the normal distribution.
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Fig. 3.19. Transformation of the error ellipse.

We skip the explicit calculation. Integrating (3.49) over y, (x), we obtain the
marginal distributions of x, (y). They are again normal distributions with widths sx
and sy. A characteristic feature of the normal distribution is that for a vanishing
correlation ρ = 0 the two variables are independent, since in this case the p.d.f.
N0(x, y) factorizes into normal distributions of x and y.

Curves of equal probability are obtained by equating the exponent to a constant.
The equations

1

1− ρ2

(
x2

s2x
− 2ρ

xy

sxsy
+
y2

s2y

)
= const

describe concentric ellipses. For the special choice const = 1 we show the ellipse in
Fig. 3.19. At this so-called error ellipse the value of the p.d.f. is just N0(0, 0)/

√
e, i.e.

reduced with respect to the maximum by a factor 1/
√
e.

By a simple rotation we achieve uncorrelated variables x′ and y′:

x′ = x cosφ+ y sinφ ,

y′ = −x sinφ+ y cosφ ,

tan 2φ =
2ρsxsy
s2x − s2y

.

The half-axes, i.e. the variances s′x
2 and s′y

2 of the uncorrelated variables x′ and y′

are
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s′2x =
s2x + s2y

2
+
s2x − s2y
2 cos 2φ

,

s′2y =
s2x + s2y

2
− s2x − s2y

2 cos 2φ
.

In the new variables, the normal distribution has then the simple form

N′
0(x

′, y′) =
1

2πs′xs
′
y

exp

(
−1

2

(
x′2

s′x
2
+
y′2

s′y
2

))
= f(x′)g(y′) .

The two-dimensional normal distribution with its maximum at (x0, y0) is obtained
from (3.49) with the substitution x→ x− x0, y → y − y0.

We now generalize the normal distribution to n dimensions. We skip again the
simple algebra and present directly the result. The variables are written in vector
form x and with the symmetric and positive definite covariance matrix C, the p.d.f.
is given by

N(x) =
1√

(2π)n det(C)
exp

(
−1

2
(x− x0)

T
C
−1(x− x0)

)
.

Frequently we need the inverse of the covariance matrix

V = C
−1

which is called weight matrix. Small variances Cii of components xi lead to large
weights Vii. The normal distribution in n dimensions has then the form

N(x) =
1√

(2π)n det(C)
exp

(
−1

2
(x− x0)

T
V(x− x0)

)
.

In the two-dimensional case the matrices C and V are

C =

(
s2x ρsxsy

ρsxsy s2y

)
,

V =
1

1− ρ2

(
1
s2x

− ρ
sxsy

− ρ
sxsy

1
s2y

)

with the determinant det(C) = s2xs
2
y(1 − ρ2) = 1/ det(V).

3.6.6 The Exponential Distribution

Also the exponential distribution appears in many physical phenomena. Besides life
time distributions (decay of instable particles, nuclei or excited states), it describes
the distributions of intervals between Poisson distributed events like time intervals
between decays or gap lengths in track chambers, and of the penetration depth of
particles in absorbing materials.

The main characteristics of processes described by the exponential distribution is
lack of memory, i.e. processes which are not influenced by their history. For instance,
the decay probability of an instable particle is independent of its age, or the scattering
probability for a gas molecule at the time t is independent of t and of the time that
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has passed since the last scattering event. The probability density for the decay of a
particle at the time t1 + t2 must be equal to the probability density f(t2) multiplied
with the probability 1− F (t1) to survive until t1:

f(t1 + t2) = (1− F (t1)) f(t2) .

Since f(t1 + t2) must be symmetric under exchanges of t1 and t2, the first factor has
to be proportional to f(t1),

1− F (t1) = cf(t1) , (3.50)

f(t1 + t2) = cf(t1)f(t2) (3.51)

with constant c. The property (3.51) is found only for the exponential function:
f(t) = aebt. If we require that the probability density is normalized, we get

f(t) = λe−λt .

This result could also have been derived by differentiating (3.50) and solving the
corresponding differential equation f = −c df/dt.

The characteristic function
φ(t) =

λ

λ− it

and the moments
µn = n!λ−n

have already been derived in Example 21 in Sect. 3.3.3.

3.6.7 The χ2 Distribution

The chi-square distribution (χ2 distribution) plays an important role in the compari-
son of measurements with theoretical distributions (see Chap. 10). The corresponding
tests allow us to discover systematic measurement errors and to check the validity
of theoretical models. The variable χ2 which we will define below, is certainly the
quantity which is most frequently used to quantify the quality of the agreement of
experimental data with the theory.

The variate χ2 is defined as the sum

χ2 =

f∑

i=1

x2i
σ2
i

,

where xi are independent, normally distributed variates with zero mean and variance
σ2
i .

We have already come across the simplest case with f = 1 in Sect. 3.4.1: The
transformation of a normally distributed variate x with expected value zero to u =
x2/s2, where s2 is the variance, yields

g1(u) =
1√
2πu

e−u/2 (f = 1) .

(We have replaced the variable χ2 by u = χ2 to simplify the writing.) Mean value
and variance of this distribution are E(u) = 1 and var(u) = 2.
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Fig. 3.20. χ2distribution for different degrees of freedom.

When we now add f independent summands we obtain

gf(u) =
1

Γ (f/2)2f/2
uf/2−1e−u/2 . (3.52)

The only parameter of the χ2 distribution is the number of degrees of freedom f ,
the meaning of which will become clear later. We will prove (3.52) when we discuss
the gamma distribution, which includes the χ2 distribution as a special case. Fig.
3.20 shows the χ2 distribution for some values of f . The value f = 2 corresponds
to an exponential distribution. As follows from the central limit theorem, for large
values of f the χ2 distribution approaches a normal distribution.

By differentiation of the p.d.f. we find for f > 2 the maximum at the mode
umod = f − 2. The expected value of the variate u is equal to f and its variance is
2f . These relations follow immediately from the definition of u.

umod = f − 2 for f > 2 ,

E(u) = f ,

var(u) = 2f .

Distribution of the Sample Width

We define the width v of a sample of N elements xi as follows (see 3.2.3):

v2 =
1

N

N∑

i=1

x2i − x2

= x2 − x2 .
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If the variates xi of the sample are distributed normally with mean x0 and variance
σ2, then Nv2/σ2 follows a χ2 distribution with f = N − 1 degrees of freedom.
We omit the formal proof; the result is plausible, however, from the expected value
derived in Sect. 3.2.3:

〈
v2
〉
=
N − 1

N
σ2 ,

〈
Nv2

σ2

〉
= N − 1 .

Degrees of Freedom and Constraints

In Sect. 7.2 we will discuss the method of least squares for parameter estimation.
To adjust a curve to measured points xi with Gaussian errors σi we minimize the
quantity

χ2 =

N∑

i=1

(
xi − x

(t)
i (λ1, . . . , λZ)

)2

σ2
i

,

where x(t)i are the ordinates of the curve depending on the Z free parameters λk.
Large values of χ2 signal a bad agreement between measured values and the fitted
curve. If the predictions x(t)i depend linearly on the parameters, the sum χ2 obeys a
χ2 distribution with f = N −Z degrees of freedom. The reduction of f accounts for
the fact that the expected value of χ2 is reduced when we allow for free parameters.
Indeed, for Z = N we could adjust the parameters such that χ2 would vanish.

Generally, in statistics the term degrees of freedom13 f denotes the number of
independent predictions. For N = Z we have no prediction for the observations xi.
For Z = 0 we predict all N observations, f = N . When we fit a straight line through
3 points with given abscissa and observed ordinate, we have N = 3 and Z = 2
because the line contains 2 parameters. The corresponding χ2 distribution has 1
degree of freedom. The quantity Z is called the number of constraints, a somewhat
misleading term. In the case of the sample width discussed above, one quantity, the
mean, is adjusted. Consequently, we have Z = 1 and the sample width follows a χ2

distribution of f = N − 1 degrees of freedom.

3.6.8 The Gamma Distribution

The distributions considered in the last two sections, the exponential- and the chi-
square distribution, are special cases of the gamma distribution

G(x|ν, λ) = λν

Γ (ν)
xν−1e−λx , x > 0 .

The parameter λ > 0 is a scale parameter, while the parameter ν > 0 determines
the shape of the distribution. With ν = 1 we obtain the exponential distribution. The
parameter ν is not restricted to natural numbers. With the special choice ν = f/2
and λ = 1/2 we get the χ2-distribution with f degrees of freedom (see Sect. 3.6.7).

13Often the notation number of degrees of freedom, abbreviated by n.d.f. or NDF is used
in the literature.
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The gamma distribution is used typically for the description of random variables
that are restricted to positive values, as in the two cases just mentioned. The char-
acteristic function is very simple:

φ(t) =

(
1− it

λ

)−ν

. (3.53)

As usual, we obtain expected value, variance, moments about the origin, skewness
and excess by differentiating φ(t):

〈x〉 = ν

λ
, var(x) =

ν

λ2
, µi =

Γ (i+ ν)

λi Γ (ν)
, γ1 =

2√
ν
, γ2 =

6

ν
.

The maximum of the distribution is at xmod = (ν − 1)/λ, (ν > 1).

The gamma distribution has the property of stability in the following sense: The
sum of variates following gamma distributions with the same scaling parameter λ, but
different shape parameters νi is again gamma distributed, with the shape parameter
ν,

ν =
∑

νi .

This result is obtained by multiplying the characteristic functions (3.53). It proves
also the corresponding result (3.52) for the χ2-distribution.

Example 42. Distribution of the mean value of decay times

Let us consider the sample mean x =
∑
xi/N , of exponentially distributed

variates xi. The characteristic function is (see 3.3.3)

φx(t) =
1

1− it/λ
.

Forming the N -fold product, and using the scaling rule for Fourier trans-
forms (3.19), φx/N (t) = φx(t/N), we arrive at the characteristic function of
a gamma distribution with scaling parameter Nλ and shape parameter N :

φx(t) =

(
1− it

Nλ

)−N

. (3.54)

Thus the p.d.f. f(x) is equal to G(x|N,Nλ). Considering the limit for large
N , we convince ourself of the validity of the law of large numbers and the
central limit theorem. From (3.54) we derive

lnφx(t) = −N ln

(
1− it

Nλ

)

= −N
[(

− it

Nλ

)
− 1

2

(
− it

Nλ

)2

+O(N−3)

]
,

φx(t) = exp

[
i
1

λ
t− 1

2

1

Nλ2
t2 +O

(
N−2

)]
.

When N is large, the term of order N−2 can be neglected and with the two
remaining terms in the exponent we get the characteristic function of a nor-
mal distribution with mean µ = 1/λ = 〈x〉 and variance σ2 = 1/(Nλ2) =
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var(x)/N , (see 3.3.3), in agreement with the central limit theorem. If N
approaches infinity, only the first term remains and we obtain the character-
istic function of a delta distribution δ(1/λ − x). This result is predicted by
the law of large numbers (see Appendix 13.1). This law states that, under
certain conditions, with increasing sample size, the difference between the
sample mean and the population mean approaches zero.

3.6.9 The Lorentz and the Cauchy Distributions

The Lorentz distribution (Fig. 3.21)

f(x) =
1

π

Γ/2

(x− a)2 + (Γ/2)2

is symmetric with respect to x = a. Although it is bell-shaped like a Gaussian, it
has, because of its long tails, no finite variance. This means that we cannot infer the
location parameter a of the distribution14 from the sample mean, even for arbitrary
large samples. The Lorentz distribution describes resonance effects, where Γ repre-
sents the width of the resonance. In particle or nuclear physics, mass distributions of
short-lived particles follow this p.d.f. which then is called Breit–Wigner distribution.

The Cauchy distribution corresponds to the special choice of the scale parameter
Γ = 2. 15 For the location parameter a = 0 it has the characteristic function φ(t) =
exp(−|t|), which obviously has no derivatives at t = 0, an other consequence of
the nonexistence of moments. The characteristic function for the sample mean of N
measurements, x =

∑N
1 xi/N , is found with the help of (3.19), (3.25) as

φx(t) = (φ(t/N))
N

= φ(t) .

The sample mean has the same distribution as the original population. It is therefore,
as already stated above, not suited for the estimation of the location parameter.

14The first moment exists only as a Cauchy principal value and equals a.
15In the literature also the more general definition with two parameters is met.
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3.6.10 The Log-normal Distribution

The distribution of a variable x > 0 whose logarithm u is normally distributed

g(u) =
1√
2πs

e−(u−u0)
2/2s2

with mean u0 and variance s2 follows the log-normal distribution, see Fig. 3.22:

f(x) =
1

xs
√
2π

e−(lnx−u0)
2/2s2 .

This is, like the normal distribution, a two-parameter distribution where the param-
eters u0, s2, however, are not identical with the mean µ and variance σ2, but the
latter are given by

µ = eu0+s2/2,

σ2 = (es
2 − 1)e2u0+s2 . (3.55)

Note that the distribution is declared only for positive x, while u0 can also be nega-
tive.

The characteristic function cannot be written in closed form, but only as a power
expansion. This means, the moments of order k about the origin are

µk = eku0+
1
2 k

2s2 .

Other characteristic parameters are

median : x0.5 = eu0 ,

mode : xmod = eu0−s2 ,

skewness : γ1 = (es
2

+ 2)
√
es2 − 1 ,

kurtosis : γ2 = e4s
2

+ 2e3s
2

+ 3e2s
2 − 6 . (3.56)

The distribution of a variate x =
∏
xi which is the product of many variates

xi, each of which is positive and has a small variance, σ2
i compared to its mean

squared µ2, σ2
i ≪ µ2

i , can be approximated by a log-normal distribution. This is a
consequence of the central limit theorem (see 3.6.5). Writing

lnx =

N∑

i=1

lnxi

we realize that lnx is normally distributed in the limit N → ∞ if the summands
fulfil the conditions required by the central limit theorem. Accordingly, x will be
distributed by the log-normal distribution.

3.6.11 Student’s t Distribution

This distribution, introduced by W. S. Gosset (pseudonym “Student”) is frequently
used to test the compatibility of a sample with a normal distribution with given mean
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Fig. 3.22. Log-normal distribution with u0 = 1 and different values of s.

but unknown variance. It describes the distribution of the so-called “studentized”
variate t, defined as

t =
x− µ

s
. (3.57)

The numerator is the difference between a sample mean and the mean of the Gaussian
from which the sample of size N is drawn. It follows a normal distribution centered
at zero. The denominator s is an estimate of the standard deviation of the numerator
derived from the sample. It is defined by (3.15).

s2 =
1

N(N − 1)

N∑

i=1

(xi − x)2 .

The sum on the right-hand side, after division by the variance σ2 of the Gaussian,
follows a χ2 distribution with f = N − 1 degrees of freedom, see (3.52). Dividing
also the numerator of (3.57) by its standard deviation σ/

√
N , it follows a normal

distribution of variance unity. Thus the variable t of the t distribution is the quotient
of a normal variate and the square root of a χ2 variate.

The analytical form of the p.d.f. can be found by the standard method used in
Sect. 3.5.4. The result is

h(t|f) = Γ ((f + 1)/2)

Γ (f/2)
√
πf

(
1 +

t2

f

)− f+1
2

.
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Fig. 3.23. Student’s distributions for 1, 2, 5 degrees of freedom and normal distribution.

The only parameter is f , the number of degrees of freedom. For f = 1 we recover
the Cauchy distribution. For large f it approaches the normal distribution N(0, 1)
with variance equal to one. The distribution is symmetric, centered at zero, and bell
shaped, but with longer tails than N(0, 1). The even moments are

µi = f
i
2

1 · 3 · · · (i− 1)

(f − 2)(f − 4) · · · (f − i)
.

They exist only for i ≤ f − 1. The variance for f ≥ 3 is σ2 = f/(f − 2), the excess
for f ≥ 5 is γ2 = 6/(f − 4), disappearing for large f , in agreement with the fact that
the distribution approaches the normal distribution.

The typical field of application for the t distribution is the derivation of tests
or confidence intervals in cases where a sample is supposed to be taken from a
normal distribution of unknown variance but known mean µ. Qualitatively, very large
absolute values of t indicate that the sample mean is incompatible with µ. Sometimes
the t distribution is used to approximate experimental distributions which differ from
Gaussians because they have longer tails. In a way, the t distribution interpolates
between the Cauchy (for f = 1) and the Gauss distribution (for f → ∞).

3.6.12 The Extreme Value Distributions

The family of extreme value distributions is relevant for the following type of prob-
lem: Given a sample taken from a certain distribution, what can be said about the
distribution of its maximal or minimal value? It is found that these distributions
converge with increasing sample size to distributions of the types given below.
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The Weibull Distribution

This distribution has been studied in connection with the lifetime of complex aggre-
gates. It is a limiting distribution for the minimal member of a sample taken from a
distribution limited from below. The p.d.f. is

f(x|a, p) = p

a

(x
a

)p−1

exp
(
−
(x
a

)p)
, x > 0 (3.58)

with the positive scale and shape parameters a and p. The mode is

xm = a

(
p− 1

p

)1/p

for p ≥ 1 ,

mean value and variance are

µ = aΓ (1 + 1/p) ,

σ2 = a2
(
Γ (1 + 2/p)− Γ 2(1 + 1/p)

)
.

The moments are
µi = aiΓ (1 + i/p) .

For p = 1 we get an exponential distribution with decay constant 1/a.

The Fisher–Tippett Distribution

Also this distribution with the p.d.f.

f±(x|x0, s) =
1

s
exp

(
±x− x0

s
− e±(x−x0)/s

)

belongs to the family of extreme value distributions. It is sometimes called extreme
value distribution (without further specification) or log-Weibull distribution.

If y is Weibull-distributed (3.58) with parameters a, p, the transformation to
x = − ln y leads for x to a log-Weibull distribution with parameters x0 = − ln a
and s = 1/p. The first of these, the location parameter x0, gives the position of the
maximum, i.e. xmod = x0, and the parameter s > 0 is a scale parameter. Mean value
µ and variance σ2 depend on these parameters through

µ = x0 ∓ Cs , with Euler’s constant C = 0.5772 . . . ,

σ2 = s2
π2

6
.

Mostly, the negative sign in the exponent is realized. Its normal form

f(x|0, 1) = exp
(
−x− e−x

)

is also known as Gumbel’s distribution and shown in Fig. 3.24.

Using mathematical properties of Eulers Γ function [22] one can derive the char-
acteristic function in closed form:

φ(t) = Γ (1± ist)eix0t ,

whose logarithmic derivatives give in turn the cumulants for this distribution:

κ1 = x0 ∓ Cs , κi≥2 = (∓1)i(i− 1)!siζ(i) ,

with Riemann’s zeta function ζ(z) = Σ∞
n=11/n

z. (see [22]). Skewness and excess are
given by γ1 ≈ 1.14 and γ2 = 12/5.
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4

Measurement errors

4.1 General Considerations

When we talk about measurement errors, we do not mean mistakes caused by the
experimenter, but the unavoidable random dispersion of measurements. Therefore, a
better name would be measurement uncertainties. We will use the terms uncertainty
and error synonymously.

The correct determination and treatment of measurement errors is not always
trivial. In principle, the evaluation of parameters and their uncertainties are part of
the statistical problem of parameter inference, which we will treat in Chaps. 6, 7
and 8. There we will come back to this problem and look at is from a more general
point of view. In the present chapter we will introduce certain, in practice often well
justified approximations.

Official recommendations are given in “Guide to the Expression of Uncertainty of
Measurement”, published in 1993 and updated in 1995 in the name of many relevant
organizations like ISO and BIMP (Guide to the Expression of Uncertainty of Mea-
surement, International Organization for Standardization, Geneva, Switzerland) [23].
More recently, a task force of the European cooperation for Accreditation of Labora-
tories (EAL) with members of all western European countries has issued a document
(EAL-R2) with the aim to harmonize the evaluation of measurement uncertainties.
It follows the rules of the document mentioned above but is more specific in some
fields, especially in calibration issues which are important when measurements are
exchanged between different laboratories. The two reports essentially recommend to
estimate the expected value and the standard deviation of the quantity to be mea-
sured. Our treatment of measurement uncertainty will basically be in agreement
with the recommendations of the two cited documents which deal mainly with sys-
tematic uncertainties and follow the Bayesian philosophy, but we will extend their
concept in Sect. 8.2 where we introduce asymmetric error limits.

4.1.1 Importance of Error Assignments

The natural sciences owe their success to the possibility to compare quantitative hy-
potheses to experimental facts. However, we are able to check theoretical predictions
only if we have an idea about the accuracy of the measurements. If this is not the
case, our measurements are completely useless.
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Of course, we also want to compare the results of different experiments to each
other and to combine them. Measurement errors must be defined in such a way
that this is possible without knowing details of the measurement procedure. Only
then, important parameters, like constants of nature, can be determined more and
more accurately and possible variations with time, like it was hypothesized for the
gravitational constant, can be tested.

Finally, it is indispensable for the utilization of measured data in other scientific
or engineering applications to know their accuracy and reliability. An overestimated
error can lead to a waste of resources and, even worse, an underestimated error may
lead to wrong conclusions.

4.1.2 Verification of Assigned Errors

In some situations a system of variables is overconstrained and thus allows us to
check whether our measurements are consistent within their error limits. An example
is the comparison of the sum of measured angles of a triangle with the value 1800

which is common in surveying. In the experiments of particle physics we can apply
among other laws the constraints provided by energy and momentum conservation.
When we adjust curves, e.g. a straight line to measured points, the deviations of
the points from the line permit us to check the goodness of the fit, and if the fit is
poor, we might reject the presumed parametrization or revise the error assignment.
A systematic treatment of the corresponding goodness-of-fit tests will be presented
in Chap. 10.

4.1.3 The Declaration of Errors

There are several ways to present measurements with their uncertainties. Some of
the more frequent ones are given in the following examples:

t = (34.5± 0.7) 10−3 s
t = 34.5 10−3 s ± 2%
x = 10.3+0.7

−0.3

me = (0.510 999 06± 0.000 000 15) MeV/c2

me = 0.510 999 06 (15) MeV/c2

me = 9.109 389 7 10−31kg ± 0.3 ppm

The abbreviation ppm means parts per million. The treatment of asymmetric
errors will be postponed to Chap. 8. The measurement and its error must have the
same number of significant digits. Declarations like x = 3.2± 0.01 or x = 3.02± 0.1
are inconsistent.

A relatively crude declaration of the uncertainty is sufficient, one or two significant
digits are adequate in any case, keeping in mind that often we do not know all sources
of errors or are unable to estimate their influence on the result with high accuracy1.
This fact also justifies in most cases the approximations which we have to apply in
the following.

We denote the error of x with δx or δx. Sometimes it is convenient, to quote
dimensionless relative errors δx/x that are useful in error propagation – see below.

1There are exceptions to this rule in hypothesis testing (see Chap. 10).
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4.1.4 Definition of Measurement and its Error

Measurements are either quantities read from a measurement device or simply an
instrument – we call them input quantities – or derived quantities, like the average of
two or more input quantities, the slope of a street, or a rate which are computed from
several input quantities. Let us first restrict ourselves to input quantities. An input
quantity can be regarded as an observation, i.e. a random variable x drawn from
a distribution centered around the true value xt of the quantity which we want to
determine. The measurement process, including the experimental setup, determines
the type of this distribution (Gauss, Poisson, etc.) For the experimenter the true
value is an unknown parameter of the distribution. The measurement and its error
are estimates of the true value and of the standard deviation of the distribution2. This
definition allows us to apply relations which we have derived in the previous chapter
for the standard deviation to calculations of the uncertainty, e.g. the error δ of a sum
of independent measurements with individual errors δi is given by δ2 =

∑
δ2i .

In an ideal situation the following conditions are fulfilled:

1. The mean value of infinitely often repeated measurements coincides with the true
value, i.e. the true value is equal to the expectation value 〈x〉 of the measurement
distribution, see Sect. 3.2. The measurement is then called unbiased.

2. The assigned measurement error is independent of the measured value.

These properties can not always be realized exactly but often they are valid to
a sufficiently good approximation. The following two examples refer to asymmetric
errors where in the first but not in the second the asymmetry can be neglected.

Example 43. Scaling error

A tape measure is slightly elastic. The absolute measurement error increases
with the measured length. Assuming a scaling error of 1% also the estimate
of the error of a measured length would in average be wrong by 1% and asym-
metric by the same proportion. This, however, is completely unimportant.

Example 44. Low decay rate

We want to measure the decay rate of a radioactive compound. After one
hour we have recorded one decay. Given such small rates, it is not correct
to compute the error from a Poisson distribution (see Sect. 3.6.3) in which
we replace the mean value by the observed measurement. The declaration
R = 1± 1 does not reflect the result correctly because R = 0 is excluded by
the observation while R = 2.5 on the other hand is consistent with it.

In Sect. 8.2 we will, as mentioned above, also discuss more complex cases, in-
cluding asymmetric errors due to low event rates or other sources.

Apart from the definition of a measurement and its error by the estimated mean
and standard deviation of the related distribution there exist other conventions: Dis-
tribution median, maximal errors, width at half maximum and confidence intervals.
They are useful in specific situations but suffer from the crucial disadvantage that

2Remark that we do not need to know the full error distribution but only its standard
deviation.
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they are not suited for the combination of measurement or the determination of the
errors of depending variables, i.e. error propagation.

4.2 Different Types of Measurement Uncertainty

There are uncertainties of different nature: statistical or random errors and system-
atic errors. Their definitions are not unambiguous, disagree from author to author
and depend somewhat on the scientific discipline in which they are treated. Also
the authors of this book have different opinions regarding the meaning of systematic
errors. Hence, we have decided to present two parallel subsections for this topic.

4.2.1 Statistical Errors

Errors Following a Known Statistical Distribution

Relatively simple is the interpretation of measurements if the distributions of the
errors follow known statistical laws3. The corresponding uncertainties are called sta-
tistical errors. Examples are the measurement of counting rates (Poisson distribu-
tion), counter efficiency (binomial distribution) or of the lifetime of unstable particles
(exponential distribution). Characteristic for statistical errors is that sequential mea-
surements are uncorrelated and thus the precision of the combined results is improved
by the repetition of the measurement. In these cases the distribution is known up to
a parameter – its expected value. We then associate the actually observed value to
that parameter and declare as measurement error the standard deviation belonging
to that distribution.

Example 45. Poisson distributed rate

Recorded have been N = 150 decays. We set the rate and its error equal to
Z = N ±

√
N = (150±

√
150) ≈ 150± 12.

Example 46. Digital measurement (uniform distribution)

With a digital clock the time t = 237 s has been recorded. The error is
δt = 1/

√
12 s ≈ 0.3 s, thus t = (237.0± 0.3) s.

Example 47. Efficiency of a detector (binomial distribution)

From N0 = 60 particles which traverse a detector, 45 are registered. The effi-
ciency is ε = N/N0 = 0.75. The error derived from the binomial distribution
is

δε = δN/N0 =
√
ε(1− ε)/N0 =

√
0.75 · 0.25/60 = 0.06 .

Example 48. Calorimetric energy measurement (normal distribution)

The energy of an high energy electron is measured by a scintillating fiber
calorimeter by collecting light produced by the electromagnetic cascade in

3G. Bohm’s definition is slightly different, i.e. more restrictive, see examples at the end
of this section.
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the scintillator of the device. From the calibration of the calorimeter with
electrons of known energies E we know that the calorimeter response is well
described by a Gaussian with mean proportional to E and variance propor-
tional to

√
E.

Many experimental signals follow to a very good approximation a normal distri-
bution. This is due to the fact that they consist of the sum of many contributions
and a consequence of the central limit theorem.

A typical property of statistical errors is that the relative error is proportional
to 1/

√
N , the inverse of the square root of the number of events. This is obvious in

the first and third example, but also in the second example the relative error would
show the 1/

√
N behavior if we were able to repeat the measurement N times. If

the relative error is sufficiently small, we usually can treat it as independent of the
observed value.

Errors Determined from a Sample of Measurements

An often used method for the estimation of errors is to repeat a measurement sev-
eral times and to estimate the error from the fluctuation of the results. The results
presented below will be justified in subsequent chapters but are also intuitively plau-
sible.

In the simplest case, for instance in calibration procedures, the true value xt of the
measured quantity x is known, and the measurement is just done to get information
about the accuracy of the measurement. An estimate of the average error δx of x
from N measurements is in this case

(δx)2 =
1

N

N∑

i=1

(xi − xt)
2 .

We have to require that the fluctuations are purely statistical and that correlated
systematic variations are absent, i.e. the data have to be independent from each
other. The relative uncertainty of the error estimate follows the 1/

√
N law. It will be

studied below. For example with 100 repetitions of the measurement, the uncertainty
of the error itself is reasonably small, i.e. about 10 % but depends on the distribution
of x.

When the true value is unknown, we can approximate it by the sample mean
x = 1

N

∑N
i=1 xi and use the following recipe:

(δx)2 =
1

N − 1

N∑

i=1

(xi − x)2 . (4.1)

In the denominator of the formula used to determine the mean quadratic deviation
(δx)2 of a single measurement figures N − 1 instead of N . This is plausible because,
when we compute the empirical mean value x, the measurements xi enter and thus
they are expected to be in average nearer to their mean value than to the true value.
In particular the division by N would produce the absurd value δx = 0 for N = 1,
while the division by N − 1 yields an indefinite result. The derivation of (4.1) follows
from (3.15). The quantity (δx)2 in (4.1) is sometimes called empirical variance. We
have met it already in Sect. 3.2.3 of the previous chapter.
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Table 4.1. Error estimate for a mean value.

measurements quadratic deviations
xi (xi − x)2

2.22 0.0009
2.25 0.0000
2.30 0.0025
2.21 0.0016
2.27 0.0004

∑
xi = 11.25

∑
(xi − x)2 = 0.0054

x = 2.25 (δx)2 =
∑

(xi − x)2/4 = 0.0013

Frequently, we want to find the error for measurements xi which are constrained
by physical or mathematical laws and where the true values are estimated by a
parameter fit (to be explained in subsequent chapters). The expression (4.1) then is
generalized to

(δx)2 =
1

N − Z

N∑

i=1

(xi − x̂i)
2 . (4.2)

where x̂i are the estimates of the true values corresponding to the measurements xi
and Z is the number of parameters that have been adjusted using the data. When
we compare the data of a sample to the sample mean we have Z = 1 parameter,
namely x̄, when we compare coordinates to the values of a straight line fit then we
have Z = 2 free parameters to be adjusted from the data, for instance, the slope and
the intercept of the line with the ordinate axis. Again, the denominator N − Z is
intuitively plausible, since for N = Z we have 2 points lying exactly on the straight
line which is determined by them, so also the numerator is zero and the result then
is indefinite.

Relation (4.2) is frequently used in particle physics to estimate momentum or
coordinate errors from empirical distributions (of course, all errors are assumed to
be the same). For example, the spatial resolution of tracking devices is estimated
from the distribution of the residuals (xi − x̂i). The individual measurement error
δx as computed from a M tracks and N points per track is then estimated quite
reliably to

(δx)2 =
1

(N − Z)M

M×N∑

i=1

(xi − x̂i)
2 .

Not only the precision of the error estimate, but also the precision of a measure-
ments can be increased by repetition. The error δx of a corresponding sample mean
is, following the results of the previous section, given by

(δx)2 = (δx)2/N ,

=
1

N(N − 1)

N∑

i=1

(xi − x)2 . (4.3)

Example 49. Average from 5 measurements

In Table 4.1 five measurements are displayed. The resulting mean value is
x = 2.25± 0.02. We have used that the error of the mean value is smaller by
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the factor
√
5 than that of a single measurement, δx = δx/

√
5. With only 5

repetitions the precision of the error estimate is rather poor.

Our recipe yields δx ∼ 1/
√
N , i.e. the error becomes arbitrarily small if the num-

ber of the measurements approaches infinity. The validity of the 1/
√
N behavior

relies on the assumption that the fluctuations are purely statistical and that corre-
lated systematic variations are absent, i.e. the data have to be independent of each
other. When we measure repeatedly the period of a pendulum, then the accuracy of
the measurements can be deduced from the variations of the results only if the clock
is not stopped systematically too early or too late and if the clock is not running too
fast or too slow. Our experience tells us that some correlation between the different
measurements usually cannot be avoided completely and thus there is a lower limit
for δx. To obtain a reliable estimate of the uncertainty, we have to take care that the
systematic uncertainties are small compared to the statistical error δx.

Error of the Empirical Variance

Sometimes we are interested in the variance of an empirical distribution and in its
uncertainty. In the same category falls the problem to estimate the error of the error
of a parameter which is determined from a series of measurements. For example, we
may need to know the resolution of a meter or the width of a spectral line and the
related accuracy. It is also of interest to know how often a calibration measurement
has to be performed to estimate the corresponding error with sufficient accuracy. In
these situations the variance s2 itself is the result of the investigation to which we
would like to associate an uncertainty.

The variance of (x − µ)2 for a given distribution is easily calculated using the
formulas of Sect. 3.2.3. We omit the details of the calculation and quote the result
which is related of the second and fourth central moments.

var[(x − µ)2] =
〈[

(x− µ)2 − σ2
]2〉

= (µ′
4 − σ4) .

We now assume that our sample is large and replace the distribution moments µ′
n

by the empirical central moments m′
n,

m′
n =

1

N

∑
(xi − x)n .

The moment s2 = m′
2 is an estimate for σ2. For N events in the sample, we get for

the uncertainty δs2 of s2

(δs2)2 =
m′

4 −m′2
2

N

and from error propagation (see next section 4.3) we derive the uncertainty of s itself

δs

s
=

1

2

δs2

s2
,

=
1

2
√
N

√
m′

4 − s4

s2
.

If the type of distribution is known, we can use relations between moments.
Thus, for the normal distribution we have µ′

4 = 3σ4 (see Sect. 3.6.5), and it follows
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δs/s = 1/
√
2N which also follows from the variance of the χ2 distribution. This

relation sometimes is applied to arbitrary distributions. It then often underestimates
the uncertainty.

4.2.2 Systematic Errors (G. Bohm)

A stringent requirement on scientific results is the possibility of verification or refu-
tation. In case of experiments, the most direct way, indispensable in case of crucial
experiments, is their independent repetition. Experimental results have to be pre-
sented in a way which allows this: First of all, any experimental number has to be
given together with its statistical error. Only then we can state “agreement within
errors” and combine the results to a more accurate one, or, not so seldom as one
might wish, we find the result “unconfirmed” and the experimental situation “still
unclear”.

A cornerstone in such comparisons is the assumption of statistical independence:
Statistical fluctuations in the two experiments “have nothing to do with each other”.
Anticipating later developments on error propagation for independent variates, we
compare the squared difference of the two results, |x1 − x2|2 with the variance of
x1 − x2, given by

var(x1 − x2) = var(x1) + var(x2)− 2cov(x1, x2)

or in terms of the covariance matrix, see Chap. 3, Sect. 3.5.6

var(x1 − x2) = C11 + C22 − 2C12 .

Using independence of the xi, we have C12 = 0 and the diagonal elements of C are
the squared errors δx21,2; so, confirmation means

|x1 − x2|2 ≤ k(C11 + C22) (4.4)

with k of order unity4.

The next step is usually the combination of the two results as a weighted mean.
This will be explained in the next section; here we anticipate that the error of the
combined result will be smaller than the minimum of δx1 and δx2. So, under the as-
sumption of independence, there is no lower limit to the statistical error of repeatable
experiments.

Of course, in reality there is always a limit on statistical accuracy, besides the
trivial one that time for repetitions is limited: The assumption of independence is
violated in a very specific way by so-called systematic errors which appear in any
realistic experiment. Postponing an abstract definition we first give some examples
to illustrate the usage of this term in physical applications.

1. Reading error of an analog instrument: The readings performed by an observer
will not average to the true value, but show a personal bias. This effect may be
estimated by comparing the results of several observers.

4This is of course a rough statement, to be qualified by probabilistic statements if re-
quired.
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2. Calibration errors of the measurement apparatus: The art of measuring with
analog instruments is merely history, since digital displays replaced them. Cor-
rections, like zero shifts, non-linearities etc. are usually taken care of already in
the displayed value, but the applier should know, besides the resolution, also the
limit of accuracy of the average result for a large sample.

3. Errors of auxiliary quantities: Besides calibration constants, many other physical
quantities will influence the final result, all being subject to measurement errors
(particle characteristics, former experimental results...)

4. Errors of auxiliary quantities of theoretical origin: Sometimes it is not possible
to reach the required accuracy in theoretical calculations of such quantities. Also
then an uncertainty should be given, corresponding to a variance in a Bayesian
sense.

5. Uncertainties in the definition of the quantity to be measured: A measurement
result usually depends, besides from the quantity one wants to measure, on sur-
rounding conditions like temperature or pressure. The size of a body is well-
defined only for certain values of these parameters.

6. Errors of parameters determining the statistical model describing the data: Often
the parameter of interest is found by adapting a model which depends on this
parameter, to the data. Usually such model depends also on other, uninterest-
ing, parameters, called nuisance parameters in statistics, which often cannot be
derived from the data alone, but need external input with unavoidable uncer-
tainties.

The above items are neither non-overlapping nor complete. The following is an at-
tempt to give a more formal characterization of systematic errors, meeting, hopefully,
the general usage of this denotation.

Let us consider a measured quantity x with statistical error δx. To describe a
realistic situation, the final, corrected result x̃ is a function u of x and other, generally
also uncertain, auxiliary parameters a, b, . . .: Then a first measurement of x gives

x̃1 = u(x1, a, b, . . .) .

A repeated measurement, presumably under the same conditions, of x yields x2 and

x̃2 = u(x2, a, b, . . .)

with the same unchanged values5 of a, b, . . .. Taylor-expanding u around the expected
values 〈x〉, 〈a〉, 〈b〉 . . . and writing ∆xi = xi − 〈x〉, ux = ∂u/∂x etc., we get (in linear
approximation)

∆x̃i = ux∆xi + ua∆a+ ub∆b+ · · · .
Assuming, for simplicity, all variates on the right hand side as uncorrelated, we find,
after squaring and taking expectation values

var(x̃i) = u2xvar(xi) + u2avar(a) + u2bvar(b) + · · · ,
cov(x̃1, x̃2) = u2avar(a) + u2bvar(b) + · · · .

The corrected covariance matrix is no longer diagonal. The results of repetitions are
not independent, just because they are subject to the same “systematic” effects from
fluctuations of a, b, . . .:

5Besides x1, x2 also their statistical errors may differ.
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C̃ = u2x

(
var(x1) 0

0 var(x2)

)
+ [u2avar(a) + u2bvar(b) + · · ·]

(
1 1
1 1

)
.

This covariance matrix describes the uncertainty of a doubled measurement com-
pletely. The second matrix (of rank unity) expresses the fact that the two mea-
surements are totally positively correlated with respect to the fluctuations of the
auxiliary parameters a, b, . . .. The square root of the term in square brackets is
called systematic error and customarily given separately from the “statistical” er-
ror δxstati =

√
var(xi). Even more recommendable is the practice to give the list of

the systematic errors taken into account, i.e. the values a ± δa, uaδa, the same for
b, and so on. The main advantage of this separation is that it gives the information
on how far the accuracy can be enhanced by repetitions of the experiment. A sec-
ond argument against mixing up statistical and systematic errors is the fact that in
practice the latter are often less well known.

Coming back to the comparison of two independent measurements of x under
“apparently the same conditions” (4.4), we see that this criterium remains the same,
whether or not the identical systematic errors are taken into account. When combin-
ing the results, however, the systematic error stays constant. A nasty consequence
from this is that systematic errors not taken into account do not signal their existence
by larger fluctuations of the data. It is an important part of experimental work to
check carefully for any source of systematic errors, and to document every parameter
of potential influence.

4.2.3 Systematic Errors (G. Zech)

Introduction and Definition

Experiments in nuclear and particle physics usually extract the information from a
statistical data sample. The precision of the results then is mainly determined by the
number N of collected reactions. Besides the corresponding well defined statistical
errors, nearly every measurement is subject to further uncertainties, the systematic
errors, typically associated with auxiliary parameters related to the measuring ap-
paratus, or with model assumptions. The result is typically presented in the form
x = 2.34± 0.06 = 2.34± 0.05(stat.)± 0.03(syst.).

The only reason for the separate quotation of the two uncertainties is that the
size of the systematic uncertainties is less well known than that of the purely statis-
tical error. Thus, for example, excluding a prediction by say a 4 standard deviation
measurement where the errors are dominantly of systematic type is certainly less
convincing than if the result is purely statistical.

To illustrate the different quality of purely statistical errors and systematic errors,
imagine we read a pico-ampere meter. The needle is quivering and sometimes large
amplitudes occur due to pick-up. Observing the movement of the needle for some
time, we will be able to estimate the current and to guess the uncertainty. Repeating
the measurement many times will not sizably reduce the error. A tape-measure may
have expanded or shrunk due to temperature effects. The corresponding uncertainty
can be estimated roughly from the estimated range of temperature variations and
the known expansion coefficient of the tape material if it is made out of metal. It
may also be guessed from previous experience. Characteristic of most systematic
errors is that repeated measurements are generally correlated and thus the accuracy
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is not improved by a repetition. However, there are other systematic errors where a
repetition of a measurement is impossible, for instants when an auxiliary parameter is
taken from a technical data sheet or when the measurement has happened in the past.
It may happen that we have to derive a parameter from two or three independent
and thus uncorrelated observations following an unknown distribution. For instance,
the current of a magnet may have been measured at the beginning and at the end of
an experiment. The variation of the current introduces an error for the momentum
measurement of charged particles. The estimate of the uncertainty from only two
measurement will be rather vague and thus the error is of type systematic.

From these considerations follow the definitions:

Statistical errors are determined by objective statistical procedures. They follow
a known distribution like a Poisson rate or are determined empirically from the
distribution of an unbiased, sufficiently large sample. They show the typical reduction
of the error with 1/

√
N where N is the sample size.

On the contrary, systematic errors cannot be calculated solely from sampling
fluctuations and are at least partially based on assumptions made by the experimenter,
are model dependent or follow unknown distributions. Thus, the systematic error and
/ or its distribution are only vaguely known.

Most systematic errors do not share the 1/
√
N law of the statistical errors, but

there are exceptions and many systematic errors can be reduced with increasing
statistics of an experiment.

Systematic errors arise in most experiments. They are especially important in
high precision measurements like those of the magnetic dipole moment of the muon
or of the CP violation constants in the neutral kaon system.

Examples of Systematic Errors

Systematic uncertainties arise typically when instruments are poorly calibrated, or
are influenced, in a way not known exactly, by the environment (temperature, pres-
sure. . . ), or if thresholds or base levels are not constant in time. Besides uncertainties
regarding the measuring instruments, often the knowledge or the understanding of
parts of experimental setup, its acceptance and the sensitivity of detector components
is incomplete. These effects and only partially known background contributions lead
to systematic errors. Sometimes the data analysis requires additional experimental
input from other experiments or theoretical results have to be used, where especially
the latter may have uncertainties of unclear nature.

In some of these examples there is no “N ”, i.e. there is no possibility to produce
several independent guesses, or a repetition of the measurement would not produce
an independent result. It does not make sense to repeat the estimate of theoretical
uncertainties arising for instance from neglecting higher order terms in an expansion.
Sometimes the reason of the uncertainty lies in the past, the failure of some elec-
tronic part or the physicist has forgotten to record the atmospheric pressure which
influences some calibration constant. Other uncertainties like those of background
subtraction can be reduced with increasing statistics, but nevertheless there remains
some systematic uncertainty from an extrapolation. Often the measurement of an
interesting parameter is correlated with the value of another uninteresting parame-
ter. We call it a nuisance parameter. The uncertainty of the nuisance parameter can
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induce a systematic uncertainty on the interesting parameter which in first order
decreases like 1/

√
N with the number of observations.

How to Detect and Avoid Systematic Errors

In order to detect and to estimate systematic errors, experience, common sense, and
intuition is needed. A general advice is to try to suppress them as far as possible
already by an appropriate design of the experiment and to include the possibility
of control measurements, like regular calibration. Since correlation of repeated mea-
surement is characteristic for the presence of systematic errors, observed correlations
of results with parameters related to the systematic effects provide the possibility
to estimate and reduce the latter. In the pendulum example discussed above the
systematic contribution to the error due to a possible unknown bias in the stopping
procedure can be estimated by studying the result as a function of the number of peri-
ods and reduced by increasing the measurement time. In particle physics experiments
where usually only a fraction of events is accepted by some filtering procedure, it is
advisable to record also a fraction of those events that are normally rejected (down-
scaling) and to try to understand their nature. Some systematic effects are related
to the beam intensity, thus a variation of the beam intensity helps to study them.

How can we detect systematic errors caused for instance by background subtrac-
tion or efficiency corrections at the stage of data analysis? A widely used method is
the investigation of the results as a function of the selection criteria. A correlation of
the interesting parameter with the value of a cut-off parameter in a certain variable
is a clear indication for the presence of systematic errors. It is evident though that
the systematic errors then have to be much larger than the normal statistical fluc-
tuations in order to be detected. Obviously, we want to discriminate also systematic
errors which are of the same order of magnitude as the statistical ones, preferably
much smaller. Therefore we have to investigate samples, where the systematic effects
are artificially enhanced. If we suspect rate dependent distortion effects as those
connected with dead times, it is recommended to analyze a control sample with con-
siderably enhanced rate. When we eliminate a background reaction by a selection
criterion, we should investigate its importance in the region which has been excluded,
where it is supposed to be abundant.

Frequently made mistakes are: 1. From the fact that the data are consistent with
the absence of systematic errors, it is supposed that they do not exist. This leads
always to underestimation of systematic errors. 2. The changes of the results found
by changing the selection criteria are directly converted into systematic errors. This
in most cases leads to overestimates, because the variations are partially due to the
normal statistical fluctuations.

Treatment of Systematic Errors

Because of the difficulty to specify systematic errors accurately, scientists are rather
sceptical about results based on measurements which are dominated by systematic
errors. In any case, it is indispensable to declare the systematic and the statistical
contributions to the measurement error separately.

In many experiments there appears a quite large number – typically a dozen or
so – of such systematic uncertainties. When we combine systematic errors (see Sect.
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8.2), we can often profit from the central limit theorem (see Sect. 3.6.5) provided
that they are all of the same order of magnitude. The distribution of the sum of
variables suffering from systematic uncertainties approaches a normal distribution,
with variance equal to the sum of variances of the contributing distributions. If the
variables enter multiplicative, the logarithms are additive and approach a normal
distribution (see Sect. 8.2)

Sometimes systematic errors are combined linearly. There is no justification for
such a procedure.

Interesting studies of systematic error are presented in [25, 26].

Remarks: The notations statistical and systematic errors as used by us are some-
what unfortunate6 but they are common in particle physics. In many other fields of
physics errors which follow a precisely known distribution are absent and thus all
errors are more or less of the same quality. In the corresponding literature a system-
atic error is associated with a faulty measurement, leading to measured values being
systematically too high or too low with respect to the true value. This definition
is different from ours where error always means uncertainty. To avoid, and if this
is not possible, to detect systematic biases is an important part of experimentation
but systematic biases are not subject to a statistical treatment. If they are known
they are corrected for and need not be discussed. If they are unknown, we cannot
account for them. Some authors [26] implicitly define systematic errors as a system-
atic shift of unknown direction to be opposed to a random error. This denotation is
due to a frequentist view, where probabilities of constant parameters do not exist.
Nevertheless, in order to handle systematic errors also in this scheme a variance is
attributed to the systematics and the errors are added in quadrature. Thus the re-
sult is the same as in our treatment. Systematic errors can only be treated in the
Bayesian approach. But contrary to the pure Bayesian philosophy which does not
distinguish between the two kind of errors, we stress the importance to differentiate
between uncertainties which are due to a random process with known distribution
and errors which are partially based on vague information or subjective input. We
have to admit though that there are cases where a clear classification is difficult.

In part of the particle physics literature all error contributions from secondary
parameters which influence the parameter of interest, independent of their origin are
called systematic errors. This classification has the difficulty that in most cases the
parameter of interest is a complex function of many input variables and then the
error would be solely of the systematic type and a reason to distinguish between
statistical and systematic errors would no longer exist.

In Ref. [25] purely statistical uncertainties related to detector effects or secondary
measurements are called class 1 systematic errors, but the author states that a clas-
sification of these uncertainties as statistical errors would be more informative. He
subdivides further the real systematic errors following his definition of systematic
errors (which coincides with ours), into systematic errors related to experimental ef-
fects (class 2 ) and those depending on theoretical models (class 3 ). This distinction
makes sense, because our possibilities to reduce, detect and estimate class 2 and class
3 errors are very different.

6All quantities which are not exactly known are random variables and thus have statis-
tical uncertainties.
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4.2.4 Controversial Examples

The main difference in our points of view are illustrated in the two following examples:

1. An experiment measures a parameter A with a purely statistical error and pub-
lishes a ratio R = A/B where B is a published number, also with a purely
statistical error. The result has a statistical error only because it follows a known
statistical law (G. Zech); has also a systematic error component due to the fact
that B is an external parameter which, in case it might be used also in a second
experiment, would lead to correlations (G. Bohm).

2. A cross section is measured as a function of energy, where the different rates
Ai/B have a common normalization. The numerators Ai and the normalization
B have statistical errors only. The result has correlated statistical errors and no
systematic error (G. Zech); has a systematic error component (G. Bohm).

We both agree, that parameters where the errors are not well known or depend
on assumptions introduce systematic errors. While G. Bohm stresses the correlation
aspect as characteristic of systematic errors, G. Zech emphasizes the reliability of
the error estimation as relevant for the distinction of the two types of errors.

4.3 Linear Propagation of Errors

4.3.1 Error Propagation

We now want to investigate how a measurement error propagates into quantities
which are functions of the measurement. We consider a function y(x), a measure-
ment value xm ± δx, with the standard deviation δx, and are interested in ym, the
corresponding measurement of y and its error δy. If the p.d.f. f(x) is known, we
can determine the p.d.f. of y, its expectation value ym and the standard deviation
δy by an analytic or numerical transformation of the variables, as introduced above
in Chap. 3. We will assume, however, that the measurement error is small enough
to justify the approximation of the function by a linear expression within the error
limits. Then we need not know the p.d.f. f(x).

We use the Taylor expansion of y around xm:

y = y(xm) + y′(xm)∆x+
1

2!
y′′(xm)(∆x)2 + · · · .

We neglect quadratic and higher order terms, set ym equal to the expected value
of y, and (δy)2 equal to the expected value of the squared deviation. According to
the definition, the expected value of ∆x = x− xm is zero, and that of (∆x)2 equals
(δx)2. (In our notation quantities denoted by δ are expected values, i.e. fixed positive
parameters, while ∆x is a random variable). We get

ym = 〈y(x)〉
≈ 〈y(xm)〉+ 〈y′(xm)∆x〉 = y(xm) ,

and
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2 dy

2 dx

y

x

Fig. 4.1. Linear error propagation.

(δy)2 = 〈(y − ym)2〉
≈ 〈(y(xm) + y′(xm)∆x − ym)2〉
= y′2(xm)〈(∆x)2〉
= y′2(xm)(δx)2 ,

δy = |y′(xm)|δx .
This result also could have been red off directly from Fig. 4.1.

Examples of the linear propagation of errors for some simple functions are com-
piled below:

Function : Relation between errors :

y = axn ⇒ δy

|y| =
|n|δx
|x|

y = a ln(bx) ⇒ δy =
|a|δx
|x|

y = aebx ⇒ δy

|y| = |b|δx

y = tanx ⇒ δy

|y| =
δx

| cosx sinx|

4.3.2 Error of a Function of Several Measured Quantities

Most physical measurements depend on several input quantities and their uncertain-
ties. For example, a velocity measurement v = s/t based on the measurements of
length and time has an associated error which obviously depends on the errors of
both s and t.

Let us first consider a function y(x1, x2) of only two measured quantities with
values x1m, x2m and errors δx1, δx2. With the Taylor expansion
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y = y(x1m, x2m) +
∂y

∂x1
(x1m, x2m)∆x1 +

∂y

∂x2
(x1m, x2m)∆x2 + · · ·

we get as above to lowest order:

ym = 〈y(x1, x2)〉
= y(x1m, x2m)

and

(δy)2 = 〈(∆y)2〉

= (
∂y

∂x1
)2〈(∆x1)2〉+ (

∂y

∂x2
)2〈(∆x2)2〉+ 2(

∂y

∂x1
)(
∂y

∂x2
)〈∆x1∆x2〉

= (
∂y

∂x1
)2(δx1)

2 + (
∂y

∂x2
)2(δx2)

2 + 2(
∂y

∂x1
)(
∂y

∂x2
)R12δx1δx2 , (4.5)

with the correlation coefficient

R12 =
〈∆x1∆x2〉
δx1δx2

.

In most cases the quantities x1 and x2 are uncorrelated. Then the relation (4.5)
simplifies with R12 = 0 to

(δy)2 = (
∂y

∂x1
)2(δx1)

2 + (
∂y

∂x2
)2(δx2)

2 .

If the function is a product of independent quantities, it is convenient to use
relative errors as indicated in the following example:

z = xnym ,
(
δz

z

)2

=

(
n
δx

x

)2

+

(
m
δy

y

)2

.

It is not difficult to generalize our results to functions y(x1, .., xN ) of N measured
quantities. We obtain

(δy)2 =

N∑

i,j=1

(
∂y

∂xi

∂y

∂xj
Rijδxiδxj

)

=

N∑

i=1

(
∂y

∂xi
)2(δxi)

2

)
+

N∑

i6=j=1

(
∂y

∂xi

∂y

∂xj
Rijδxiδxj

)

with the correlation coefficient

Rij =
〈∆xi∆xj〉
δxiδxj

,

Rij = Rji ,

Rii = 1 .
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Covariance Matrix

To simplify the notation, we introduce the covariance matrix C

C =




〈∆x1∆x1〉, 〈∆x1∆x2〉, ... 〈∆x1∆xn〉
〈∆x2∆x1〉, 〈∆x2∆x2〉, ... 〈∆x2∆xn〉

: : :
〈∆xn∆x1〉, 〈∆xn∆x2〉, ... 〈∆xn∆xn〉


 ,

Cij = Rijδxiδxj

which, in this context, is also called error matrix. The covariance matrix by definition
is positive definite and symmetric. The error δy of the dependent variable y is then
given in linear approximation by

(δy)2 =

N∑

i,j=1

(
∂y

∂xi

∂y

∂xj
Cij

)

which can also be written in matrix notation as

(δy)2 = ∇yT
C∇y .

For two variables with normally distributed errors following (3.49)

N(∆x1, ∆x2) =
1

2πδ1δ2
√
1− ρ2

exp


−1

2

(∆x1)
2

δ21
− 2ρ∆x1∆x2

δ1δ2
+ (∆x2)

2

δ22

1− ρ2


 (4.6)

we get

C =

(
δ21 , ρδ1δ2

ρδ1δ2, δ22

)
.

Error Ellipsoids

Two-dimensional Gaussian error distributions like (4.6) (see Sect. 3.6.5) have the
property that the curves of constant probability density are ellipses. Instead of nσ
error intervals in one dimension, we define nσ error ellipses. The curve of constant
probability density with density down by a factor of exp(−n2/2) relative to the
maximal density is the nσ error ellipse.

For the error distribution in the form of (4.6) the error ellipse is

(∆x1)
2

δ21
− 2ρ∆x1∆x2

δ1δ2
+ (∆x2)

2

δ22

1− ρ2
= n2 .

For uncorrelated errors the one standard deviation error ellipse is simply

(∆x1)
2

δ21
+

(∆x2)
2

δ22
= 1 .

In higher dimensions, we obtain ellipsoids which we better write in vector notation:

∇yT
C∇y = n2 .
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4.3.3 Averaging Uncorrelated Measurements

Important measurements are usually performed by various experiments in parallel, or
are repeated several times. The combination of the results from various measurements
should be performed in such a way that it leads to optimal accuracy. Under these
conditions we can calculate a so-called weighted mean, with an error smaller than that
of any of the contributing measurements. As usual, we assume that the individual
measurements are independent.

As an example let us consider two measurements with measured values x1, x2
and errors δ1, δ2. With the relations given in Sect. 3.2.3, we find for the error squared
δ2 of a weighted sum

x = w1x1 + w2x2 ,

δ2 = w2
1δ

2
1 + w2

2δ
2
2 .

Now we chose the weights in such a way that the error of the weighted sum is
minimal, i.e. we seek for the minimum of δ2 under the condition w1 + w2 = 1. The
result is

wi =
1/δ2i

1/δ21 + 1/δ22

and for the combined error we get

1

δ2
=

1

δ21
+

1

δ22
.

Generally, for N measurements we find

x =

N∑

i=1

xi
δ2i
/

N∑

i=1

1

δ2i
, (4.7)

1

δ2
=

N∑

i=1

1

δ2i
. (4.8)

When all measurements have the same error, all the weights are equal to wi =
1/N , and we get the normal arithmetic mean, with the corresponding reduction of
the error by the factor 1/

√
N .

Remark: If the original raw data of different experiments are available, then we
have the possibility to improve the averaging process compared to the simple use
of the relations 4.7 and 4.8. When, for example, in two rate measurements of 1 and
2 hours duration, 2, respectively 12 events are observed, then the combined rate is
(2 + 12)/(1 h + 3 h) = 3.5 h−1, with an error ±0.9 h−1. Averaging according to (4.7)
would lead to too low a value of (3.2±1.2)h−1, due to the above mentioned problem of
small rates and asymmetric errors. The optimal procedure is in any case the addition
of the log-likelihoods which will be discussed in Chap. 8. It will correspond to the
addition of the original data, as done here.

4.3.4 Averaging Correlated Measurements

In Sect.4.3.3 we derived the expression for the weighted mean of independent mea-
surements of one and the same quantity. This is a special case of a more general
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result for a sample of N measurements of the same quantity which differ not only in
their variances, but are also correlated, and therefore not statistically independent.
Consequently, they have to be described by a complete N × N covariance or error
matrix C.

We choose the weights for a weighted mean such that the variance of the combined
value is minimal, in much the same way as in Sect.4.3.3 for uncorrelated measure-
ments. For simplicity, we restrict ourselves to two measurements x1,2. The weighted
sum x is

x = w1x1 + w2x2 , with w1 + w2 = 1 .

To calculate var(x) we have to take into account the correlation terms:

δ2x ≡ var(x) = w2
1C11 + w2

2C22 + 2w1w2C12 .

The minimum of δ2x is achieved for

w1 =
C22 − C12

C11 + C22 − 2C12
,

w2 =
C11 − C12

C11 + C22 − 2C12
. (4.9)

The uncorrelated weighted mean corresponds to C12 = 0. Contrary to this case,
where the expression for the minimal value of δ2x is particularly simple, it is not as
transparent in the correlated case.

The case of N correlated measurements leads to the following expression for the
weights:

wi =

∑N
j=1 Vij∑N
i,j=1 Vij

,

where V is the inverse matrix of C which we called the weight matrix in Sect. 3.6.5.

Example 50. Average of measurements with common off-set error

Several experiments (i) determine the energy E∗
i of an excited nuclear state

by measuring its transition energy Ei with the uncertainty δi to the ground
state with energy E0. They take the value of E0 from the same table which
quotes an uncertainty of δ0 of the ground state energy. Thus the results
E∗

i = Ei + E0 are correlated. The covariance matrix is

Cij = 〈(∆i +∆0)(∆j +∆0)〉 = δ2i δij + δ20 .

C is the sum of a diagonal matrix and a matrix where all elements are iden-
tical, namely equal to δ20 . In this special situation the variance var(x) ≡ δ2x
of the combined result x =

∑
wixi is

δ2 =
∑

i

w2
iCii +

∑

i6=j

wiwjCij

=
∑

w2
i δ

2
i +

(∑
wi

)2
δ20 .

Since the second sum is unity, the second term is unimportant when we
minimize δ2, and we get the same result (4.7) for the weighted mean E∗ as
in the uncorrelated case. For its error we find, as could have been expected,

δ2 =

(∑ 1

δ2i

)−1

+ δ20 .
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It is interesting that in some rare cases the weighted mean of two correlated
measurements x1 and x2 is not located between the individual measurement, the
so-called “mean value” is not contained in the interval [x1, x2].

Example 51. Average outside the range defined by the individual measure-
ments

The matrix

C =

(
1 2
2 5

)

with eigenvalues
λ1,2 = 3±

√
8 > 0

is symmetric and positive definite and thus a possible covariance matrix. But
following (4.9) it leads to weights w1 = 3

2 , w2 = − 1
2 . Thus the weighted mean

x = 3
2x1 − 1

2x2 with x1 = 0, x2 = 1 will lead to x = − 1
2 which is less than

both input values. The reason for this sensible but at first sight unexpected
result can be understood intuitively in the following way: Due to the strong
correlation, x1 and x2, both will usually be either too large or too low. An
indication, that x2 is too large is the fact that it is larger than x1 which is
the more precise measurement. Thus the true value x then is expected to be
located below both x1 and x2.

4.3.5 Several Functions of Several Measured Quantities

When we fix a straight line by two measured points in the plane, we are normally
interested in its slope and its intercept with a given axis. The errors of these two
quantities are usually correlated. The correlations often have to be known in subse-
quent calculations, e.g. of the crossing point with a second straight line.

In the general case we are dealing with K functions yk(x1, .., xN ) of N variables
with given measurement values xi and error matrix C. The symmetric error matrix
E related to the values yk is

〈∆yk∆yl〉 =
N∑

i,j=1

(
∂yk
∂xi

∂yl
∂xj

〈∆xi∆xj〉
)
, (4.10)

Ekl =

N∑

i,j=1

∂yk
∂xi

∂yl
∂xj

Cij .

Defining a matrix

Dki =
∂yk
∂xi

,

we can write more compactly

Ekl =

N∑

i,j=1

DkiDljCij .



4.3 Linear Propagation of Errors 101

4.3.6 Examples

The following examples represent some standard cases of error propagation.

Example 52. Error propagation: velocity of a sprinter

Given are s = (100.0± 0.1)m, t = (10.00± 0.02) s, searched for is δv:

(
δv

v

)2

=

(
δt

t

)2

+

(
δs

s

)2

,

δv

v
=

√(
0.02

10

)2

+

(
0.1

100

)2

= 2.2 10−3 .

Example 53. Error propagation: area of a rectangular table

Given are the sides a, b with a reading error δ1 and a relative scaling error
δ2, caused by a possible extension or shrinkage of the measuring tape. We
want to calculate the error δF of the area F = ab. We find

(δa)
2 = (δ1)

2 + (aδ2)
2 ,

(δb)
2 = (δ1)

2 + (bδ2)
2 ,

Cab = ab(δ2)
2 ,

(δF )2 = b2(δa)
2 + a2(δb)

2 + 2abCab ,
(
δF

F

)2

= (δ1)
2

(
1

a2
+

1

b2

)
+ 2(δ2)

2 .

For large areas, the contribution of the reading error is negligible compared
to that of the scaling error.

Example 54. Straight line through two measured points

Given are two measured points (x1, y1 ± δy1), (x2, y2 ± δy2) of the straight
line y = mx + b, where only the ordinate y possesses an error. We want to
find the error matrix for the intercept

b = (x2y1 − x1y2)/(x2 − x1)

and the slope
m = (y2 − y1)/(x2 − x1) .

According to (4.10) we calculate the errors

(δm)2 =
(δy2)

2 + (δy1)
2

(x2 − x1)2
,

(δb)2 =
x22(δy1)

2 + x21(δy2)
2

(x2 − x1)2
,

E12 = 〈∆m∆b〉 = −x2(δy1)
2 + x1(δy2)

2

(x2 − x1)2
.

The error matrix E for m and b is therefore
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E =
1

(x2 − x1)2

(
(δy1)

2 + (δy2)
2, −x2(δy1)2 − x1(δy2)

2

−x2(δy1)2 − x1(δy2)
2, x22(δy1)

2 + x21(δy2)
2

)
.

The correlation matrix element R12 is

R12 =
E12

δm δb
,

= − x2(δy1)
2 + x1(δy2)

2

{[(δy2)2 + (δy1)2] [x22(δy1)
2 + x21(δy2)

2]}1/2
. (4.11)

For the special case δy1 = δy2 = δy the results simplify to

(δm)2 =
2

(x1 − x2)2
(δy)2 ,

(δb)2 =
(x21 + x22)

(x1 − x2)2
(δy)2 ,

E12 = − (x1 + x2)

(x1 − x2)2
(δy)2 ,

R12 = − x1 + x2√
2(x21 + x22)

.

Remark: As seen from (4.11), for a suitable choice of the abscissa the correla-
tion disappears. To achieve this, we take as the origin the “center of gravity”
xs of the x-values xi, weighted with the inverse squared errors of the ordi-
nates, 1/(δyi)2:

xs =
∑ xi

(δyi)2
/
∑ 1

(δyi)2
.

Example 55. Error of a sum of weighted measurements

In the evaluation of event numbers, the events are often counted with different
weights, in order to take into account, for instance, a varying acceptance of
the detector. Weighting is also important in Monte Carlo simulations (see
5.2.6) especially when combined with parameter estimation Sect. 6.5.9 An
event with weight 10 stands for 10 events with weight 1. For N events with
weights w1 . . . wN the weighted number of events is

s =
N∑

i=1

wi .

This sum s stands for N measurements with result xi = 1 in each of them
and where the results are added after weighting with wi: s =

∑
wixi. The

error of this sum is δ2s =
∑
w2

i δ
2
i . Since each individual result corresponds

to a Poisson distribution with mean equal to 1, it has also variance of 1 and
thus δ2i = 1. We thus obtain

δ2s =
∑

w2
i .

which corresponds to the variance of the sum of weighted events as derived
in Sect. 3.6.3.
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4.4 Biased Measurements

We have required that our measurement values xi are undistorted (unbiased). We
have used this property in the discussion of error propagation. Anyway, it is rather
plausible that we should always avoid biased measurements, because averaging mea-
surements with a common bias would produce a result with the same bias. The
average from infinitely many measurements would thus be different from the true
parameter value but the associated error would be infinitely small. However a closer
look at the problem reveals that the requirement of unbiasedness has also its prob-
lems: When we average measurements, the measurements xi are weighted with 1/δ2i ,
their inverse squared errors, as we have seen above. To be consistent, it is therefore
required that the quantities xi/δ

2
i are unbiased! Of course, we explicitly excluded the

possibility of errors which depend on the measurement values, but since this require-
ment is violated so often in reality and since a bias which is small compared to the
uncertainty in an individual experiment can become important in the average, we
stress this point here and present an example.

Example 56. Bias in averaging measurements

Let us assume that several measurements of a constant x0 produce unbiased
results xi with errors δi ∼ xi which are proportional to the measurements.
This could be, for instance, measurements of particle lifetimes, where the
relative error is determined by the number of recorded decays and thus the
absolute error is set proportional to the observed mean life. When we compute
the weighted mean x over many such measurements

x =
∑ xi

δ2i
/
∑ 1

δ2i

=
∑ 1

xi
/
∑ 1

x2i

≈ 〈1/x〉 /
〈
1/x2

〉

the expected value is shifted systematically to lower values. This is easily
seen from a Taylor expansion of the expected values:

〈x− x0〉 =
〈1/x〉
〈1/x2〉 − x0 ,

〈
1

x

〉
=

1

x0

(
1−

〈
∆x

x0

〉
+

〈
∆x2

x20

〉
+ · · ·

)

≈ 1

x0
(1 +

δ2

x20
) ,

〈
1

x2

〉
=

1

x20

(
1− 2

〈
∆x

x0

〉
+ 3

〈
∆x2

x20

〉
+ ..

)

≈ 1

x20
(1 + 3

δ2

x20
) ,

〈x− x0〉 ≈ x0
1 + δ2/x20
1 + 3δ2/x20

− x0

≈ x0(1− 2δ2/x20)− x0 ,

〈x− x0〉
x0

≈ −2
δ2

x20
.



104 4 Measurement errors

Here δ2 is the expectation of the error squared in an individual measurement.
For a measurement error δ/x0 of 20% we obtain a sizable final bias of 8% for
the asymptotic result of infinitely many contributions.

The revised requirement of unbiasedness of measurements divided by the error
squared does not alter the other results which we have derived for the general error
propagation in the linear approximation.

4.5 Confidence Intervals

Under the condition that the error distribution is a one-dimensional Gaussian, with
a width independent of the expected value, the error intervals of many repeated
measurements will cover the true parameter value in 68.3 % of the cases, because for
any true value µ the probability to observe x inside one standard deviation interval
is

1√
2πδ

∫ δ

−δ

exp

[
− (x− µ)2

2δ2

]
dx ≈ 0.683

The region [x−δ, x+δ] is called a confidence interval7 with the confidence level (CL)
of 68.3%, or, in physicists’ jargon, a 1σ confidence interval. Thus in about one third
of the cases our standard error intervals, under the above assumption of normality,
will not contain the true value. Often a higher safety is desired, for instance 90 %,
95 %, or even 99 %. The respective limits can be calculated, provided the probability
distribution is known with sufficient accuracy. For the normal distribution we present
some limits in units of the standard deviation in Table 4.2. The numerical values can
be taken from tables of the χ2-distribution function.

Example 57. Confidence level for the mean of normally distributed variates

Let us consider a sample of N measurements x1, . . . , xN which are supposed
to be normally distributed with unknown mean µ but known variance σ2.
The sample mean x is also normally distributed with variance δN = σ/

√
N .

The 1σ confidence interval [x−δN , x+δN ] covers, as we have discussed above,
the true value µ in 68.3 % of the cases. We can, with the help of Table 4.2,
also find a 99 % confidence level, i.e. [x− 2.58δN , x+ 2.58δN ].

We have to keep in mind that the Gaussian confidence limits do not or only
approximately apply to other distributions. Error distributions often have tails which
are not well understood. Then it is impossible to derive reliable confidence limits
with high confidence levels. The same is true when systematic errors play a role, for
example due to background and acceptance which usually are not known with great
accuracy. Then for a given confidence level much wider intervals than in the above
case are required.

We come back to our previous example but now we assume that the error has to
be estimated from the sample itself, according to (4.1), (4.3):

δ
2

N =

N∑

i=1

(xi − x)2/[N(N − 1)] .

7We will discuss confidence intervals in more detail in Chap. 8 and in Appendix 13.5.
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Table 4.2. Left hand side: confidence levels for several error limits and dimensions, right
hand side: error limits in units of σ for several confidence levels and dimensions.

Deviation Dimension
1 2 3 4

1 σ 0.683 0.393 0.199 0.090
2 σ 0.954 0.865 0.739 0.594
3 σ 0.997 0.989 0.971 0.939
4 σ 1. 1. 0.999 0.997

Confidence Dimension
level 1 2 3 4
0.50 0.67 1.18 1.54 1.83
0.90 1.65 2.14 2.50 2.79
0.95 1.96 2.45 2.79 3.08
0.99 2.58 3.03 3.37 3.64

Table 4.3. Values of the factor k for the Student’s t-distribution as a function of the
confidence levels CL and sample size N .

N 68.3% 99%

3 1.32 3.85
10 1.06 1.26
20 1.03 1.11
∞ 1.00 1.00

To compute the confidence level for a given interval in units of the standard devia-
tion, we now have to switch to Student’s distribution (see Sect. 3.6.11). The variate
t, given by (x − µ)/δN , can be shown to be distributed according to hf(t) with
f = N − 1 degrees of freedom. The confidence level for a given number of standard
deviations will now be lower, because of the tails of Student’s distribution. Instead of
quoting this number, we give in Table 4.3 the factor k by which we have to increase
the interval length to get the same confidence level as in the Gaussian case. To clarify
its meaning, let us look at two special cases: For 68.3% confidence and N = 3 we
require a 1.32 standard deviation interval and for 99% confidence and N = 10 a
1.26 × 2.58 = 3. 25 standard deviation interval. As expected, the discrepancies are
largest for small samples and high confidence levels. In the limit when N approaches
infinity the factor k has to become equal to one.

Often it is overlooked that for distributions of several variates, the probability
to find all variables inside their error limits is strongly decreasing with the number
of variables. Some probabilities for Gaussian errors are given in Table 4.2. In three
dimensions only 20 % of the observations are found in the 1σ ellipsoid. Fig. 4.2 shows
confidence ellipses and probabilities for two variables.
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Monte Carlo Simulation

5.1 Introduction

The possibility to simulate stochastic processes and of numerical modeling on the
computer simplifies extraordinarily the solution of many problems in science and
engineering. The deeper reason for this is characterized quite aptly by the German
saying “Probieren geht über studieren” (Trying beats studying). Monte Carlo meth-
ods replace intellectual by computational effort which, however, is realized by the
computer.

A few simple examples will demonstrate the advantages, but also the limits of
this method. The first two of them are purely mathematical integration problems
which could be solved also by classical numerical methods, but show the conceptual
simplicity of the statistical approach.

Example 58. Area of a circle of diameter d

We should keep in mind that without the knowledge of the quantity π the
problem requires quite some mathematics but even a child can solve this
problem experimentally. It may inscribe a circle into a square with edge
length d, and sprinkles confetti with uniform density over it. The fraction of
confetti confined inside the circle provides the area of the circle in units of
the square area. Digital computers have no problem in “sprinkling confetti”
homogeneously over given regions.

Example 59. Volume of the intersection of a cone and a torus

We solve the problem simply by scattering points homogeneously inside a
cuboid containing the intersect. The fraction of points inside both bodies is
a measure for the ratio of the intersection volume to that of the cuboid.

In the following three examples we consider the influence of the measurement
process on the quantity to be determined.

Example 60. Correction of decay times

The decay time of instable particles is measured with a digital clock which is
stopped at a certain maximal time. How can we determine the mean lifetime
of the particles? The measured decay times are distorted by both the limited
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resolution as well as by the finite measurement time, and have to be corrected.
The correction can be determined by a simulation of the whole measurement
process. (We will come back to details below.)

Example 61. Efficiency of particle detection

Charged particles passing a scintillating fiber produce photons. A fraction of
the photons is reflected at the surface of the fiber, and, after many reflec-
tions, eventually produces a signal in a photomultiplier. The photon yield
per crossing particle has to be known as a function of several parameters
like track length of the particle inside the fiber, its angle of incidence, fiber
length and curvature, surface parameters of the fiber etc.. Here a numerical
solution using classical integration methods would be extremely involved and
an experimental calibration would require a large number of measurements.
Here, and in many similar situations, a Monte Carlo simulation is the only
sensible approach.

Example 62. Measurement of a cross section in a collider experiment

Particle experiments often consist of millions of detector elements which have
to measure the trajectories of sometimes thousands of particles and the en-
ergies deposited in an enormous number of calorimeter cells. To measure a
specific cross section, the corresponding events have to be selected, accep-
tance losses have to be corrected, and unavoidable background has to be
estimated. This can only be achieved by sophisticated Monte Carlo simu-
lations which require a huge amount of computing time. These simulations
consist of two distinct parts, namely the generation of the particle reaction
(event generation) which contains the interesting physics, and the simulation
of the detector response. The computing time needed for the event genera-
tion is negligible compared to that required for the detector simulation. As
a consequence one tries to avoid the repetition of the detector simulation
and takes, if possible, modifications of the physical process into account by
re-weighting events.

Example 63. Reaction rates of gas mixtures

A vessel contains different molecules with translational and rotational move-
ments according to the given temperature. The molecules scatter on the
walls, with each other and transform into other molecules by chemical pro-
cesses depending on their energy. To be determined is the composition of the
gas after a certain time. The process can be simulated for a limited number
of particles. The particle trajectories and the reactions have to be computed.

All examples lead finally to integration problems. In the first three examples also
numerical integration, even exact analytical methods, could have been used. For the
Examples 61 and 63, however, this is hardly possible, since the number of variables
is too large. Furthermore, the mathematical formulation of the problems becomes
rather involved.

Monte Carlo simulation does not require a profound mathematical expertise. Due
to its simplicity and transparency mistakes can be avoided. It is true, though, that
the results are subject to statistical fluctuations which, however, may be kept small
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enough in most cases thanks to the fast computers available nowadays. For the simu-
lation of chemical reactions, however, (Example 63) we reach the limits of computing
power quite soon, even with super computers. The treatment of macroscopic quan-
tities (one mole, say) is impossible. Most questions can be answered, however, by
simulating small samples.

Nowadays, even statistical problems are often solved through Monte Carlo simu-
lations. In some big experiments the error estimation for parameters determined in a
complex analysis is so involved that it is easier to simulate the experiment, including
the analysis, several times, and to derive the errors quasi experimentally from the
distribution of the resulting parameter values. The relative statistical fluctuations
can be computed for small samples and then scaled down with the square root of the
sample size.

In the following section we will treat the simulation of the basic univariate distri-
butions which are needed for the generation of more complex processes. The general-
ization to several dimensions is not difficult. Then we continue with a short summary
on Monte Carlo integration methods.

5.2 Generation of Statistical Distributions

The simplest distribution is the uniform distribution which serves as the basis for
the generation of all other distributions. In the following we will introduce some
frequently used methods to generate random numbers with desired distributions.

Some of the simpler methods have been introduced already in Chap. 3, Sect.
3.6.4, 3.6.5: By a linear transformation we can generate uniform distributions of any
location and width. The sum of two uniformly distributed random numbers follows
a triangular distribution. The addition of only five such numbers produces a quite
good approximation of a Gaussian variate.

Since our computers work deterministically, they cannot produce numbers that
are really random, but they can be programmed to deliver for practically any appli-
cation sufficiently unordered numbers, pseudo random numbers which approximate
random numbers to a very good accuracy.

5.2.1 Computer Generated Pseudo Random Numbers

The computer delivers pseudo random numbers in the interval between zero and
one. Because of the finite number of digits used to represent data in a computer,
these are discrete, rational numbers which due to the usual floating point accuracy
can take only 218 ≈ 8 · 106 different values, and follow a fixed, reproducible sequence
which, however, appears as stochastic to the user. More refined algorithms can avoid,
though, the repetition of the same sequence after 218 calls. The Mersenne twister,
one of the fastest reasonable random number generators, invented in 1997 by M.
Matsomoto and T. Nishimura has the enormous period of 219937 which never can
be exhausted and is shown to be uniformly distributed in 623 dimensions. In all
generators, the user has the possibility to set some starting value, called seed, and
thus to repeat exactly the same sequence or to interrupt a simulation and to continue
with the sequence in order to generate statistically independent samples.
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In the following we will speak of random numbers also when we mean pseudo
random numbers.

There are many algorithms for the generation of random numbers. The principle
is quite simple: One performs an arithmetic operation and uses only the insignificant
digits of the resulting number. How this works is shown by the prescription

xi+1 = n−1 mod(λxi;n) ,

producing from the old random number xi a new one between zero and one. The
parameters λ and n fulfil the condition λ ≫ n. With the values x1 = 0.7123, λ =
4158, n = 1 we get, for instance, the number

x2 = mod(2961.7434; 1) = 0.7434 .

The apparent “randomness” is due to the cutting off the significant digits by the mod
operation.

This random number generator is far from being perfect, as can be shown ex-
perimentally by investigation of the correlations of consecutive random numbers.
The generators installed in the commonly used program libraries are almost always
sufficiently good. Nevertheless it is advisable to check their quality before starting
important calculations. Possible problems with random number generators are that
they have a shorter than expected repetition period, correlations of successive values
and lack of uniformity. For simulations which require a high accuracy, we should re-
member that with the standard generators only a limited number of random numbers
is available. Though intuitively attractive, randomly mixing the results of different
random number generators does not improve the overall quality.

In Fig. 5.1 the values of two consecutive random numbers from a PC routine are
plotted against each other. Obvious correlations and clustering cannot be detected.
The histogram of a projection is well compatible with a uniform distribution. A
quantitative judgment of the quality of random number generators can be derived
with goodness-of-fit tests (see Chap. 10).

In principle, one could of course integrate random number generators into the
computers which indeed work stochastically and replace the deterministic generators.
As physical processes, the photo effect or, even simpler, the thermal noise could be
used. Each bit of a computer word could be set by a dual oscillator which is stopped by
the stochastic process. Unfortunately, such hardware random number generators are
presently not used, although they could be produced quite economically, presumably
≈ 103 in a single chip. They would make obsolete some discussions, which come
up from time to time, on the reliability of software generators. On the other hand,
the reproducibility of the random number sequence is quite useful when we want to
compare different program versions, or to debug them.

5.2.2 Generation of Distributions by Variable Transformation

Continuous Variables

With the restrictions discussed above, we can generate with the computer random
numbers obeying the uniform distribution

u(r) = 1 for 0 ≤ r ≤ 1.
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Fig. 5.1. Correlation plot of consequtive random numbers (top) and frequency of random
numbers (bottom).

In the following we use the notations u for the uniform distribution and r for
a uniformly distributed variate in the interval [0, 1]. Other univariate distributions
f(x) are obtained by variable transformations r(x) with r a monotone function of x
(see Chap. 3):

f(x)dx = u(r)dr,
∫ x

−∞
f(x′)dx′ =

∫ r(x)

0

u(r′)dr′ = r(x),
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Fig. 5.2. The p.d.f (top) follows from the distribution function as indicated by the arrows.

F (x) = r,

x(r) = F−1(r) .

The variable x is calculated from the inverse function F−1 where F (x) is the
distribution function which is set equal to r. For an analytic solution the p.d.f. has
to be analytically integrable and the distribution function must have an inverse in
analytic form.

The procedure is explained graphically in Fig. 5.2: A random number r between
zero and one is chosen on the ordinate. The distribution function (or rather its
inverse) then delivers the respective value of the random variable x.

In this way it is possible to generate the following distributions by simple variable
transformation from the uniform distribution:

• Linear distribution:

f(x) = 2x 0 ≤ x ≤ 1 ,

x(r) =
√
r .

• Power-law distribution:

f(x) = (n+ 1)xn 0 ≤ x ≤ 1, n > −1 ,

x(r) = r1/(n+1) .

• Exponential distribution (Sect. 3.6.6) :
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f(x) = γe−γx,

x(r) = − 1

γ
ln(1 − r) .

• Normal distribution (Sect. 3.6.5) : Two independent normally distributed random
numbers x, y are obtained from two uniformly distributed random numbers r1, r2,
see (3.38), (3.39).

f(x, y) =
1

2π
exp

[
−x

2 + y2

2

]
,

x(r1, r2) =
√
−2 ln(1− r1) cos(2πr2) ,

y(r1, r2) =
√
−2 ln(1− r1) sin(2πr2) .

• Breit-Wigner distribution (Sect3.6.9) :

f(x) =
1

πΓ/2

(Γ/2)2

x2 + (Γ/2)2
,

x(r) =
Γ

2
tan

[
π(r − 1

2
)

]
.

• Log-Weibull (Fisher–Tippett) distribution (3.6.12)

f(x) = exp(−x− e−x),

x(r) = − ln(− ln r) .

The expression 1 − r can be replaced by r in the formulas. More general ver-
sions of these distributions are obtained by translation and/or scaling operations.
A triangular distribution can be constructed as a superposition of two linear distri-
butions. Correlated normal distributed random numbers are obtained by scaling x
and y differently and subsequently rotating the coordinate frame. How to generate
superpositions of distributions will be explained in Sect. 5.2.5.

Uniform Angular, Circular and Spherical Distributions

Very often the generation of a uniform angular distribution is required. The azimuthal
angle ϕ is given by

ϕ = 2πr .

To obtain a spatially isotropic distribution, we have also to generate the polar angle θ.
As we have discussed in Sect. 3.5.8, its cosine is uniformly distributed in the interval
[−1, 1]. Therefore

cos θ = (2r1 − 1) ,

θ = arccos(2r1 − 1) ,

ϕ = 2πr2 .

A uniform distribution inside a circle of radius R0 is generated by

R = R0
√
r1,

ϕ = 2πr2 .
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Fig. 5.3. Generation of a Poisson distributed random number.

Because the differential area element is R dR dϕ, we have a linear distribution in R.

A uniform distribution inside a sphere of radius R0 is obtained similarly from

R = R0r
1/3
1 ,

θ = arccos(2r2 − 1) ,

ϕ = 2πr3 ,

with a quadratic distribution in R.

Discrete Distributions

The generation of random numbers drawn from discrete distributions is performed
in a completely analogous fashion. We demonstrate the method with a simple exam-
ple: We generate random numbers k following a Poisson distribution P (k|4.6) with
expected value 4.6 which is displayed in Fig. 5.3. By summation of the bins starting
from the left (integration), we obtain the distribution function S(k) = Σi=k

i=0P (i|4.6)
shown in the figure. To a uniformly distributed random number r we attach the value
k which corresponds to the minimal S(k) fulfilling S > r. The numbers k follow the
desired distribution.
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Fig. 5.4. Random selection method. The projection of the points located below the curve
follow the desired distribution.

Histograms

A similar method is applied when an empirical distribution given in the form of a
histogram has to be simulated. The random number r determines the bin j. The
remainder r − S(j − 1) is used for the interpolation inside the bin interval. Often
the bins are small enough to justify a uniform distribution for this interpolation. A
linear approximation does not require much additional effort.

For two-dimensional histograms hij we first produce a projection,

gi =
∑

j

hij ,

normalize it to one, and generate at first i, and then for given i in the same way j.
That means that we need for each value of i the distribution summed over j.

5.2.3 Simple Rejection Sampling

In the majority of cases it is not possible to find and invert the distribution function
analytically. As an example for a non-analytic approach, we consider the generation
of photons following the Planck black-body radiation law. The appropriately scaled
frequency x obeys the distribution

f(x) = c
x3

ex − 1
(5.1)

with the normalization constant c. This function is shown in Fig. 5.4 for c = 1, i.e.
not normalized. We restrict ourselves to frequencies below a given maximal frequency
xmax.

A simple method to generate this distribution f(x) is to choose two uniformly
distributed random numbers, where r1 is restricted to the interval (xmin, xmax) and
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Fig. 5.5. Majorant (dashed) used for importance sampling.

r2 to (0, fmax). This pair of numbers P (r1, r2) corresponds to a point inside the
rectangle shown in the figure. We generate points and those lying above the curve
f(x) are rejected. The density of the remaining r1 values follows the desired p.d.f.
f(x).

A disadvantage of this method is that it requires several randomly distributed
pairs to select one random number following the distribution. In our example the
ratio of successes to trials is about 1:10. For generating photons up to arbitrary large
frequencies the method cannot be applied at all.

5.2.4 Importance Sampling

An improved selection method, called importance sampling, is the following: We
look for an appropriate function m(x), called majorant, with the properties

• m ≥ f for all x,

• x =M−1(r), i.e. the indefinite integral M(x) =
∫ x

−∞m(x′)dx′ is invertible,

If it exists (see Fig. 5.5), we generate x according to m(x) and, in a second step,
drop stochastically for given x the fraction [m(x) − f(x)]/f(x) of the events. This
means, for each event (i.e. each generated x) a second, this time uniform random
number between zero and m(x) is generated, and if it is larger than f(x), the event
is abandoned. The advantage is, that for m(x) being not much different from f(x)
in most of the cases, the generation of one event requires only two random numbers.
Moreover, in this way it is possible to generate also distributions which extend to
infinity, as for instance the Planck distribution, and many other distributions.

We illustrate the method with a simple example (Fig. 5.5):

Example 64. Importance sampling
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Fig. 5.6. Planck spectrum with majorant.

To generate
f(x) = c(e−0.2x sin2 x) for 0 < x <∞

with the majorant
m(x) = c e−0.2x ,

we normalize m(x) and calculate its distribution function

r =

∫ x

0

0.2e−0.2x′

dx′

= 1− e−0.2x .

Thus the variate transformation from the uniformly distributed random num-
ber r1 to x is

x = − 1

0.2
ln(1− r1) .

We draw a second uniform random number r2, also between zero and one,
and test whether r2m(x) exceeds the desired p.d.f. f(x). If this is the case,
the event is rejected:

for r2m(x) < sin2 x → keep x,

for r2m(x) > sin2 x → drop x .

With this method a uniform distribution of random points below the majo-
rant curve is generated, while only those points are kept which lie below the
p.d.f. to be generated. On average about 4 random numbers per event are
needed in this example, since the test has a positive result in about half of
the cases.

If an appropriate continuous, analytical majorant function cannot be found, often
a piecewise constant function (step function) is chosen.



118 5 Monte Carlo Simulation

0 5 10 15 20
1

10

100

1000

10000

y

x
Fig. 5.7. Generated Planck spectrum.

Example 65. Generation of the Planck distribution

Here a piecewise defined majorant is useful. We consider again the Planck
distribution (5.1), and define the majorant in the following way: For small
values x < x1 we chose a constant majorant m1(x) = 6 c. For larger val-
ues x > x1 the second majorant m2(x) should be integrable with invertible
integral function. Due to the x3-term, the Planck distribution decreases some-
what more slowly than e−x. Therefore we chose for m2 an exponential factor
with x substituted by x1−ε. With the arbitrary choice ε = 0.1 we take

m2(x) = 200 c x−0.1e−x0.9

.

The factor x−0.1 does not influence the asymptotic behavior significantly but
permits the analytical integration:

M2(x) =

∫ x

x1

m2(x
′)dx′,

=
200c

0.9

[
e−x0.9

1 − e−x0.9
]
.

This function can be easily solved for x, therefore it is possible to generate
m2 via a uniformly distributed random number. Omitting further details of
the calculation, we show in Fig. 5.6 the Planck distribution with the two
majorant pieces in logarithmic scale, and in Fig. 5.7 the generated spectrum.



5.2 Generation of Statistical Distributions 119

5.2.5 Treatment of Additive Probability Densities

Quite often the p.d.f. to be considered is a sum of several terms. Let us restrict
ourselves to the simplest case with two terms,

f(x) = f1(x) + f2(x) ,

with

S1 =

∫ ∞

−∞
f1(x)dx ,

S2 =

∫ ∞

−∞
f2(x)dx ,

S1 + S2 = 1 .

Now we chose with probability S1 (S2) a random number distributed according
to f1 (f2). If the integral functions

F1(x) =

∫ x

−∞
f1(x

′)dx′ ,

F2(x) =

∫ x

−∞
f2(x

′)dx′

are invertible, we obtain with a uniformly distributed random number r the variate
x distributed according to f(x):

x = F−1
1 (r) for r < S1 ,

respectively
x = F−1

2 (r − S1) for r > S1 .

The generalization to more than two terms is trivial.

Example 66. Generation of an exponential distribution with constant back-
ground

In order to generate the p.d.f.

f(x) = ε
λe−λx

1− e−λa
+ (1− ε)

1

a
für 0 < x < a ,

we chose for r < ε

x =
−1

λ
ln

(
1− 1− e−λa

ε
r

)
,

and for r > ε

x = a
r − ε

1− ε
.

We need only one random number per event. The direct way to use the
inverse of the distribution function F (x) would not have been successful,
since it cannot be given in analytic form.

The separation into additive terms is always recommended, even when the indi-
vidual terms cannot be handled by simple variate transformations as in the example
above.
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5.2.6 Weighting Events

In Sect. 3.6.3 we have discussed some statistical properties of weighted events and
realized that the relative statistical error of a sum of N weighted events can be much
larger than the Poisson value 1/

√
N , especially when the individual weights are very

different. Thus we will usually refrain from weighting. However, there are situations
where it is not only convenient but essential to work with weighted events. If a large
sample of events has already been generated and stored and the p.d.f. has to be
changed afterwards, it is of course much more economical to re-weight the stored
events than to generate new ones because the simulation of high energy reactions
in highly complex detectors is quite expensive. Furthermore, for small changes the
weights are close to one and will not much increase the errors. As we will see later,
parameter inference based on a comparison of data with a Monte Carlo simulation
usually requires re-weighting anyway.

An event with weight w stands for w identical events with weight 1. When in-
terpreting the results of a simulation, i.e. calculating errors, one has to take into
account the distribution of a sum of weights, see last example in Sect. 4.3.6. There
we showed that

var
(∑

wi

)
=
∑

w2
i .

Relevant is the relative error of a sum of weights:

δ (
∑
wi)∑
wi

=

√∑
w2

i∑
wi

.

Strongly varying weights lead to large statistical fluctuations and should therefore
be avoided.

To simulate a distribution

f(x) : with xa < x < xb

with weighted events is especially simple: We generate events xi that are uniformly
distributed in the interval [xa, xb] and weight each event with wi = f(xi).

In the Example 64 we could have generated events following the majorant distri-
bution, weighting them with sin2 x. The weights would then be wi = f(xi)/m(xi).

When we have generated events following a p.d.f. f(x|θ) depending on a param-
eter θ and are interested in the distribution f ′(x|θ′) we have only to re-weight the
events by f ′/f .

5.2.7 Markov Chain Monte Carlo

Introduction

The generation of distributions of high dimensional distributions is difficult with the
methods that we have described above. Markov chain Monte Carlo (MCMC) is able
to generate samples of distributions with hundred or thousand dimensions. It has
become popular in thermodynamics where statistical distributions are simulated to
compute macroscopic mean values and especially to study phase transitions. It has
also been applied for the approximation of functions on discrete lattices. The method
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is used mainly in theoretical physics to sample multi-dimensional distributions, so-
far we know of no applications in experimental particle physics. However, MCMC is
used in artificial neural networks to optimize the weights of perceptron nets.

Characteristic of a Markov chain is that a random variable x is modified stochas-
tically in discrete steps, its value at step i depending only on its value at the previous
step i− 1. Values of older steps are forgotten: P (xi|xi−1, xi−2, ..., x1) = P (xi|xi−1).
A typical example of a Markov chain is random walk. Of interest are Markov chains
that converge to an equilibrium distribution, like random walk in a fixed volume.
MCMC generates a Markov chain that has as its equilibrium distribution the desired
distribution. Continuing with the chain once the equilibrium has been reached pro-
duces further variates of the distribution. To satisfy this requirement, the chain has to
satisfy certain conditions which are fulfilled for instance for the so-called Metropolis
algorithm, which we will use below. There exist also several other sampling methods.
Here we will only sketch this subject and refer the interested reader to the extensive
literature which is nicely summarized in [27].

Thermodynamical Model, Metropolis Algorithm

In thermodynamics the molecules of an arbitrary initial state always approach – if
there is no external intervention – a stationary equilibrium distribution. Transitions
then obey the principle of detailed balance. In a simple model with atoms or molecules
in only two possible states in the stationary case, the rate of transitions from state
1 to state 2 has to be equal to the reverse rate from 2 to 1. For occupation numbers
N1, N2 of the respective states and transition rates per molecule and time W12,
respectively W21, we have the equation of balance

N1W12 = N2W21 .

For instance, for atoms with an excited state, where the occupation numbers are
very different, the equilibrium corresponds to a Boltzmann distribution, N1/N2 =
e−∆E/kT , with ∆E being the excitation energy, k the Boltzmann constant and T the
absolute temperature. When the stationary state is not yet reached, e.g. the number
N1 is smaller than in the equilibrium, there will be less transitions to state 2 and
more to state 1 on average than in equilibrium. The occupation number of state 1
will therefore increase until equilibrium is reached. Since transitions are performed
stochastically, even in equilibrium the occupation numbers will fluctuate around their
nominal values.

If now, instead of discrete states, we consider systems that are characterized by
a continuous variable x, the occupation numbers are to be replaced by a density
distribution f(x) where x is multidimensional. It represents the total of all energies
of all molecules. As above, for a stationary system we have

f(x)W (x→ x′) = f(x′)W (x′ → x) .

As probability P (x → x′) for a transition from state x to a state x′ we choose the
Boltzmann acceptance function

P (x→ x′) =
W (x→ x′)

W (x→ x′) +W (x′ → x)

=
f(x′)

f(x) + f(x′)
.
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Fig. 5.8. Mean distance of spheres as a function of the number of iterations.

In an ideal gas and in many other systems the transition regards only one or
two molecules and we need only consider the effect of the change of those. Then
the evaluation of the transition probability is rather simple. Now we simulate the
stochastic changes of the states with the computer, by choosing a molecule at random
and change its state with the probability P (x→ x′) into a also randomly chosen state
x′ (x → x′). The choice of the initial distribution for x is relevant for the speed of
convergence but not for the asymptotic result.

This mechanism has been introduced by Metropolis et al. [28] with a different
acceptance function in 1953. It is well suited for the calculation of mean values and
fluctuations of parameters of thermodynamical or quantum statistical distributions.
The process continues after the equilibrium is reached and the desired quantity is
computed periodically. This process simulates a periodic measurement, for instance
of the energy of a gas with small number of molecules in a heat bath. Measure-
ments performed shortly one after the other will be correlated. The same is true for
sequentially probed quantities of the MCMC sampling. For the calculation of statis-
tical fluctuations the effect of correlations has to be taken into account. It can be
estimated by varying the number if moves between subsequent measurements.

Example 67. Mean distance of gas molecules

We consider an atomic gas enclosed in a cubic box located in the gravitational
field of the earth. The N atoms are treated as hard balls with given radius
R. Initially the atoms are arranged on a regular lattice. The p.d.f. is zero for
overlapping atoms, and proportional to e−αz, where z is the vertical coordi-
nate of a given atom. The exponential factor corresponds to the Boltzmann
distribution for the potential energy in the gravitational field. An atom is
chosen randomly. Its position may be (x, y, z). A second position inside the
box is randomly selected by means of three uniformly distributed random
numbers. If within a distance of less than 2R an other atom is found, the
move is rejected and we repeat the selection of a possible new location. If the
position search with the coordinates (x′, y′, z′) is successful, we form the ratio
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Fig. 5.9. Solid sheres in a box. The plot is a projection onto the x-z plane.

w = e−az′

/(e−az′

+ e−αz). The position is changed if the condition r < w is
fulfilled, with a further random number r. Periodically, the quantity being
studied, here the mean distance between atoms, is calculated. It is displayed
in Fig. 5.8 as a function of the iteration number. Its mean value converges
to an asymptotic value after a number of moves which is large compared
to the number of atoms. Fig. 5.9 shows the position of atoms projected to
the x-z plane, for 300 out of 1000 considered atoms, after 20000 moves. Also
the statistical fluctuations can be found and, eventually, re-calculated for a
modified number of atoms according to the 1/

√
N -factor.

5.3 Solution of Integrals

The generation of distributions has always the aim, finally, to evaluate integrals.
There the integration consists in simply counting the sample elements (the events),
for instance, when we determine the acceptance or efficiency of a detector.

The integration methods follow very closely those treated above for the generation
of distributions. To simplify the discussion, we will consider mainly one-dimensional
integrals. The generalization to higher dimensions, where the advantages of the Monte
Carlo method become even more pronounced than for one-dimensional integration,
does not impose difficulties.

Monte Carlo integration is especially simple and has the additional advantage
that the accuracy of the integrals can be determined by the usual methods of statis-
tical error estimation. Error estimation is often quite involved with the conventional
numerical integration methods.

5.3.1 Simple Random Selection Method

Integrals with the integrand changing sign are subdivided into integrals over intervals
with only positive or only negative integrand. Hence it is sufficient to consider only
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the case

I =

∫ xb

xa

y(x) dx with y > 0 . (5.2)

As in the analogous case when we generate a distribution, we produce points
which are distributed randomly and uniformly in a rectangle covering the integrand
function. An estimate Î for the area I is obtained from the ratio of successes – this
are the points falling below the function y(x) – to the number of trials N0, multiplied
by the area I0 of the rectangle:

Î = I0
N

N0
.

To evaluate the uncertainty of this estimate, we refer to the binomial distribution
in which we approximate the probability of success ε by the experimental value
ε = N/N0:

δN =
√
N0ε(1− ε) ,

δÎ

Î
=
δN

N
=

√
1− ε

N
. (5.3)

As expected, the accuracy raises with the square root of the number of successes
and with ε. The smaller the deviation of the curve from the rectangle, the less will
be the uncertainty.

Example 68. Photon-yield for a particle crossing a scintillating fiber

Ionizing particles are crossing a scintillating fiber with circular cross section
perpendicular to the fiber axis which is parallel to the z-axis (Fig. 5.10), and
generate photons with spatially isotropic angular distribution (see 5.2.2).
Photons hitting the fiber surface will be reflected if the angle with respect
to the surface normal is larger than β0 = 60o. For smaller angles they will
be lost. We want to know, how the number of captured photons depends
on the location where the particle intersects the fiber. The particle traverses
the fiber in y direction at a distance x from the fiber axis. To evaluate the
acceptance, we perform the following steps:

• Set the fiber radius R = 1, create a photon at x, y uniformly distributed
in the square 0 < x , y < 1,

• calculate r2 = x2 + y2, if r2 > 1 reject the event,

• chose azimuth angle ϕ for the photon direction, with respect to an axis
parallel to the fiber direction in the point x, y, 0 < ϕ < 2π, ϕ uniformly
distributed,

• calculate the projected angle α (sinα = r sinϕ),

• choose a polar angle ϑ for the photon direction, 0 < cos(ϑ) < 1, cos(ϑ)
uniformly distributed,

• calculate the angle β of the photon with respect to the (inner) surface
normal of the fiber, cosβ = sinϑ cosα,

• for β < β0 reject the event,

• store x for the successful trials in a histogram and normalize to the total
number of trials.
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Fig. 5.10. Geometry of photon radiation in a scintillating fiber.
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Fig. 5.11. Photon yield as a function of track position.

The efficiency is normalized such that particles crossing the fiber at x = 0
produce exactly 1 photon. Fig. 5.11 shows the result of our simulation. For
large values of x the track length is small, but the photon capture efficiency
is large, therefore the yield increases with x almost until the fiber edge.
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Fig. 5.12. Estimation of the number π.

5.3.2 Improved Selection Method

a) Reducing the Reference Area

We can gain in accuracy by reducing the area in which the points are distributed,
as above by introduction of a majorant function, Fig. 5.5. As seen from (5.3), the
relative error is proportional to the square root of the inefficiency.

We come back to the first example of this chapter:

Example 69. Determination of π

The area of a circle with radius 1 is π. For N0 uniformly distributed trials in
a circumscribed square of area 4 (Fig. 5.12) the number of successes N is on
average

〈N〉 = π

4
N0 .

An estimate π̂ for π is

π̂ =
4N

N0
,

δπ̂

π
=

√
1− π/4√
N0π/4

,

≈ 0.52
1√
N0

.

Choosing a circumscribed octagon as the reference area, the error is reduced
by about a factor two. A further improvement is possible by inscribing an-
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other polygon in the circle and considering only the area between the poly-
gons.

b) Importance Sampling

If there exists a majorant m(x) for the function y(x) to be integrated,

I =

∫ xb

xa

y(x)dx , (5.4)

with the property that the indefinite integral M(x)

M(x) =

∫ x

xa

m(x′)dx′

can be inverted, we generate N0 x-values according to the distribution m(x). For
each xi a further random number yi in the interval 0 < y < m(xi) is generated.
Again, as for the simulation of distributions, points lying above y(xi) are rejected.
The number N of the remaining events provides the integral

Î =M(xb)
N

N0
.

5.3.3 Weighting Method

a) Simple Weighting

We generate N random numbers xi in the interval xa < x < xb and average over the
function values:

y =

N∑

i=1

y(xi)/N .

An estimate for the integral (5.4) is given by

Î = (xb − xa)y .

This method corresponds to the usual numerical integration, with the peculiarity
that the supporting points on the abscissa are not chosen regularly but are dis-
tributed at random. This alone cannot be an advantage, and indeed the Monte Carlo
integration in one and two dimensions for a given number of supporting points is less
efficient than conventional methods. It is, however, superior to other methods for
multi-dimensional integrations. Already in three dimensions it competes favorably in
many cases.

To estimate the accuracy, we apply the usual statistical error estimation. We
consider the numbers yi = y(xi) as N stochastic measurements of y. The expected
mean squared error of y is then given by (4.3):

(δy)2 =
1

N(N − 1)

∑
(yi − y)

2
.

The relative errors of y and Î are the same,
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(
δÎ

Î

)2

=

(
δy

y

)2

,

=

∑
(yi − y)

2

N(N − 1)y2
. (5.5)

The numerator is an estimate of the variance of the y distribution. The accuracy
is the better, the smaller the fluctuations of the function around its mean value are.

b) Subtraction method

The accuracy can be improved through a reduction of the fluctuations of the inte-
grand.

If we find a function ỹ(x) which is integrable analytically and does not differ too
much from the original integrand y(x) we cast the integral into the form

∫ xb

xa

y(x)dx =

∫ xb

xa

ỹ(x)dx +

∫ xb

xa

(y(x)− ỹ(x)) dx .

We now have to evaluate by Monte Carlo only the second term with relatively
small fluctuations (Fig. 5.13).

5.3.4 Reduction to Expected Values

In many cases it makes sense to factorize the integrand y(x) = f(x)y1(x) into a
factor f(x) corresponding to a p.d.f. normalized inside the integration interval which
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is easy to generate, and a second factor y1(x). To be effective, the method requires
that f is close to y. Our integral has now the form of an expected value:

∫ xb

xa

y(x)dx =

∫ xb

xa

f(x)y1(x)dx

= 〈y1〉 .

We generate values xi distributed according to f(x) and obtain from these an
estimate for the integral I:

Î =

∑
i y1(xi)

N
,

(
δÎ

Î

)2

=

∑
[y1(xi)− y1]

2

N(N − 1)y21
.

The estimate is again the better, the less the y1-values are fluctuating, i.e. the
more similar the functions y and f are. The error estimate is analogous to (5.5).

5.3.5 Stratified Sampling

In stratified sampling the domain of integration is partitioned into sub-domains. Over
each of these we integrate separately. The advantage is that the distribution in each
sub-domain is more uniform and thus the fluctuations of the random variables are
smaller and the statistical error is reduced. This method is somewhat antithetical to
the basic idea of the simple Monte Carlo method, since it produces a more uniform
(equidistant) distribution of the supporting points and requires some effort to com-
bine the errors from the different contributions. Thus we recommend it only if the
integrand shows very strong variations.

5.4 General Remarks

Often we need to solve integrals over different domains but always with the same
integrand. In these cases the Monte Carlo approach is particularly advantageous.
We store all single simulated values (usually called “events”) and are able to select
events afterwards according to the chosen domain, and obtain the integral with rel-
atively small computing expense by summation. Similarly a change of event weights
is possible without repeating the generation of the events.

Let us illustrate this feature with a mechanical example: If, for instance, we want
to obtain the tensor of inertia for a complex mass distribution like a car, we distribute
points stochastically within the body and store their coordinates together with the
respective mass densities. With these data it is easy to calculate by summations the
mass, the center of mass and the moments of inertia with respect to arbitrary axes.
If desired, parts of the body can be eliminated simply by rejecting the corresponding
points in the sums and different materials can be considered by changing the density.

In thermodynamic systems we are often interested in several mean values, like
the mean free path length, mean kinetic or potential energy, velocities etc.. Once a
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statistical ensemble has been generated, all these quantities are easily obtained, while
with the usual integration methods, one has to repeat each time the full integration.

Even more obvious are these advantages in acceptance calculations. Big exper-
iments in particle physics and other areas have to be simulated as completely and
realistically as allowed by the available computing power. The acceptance of a given
system of particle detectors for a certain class of events is found in two steps: first,
a sample of interesting events is generated and the particles produced are traced
through the detecting apparatus. The hits in various detectors together with other
relevant information (momenta, particle identities) are stored in data banks. In a
second step the desired acceptance for a class of events is found by simulating the
selection procedure and counting the fraction of events which are retained. Arbi-
trary changes in the selection procedure are readily implemented without the need
to simulate large event samples more than once.

Finally, we want to stress again how easy it is to estimate the errors of Monte
Carlo integration. It is almost identical1 to the error estimation for the experimental
data. We usually will generate a number of Monte Carlo reactions which is large
enough to neglect their statistical error compared to the experimental error. In other
words, the number of Monte Carlo events should be large compared to the number of
experimental events. Usually a factor of ten is sufficient, a higher factor is reasonable
if enough computing power is available.

1The Monte Carlo errors are usually described by the binomial distribution, those of the
experimental data by the Poisson distribution.
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Parameter Inference I

6.1 Introduction

We now leave the probability calculus and its simple applications and turn to the
field of statistics. More precisely we are concerned with inferential statistics.

While the probability calculus, starting from distributions, predicts properties of
random samples, in statistics, given a data sample, we look for a theoretical descrip-
tion of the population from which it has been derived by some random process. In the
simplest case, the sample consists of independent observations, randomly drawn from
a parent population. If not specified differently, we assume that the population is a
collection of elements which all follow the same discrete or continuous distribution.
Frequently, the sample consists of data collected in a measurement sequence.

Usually we either want to check whether our sample is compatible with a specific
theory, or we decide between several theories, or we infer unknown parameters of a
given theory.

To introduce the problem, we discuss three simple examples:

1. At a table we find eight playing cards: two kings, three ladies, one ten, one
eight and one seven. Do the cards belong to a set of Canasta cards or to a set of Skat
cards?

2. A college is attended by 523 boys and 490 girls. Are these numbers compatible
with the assumption that in average the tendency to attend a college is equal for
boys and girls?

3. The lifetimes of five instable particles of a certain species have been measured.
How large is the mean life of that particle and how large is the corresponding uncer-
tainty?

In our first example we would favor the Skat game because none of the cards two
to six is present which, however, are part of Canasta card sets. Assuming that the
cards have been taken at random from a complete card set, we can summarize the
available information in the following way: The probability to observe no card with
value below seven in eight cards of a Canasta game is LC = (5/13)8 = 4.8 × 10−4

whereas it is LS = 1 for a Skat game. We call these quantities likelihoods1 . The
likelihood indicates how well a given hypothesis is supported by a given observation

1The term likelihood was first used by the British biologist and statistician Sir Ronald
Aylmer Fisher (1890-1962).
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but the likelihood alone is not sufficient for a decision in favor of one or the other
hypothesis. Additional considerations may play an important role. When the cards
are located in a Swiss youth hostel we would consider the hypothesis Skat more
sceptically than when the cards are found in a pub at Hamburg. We therefore would
weight our hypotheses with prior probabilities (short: priors) which quantify this
additional piece of information. Prior probabilities are often hard to estimate, often
they are completely unknown. As a consequence, results depending on priors are
model dependent.

We usually will avoid to introduce prior probabilities and stay with likelihoods
but sometimes this is not possible. Then the results have to be interpreted conditional
to the validity of the applied prior probabilities.

Similar situations as described in our trivial example also occur in empirical
sciences. Whenever an observation is more or less compatible with two alternative
theories, we cannot simply derive probabilities for the validities of theories based
solely on the experimental data. Other criteria like the attractiveness of the theory,
the compatibility with previous measurements will enter into our judgement. These
additional attributes again can be taken into account by introducing prior probabil-
ities which of course will depend to some extend on subjective prejudices. The cases
where well founded quantitative priors are available are rare.

Some years ago, in an experiment a significant deviation from the gravitational
law had been observed. From the two alternatives: H1: Newton’s law is correct and
H2: A 1/r2 term has to be added to the 1/r potential, the latter was much more
compatible with the experimental data. In spite of this experimental evidence, hardly
any serious physicist doubted the validity of the classical gravitational law. The
reason is that our experience shows that the laws of nature are basically simple. In
the mean time, as a consequence of the availability of more precise data, the 1/r2

hypothesis has been rejected.

Nevertheless it is correct and necessary to publish the observed data without
weighting them with a prior, i.e. to restrict the presentation to the purely statistical
result and to leave the subjective part to the reader of the publication.

The scientific method requires the possibility to compare and combine results
from independent measurements. This is impossible when different authors apply
varying priors. We will see that it is almost always possible to avoid the introduction
of this kind of subjective assumptions into the statistical analysis.

In our second example the situation is even more complex because we are con-
fronted with only one hypothesis and no well specified alternative. The validity of
the alternative, e.g. a deviation from the equality of the distribution of the sexes is
hardly measurable since an arbitrarily small deviation from the equality is present in
any case. There is no other possibility as to quantify the deviation of the data with
the prediction in some proper way. We will accept the hypothesis if the deviation is
not abnormally high. We will treat this problem in the chapter goodness-of-fit tests.

In our third example the number of hypotheses is infinite. To each value of the un-
known parameter, i.e. to each different mean life, corresponds a different prediction.
The difficulties are very similar to those in case one. If we want to quote probabili-
ties, we are forced to introduce a priori probabilities – here for the parameter under
investigation. Again, in most cases no reliable prior information will be available but
we can avoid the subjective part by documenting the results in a sensible way. We
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will quote the parameter best supported by the data and define an error interval
based on the likelihood of the parameter values.

The following table summarizes the cases which we have discussed.

case1 given: N alternative hypotheses Hi

wanted: relative probabilities for the validity of Hi

case 2 given: one hypothesis H0

wanted: a quantitative statement about the validity of H0

case 3: given: one valid hypothesis H(λ) where λ is a single parameter
or a set of unknown continuous parameters

wanted: “ best” value of λ and its uncertainty

In practice we often will compare observations with a theory which contains free
parameters. In this case we have to infer parameters and to test the compatibility of
the hypothesis with the data, i.e. case 2 and case 3 apply.

We now address the different problems one after the other.

Remark 1 : In the following chapters we consider parameters as random variables
as is common in Bayesian statistics. Sometimes, we assign probabilities to the possible
values or intervals of parameters, probabilities which reflect our knowledge of these
parameters.

Remark 2 : We are primarily interested in the estimation of constants of nature.
A different problem is the estimation of the individual parameters of an ensemble
of events, like those of particle tracks, where the individual tracks have different
parameter values. An analogue situation is common in social sciences and commercial
applications but is of little importance in particle physics and astronomy. It will be
treated shortly in the appendix.

6.2 Inference with Given Prior

We now try to derive from a given sample probabilities for hypotheses or parameters.
If prior information is available this is possible by means of Bayes’ theorem.

6.2.1 Discrete Hypotheses

In Chap. 1 we had shown that conditional probabilities fulfil the following relation
(Bayes’ theorem):

P{A ∩B} = P{A|B}P{B} = P{B|A}P{A} . (6.1)

The probability P{A ∩ B}, that both the properties A and B apply is equal to
the probability P{B}, to find property B multiplied by the conditional probability
P{A|B} to find A, when B is realized. This is the first part of the relation above.
The second part is analogous.

We apply this relation to a discrete random variable k and hypotheses Hi. The
index denoting the hypothesis is interpreted as a random variable2.

2In this case this is a categorical variable which denotes a certain class.
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Fig. 6.1. Quantitative Venn diagram. The areas indicate the probabilities for certain com-
binations of hypotheses Hi and discrete events of type kj .

We assume that the probability P{k|Hi} to observe k is given for a finite number
of alternatively exclusive hypotheses Hi. Then we have

P{k|Hi}P{Hi} = P{Hi|k}P{k} ,

P{Hi|k} =
P{k|Hi}P{Hi}

P{k} . (6.2)

Here P{Hi} is the assumed probability for the validity of hypothesis i before the
observation happens, it is the a priori probability, in short the prior.

In Fig. 6.1 we illustrate relation (6.2) in form of a so called Venn diagram where
in the present example 3 out of the 5 hypotheses have the same prior. Each hypothesis
bin is divided into 3 regions with areas proportional to the probabilities to observe
k = k1, k = k2 and k = k3, respectively. For example when the observation is
k = k2 (shadowed in gray) then the gray areas provide the relative probabilities of
the validity of the corresponding hypotheses. In our example hypothesis H3 is the
most probable, H1 the most unlikely.

The computation of P{k} which is the marginal distribution of k, i.e. the prob-
ability of a certain observation, summed over all hypotheses, yields:

P{k} =
∑

i

P{k|Hi}P{Hi} .

As required, P{Hi|k} is normalized in such a way that the probability that any of
the hypotheses is fulfilled is equal to one. We get

P{Hi|k} =
P{k|Hi}P{Hi}∑
j P{k|Hj}P{Hj}

. (6.3)

In words: The probability for the validity of hypothesis Hi after the measurement k
is equal to the prior P{Hi} of Hi multiplied with the probability to observe k if Hi

applies and divided by a normalization factor. When we are only interested in the



6.2 Inference with Given Prior 135

relative probabilities of two different hypotheses Hi and Hj for an observation k, the
denominator P{k} cancels:

P{Hi|k}
P{Hj |k}

=
P{k|Hi}P{Hi}
P{k|Hj}P{Hj}

.

Example 70. Bayes’ theorem: pion or kaon decay?

A muon has been detected. Does it originate from a pion or from a kaon
decay? The decay probabilities inside the detector are known and are
P{µ|π} = 0.02 and P{µ|K} = 0.10, respectively. The ratio of pions and
kaons in the beam is P{π} : P{K} = 3 : 1. With these numbers we obtain:

P{K|µ}
P{π|µ} =

0.10× 1

0.02× 3
=

5

3
,

P{K|µ}
P{K|µ}+ P{π|µ} =

0.10× 1

0.02× 3 + 0.10× 1
= 0.625 .

The kaon hypothesis is more likely than the pion hypothesis. Its probability
is 0.625.

6.2.2 Continuous Parameters

Now we extend our considerations to the case where the hypothesis index is replaced
by a continuous parameter θ, i.e. we have an infinite number of hypotheses. Instead
of probabilities we obtain probability densities. Bayes’ theorem now reads

f(x, θ) = fx(x|θ)πθ(θ) = fθ(θ|x)πx(x) (6.4)

which is just the relation 3.36 of Sect. 3.5, where fx, fθ are conditional distribution
densities and πx(x), πθ(θ) are the marginal distributions of f(x, θ). The joined prob-
ability density f(x, θ) of the two random variables x, θ is equal to the conditional
probability density fx(x|θ) of x, where θ is fixed, multiplied by the probability den-
sity πθ(θ), the marginal distribution of θ. For an observation x we obtain analogously
to our previous relations

fθ(θ|x) =
fx(x|θ)πθ(θ)

πx(x)
,

and

fθ(θ|x) =
fx(x|θ)πθ(θ)∫∞

−∞ fx(x|θ)πθ(θ)dθ
. (6.5)

In words: For a measurement with the result x, we compute the probability density
for the parameter θ from the value of the probability density fx(x|θ) for x, multiplied
by the probability density (prior) πθ(θ) of θ before the measurement, divided by a
normalization integral. Again, the quantity fx(x|θ) determines how strongly various
parameter values θ are supported by the given observation x and is called – in this
context – likelihood of θ.

From the probability density fθ(θ|x) of the interesting parameter we can derive
a best estimate θ̂ and an error interval. An obvious choice is the expectation value
and the standard deviation. Thus the estimate is a function of the observations3,
θ̂ = θ̂(x).

3A function of the observations is called a statistic, to be distinguished from the discipline
statistics.
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Fig. 6.2. Probability density for the true decay time. The mean decay time is 1, the
observed value is 1.5.

Example 71. Time of a decay with exponential prior

A detector with finite resolution registers at time t the decay of a K meson.
The time resolution corresponds to a Gaussian with variance σ2. We are
interested in the time θ at which the decay occurred. The mean lifetime τ
of kaons is known. The probability density for the parameter θ before the
measurement, the prior, is π(θ) = e−θ/τ/τ , θ ≥ 0. The probability density
for t with θ fixed is the Gaussian. Applying (6.5) we obtain the probability
density f(θ) = f(θ|t) of the parameter θ,

f(θ) =
e−(t−θ)2/(2σ2)e−θ/τ

∫∞
0

e−(t−θ)2/(2σ2)e−θ/τdθ
,

which is displayed in Fig. 6.2. As a consequence of the exponential prior it is
visibly shifted to the left with respect to the observation.

If the value of the probability density fx(x|θ) in (6.5) varies much more rapidly
with θ than the prior – this is the case when the observation restricts the parameter
drastically – then to a good approximation the prior can be regarded as constant in
the interesting region. We then have

fθ(θ|x) ≈
fx(x|θ)∫∞

−∞ fx(x|θ)dθ
.

In this approximation the probability density fθ of the parameter corresponds to the
normalized likelihood function.

In practice, fθ often follows to a good approximation a normal distribution. The
value θ̂ where fθ is maximal then is the estimate of θ and the values where fθ has
decreased by the factor e1/2 define a standard deviation error interval and thus fix
the uncertainty of the estimate θ̂.
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6.3 Definition and Visualization of the Likelihood

Usually we do not know the prior or our ideas about it are rather vague.

Example 72. Likelihood ratio: V +A or V −A reaction?

An experiment is performed to measure the energy E of muons produced in
the decay of the tau lepton, τ− → µ−ντ ν̄µ, to determine whether the decay
corresponds to a V −A or a V +Amatrix element. We know the corresponding
normalized decay distributions f−(E), f+(E) and we can derive the ratio
RL = f−(E)/f+(E). But how should we choose the prior densities for the two
alternative hypotheses? In this example it would not make sense to quantify
our prejudices for one or the other hypothesis and to publish the resulting
probabilities. We restrict the information to the ratio

RL =
f−(E)

f+(E)
.

The quantity RL is called likelihood ratio.

In the absence of prior information the likelihood ratio is the only element which
we have, to judge the relative virtues of alternative hypotheses.

Definition: The likelihood Li of a hypothesis Hi, to which corresponds a probabil-
ity density fi(x) ≡ f(x|Hi) or a discrete probability distribution Wi(k) ≡ P{k|Hi},
when the observation x, k, respectively, has been realized, is equal to

Li ≡ L(i|x) = fi(x)

and
Li ≡ L(i|k) =Wi(k) ,

respectively. Here the index i denoting the hypothesis is treated as an independent
random variable. When we replace it by a continuous parameter θ and consider a
parameter dependent p.d.f. f(x|θ) or a discrete probability distribution W (k|θ) and
observations x, k, the corresponding likelihoods are

L(θ) ≡ L(θ|x) = f(x|θ) ,
L(θ) ≡ L(θ|k) = W (k|θ) .

While the likelihood is related to the validity of a hypothesis given an observation,
the p.d.f. is related to the probability to observe a variate for a given hypothesis. In
our notation, the quantity which is considered as fixed is placed behind the bar while
the variable quantity is located left of it. When both quantities are fixed the function
values of both the likelihood and the p.d.f. are equal. To attribute a likelihood makes
sense only if alternative hypotheses, either discrete or differing by parameters, can
apply. If the likelihood depends on one or several continuous parameters, we talk of
a likelihood function

Remark: The likelihood function is not a probability density of the parameter. It
has no differential element like dθ involved and does not obey the laws of probabil-
ity. To distinguish it from probability, R.A. Fisher had invented the name likelihood.
Multiplied by a prior and normalized, a probability density of the parameter is ob-
tained. Statisticians call this inverse probability or probability of causes to emphasize
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that compared to the direct probability where the parameter is known and the chances
of an event are described, we are in the inverse position where we have observed the
event and want to associate probabilities to the various causes that could have led
to the observation.

As already stated above, the likelihood of a certain hypothesis is large if the
observation is probable for this hypothesis. It measures how strongly a hypothesis is
supported by the data. If an observation is very unlikely the validity of the hypothesis
is doubtful – however this classification applies only when there is an alternative
hypothesis with larger likelihood. Only relations between likelihoods make sense.

Usually experiments provide a sample of N independent observations xi which all
follow independently the same p.d.f. f(x|θ) which depends on the unknown parameter
θ (i.i.d. variates). The combined p.d.f. f̃ then is equal to the product of the N simple
p.d.f.s

f̃(x1, . . . , xN |θ) =
N∏

i=1

f(xi|θ) .

For discrete variates we have the corresponding relation

W̃ (k1, . . . , kN |θ) =
N∏

i=1

W (ki|θ) .

For all values of θ the function f̃ evaluated for the sample x1, . . . , xN is equal to the
likelihood L̃

L̃(θ) ≡ L̃(θ|x1,x2, . . . , xN )

= f̃(x1,x2, . . . , xN |θ)

=

N∏

i=1

f(xi|θ)

=

N∏

i=1

L(θ|xi) .

The same relation also holds for discrete variates:

L̃(θ) ≡ L̃(θ|k1, . . . , kN )

=

N∏

i=1

W (ki|θ)

=

N∏

i=1

L(θ|ki) .

When we have a sample of independent observations, it is convenient to consider
the logarithm of the likelihood. It is called log-likelihood . It is equal to

ln L̃(θ) =

N∑

i=1

ln [f(xi|θ)]

for continuous variates. A corresponding relation holds for discrete variates.
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Fig. 6.3. Likelihood of three observations and two hypotheses with different p.d.f.s.

Fig. 6.3 illustrates the notion of likelihood in a concrete case of two hypotheses.
For two given hypotheses and a sample of three observations we present the values of
the likelihood, i.e. the products of the three corresponding p.d.f. values. The broad
p.d.f. in the right hand picture matches better. Its likelihood is about thirty times
higher than that of the left hand hypothesis.

So far we have considered the likelihood of samples of i.i.d. variates. Also the
case where two independent experiments A, B measure the same quantity x is of
considerable interest. The combined likelihood L is just the product of the individual
likelihoods LA(θ|x1) = fA(x1|θ) and LB(θ|x2) = fB(x2|θ) as is obvious from the
definition:

f(x1, x2|θ) = fA(x1|θ)fB(x2|θ) ,
L(θ) = f(x1, x2|θ) ,

hence

L = LALB ,

lnL = lnLA + lnLB .

We state: The likelihood of several independent observations or experiments is
equal to the product of the individual likelihoods. Correspondingly, the log-likelihoods
add up.

L =
∏

Li ,

lnL =
∑

lnLi .
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6.4 The Likelihood Ratio

To discriminate between hypotheses, we use the likelihood ratio. According to a
lemma of Neyman and Pearson there is no other more powerful quantity. This
means that classifying according to the likelihood ratio, we can obtain the smallest
number of false decisions (see Chap. 10). When we have to choose between more
than two hypotheses, there are of course several independent ratios.

Example 73. Likelihood ratio of Poisson frequencies

We observe 5 decays and want to compute the relative probabilities for three
hypotheses. Prediction H1 assumes a Poisson distribution with expectation
value 2, H2 and H3 have expectation values 9 and 20, respectively. The
likelihoods following from the Poisson distribution Pλ(k) are:

L1 = P2(5) ≈ 0.036 ,
L2 = P9(5) ≈ 0.061 ,
L3 = P20(5) ≈ 0.00005 .

We can form different likelihood ratios. If we are interested for example in
hypothesis 2, then the quotient L2/(L1 + L2 + L3) ≈ 0.63 is relevant4. If
we observe in a second measurement in the same time interval 8 decays, we
obtain:

L1 = P2(5)P2(8) = P4(13) ≈ 6.4 · 10−3 ,
L2 = P9(5)P9(8) = P18(13) ≈ 5.1 · 10−2 ,
L3 = P20(5)P20(8) = P40(13) ≈ 6.1 · 10−7 .

The likelihood ratio L2/(L1+L2+L3) ≈ 0.89 (forH1 andH3 correspondingly
0.11 and 10−5) now is much more significant. The fact that all values Li are
small is unimportant because one of the three hypotheses has to be valid.

We now apply the same procedure to hypotheses with probability densities.

Example 74. Likelihood ratio of normal distributions

We compare samples drawn from one out of two alternative normal distribu-
tions with different expectation values and variances (Fig. 6.4)

f1 =
1√
2π1

e−(x−1)2/2 ,

f2 =
1√
2π2

e−(x−2)2/8 .

a) Initially the sample consists of a single observation at x = 0, for both
cases one standard deviation off the mean values of the two distributions
(Fig. 6.4a):

L1

L2
= 2

e−1/2

e−4/8
= 2 .

4We remember that the likelihood ratio is not the ratio of the probabilities. The latter
depends on prior probabilities of the hypotheses.
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Fig. 6.4. Likelihood ratio for two normal distributions. Top: 1 observation, bottom: 5
observations.

b) Now we place the observation at x = 2, the maximum of the second
distribution (Fig. 6.4b):

L1

L2
= 2

e−1/2

e−0
= 1.2 .

c) We now consider five observations which have been taken from distribution
f1 (Fig. 6.4c) and distribution f2, respectively (Fig. 6.4d). We obtain the
likelihood ratios

L1/L2 = 30 (Fig. 5.3c) ,
L1/L2 = 1/430 (Fig. 5.3d) .

It turns out that small distributions are easier to exclude than broad ones.
On the other hand we get in case b) a preference for distribution 1 even
though the observation is located right at the center of distribution 2.

Example 75. Likelihood ratio for two decay time distributions

A sample of N decay times ti has been recorded in the time interval
tmin < t < tmax. The times are expected to follow either an exponential distri-
bution f1(t) ∼ e−t/τ (hypothesis 1), or an uniform distribution f2(t) = const.
(hypothesis 2). How likely are H1, H2? First we have to normalize the p.d.f.s:
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f1(t) =
1

τ

e−t/τ

e−tmin/τ − e−tmax/τ
,

f2(t) =
1

tmax − tmin
.

The likelihoods are equal to the product of the p.d.f.s at the observations:

L1 =
[
τ
(
e−tmin/τ − e−tmax/τ

)]−N

exp

(
−

N∑

i=1

ti/τ

)
,

L2 = 1/(tmax − tmin)
N .

With t =
∑
ti/N the mean value of the times, we obtain the likelihood ratio

L1

L2
=

(
tmax − tmin

τ(e−tmin/τ − e−tmax/τ )

)N

e−Nt/τ .

6.5 The Maximum Likelihood Method for Parameter

Inference

In the previous examples we have compared a sample with different hypotheses which
differed only in the value of a parameter but corresponded to the same distribution.
We now allow for an infinite number of hypotheses by varying the value of a pa-
rameter. As in the discrete case, in the absence of a given prior probability, the only
available piece of information which allows us to judge different parameter values
is the likelihood function. A formal justification for this assertion is given by the
likelihood principle (LP) which states that the likelihood function exhausts all the
information contained in the observations related to the parameters and which we
will discuss in the following chapter. It is then plausible to choose the parameter such
that the likelihood is as large as possible. This is the maximum likelihood estimate
(MLE). When we are interested in a parameter range, we will choose the interval
such that the likelihood outside is always less than inside.

Remark that the MLE as well as likelihood intervals are invariant against trans-
formations of the parameter. The likelihood is not a p.d.f. but a function of the
parameter and therefore L(θ) = L′(θ′) for θ′(θ). Thus a likelihood analysis estimat-
ing, for example, the mass of a particle will give the same result as that inferring
the mass squared, and estimates of the decay rate γ and mean life τ = 1/γ will be
consistent.

Here and in the following sections we assume that the likelihood function is
continuous and differentiable and has exactly one maximum inside the valid range
of the parameter. This condition is fulfilled in the majority of all cases.

Besides the maximum likelihood (ML) method, invented by Fisher, there exist a
number of other methods of parameter estimation. Popular is especially the method
of least squares (LS) which was first proposed by Gauß5. It is used to adjust param-
eters of curves which are fixed by some measured points and will be discussed in the
next chapter. It can be traced back to the ML method if the measurement errors are
normally distributed.

5Carl Friedrich Gauß (1777-1855), German mathematician, astronomer and physicist.



6.5 The Maximum Likelihood Method for Parameter Inference 143

4.5

2.0

0.5
ln
(L
)

Fig. 6.5. Log-likelihood function and uncertainty limits for 1, 2, 3 standard deviations.

In most cases we are not able to compute analytically the location of the maximum
of the likelihood. To simplify the numerical computation, still linear approximations
(e.g. linear regression) are used quite frequently. These methods find the solution
by matrix operations and iteration. They are dispensable nowadays. With common
PCs and maximum searching programs the maximum of a function of some hundred
parameters can determined without problem, given enough observations to fix it.

6.5.1 The Recipe for a Single Parameter

We proceed according to the following recipe. Given a sample of N i.i.d. observations
{x1, . . . , xN} from a p.d.f. f(x|θ) with unknown parameter θ, we form the likelihood
or its logarithm, respectively, in the following way:

L(θ) =
∏N

i=1 f(xi|θ) , (6.6)

lnL(θ) =
∑N

i=1 ln f(xi|θ) . (6.7)
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In most cases the likelihood function resembles a bell shaped Gaussian and lnL(θ)
approximately a downwards open parabola (see Fig. 6.5). This approximation is
especially good for large samples.

To find the maximum of L (lnL and L have their maxima at the same location),
we derive the log-likelihood6 with respect to the parameter and set the derivative
equal to zero. The value θ̂, that satisfies the equation which we obtain in this way is
the MLE of θ.

d lnL

dθ
|θ̂ = 0 (6.8)

Since only the derivative of the likelihood function is of importance, factors in
the likelihood or summands in the log-likelhood which are independent of θ can be
omitted.

The estimate θ̂ is a function of the sample values xi, and consequently a statistic.

The point estimate has to be accompanied by an error interval. Point estimate
and error interval form an ensemble and cannot be discussed separately. Choosing as
point estimate the value that maximizes the likelihood function it is natural to include
inside the error limits parameter values with higher likelihood than all parameters
that are excluded. This prescription leads to so-called likelihood ratio error intervals.

We will discuss the error interval estimation in a separate chapter, but fix the
error limit already now by definition:

Definition: The limits of a standard error interval are located at the parameter
values where the likelihood function has decreased from its maximum by a factor
e1/2. For two and three standard deviations the factors are e2 and e4.5. This choice
corresponds to differences for the log-likelihood of 0.5 for one, of 2 for two and of
4.5 for three standard error intervals as illustrated in Fig. 6.5. For the time being we
assume that these limits exist inside the parameter range.

The reason for this definition is the following: As already mentioned, asymptot-
ically, when the sample size N tends to infinity, under very general conditions the
likelihood function approaches a Gaussian and becomes proportional to the proba-
bility density of the parameter (for a proof, see Appendix 13.3). Then our error limit
corresponds exactly to the standard deviation of the p.d.f., i.e. the square root of
the variance of the Gaussian. We keep the definition also for non normally shaped
likelihood functions and small sample sizes. Then we usually get asymmetric error
limits.

6.5.2 Examples

Example 76. Maximum likelihood estimate (MLE) of the mean life of an un-
stable particle

Given be N decay times ti of an unstable particle with unknown mean life
τ . For an exponential decay time distribution

f(t|γ) = γe−γt

with γ = 1/τ the likelihood is

6The advantage of using the log-likelihood compared to the normal likelihood is that we
do not need to derive a product but a sum which is much more convenient.
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L = γN
N∏

i=1

e−γti

= γNe−
∑

N

i=1
γti ,

lnL = N ln γ − γ

N∑

i=1

ti .

The estimate γ̂ satisfies

d lnL

dγ
|γ̂ = 0 ,

0 =
N

γ̂
−

N∑

i=1

ti ,

τ̂ = γ̂−1 =
N∑

i=1

ti/N = t .

Thus the estimate is just equal to the mean value t of the observed decay
times. In practice, the full range up to infinitely large decay times is not
always observable. If the measurement is restricted to an interval 0 < t <
tmax, the p.d.f. changes, it has to be renormalized:

f(t|γ) = γe−γt

1− e−γtmax
,

lnL = N
[
ln γ − ln(1− e−γtmax)

]
− γ

N∑

i=1

ti .

The maximum is now located at the estimate γ̂, which fulfils the relation

0 = N

(
1

γ̂
− tmaxe

−γ̂tmax

1− e−γ̂tmax

)
−

N∑

i=1

ti ,

τ̂ = t+
tmaxe

−tmax/τ̂

1− e−tmax/τ̂
,

which has to be evaluated numerically. If the time interval is not too short,
tmax > τ , an iterative computation lends itself: The correction term at the
right hand side is neglected in zeroth order. At the subsequent iterations we
insert in this term the value τ of the previous iteration. We notice that the
estimate again depends solely on the mean value t of the observed decay
times. The quantity t is a sufficient statistic. We will explain this notion in
more detail later. The case with also a lower bound tmin of t can be reduced
easily to the previous one by transforming the variable to t′ = t− tmin.

In the following examples we discuss the likelihood functions and the MLEs of
the parameters of the normal distribution in four different situations:

Example 77. MLE of the mean value of a normal distribution with known
width (case Ia)

Given are N observation xi drawn from a normal distribution of known width
σ and mean value µ to be estimated:



146 6 Parameter Inference I

1 2 3 4
-2.0

-1.5

-1.0

-0.5

0.0

0 1 2
-2.0

-1.5

-1.0

-0.5

0.0

 

 

b)

 

lnL

 

a)

Fig. 6.6. Log-likelihood functions for the parameters of a normal distribution: a) for the
mean µ with known width (solid curve) and unknown width (dashed curve), b) for the
width σ with known mean (solid curve) and unknown mean (dashed curve). The position
of the maximum is σ̂ = σ

√
N/(N − 1) = 2.108 for both curves.

f(x|µ) = 1√
2πσ

exp

[
− (x− µ)2

2σ2

]
,

L(µ) =
N∏

i=1

1√
2πσ

exp

[
− (xi − µ)2

2σ2

]
,

lnL(µ) = −
N∑

i=1

(xi − µ)2

2σ2
+ const (6.9)

= −N x2 − 2xµ+ µ2

2σ2
+ const .

The log-likelihood function is a parabola. It is shown in Fig. 6.6a for σ = 2.
Deriving it with respect to the unknown parameter µ and setting the result
equal to zero, we get

N
(x − µ̂)

σ2
= 0 ,

µ̂ = x .

The likelihood estimate µ̂ for the expectation value of the normal distribution
is equal to the arithmetic mean x of the sample. It is independent of σ, but
σ determines the width of the likelihood function and the standard error
δµ = σ/

√
N .

Example 78. MLE of the width of a normal distribution with given mean
(case Ib)
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Given are now N observations xi which follow a normal distribution of un-
known width σ to be estimated for known mean µ = 5/3. The reason for this
– in principle here arbitrary – choice will become clear below.

L(σ) =

N∏

i=1

1√
2πσ

exp

(
− (xi − µ)2

2σ2

)
,

lnL(σ) = −N(
1

2
ln 2π + lnσ)−

N∑

i=1

(xi − µ)2

2σ2

= −N
[
lnσ +

(x − µ)2

2σ2

]
+ const .

The log-likelihood function for our numerical values is presented in Fig. 6.6b.
Deriving with respect to the parameter of interest and setting the result equal
to zero we find

0 =
1

σ̂
− (x− µ)2

σ̂3
,

σ̂ =

√
(x − µ)2 .

Again we obtain a well known result. The mean square deviation of the sam-
ple values provides an estimate for the width of the normal distribution. This
relation is the usual distribution-free estimate of the standard deviation if the
expected value is known. The error bounds from the drop of the log-likelihood
function by 1/2 become asymmetric. Solving the respective transcendental
equation, thereby neglecting higher orders in 1/N , one finds

δ±σ =
σ̂
√

1
2N

1∓
√

1
2N

.

Example 79. MLE of the mean of a normal distribution with unknown width
(case IIa)

The solution of this problem can be taken from Sect. 3.6.11 where we found
that t = (x − µ)/s with s2 =

∑
(xi − x)2/[N(N − 1)] = v2/(N − 1) follows

the Student’s distribution with N − 1 degrees of freedom.

h(t|N − 1) =
Γ (N/2)

Γ ((N − 1)/2)
√
π(N − 1)

(
1 +

t2

N − 1

)−N
2

The corresponding log-likelihood is

lnL(µ) = −N
2
ln

[
1 +

(x− µ)2

v2

]

with the maximum µ = x. It corresponds to the dashed curve in Fig. 6.6a.
From the drop of lnL by 1/2 we get now for the standard error squared the
expression

δ2µ = (e1/N − 1)v2 .

This becomes for large N , after expanding the exponential function, very
similar to the expression for the standard error in case Ia, whereby σ is
exchanged by v.
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Example 80. MLE of the width of a normal distribution with unknown mean
(case IIb)

Obviously, shifting a normally distributed distribution or a corresponding
sample changes the mean value but not the true or the empirical variance
v2 = (x− x)2. Thus the empirical variance v2 can only depend on σ and not
on µ. Without going into the details of the calculation, we state that Nv2/σ2

follows a χ2 distribution of N − 1 degrees of freedom.

f(v2|σ) = N

Γ [(N − 1)/2] 2σ2

(
Nv2

2σ2

)(N−3)/2

exp

(
−Nv

2

2σ2

)

with the log-likelihood

lnL(σ) = −(N − 1) lnσ − Nv2

2σ2

corresponding to the dashed curve in Fig. 6.6b. (The numerical value of the
true value of µ was chosen such that the maxima of the two curves are located
at the same value in order to simplify the comparison.) The MLE is

σ̂2 =
N

N − 1
v2,

in agreement with our result (3.15). For the asymmetric error limits we find
in analogy to example 78

δ±σ =
σ̂
√

1
2(N−1)

1∓
√

1
2(N−1)

.

6.5.3 Likelihood Inference for Several Parameters

We can extend our concept easily to several parameters λk which we combine to a
vector λ = {λ1, . . . , λK}.

L(λ) =

N∏

i=1

f(xi|λ) , (6.10)

lnL(λ) =
N∑

i=1

ln f(xi|λ) . (6.11)

To find the maximum of the likelihood function, we set the partial derivatives
equal to zero. Those values λ̂k which satisfy the system of equations obtained this
way, are the MLEs λ̂k of the parameters λk:

∂ lnL

∂λk
|λ̂1,...,λ̂K

= 0 . (6.12)

The error interval is now to be replaced by an error volume with its surface
defined again by the drop of lnL by 1/2:

lnL(λ̂)− lnL(λ) = 1/2 .

We have to assume, that this defines a closed surface in the parameter space, in two
dimensions just a closed contour, as shown in the next example.
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Fig. 6.7. MLE of the parameters of a normal distribution and lines of constant log-
likelihood. The numbers indicate the values of log-likelihood relative to the maximum.

Example 81. MLEs of the mean value and the width of a normal distribution

Given are N observations xi which follow a normal distribution where now
both the width and the mean value µ are unknown. As above, the log-
likelihood is

lnL(µ, σ) = −N
[
lnσ +

(x− µ)2

2σ2

]
+ const .

The derivation with respect to the parameters leads to the results:

µ̂ =
1

N

N∑

i=1

xi = x ,

σ̂2 =
1

N

N∑

i=1

(xi − µ̂)2 = (x− x)2 = v2 .

The MLE and log-likelihood contours for a sample of 10 events with empirical
mean values x = 1 and x2 = 5 are depicted in Fig. 6.7. The innermost line
encloses the standard error area. If one of the parameters, for instance µ = µ1

is given, the log-likelihood of the other parameter, here σ, is obtained by the
cross section of the likelihood function at µ = µ1.

Similarly any other relation between µ and σ defines a curve in Fig. 6.7 along which
a one-dimensional likelihood function is defined.

Remark: Frequently, we are interested only in one of the parameters, and we
want to eliminate the others, the nuisance parameters. How to achieve this, will be
discussed in Sect. 6.9. Generally, it is not allowed to use the MLE of a single parameter
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in the multi-parameter case separately, ignoring the other parameters. While in the
previous example σ̂ is the correct estimate of σ if µ̂ applies, the solution for the
estimate and its likelihood function independent of µ has been given in example 80
and that of µ independent of σ in example 79.

Example 82. Determination of the axis of a given distribution of directions7

Given are the directions of N tracks by the unit vectors ek. The distribution
of the direction cosines cosαi with respect to an axis u corresponds to

f(cosα) =
3

8
(1 + cos2 α) .

We search for the direction of the axis. The axis u(u1, u2, u3) is parameterized
by its components, the direction cosines uk. (There are only two independent
parameters u1, u2 because u3 =

√
1− u21 − u22 depends on u1 and u2.) The

log-likelihood function is

lnL =
n∑

i=1

ln(1 + cos2 αi) ,

where the values cosαi = u · ei depend on the parameters of interest, the
direction cosines. Maximizing lnL, yields the parameters u1, u2. We omit the
details of the calculation.

Example 83. Likelihood analysis for a signal with background

We want to fit a normal distribution with a linear background to a given sam-
ple. (The procedure for a background described by a higher order polynomial
is analogous.) The p.d.f. is

f(x) = θ1x+ θ2 + θ3N(x|µ, σ) .

Here N is the normal distribution with unknown mean µ and standard de-
viation σ. The other parameters are not independent because f has to be
normalized in the given interval xmin < x < xmax. Thus we can eliminate
one parameter. Assuming that the normal distribution is negligible outside
the interval, the norm D is:

D =
1

2
θ1(x

2
max − x2min) + θ2(xmax − xmin) + θ3 .

The normalized p.d.f. is therefore

f(x) =
θ′1x+ θ′2 + N(x|µ, σ)

1
2θ

′
1(x

2
max − x2min) + θ′2(xmax − xmin) + 1

,

with the new parameters θ′1 = θ1/θ3 and θ′2 = θ2/θ3. The likelihood function
is obtained in the usual way by inserting the observations of the sample into
lnL =

∑
ln f(xi|θ′1, θ′2, µ, σ). Maximizing this expression, we obtain the four

parameters and from those the fraction of signal events S = θ3/D:

S =

[
1 +

1

2
θ′1(x

2
max − x2min) + θ′2(xmax − xmin)

]−1

.

7This example has been borrowed from the book of L. Lyons [5].
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6.5.4 Combining Measurements

When parameters are determined in independent experiments, we obtain according
to the definition of the likelihood the combined likelihood by multiplication of the
likelihoods of the individual experiments.

L(λ) =
∏
Li(λ) ,

lnL =
∑

lnLi .

The likelihood method makes it possible to combine experimental results in a
extremely simple and at the same time optimal way. Thereby experimental data can
originate from completely heterogeneous experiments because no assumptions about
the p.d.f.s of the individual experiments enter, except that they are independent of
each other.

For the combination of experimental results it is convenient to use the logarithmic
presentation. In case the log-likelihoods can be approximated by quadratic parabolas,
the addition again produces a parabola.

6.5.5 Normally Distributed Variates and χ2

Frequently we encounter the situation that we have to compare measurements with
normally distributed errors to a parameter dependent prediction, for instance when
we fit a curve to measurements. (Remark that so far we had considered i.i.d variates,
now each observation follows a different distribution.) We will come back to this
problem below. For the moment let us assume that N observations xi each following
a normal distribution with variance δ2i

f(x1, . . . , xN ) =
∏

i

1√
2πδ2i

exp

[
− (xi − ti(θ))

2

2δ2i

]

are to be compared to a function ti(θ). The log-likelihood is

lnL = −1

2

∑[
(xi − ti(θ))

2

δ2i
+ ln(2π) + ln δ2i

]
. (6.13)

The first term of the sum corresponds to the expression (3.6.7) and has been
denoted by χ2,

χ2 =
∑[

(xi − ti(θ))
2

δ2i

]
.

For parameter inference we can omit the constant terms in (6.13) and thus have

lnL = −1

2
χ2 . (6.14)

Minimizing χ2 is equivalent to maximizing the log-likelihood. The MLE of θ is
obtained from a so-called least square or χ2 fit. Since we obtain the error of the
estimates θ̂ from the change of the likelihood function by 1/2, χ2 increases in the
range by one unit, ∆χ2 = 1.
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6.5.6 Likelihood of Histograms

For large samples it is more efficient to analyze the data in form of histograms than
to compute the likelihood for many single observations. The individual observations
are classified and collected into bins where all events of a bin have approximately the
same likelihood. We then compare the number of entries of a bin with the param-
eter dependent prediction. Often the prediction is available only as a Monte Carlo
simulation in form of a histogram.

The number of entries di in a bin i follows a multinomial distribution where for
each bin the probability pi(θ) is computed as a function of the parameters θ. For a
total N of observations the expectation ti of the number of observations in bin i is

ti(θ) = Npi(θ) .

Usually the number of entries of an individual bin is small compared to the total
number N . We then are allowed to apply the more comfortable Poisson distribu-
tion. The likelihood for ti expected and di observed entries according to the Poisson
distribution is given by

Li(θ) =
e−titdi

i

di!
,

lnLi(θ) = −ti + di ln ti − ln(di!) .

Since factors not depending on θ are irrelevant for the likelihood inference (see
Sect. 6.5.1), we are allowed to omit the term with the factorial. The log-likelihood of
the complete histogram with B bins is then

lnL(θ) =

B∑

i=1

(−ti + di ln ti) . (6.15)

The parameter dependence is hidden in the quantities ti. The maximum of this
function is determined by numerical methods.

For the numerical determination of the maximum, the sum (6.15) has to be re-
computed after each modification of the parameters. Since the sum runs only over
the bins but not over all individual observations as in the normal likelihood method,
the computation for histograms is relatively fast.

Example 84. Adjustment of a linear distribution to a histogram

The cosine u = cosα of an angle α be linearly distributed according to

f(u|λ) = 1

2
(1 + λu) , −1 ≤ u ≤ 1 , |λ| < 1 .

We want to determine the parameter λ which best describes the observed
distribution of 500 entries di into 20 bins (Fig. 6.8). In the Poisson approxi-
mation we expect ti entries for the bin i corresponding to the average value
ui = −1 + (i − 0.5)/10 of the cosine,

ti =
500

20
(1 + λui) .

We obtain the likelihood function by inserting this expression into (6.15).
The likelihood function an the MLE are indicated in the Figure 6.8.
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Fig. 6.8. Linear distribution with adjusted straight line (left) and likelihood function
(right).

Histograms with Background

If the measurement is contaminated by background which follows the Poisson statis-
tics with mean b, we have to modify the expression (6.15) for the log-likelihood to

lnL =

B∑

i=1

[−(ti + bi) + di ln(ti + bi)] .

Of course, a simple subtraction of the average background would have underesti-
mated the uncertainties. A further modification of the above expression is necessary
if the expectation value bi of the background itself is subject to uncertainties.

χ2 Approximation

We have seen in Sect. 3.6.3 that the Poisson distribution asymptotically with increas-
ing mean value t approaches a normal distribution with variance t. Thus for high
statistics histograms the number of events d in a bin with prediction t(θ) is described
by

f(d) =
1√
2πt

exp

[
− (d− t)2

2t

]
.

The corresponding log-likelihood is

lnL = − (d− t)2

2t
− 1

2
ln(2π)− 1

2
ln t .

For large t, the logarithmic term is an extremely slowly varying function of t. Ne-
glecting it and the constant term we find for the whole histogram
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lnL = −1

2

B∑

i=1

(di − ti)
2

ti

= −1

2
χ2 .

The sum corresponds to the expression (3.6.7) and has been denoted there as χ2:

χ2 =

B∑

i=1

(di − ti)
2

ti
.

If the approximation of the Poisson distribution by a normal distribution is justified,
the likelihood estimation of the parameters may be replaced by a χ2 fit and the
standard errors are given by a increase of χ2 by one unit.

The width of the χ2 distribution for B degrees of freedom is σ =
√
2B which, for

example, is equal to 10 for 50 histogram bins. With such large fluctuations of the
value of χ2 from one sample to the other, it appears paradoxical at first sight that
a parameter error of one standard deviation corresponds to such a small change of
χ2 as one unit, while a variation of χ2 by 10 is compatible with the prediction. The
obvious reason for the good resolution is that the large fluctuations from sample to
sample are unrelated to the value of the parameter. In case we would compare the
prediction after each parameter change to a new measurement sample, we would not
be able to obtain a precise result for the estimate of the parameter λ.

Usually, histograms contain some bins with few entries. Then a binned likelihood
fit is to be preferred to a χ2 fit, since the above condition of large ti (e.g. ti > 5) is
violated. We recommend to perform always a likelihood adjustment.

6.5.7 Extended Likelihood

When we record N independent multi-dimensional observations, {xi} , i = 1, . . . , N ,
of a distribution depending on a set of parameters θ, then it may happen that these
parameters also determine the rate, i.e. the expected rate λ(θ) is a function of θ.
In this situation N is no longer an ancillary statistic but a random variable like the
xi. This means that we have to multiply two probabilities, the probability to find
N observations which follow the Poisson statistics and the probability to observe a
certain distribution of the variates xi. Given a p.d.f. f(x|θ) for a single observation,
we obtain the likelihood function

L(θ) =
e−λ(θ)λ(θ)N

N !

N∏

i=1

f(xi|θ)

and its logarithm

lnL(θ) = −λ(θ) +N ln(λ(θ)) +

N∑

i=1

ln f(xi|θ)− lnN ! .

Again we can omit the last term in the likelihood analysis, because it does not depend
on θ.

As a special case, let us assume that the cross section for a certain reaction is
equal to g(x|θ). Then we get the p.d.f. by normalization of g:
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Fig. 6.9. Likelihood contours.

f(x|θ) = g(x|θ)∫
g(x|θ)dx .

The production rate λ is equal to the normalization factor multiplied with the lumi-
nosity S which is a constant:

λ(θ) = S

∫
g(x|θ)dx .

The extended likelihood method is discussed in some detail in Ref. [29].

6.5.8 Complicated Likelihood Functions

If the likelihood function deviates considerably from a normal distribution in the
vicinity of its maximum, e.g. contains several significant maxima, then it is not
appropriate to parametrize it by the maximum and error limits. In this situation the
full function or a likelihood map should be presented. Such a map is shown in Fig.
6.9. The presentation reflects very well which combinations of the parameters are
supported by the data. Under certain conditions, with more than two parameters,
several projections have to be considered.

6.5.9 Comparison of Observations with a Monte Carlo Simulation

Motivation

Modern research in natural sciences requires more and more complex and expensive
experimental setups which nevertheless cannot be perfect. Non-linearity, limited ac-
ceptance, finite resolution, and dead time affect the measurements. These effects can
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be described by an acceptance function α(x, x′) which specifies with which probabil-
ity a physical quantity x is detected as x′. The acceptance function thus describes
at the same time acceptance losses and resolution effects. A frequency distribution
h(x) is convoluted with the acceptance function and transformed to a distribution
h′(x′),

h′(x′) =

∫ xmax

xmin

α(x, x′)h(x) dx .

In many cases the detection effects can only be corrected by means of very elabo-
rate Monte Carlo simulations. This is especially true for experiments in nuclear and
particle physics.

There are two fundamentally different ways to extract interesting parameters
from the data: i) The function α is generated by a Monte Carlo simulation and is
subsequently used to deconvolute the observed distribution. We will devote Chap.
9 to deconvolution. ii) The observed distribution is compared to the simulation and
the parameters used in the simulation are adjusted. The second method is prefer-
able because the deconvolution always requires assumptions about the shape of the
distribution which are hard to justify, and introduce additional uncertainties.

The χ2 Approximation

The theoretical models are represented by Monte Carlo samples and the parameter
inference is carried out by a comparison of experimental and simulated histograms.
The number M of the simulated observations has to be normalized to the number N
of experimental events. For cm = N/M and mi Monte Carlo events in bin i we get
for the likelihood instead of (6.15).

lnL =

B∑

i=1

(−cmmi + di ln(cmmi)) (6.16)

assuming that the statistical error of the simulation can be neglected, i.e. M ≫ N
applies. If the number of the entries in all bins is large enough to approximate
the Poisson distribution by the normal distribution, we can as well minimize the
corresponding χ2 expression

χ2 =

B∑

i=1

(di − cmmi)
2

cmmi
. (6.17)

Remark that M and thus also cm depends on the parameters which we estimate.
Alternatively, we can leave cm as a free parameter in the fit. This is more convenient,
but reduces slightly the precision of the estimates of the parameters of interest.

If also the statistical fluctuations of the simulation have to be taken into account
and/or the observations are weighted, the expressions for (6.16), (6.17) become more
complex. They can be found in Ref. [48], and are for convenience included in Ap-
pendix 13.6.

The simulation programs usually consist of two different parts. The first part de-
scribes the physical process which depends on the parameters of interest. The second
models the detection process. Both parts often require large program packages, the
so called event generators and the detector simulators. The latter usually consume
considerable computing power. Limitations in the available computing time then may
result in non-negligible statistical fluctuations of the simulation.
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Weighting the Monte Carlo Observations

When we fit parameters, every parameter change obviously entails a modification
of the Monte Carlo prediction. Now we do not want to repeat the full simulation
with every fitting step. Apart from the fact that we want to avoid the computational
effort there is another more important reason: With the χ2 fit we find the standard
error interval by letting vary χ2 by one unit. On the other hand when we compare
experimental data with an optimal simulation, we expect a contribution to χ2 from
the simulation of the order of

√
2BN/M forB histogram bins. Even with a simulation

sample which is a hundred times larger than the data sample this value is of the
order of one. This means that a repetition of the simulation causes considerable
fluctuations of the χ2 value which have nothing to do with parameter changes. These
fluctuations can only be reduced if the same Monte Carlo sample is used for all
parameter values. We have to adjust the simulation to the modified parameters by
weighting its observations.

Also re-weighting produces additional fluctuations. These, however, should be
tolerable if the weights do not vary too much. If we are not sure that this assumption
is justified, we can verify it: We reduce the number of Monte Carlo observations
and check whether the result remains stable. We know that the contribution of the
simulation to the parameter errors scales with the inverse square root of the number
of simulated events. Alternatively, we can also estimate the Monte Carlo contribution
to the error by repeating the simulation and the full estimation process.

The weights are computed in the following way: For each Monte Carlo observation
x′ we know the true values x of the variates and the corresponding p.d.f. f(x|θ0)
for the parameter θ0, which had been used at the generation. When we modify
the parameter we weight each observation by w(θ) = f(x|θ)/f(x|θ0). The weighted
distribution of x′ then describes the modified prediction.

The weighting of single observations requires a repetition of the histogramming
after each parameter change. This may require too much computing time. A more
efficient method is based on a Taylor expansion of the p.d.f. in powers of the param-
eters. We illustrate it with two examples.

Example 85. Fit of the slope of a linear distribution with Monte Carlo cor-
rection

The p.d.f. be

f(x|θ) = 1 + θx

1 + θ/2
, 0 ≤ x ≤ 1 .

We generate observations x uniformly distributed in the interval 0 ≤ x ≤ 1,
simulate the experimental resolution and the acceptance, and histogram the
distorted variable x′ into bins i and obtain contents m0i. The same obser-
vations are weighted by x and summed up to the histogram m1i. These two
distributions are shown in Fig. 6.10 a, b. The dotted histograms correspond
to the distributions before the distortion by the measurement process. In Fig.
6.10 c is also depicted the experimental distribution. It should be possible to
describe it by a superposition mi of the two Monte Carlo distributions:

di ∼ mi = m0i + θm1i . (6.18)

We optimize the parameter θ such that the histogram di is described up to
a normalization constant as well as possible by a superposition of the two
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Fig. 6.10. The superposition of two Monte Carlo distributions, a) flat and b) triangular is
adjusted to the experimental data.

Monte Carlo histograms. We have to insert mi from (6.18) into (6.16) and
set cn = N/

∑

i

mi.

Example 86. Fit of a lifetime with Monte Carlo correction

We expand the p.d.f.
f(t|γ) = γe−γt

into a Taylor expansion at γ0 which is a first guess of the decay rate γ:

f(t|γ) = γ0e
−γ0t

{
1 +

∆γ

γ0
(1− γ0t) + (

∆γ

γ0
)2(−γ0t+

γ20t
2

2
) + · · ·

}
.

The Monte Carlo simulation follows the distribution f0 = γ0e
−γ0t. Weighting

the events by (1/γ0 − t) and (−t/γ0 + t2/2), we obtain the distributions
f1 = (1− γ0t)e

−γ0t, f2 = (−t+ γ0t
2/2)e−γ0t and

f(t|γ) = f0(t) +∆γf1(t) + (∆γ)2f2(t) + · · · .

If it is justified to neglect the higher powers of ∆γ/γ0, we can again describe
our experimental distribution this time by a superposition of three distribu-
tions f ′

0(t
′), f ′

1(t
′), f ′

2(t
′) which are the distorted versions of f0, f1, f2. The
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Fig. 6.11. Lifetime fit. The dotted histogram in b) is the superposition of the three his-
tograms of a) with weights depending on ∆γ.

parameter ∆γ is determined by a χ2 or likelihood fit. In our special case it
is even simpler to weight f0 by t, and t2, respectively, and to superpose the
corresponding distributions f0, g1 = tf0, g2 = t2f0 with the factors given in
the following expression:

f(t|γ) = f0(t)

(
1 +

∆γ

γ0

)
+ γ0g1(t)

(
∆γ

γ0
+ (

∆γ

γ0
)2
)
+

1

2
g2(t)γ

2
0

(
∆γ

γ0

)2

.

The parameter ∆γ is then modified until the correspondingly weighted sum
of the distorted histograms agrees optimally with the data. Figure 6.11 shows
an example. In case the quadratic term can be neglected, two histograms are
sufficient.

The general case is treated in an analogous manner. The Taylor expansion
is:

f(θ) = f(θ0) +∆θ
df

dθ
(θ0) +

(∆θ)2

2!

d2f

dθ2
(θ0) + · · ·
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= f(θ0)

{
1 +∆θ

1

f0

df

dθ
(θ0) +

(∆θ)2

2!

1

f0

d2f

dθ2
(θ0) + · · ·

}
.

The observations x′ of the distribution f0(x|θ0) provide the histogram m0.
Weighting with w1 and w2, where

w1 =
1

f0

df

dθ
(x|θ0) ,

w2 =
1

2f0

d2f

dθ2
(x|θ0) ,

we obtain two further histograms m1i, m2i. The parameter inference of ∆θ is
performed by comparingmi = (m0i+∆θm1i+∆θ

2m2i) with the experimental
histogram di.

In many cases the quadratic term can be omitted. In other situations it might
be necessary to iterate the procedure.

6.5.10 Parameter Estimate of a Signal Contaminated by Background

In this section we will discuss point inference in the presence of background in a spe-
cific situation, where we have the chance to record independently from a signal sample
also a reference sample containing pure background. The measuring times or fluxes,
i.e. the relative normalization, of the two experiments are supposed to be known. The
parameters searched for could be the position and width of a Breit-Wigner bump but
also the slope of an angular distribution or the lifetime of a particle. The interest in
this method rests upon the fact that we do not need to parameterize the background
distribution and thus are independent of assumptions about its shape. This feature
has to be paid for by a certain loss of precision.

The idea behind the method is simple: The log-likelihood of the wanted signal
parameter as derived for the full signal sample is a superposition of the log-likelihood
of the genuine signal events and the log-likelihood of the background events. The
latter can be estimated from the reference sample and subtracted from the full log-
likelihood.

To illustrate the procedure, imagine we want to measure the signal response of a
radiation detector by recording a sample of signal heights x1, . . . , xN from a mono-
energetic source. For a pure signal, the xi would follow a normal distribution with
resolution σ:

f(x|µ) = 1√
2πσ

e−(x−µ)2/(2σ2) .

The unknown parameter µ is to be estimated. After removing the source, we can –
under identical conditions – take a reference sample x′1, . . . , x

′
M of background events.

They follow a distribution which is of no interest to us.

If we knew, which observations xi in our signal sample were signal (x(S)
i ), respec-

tively background (x(B)
i ) events, we could take only the S signal events and calculate

the correct log-likelihood function

lnL =

S∑

i=1

ln f(x
(S)
i |µ) = −

S∑

i=1

(x
(S)
i − µ)2

2σ2
+ const.

= −
N∑

i=1

(xi − µ)2

2σ2
+

B∑

i=1

(x
(B)
i − µ)2

2σ2
+ const. ,
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with S + B = N . The second unknown term can be estimated from the control
sample

B∑

i=1

(x
(B)
i − µ)2

2σ2
≈

M∑

i=1

(x′i − µ)2

2σ2
.

The logarithm of our corrected log-likelihood becomes:

ln L̃ = −
N∑

i=1

(xi − µ)2

2σ2
+

M∑

i=1

(x′i − µ)2

2σ2
.

We call it pseudo log-likelihood, ln L̃, to distinguish it from a genuine log-likelihood.
To obtain the estimate µ̂ of our parameter, we look for the parameter µ̂ which
maximizes ln L̃ and find the expected simple function of the mean values x, x′:

µ̂ =

∑N
i=1 xi −

∑M
i=1 x

′

N −M

=
Nx−Mx′

N −M
. (6.19)

The general problem where the sample and parameter spaces could be multi-
dimensional and with different fluxes of the signal and the reference sample, is solved
in complete analogy to our example: Given a contaminated signal distribution of size
N and a reference distribution of size M and flux 1/r times larger than that of the
signal sample, we put

ln L̃ =

N∑

i=1

ln f(xi|θ)− r

M∑

i=1

ln f(x′
i|θ) . (6.20)

For small event numbers, for example if the flux-corrected number of background
events in the reference sample exceeds the total number of events in the main sample,
rM > N , it may happen that ln L̃ becomes un-bounded from above (for instance
asymptotically a parabola opening to the upper side), rendering a maximum unde-
fined.

The formula (6.20) is completely general and does not depend on the shape of the
background distribution8. It avoids histogramming which is problematic for low event
counts. Especially, those methods which subtract a background histogram from the
signal histogram often fail in such a situation. A different method, where the shape
of the background distribution is approximated by probability density estimation
(PDE) will be given in Sect. 12.1.1.

To get a feeling of the uncertainty ∆ of the corrected estimate, we return to
our example and look at the difference of the estimate µ̂ from the uncontaminated
estimate x(S) which we can set without loss of generality equal to zero. From simple
error propagation we find:

∆ =
Bx(B) −Mx′

S +B −M
.

8The method which we present in this section has been taken from the Russian transla-
tion of the book by Eadie et al. [6] and has been introduced probably by the Russian editors
[32].
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Fig. 6.12. Experimental distribution of a normally distributed signal over background (left)
and background reference sample (right). The lower histogram is scaled to the signal flux.

Without going into the details, we realize that the error increases i) with the amount
of background, ii) with the difference of the expected value of the reference distri-
bution from that of the genuine signal distribution, and iii) with the variance of
the background distribution. Correspondingly, we have to require

√
2M ≪ S, more

specifically
√
2M |µB − µS | ≪ Sσ and

√
2MσB ≪ Sσ. Here

√
2M is an estimate of

the Poisson error of B −M , S ≈ N −M , µB ≈ x′, µS ≈ µ̂, σB ≈ (x′2 − x2)1/2.

Also this consideration can be generalized: Stated qualitatively, the contribution
to the parameter uncertainty is small, if background and signal lead to similar param-
eter estimates, if the background estimate has a small uncertainty, and, trivially, if
the amount of background is small. This applies also, for instance, when we estimate
the asymmetry parameter of an angular distribution contaminated by background.

The shape itself of the pseudo likelihood cannot be used directly to estimate the
parameter errors. The calculation of the error in the asymptotic approximation is
given in Appendix 13.4.

An alternative procedure for the error estimation is the bootstrap method, where
we take a large number of bootstrap samples from the experimental distributions of
both the signal- and the control experiment and calculate the background corrected
parameter estimate for each pair of samples, see Chap. 12.2.

Example 87. Signal over background with background reference sample

Fig. 6.12 shows an experimental histogram of a normally distributed signal of
width σ = 1 contaminated by background, together 95 events with mean x =
0.61 and empirical variance v2 = 3.00. The right hand side is the distribution
of a background reference sample with 1/r = 2.5 times the flux of the signal
sample, containing 91 events with mean x′ = −1.17 and variance v′2 = 4.79.
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The mean of the signal is obtained from the flux corrected version of (6.19):

µ̂ =
Nx− rMx′

N − rM

=
95 · 0.61− 0.4 · 91 · 1.17

95− 0.4 · 91 = −0.26± 0.33 .

The error is estimated by linear error propagation. The result is indicated
in Fig. 6.12. The distributions were generated with nominally 60 pure signal
plus 40 background events and 100 background reference events. The signal
corresponds to a normal distribution, N(x|0, 1), and the background to an
exponential, ∼ exp(−0.2x).

6.6 Inclusion of Constraints

6.6.1 Introduction

The interesting parameters are not always independent of each other but are often
connected by constraint equations like physical or geometrical laws.

As an example let us look at the decay of a Λ particle into a proton and a pion,
Λ→ p + π, where the direction of flight of the Λ hyperon and the momentum vectors
of the decay products are measured. The momentum vectors of the three particles
which participate in the reaction are related through the conservation laws of energy
and momentum. Taking into account the conservation laws, we add information and
can improve the precision of the momentum determination.

In the following we assume that we have N direct observations xi which are
predicted by functions ti(θ) of a parameter vector θ with P components as well
as K constraints of the form hk(θ1, . . . , θP ) = 0. Let us assume further that the
uncertainties ∆i of the observations are normally distributed and that the constraints
are fulfilled with the precision δk,

〈
(ti(θ)− xi)

2
〉
= ∆2

i ,〈
h2k(θ1, . . . , θP )

〉
= δ2k , (6.21)

then χ2 can be written in the form:

χ2 =

N∑

i=1

[xi − ti(θ)]
2

∆2
i

+

K∑

k=1

h2k(θ)

δ2k
. (6.22)

We minimize χ2 by varying the parameters and obtain their best estimates at the
minimum of χ2. This procedure works also when the constraints contain more than
N parameters, as long as their number P does not exceed the sum N +K.

A corresponding likelihood fit would maximize

lnL =

N∑

i=1

ln f(xi|θ)−
1

2

K∑

k=1

h2k(θ)

δ2k
.

In most cases the constraints are obeyed exactly, δk = 0, and the second term in
(6.22) diverges. This difficulty is avoided in the following three procedures:
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1. The constraints are used to reduce the number of parameters.

2. The constraints are approximated by narrow Gaussians.

3. Lagrange multipliers are adjusted to satisfy the constraints.

We will discuss the problem in terms of a χ2 minimization. The transition to a
likelihood fit is trivial.

6.6.2 Eliminating Redundant Parameters

Sometimes it is possible to eliminate parameters by expressing them by an uncon-
strained subset.

Example 88. Fit with constraint: two pieces of a rope

A rope of exactly 1m length is cut into two pieces. A measurement of both
pieces yields l1 = 35.3 cm and l2 = 64.3 cm, both with the same Gaussian
uncertainty of δ = 0.3. We have to find the estimates λ̂1, λ̂2 of the lengths.
We minimize

χ2 =
(l1 − λ1)

2

δ2
+

(l2 − λ2)
2

δ2

including the constraint λ1 + λ2 = L = 100 cm. We simply replace λ2 by
L− λ1 and adjust λ1, minimizing

χ2 =
(l1 − λ1)

2

δ2
+

(L− l2 − λ1)
2

δ2
.

The minimization relative to λ1 leads to the result:

λ̂1 =
L

2
+
l1 − l2

2
= 35.5± 0.2 cm

and the corresponding estimate of λ2 is just the complement of λ̂1 with
respect to the full length. Note that due to the constraint the error of λi
is reduced by a factor

√
2, as can easily be seen from error propagation.

The constraint has the same effect as a double measurement, but with the
modification that now the results are (maximally) anti-correlated: one finds
cov(λ1λ2) = −var(λi).

Example 89. Fit of the particle composition of an event sample

A particle identification variable x has different distributions fi(x) for differ-
ent particles. The p.d.f. given the relative particle abundance λm for particle
species m out of M different particles is

f(x|λ1, . . . , λM ) =

M∑

m=1

λmfm(x) ,

∑
λm = 1 . (6.23)

As the constraint relation is linear, we can easily eliminate the parameter
λM to get rid of the constraint

∑
λm = 1:
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fM−1(x|λ1, . . . , λM−1) =

M−1∑

m=1

λmfm(x) + (1−
M−1∑

m=1

λm)fM (x) .

The log-likelihood for N particles is

lnL =
N∑

i=1

ln

[
M−1∑

m=1

λmfm(xi) + (1 −
M−1∑

m=1

λm)fM (xi)

]
.

From the MLE we obtain in the usual way the firstM−1 parameters and their
error matrix E. The remaining parameter λM and the related error matrix
elements eMj are derived from the constraint (6.23) and the corresponding
relation

∑
∆λm = 0. The diagonal error is the expected value of (∆λM )2:

∆λM = −
M−1∑

m=1

∆λm ,

(∆λM )2 =

[
M−1∑

m=1

∆λm

]2
,

EMM =
M−1∑

m=1

Emm +
M−1∑

m

M−1∑

l 6=m

Eml .

The remaining elements are computed analogously:

EMj = EjM = −Ejj −
M−1∑

m 6=j

Emj .

An iterative method, called channel likelihood, to find the particle contribu-
tions, is given in [34].

These trivial examples are not really representative for the typical problems we
have to solve in particle- or astrophysics. Indeed, it is often complicated or even im-
possible to reduce the parameter set analytically to an unconstrained subset. But we
can introduce a new unconstrained parameter set which then predicts the measured
quantities. To find such a set is straight forward in the majority of problems: We
just have to think how we would simulate the corresponding experimental process. A
simulation is always based on a minimum set of parameters. Constraints are obeyed
automatically.

Example 90. Kinematical fit with constraints: eliminating parameters

A neutral particle c is decaying into two charged particles a and b, for instance
Λ→ p+ π−. The masses mc,ma,mb are known. Measured are the momenta
πa,πb of the decay products and the decay vertex ρ. The measurements of
the components of the momentum vectors are correlated. The inverse error
matrices be Va and Vb. The origin of the decaying particle be at the origin of
the coordinate system. Thus we have 9 measurements (r,pa,pb), 10 param-
eters, namely the 3 momentum vectors and the distance (πc,πa,πb, ρ), and
4 constraints from momentum and energy conservation:
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π(πc,πa,πb) ≡ πc − πa − πb = 0 ,

ε(πc,πa,πb) ≡
√
π2
c +m2

c −
√
π2
a +m2

a −
√
π2
b −m2

b = 0 .

The χ2 expression is

χ2 =

3∑

i=1

(
ri − ρi
δri

)2

+

3∑

i,j=1

(pai − πai)Vaij(paj − πaj) +

+

3∑

i,j=1

(pbi − πbi)Vbij(pbj − πbj) .

The vertex parameters ρi are fixed by the vector relation ρ = ρπc/|πc|. Now
we would like to remove 4 out of the 10 parameters using the 4 constraints.

A Monte Carlo simulation of the Λ decay would proceed as follows: First
we would select the Λ momentum vector (3 parameters). Next the decay
length would be generated (1 parameter). The decay of the Λ hyperon into
proton and pion is fully determined when we choose the proton direction in
the lambda center of mass system (2 parameters). All measured laboratory
quantities and thus also χ2 can then be expressed analytically by these 6
unconstrained quantities (we omit here the corresponding relations) which
are varied in the fitting procedure until χ2 is minimal. Of course in the fit we
would not select random starting values for the parameters but the values
which we compute from the experimental decay length and the measured
momentum vectors. Once the reduced parameter set has been adjusted, it
is easy to compute also the remaining laboratory momenta and their errors
which, obviously, are strongly correlated.

Often the reduced parameter set is more relevant than the set corresponding to
the measurement, because a simulation usually is based on parameters which are of
scientific interest. For example, the investigation of the Λ decay might have the goal
to determine the Λ decay parameter which depends on the center of mass direction of
the proton relative to the Λ polarization, i.e. on one of the directly fitted quantities.

6.6.3 Gaussian Approximation of Constraints

As suggested by formula (6.22) to fulfil the constraints within the precision of our
measurement, we just have to choose the uncertainty δk sufficiently small. We will
give a precise meaning to the expression sufficiently small below.

Example 91. Example 88 continued

Minimizing

χ2 =
(l1 − λ1)

2

δ2
+

(l2 − λ2)
2

δ2
+

(λ1 + λ2 − L)2

(10−5δ)2
.

produces the same result as the fit presented above. The value δ2k = 10−10δ2

is chosen small compared to δ.
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Example 92. Example 90 continued

The modified χ2 expression is

χ2 =

3∑

i=1

(
ri − ρi
δri

)2

+

3∑

i,j=1

(pai − πai)Vaij(paj − πaj) +

+
3∑

i,j=1

(pbi − πbi)Vbij(pbj − πbj) +
3∑

i=1

(
πi
δπ

)2

+

(
ε

δε

)2

with tiny values for δπ and δε.

This direct inclusion of the constraint through a penalty term in the fit is
technically very simple and efficient.

As demonstrated in example 88 the term sufficiently small means that the un-
certainty δhk of a constraint k as derived from the fitted values of the parameters
and their errors is large compared to δk:

(δh)2k =
∑

i,j

∂hk
∂θi

∂hk
∂θj

δθiδθj ≫ δ2k . (6.24)

The quantities δθi in (6.24) are not known precisely before the fit is performed
but can be estimated sufficiently well beforehand. The precise choice of the constraint
precision δk is not at all critical, variations by many orders of magnitude make no
difference but a too small values of δk could lead to numerical problems.

6.6.4 The Method of Lagrange Multipliers

This time we choose the likelihood presentation of the problem. The likelihood func-
tion is extended to

lnL =

N∑

i=1

ln f(xi|θ) +
∑

k

αkhk(θ) . (6.25)

We have appended an expressions that in the end should be equal to zero, the
constraint functions multiplied by the so-called Lagrange multipliers. The MLE as
obtained by setting ∂ lnL/∂θj = 0 yields parameters that depend on the Lagrange
multipliers α. We can now use the free parameters αk to fulfil the constraints, or in
other words, we use the constraints to eliminate the Lagrange multiplier dependence
of the MLE.

Example 93. Example 88 continued

Our full likelihood function is now

lnL = − (l1 − λ1)
2

2δ2
− (l2 − λ2)

2

2δ2
+ α(λ1 + λ2 − L)

with the MLE λ̂1,2 = l1,2−δ2α. Using λ̂1+λ̂2 = L we find δ2α = (l1+l2−L)/2
and, as before, λ̂1 = (L+ l1 − l2)/2, λ̂2 = (L+ l2 − l1)/2.
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Of course, the general situation is much more complicated than that of our triv-
ial example. An analytic solution will hardly be possible. Instead we can set the
derivative of the log-likelihood not only with respect to the parameters θ but also
with respect to the multipliers αk equal to zero, ∂ lnL/∂αk = 0, which automati-
cally implies, see (6.25), that the constraints are satisfied. Unfortunately, the zero
of the derivative corresponds to a saddle point and cannot be found by a maximum
searching routine. More subtle numerical methods have to be applied.

Most methods avoid this complication and limit themselves to linear regression
models which require a linear dependence of the observations on the parameters
and linear constraint relations. Non-linear problems are then solved iteratively. The
solution then is obtained by a simple matrix calculus.

Linear regression will be sketched in Sect. 7.2.3 and the inclusion of constraints
in Appendix 13.10.

6.6.5 Conclusion

By far the simplest method is the one where the constraint is directly included and
approximated by a narrow Gaussion. With conventional minimizing programs the
full error matrix is produced automatically.

The approach using a reduced parameter set is especially interesting when we are
primarily interested in the parameters of the reduced set. Due to the reduced dimen-
sion of the parameter space, it is faster than the other methods. The determination of
the errors of the original parameters through error propagation is sometimes tedious.

It is recommended to either eliminate redundant parameters or to use the sim-
ple method where we represent constraints by narrow Gaussians. The application
of Lagrange multipliers is unnecessarily complicated and the linear approximation
requires additional assumptions and iterations.

6.7 Reduction of the Number of Variates

6.7.1 The Problem

A statistical analysis of an univariate sample is obviously much simpler than that
of a multidimensional one. This is not only true for the qualitative comparison of a
sample with a parameter dependent p.d.f. but also for the quantitative parameter
inference. Especially when the p.d.f. is distorted by the measurement process and a
Monte Carlo simulation is required, the direct ML method cannot be applied as we
have seen above. The parameter inference then happens by comparing histograms
with the problem that in multidimensional spaces the number of entries can be quite
small in some bins. Therefore, we have an interest to reduce the dimensionality of
the variable space by appropriate transformations, of course, if possible, without loss
of information. However, it is not always easy to find out which variable or which
variable combination is especially important for the parameter estimation.
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6.7.2 Two Variables and a Single Linear Parameter

A p.d.f. f(x, y|θ) of two variates with a linear parameter dependence can always be
written in the form

f(x, y|θ) = v(x, y)[1 + u(x, y)θ] .

The log-likelihood for observations u = u(x, y), v = v(x, y),

lnL(θ) = ln v + ln(1 + uθ) ,

is essentially a function of only one significant variate u(x, y) because ln v does not de-
pend on θ and can be omitted. A MLE of θ for a given sample {(x1, y1), . . . , (xN , yN )}
with

lnL(θ) =
∑

ln(1 + uiθ) , (6.26)

and ui = u(xi, yi) depends only on the observations {u1, . . . , uN}. The analysis can
be based on the individual quantities or a histogram.

The simple form of the relation (6.26) suggests that the analytic form g(u|θ)
of the p.d.f. of u is not needed for the parameter inference. Only the experimental
observations ui enter into the likelihood function.

Unfortunately this nice property is lost when acceptance and resolution effects
are present – and this is usually the case. In this situation, the linearity in θ is lost
because we are forced to renormalize the p.d.f.. Nevertheless we gain by the reduction
to one variate u. If the detector effects are not too large, the distribution of u still
contains almost the complete information relative to θ.

The analytic variable transformation and reduction is possible only in rare cases,
but it is not necessary because it is performed implicitly by the Monte Carlo simula-
tion. We generate according to f(x, y|θ) and for each observation xi, yi we calculate
the corresponding quantity ui = u(xi, yi). The parameter θ is determined by a com-
parison of the experimental sample with the Monte Carlo distribution of u by means
of a likelihood or a χ2 fit. The distribution of u lends itself also for a goodness-of-fit
test (see Chap. 10).

6.7.3 Generalization to Several Variables and Parameters

The generalization to N variates which we combine to a vector x is trivial:

f(x|θ) = v(x) [1 + u(x)θ] .

Again we can reduce the variate space to a single significant variate u without
loosing relevant information. If simultaneously P parameters have to be determined,
we usually will need also P new variates u1, . . . , uP :

f(x|θ) = v(x)

[
1 +

∑

p

up(x)θp

]
.

Our procedure thus makes sense only if the number of parameters is smaller than
the dimension of the variate space.
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Fig. 6.13. Simulated p.d.f.s of the reduced variable u for the values ±1 of the parameter.

Example 94. Reduction of the variate space

We consider the p.d.f.

f(x, y, z|θ) = 1

π

[
(x2 + y2 + z2)1/2 + (x+ y3)θ

]
, x2 + y2 + z2 ≤ 1 , (6.27)

which depends on three variates and one parameter. For a given sample of
observations in the three dimensional cartesian space we want to determine
the parameter θ. The substitutions

u =
x+ y3

(x2 + y2 + z2)1/2
, |u| ≤

√
2 ,

v = (x2 + y2 + z2)1/2 , 0 ≤ v ≤ 1 ,

z = z

lead to the new p.d.f. g′(u, v, z)

g′(u, v, z|θ) = v

π
[1 + u θ]

∂(x, y, z)

∂(u, v, z)
,

which after integrating out v and z yields the p.d.f. g(u|θ):

g(u|θ) =
∫

dz dv g′(u, v, z|θ) .

This operation is not possible analytically but we do not need to compute g
explicitly. We are able to determine the MLE and its error from the simple
log-likelihood function of θ

lnL(θ) =
∑

i

ln(1 + uiθ) .
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In case we have to account for acceptance effects, we have to simulate the u
distribution. For a Monte Carlo simulation of (6.27) we compute for each ob-
servation xi, yi, zi the value of ui and histogram it. The simulated histograms
g+ and g− of u for the two parameter values θ = ±1 are shown in Fig. 6.13.
(The figure does not include experimental effects. This is irrelevant for the
illustration of the method.) The superposition ti = (1 − θ)g−i + (1 + θ)g+i

has then to be inserted into the likelihood function (6.15).

6.7.4 Non-linear Parameters

The example which we just investigated is especially simple because the p.d.f. de-
pends linearly on a single parameter. Linear dependencies are quite frequent because
distributions often consist of a superposition of several processes, and the interesting
parameters are the relative weights of those.

For the general, non-linear case we restrict ourselves to a single parameter to
simplify the notation. We expand the p.d.f. into a Taylor series at a first rough
estimate θ0:

f(x|θ) = f(x|θ0) +
∂f

∂θ
|θ0 ∆θ +

1

2

∂2f

∂θ2
|θ0 ∆θ2 + · · ·

= V
[
1 + u1∆θ + u2∆θ

2 + · · ·
]
. (6.28)

As before, we choose the coefficients ui as new variates. Neglecting quadratic and
higher terms, the estimate θ̂ = θ0 + ∆̂θ depends only on the new variate u1,

u1(x) =
∂f(x|θ)/∂θ |θ0

f(x|θ0)

which is a simple function of x.

If the linear approximation is insufficient, a second variate u2 should be added.
Alternatively, the solution can be iterated. The generalization to several parameters
is straight forward.

A more detailed description of the method with application to a physics process
can be found in Refs. [30, 31]. The corresponding choice of the variate is also known
under the name optimal variable method [42].

6.8 Method of Approximated Likelihood Estimator

As in the previous section we investigate the situation where we have to estimate
parameters in presence of acceptance and resolution effects. The idea of the method
is the following: We try to find a statistic θ̂′ of the distorted data sample which
summarizes the information relative to the parameter of interest. Then we perform a
Monte Carlo simulation to infer the relation θ(θ′) between the parameter of interest
θ and the observed quantity θ′. Ideally, we can find an approximately sufficient
statistic9. If we are not successful, we can use the likelihood estimate which we

9A sufficient statistic is a function of the sample and replaces it for the parameter
estimation without loss in precision. We will define sufficiency in Chap. 7.
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Fig. 6.14. Observed lifetime distribution. The insert indicates the transformation of the
observed lifetime to the corrected one.

obtain when we insert the data into the undistorted p.d.f.. In both cases we find the
relation between the experimental statistic and the estimate of the parameter by a
Monte Carlo simulation. The method should become clear in the following example.

Example 95. Approximated likelihood estimator: Lifetime fit from a distorted
distribution

The sample mean t of a sample of N undistorted exponentially distributed
lifetimes ti is a sufficient estimator: It contains the full information related to
the parameter τ , the mean lifetime (see Sect. 7.1.1). In case the distribution
is distorted by resolution and acceptance effects (Fig. 6.14), the mean value

t′ =
∑

t′i/N

of the distorted sample t′i will usually still contain almost the full information
relative to the mean life τ . The relation τ(t′) between τ and its approximation
t′ (see insert of Fig. 6.14) is generated by a Monte Carlo simulation. The
uncertainty δτ is obtained by error propagation from the uncertainty δt′ of
t′,

(δt′)2 =
(t′2 − t′

2
)

N − 1
,

with t′2 =
1

N

∑
t′2i

using the Monte Carlo relation τ(t′).

This approach has several advantages:
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• We do not need to histogram the observations.

• Problems due to small event numbers for bins in a multivariate space are avoided.

• It is robust, simple and requires little computing time.

For these reasons the method is especially suited for online applications, provided
that we find an efficient estimator.

If the distortions are not too large, we can use the likelihood estimator extracted
from the observed sample {x′1, . . . , x′N} and the undistorted distribution f(x|λ):

L(λ) =
∏

f(x′i|λ) ,
dL
dλ

|λ̂′ = 0 . (6.29)

This means concretely that we perform the usual likelihood analysis where we ignore
the distortion. We obtain λ̂′. Then we correct the bias by a Monte Carlo simulation
which provides the relation λ̂(λ̂′).

It may happen in rare cases where the experimental resolution is very bad that
f(x|λ) is undefined for some extremely distorted observations. This problem can be
cured by scaling λ̂′ or by eliminating particular observations.

Acceptance losses α(x) alone without resolution effects do not necessarily entail a
reduction in the precision of our approach. For example, as has been shown in Sect.
6.5.2, cutting an exponential distribution at some maximum value of the variate,
the mean value of the observations is still a sufficient statistic. But there are cases
where sizable acceptance losses have the consequence that our method deteriorates.
In these cases we have to take the losses into account. We only sketch a suitable
method. The acceptance corrected p.d.f. f ′(x|λ) for the variate x is

f ′(x|λ) = α(x)f(x|λ)∫
α(x)f(x|λ)dx ,

where the denominator is the global acceptance and provides the correct normaliza-
tion. We abbreviate it by A(λ). The log-likelihood of N observations is

lnL(λ) =
∑

lnα(xi) +
∑

ln f(xi|λ)−NA(λ) .

The first term can be omitted. The acceptance A(λ) can be determined by a Monte
Carlo simulation. Again a rough estimation is sufficient, at most it reduces the pre-
cision but does not introduce a bias, since all approximations are automatically
corrected with the transformation λ(λ′).

Frequently, the relation (6.29) can only be solved numerically, i.e. we find the
maximum of the likelihood function in the usual manner. We are also allowed to
approximate this relation such that an analytic solution is possible. The resulting
error is compensated in the simulation.

Example 96. Approximated likelihood estimator: linear and quadratic distri-
butions

A sample of events xi is distributed linearly inside the interval [−1, 1], i.e.
the p.d.f. is f(x|b) = 0.5 + bx. The slope b , |b| < 1/2, is to be fitted. It is
located in the vicinity of b0. We expand the likelihood function
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lnL =
∑

ln(0.5 + bxi)

at b0 with
b = b0 + β

and derive it with respect to β to find the value β̂ at the maximum:
∑ xi

0.5 + (b0 + β̂)xi
= 0 .

Neglecting quadratic and higher order terms in β̂ we can solve this equation
for β̂ and obtain

β̂ ≈
∑
xi/f0i∑
x2i /f

2
0i

(6.30)

where we have set f0i = f(xi|b0).
If we allow also for a quadratic term

f(x|a, b) = a+ bx+ (1.5− 3a)x2 ,

we write, in obvious notation,

f(x|a, b) = f0 + α(1 − 3x2) + βx

and get, after deriving lnL with respect to α and β and linearizing, two linear
equations for α̂ and β̂:

α̂
∑

A2
i + β̂

∑
AiBi =

∑
Ai ,

α̂
∑

AiBi + β̂
∑

B2
i =

∑
Bi , (6.31)

with the abbreviations Ai = (1 − 3x2i )/f0i, Bi = xi/f0i.

From the observed data using (6.31) we get β̂′(x′), α̂′(x′), and the simulation
provides the parameter estimates b̂(β̂′), â(α̂′) and their uncertainties.

The calculation is much faster than a numerical minimum search and almost as
precise. If α̂, β̂ are large we have to iterate.

6.9 Nuisance Parameters

Frequently a p.d.f. f(x|θ,ν) contains several parameters from which only some,
namely θ, are of interest, whereas the other parameters ν are unwanted, but influence
the estimate of the former. Those are called nuisance parameters. A typical example
is the following.

Example 97. Nuisance parameter: decay distribution with background

We want to infer the decay rate γ of a certain particle from the decay times
ti of a sample of M events. Unfortunately, the sample contains an unknown
amount of background. The decay rate γb of the background particles be
known. The nuisance parameter is the number of background events N . For
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a fraction of background events of N/M , the p.d.f. for a single event with
lifetime t is

f(t|γ,N) =

(
1− N

M

)
γe−γt +

N

M
γbe

−γbt ,

from which we derive the likelihood for the sample:

L(γ,N) =

M∏

i=1

[(
1− N

M

)
γe−γti +

N

M
γbe

−γbti

]
.

A contour plot of the log-likelihood of a specific data sample of 20 events and
γb = 0.2 is depicted in Fig. 6.15. The two parameters γ and N are correlated.
The question is then: What do we learn about γ, what is a sensible point
estimate of γ and how should we determine its uncertainty?

We will re-discuss this example in the next subsection and present in the following
some approaches which permit to eliminate the nuisance parameters. First we will
investigate exact methods and then we will turn to the more problematic part where
we have to apply approximations.

6.9.1 Nuisance Parameters with Given Prior

If we know the p.d.f. π(ν) of a nuisance parameter vector ν, the prior of ν, then we
can eliminate ν simply by integrating it out, thereby weighting ν with its probability
π(ν) to occur.

fθ(x|θ) =
∫
f(x|θ,ν)π(ν)dν .

In this way we obtain a p.d.f. depending solely on the parameters of interest θ. The
corresponding likelihood function of θ is

Lθ(θ|x) =
∫
L(θ,ν|x)π(ν)dν =

∫
f(x|θ,ν)π(ν)dν . (6.32)

Example 98. Nuisance parameter: measurement of a Poisson rate with a dig-
ital clock

An automatic monitoring device measures a Poisson rate θ with a digital
clock with a least count of ∆. For n observed reactions within a time inter-
val ν the p.d.f. is given by the Poisson distribution P (n|θν). If we consider
both, the rate parameter θ and the length of the time interval ν as unknown
parameters, the corresponding likelihood function is

L(θ, ν) =
e−θν [θν]n

n!
.

For a clock reading t0, the true measurement time is contained in the time
interval t0 ± ∆/2. We can assume that all times ν within that interval are
equally probable and thus the prior of ν is π(ν) = 1/∆ for ν in the interval
[t0 − ∆/2 , t0 + ∆/2] and equal to zero elsewhere. We eliminate constant
factors, and, integrating over ν,

Lθ(θ) =

∫ t0+∆/2

t0−∆/2

e−θν [θν]
n
dν ,

we get rid of the nuisance parameter. The integral can be evaluated numeri-
cally.
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Fig. 6.15. Log-likelihood contour as a function of decay rate and number of background
events. For better visualization the discrete values of the event numbers are connected.

Let us resume the problem discussed in the introduction. We now assume that we
have prior information on the amount of background: The background expectation
had been determined in an independent experiment to be 10 with sufficient precision
to neglect its uncertainty. The actual number of background events follows a Poisson
distribution. The likelihood function is

L(γ) =

∞∑

N=0

e−1010N

N !

20∏

i=1

[(
1− N

20

)
γe−γti +

N

20
0.2e−0.2ti

]
.

Since our nuisance parameter is discrete we have replaced the integration in (6.32)
by a sum.

6.9.2 Factorizing the Likelihood Function

Very easy is the elimination of the nuisance parameter if the p.d.f. is of the form

f(x|θ, ν) = fθ(x|θ)fν(x|ν) , (6.33)

i.e. only the first term fθ depends on θ. Then we can write the likelihood as a product

L(θ, ν) = Lθ(θ)Lν(ν)

with
Lθ =

∏
fθ(xi|θ) ,

independent of the nuisance parameter ν.

Example 99. Elimination of a nuisance parameter by factorization of a two-
dimensional normal distribution
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A sample of space points (xi, yi), i = 1, . . . , N follow a normal distribution

f(x, y|θ, ν) = ab

2π
exp

(
−1

2

[
a2(x − θ)2 + b2(y − ν)2

])

=
ab

2π
exp

(
−a

2

2
(x− θ)2

)
exp

(
−b

2

2
(y − ν)2

)
.

with θ the parameter which we are interested in. The normalized x distribu-
tion depends only on θ. Whatever value ν takes, the shape of this distribution
remains always the same. Therefore we can estimate θ independently of ν.
The likelihood function is proportional to a normal distribution of θ,

L(θ) ∼ exp

(
−a

2

2
(θ − θ̂)2

)
,

with the estimate θ̂ = x =
∑
xi/N .

6.9.3 Parameter Transformation, Restructuring

Sometimes we manage by means of a parameter transformation ν′ = ν′(θ, ν) to bring
the p.d.f. into the desired form (6.33) where the p.d.f. factorizes into two parts which
depend separately on the parameters θ and ν′. We have already sketched an example
in Sect. 4.3.6: When we are interested in the slope θ and not in the intersection ν
with the y-axis of a straight line y = θx + ν which should pass through measured
points, then we are able to eliminate the correlation between the two parameters. To
this end we express the equation of the straight line by the slope and the ordinate
at the center of gravity, see Example 114 in Chap. 7.

A simple transformation ν′ = c1ν + c2θ also helps to disentangle correlated pa-
rameters of a Gaussian likelihood

L(θ, ν) ∼ exp

(
−a

2(θ − θ̂)2 − 2abρ(θ − θ̂)(ν − ν̂) + b2(ν − ν̂)2

2(1− ρ2)

)
,

With suitable chosen constants c1, c2 it produces a likelihood function that factorizes
in the new parameter pair θ, ν′. In the notation where the quantities θ̂, ν̂ maximize
the likelihood function, the transformation produces the result

Lθ(θ) ∼ exp

(
−a

2

2
(θ − θ̂)2

)
.

We set the proof of this assertion aside.

It turns out that this procedure yields the same result as simply integrating out
the nuisance parameter and as the profile likelihood method which we will discuss
below. This result is interesting in the following respect: In many situations the
likelihood function is nearly of Gaussian shape. As is shown in Appendix 13.3, the
likelihood function approaches a Gaussian with increasing number of observations.
Therefore, integrating out the nuisance parameter, or better to apply the profile
likelihood method, is a sensible approach in many practical situations. Thus nuisance
parameters are a problem only if the sample size is small.

The following example is frequently discussed in the literature [16].
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Fig. 6.16. Log-likelihood function of an absorption factor.

Example 100. Elimination of a nuisance parameter by restructuring: absorp-
tion measurement

The absorption factor θ for radioactive radiation by a plate is determined
from the numbers of events r1 and r2, which are observed with and with-
out the absorber within the same time intervals. The numbers r1, r2 follow
Poisson distributions with mean values ρ1 and ρ2:

f1(r1|ρ1) =
e−ρ1ρr11
r1!

,

f2(r2|ρ2) =
e−ρ2ρr22
r2!

.

The interesting parameter is the expected absorption θ = ρ2/ρ1. In first
approximation we can use the estimates r1, r2 of the two independent pa-
rameters ρ1 and ρ2 and their errors to calculate in the usual way through
error propagation θ and its uncertainty:

θ̂ =
r2
r1
,

(δθ̂)2

θ̂2
=

1

r1
+

1

r2
.

For large numbers r1, r2 this method is justified but the correct way is to
transform the parameters ρ1, ρ2 of the combined distribution

f(r1, r2|ρ1, ρ2) =
e−(ρ1+ρ2)ρr11 ρ

r2
2

r1!r2!

into the independent parameters θ = ρ2/ρ1 and ν = ρ1 + ρ2. The transfor-
mation yields:
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f̃(r1, r2|θ, ν) = e−ννr1+r2
(1 + 1/θ)−r1(1 + θ)−r2

r1!r2!
,

L(θ, ν|r1, r2) = Lν(ν|r1, r2)Lθ(θ|r1, r2) .

Thus the log-likelihood function of θ is

lnLθ(θ|r1, r2) = −r1 ln(1 + 1/θ)− r2 ln(1 + θ) .

It is presented in Fig. 6.16 for the specific values r1 = 10, r2 = 20. The
maximum is located at θ̂ = r2/r1, as obtained with the simple estimation
above. However the errors are asymmetric.

Instead of a parameter transformation it is sometimes possible to eliminate the
nuisance parameter if we can find a statistic y which is independent of the nuisance
parameter ν, i.e. ancillary with respect to ν, but dependent on the parameter θ.
Then we can use the p.d.f. of y, f(y|θ), which per definition is independent of ν,
to estimate θ. Of course, we may loose information because y is not necessarily a
sufficient statistic relative to θ. The following example illustrates this method. In this
case there is no loss of information.

Example 101. Eliminating a nuisance parameter by restructuring: Slope of a
straight line with the y-axis intercept as nuisance parameter

We come back to one of our standard examples which can, as we have indi-
cated, be solved by a parameter transformation. Now we solve it in a sim-
pler way. Points (xi, yi) are distributed along a straight line. The x coor-
dinates are exactly known, the y coordinates are the variates. The p.d.f.
f(y1, ...yn|θ, ν) contains the slope parameter θ and the uninteresting inter-
cept ν of the line with the y axis. It is easy to recognize that the statistic
{ỹ1 = y1 − yn, ỹ2 = y2 − yn, . . . , ỹn−1 = yn−1 − yn} is independent of ν. In
this specific case the new statistic is also sufficient relative to the slope θ
which clearly depends only on the differences of the ordinates. We leave the
details of the solution to the reader.

Further examples for the elimination of a nuisance parameter by restructuring
have been given already in Sect. 6.5.2, Examples 79 and 80.

6.9.4 Profile Likelihood

We now turn to approximate solutions.

Some scientists propose to replace the nuisance parameter by its estimate. This
corresponds to a delta function for the prior of the nuisance parameter and is for that
reason quite exotic and dangerous. It leads to an illegitimate reduction of the error
limits whenever the nuisance parameter and the interesting parameter are correlated.
Remark, that a correlation always exists unless a factorization is possible. In the
extreme case of full correlation the error would shrink to zero.

A much more sensible approach to eliminate the nuisance parameter uses the so-
called profile likelihood [33]. To explain it, we give an example with a single nuisance
parameter.
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Fig. 6.17. Profile likelihood (solid curve, right hand scale) and ∆ lnL(θ, ν) = 1/2 contour
(left hand scale). The dashed curve is ν̂(θ).

The likelihood function is maximized with respect to the nuisance parameter ν
as a function of the wanted parameter θ. The function ν̂(θ) which maximizes L then
satisfies the relation

∂L(θ, ν|x)
∂ν

|ν̂ = 0 → ν̂(θ) .

It is inserted into the likelihood function and provides the profile likelihood Lp,

Lp = L (θ, ν̂(θ)|x) ,

which depends solely on θ.

This method has the great advantage that only the likelihood function enters and
no assumptions about priors have to be made. It also takes correlations into account.
Graphically we can visualize the error interval of the profile likelihood∆ lnLp(θ, ν) =
1/2 by drawing the tangents of the curve ∆ lnL = 1/2 parallel to the ν axis. These
tangents include the error interval.

An example of a profile likelihood is depicted in Fig. 6.17. We have used the
absorption example from above to compute the curves. The nuisance parameter is
ρ1. The result is the same as with the exact factorization.

In the literature we find methods which orthogonalize the parameters at the max-
imum of the likelihood function [35] which means to diagonalize a more dimensional
Gaussian. The result is similar to that of the profile likelihood approach.

In the limit of a large number of observations where the likelihood function ap-
proaches the shape of a normal distribution, the profile likelihood method is identical
to restructuring and factorizing the likelihood.
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6.9.5 Integrating out the Nuisance Parameter

If the methods fail which we have discussed so far, we are left with only two possi-
bilities: Either we give up the elimination of the nuisance parameter or we integrate
it out. The simple integration

Lθ(θ|x) =
∫ ∞

−∞
L(θ, ν|x)dν

implicitly contains the assumption of a uniform prior of ν and therefore depends to
some extend on the validity of this condition. However, in most cases it is a reasonable
approximation. The effect of varying the prior is usually negligible, except when the
likelihood function is very asymmetric. Also a linear term in the prior does usually
not matter. It is interesting to notice that in most cases integrating out the nuisance
parameter leads to the same result as restructuring the problem.

6.9.6 Explicit Declaration of the Parameter Dependence

It is not always possible to eliminate the nuisance parameter in such a way that the
influence of the method on the result can be neglected. When the likelihood function
has a complex structure, we are obliged to document the full likelihood function. In
many cases it is possible to indicate the dependence of the estimate θ and its error
limits θ1, θ2 on the nuisance parameter ν explicitly by a simple linear function

θ̂ = θ̂0 + c(ν − ν̂) ,

θ1,2 = θ1,2 + c(ν − ν̂) .

Usually the error limits will show the same dependence as the MLE which means
that the width of the interval is independent of ν.

However, publishing a dependence of the parameter of interest on the nuisance
parameter is useful only if ν corresponds to a physical constant and not to an internal
parameter of an experiment like efficiency or background.

6.9.7 Advice

If it is impossible to eliminate the nuisance parameter explicitly and if the shape
of the likelihood function does not differ dramatically from that of a Gaussian, the
profile likelihood approach should be used for the parameter and interval estimation.
In case the deviation from a Gaussian is considerable, we will try to avoid problems
by an explicit declaration of the dependence of the likelihood estimate and limits
on the nuisance parameter. If also this fails, we abstain from the elimination of the
nuisance parameter and publish the full likelihood function.
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Parameter Inference II

7.1 Likelihood and Information

7.1.1 Sufficiency

In a previous example, we have seen that the likelihood function for a sample of
exponentially distributed decay times is a function only of the sample mean. In
fact, in many cases, the i.i.d. individual elements of a sample {x1, . . . , xN} can be
combined to fewer quantities, ideally to a single one without affecting the estimation
of the interesting parameters. The set of these quantities which are functions of the
observations is called a sufficient statistic. The sample itself is of course a sufficient,
while uninteresting statistic.

According to R. A. Fisher, a statistic is sufficient for one or several parameters,
if by addition of arbitrary other statistics of the same data sample, the parameter
estimation cannot be improved. More precise is the following definition [1]: A statistic
t(x1, . . . , xN ) ≡ {t1(x1, . . . , xN ), . . . , tM (x1, . . . , xN )} is sufficient for a parameter set
θ, if the distribution of a sample {x1, . . . , xN}, given t, does not depend on θ:

f(x1, . . . , xN |θ) = g(t1, . . . , tM |θ)h(x1, . . . , xN ) . (7.1)

The distribution g(t|θ) then contains all the information which is relevant for
the parameter estimation. This means that for the estimation process we can replace
the sample by the sufficient statistic. In this way we may reduce the amount of
data considerably. In the standard situation where all parameter components are
constraint by the data, the dimension of t must be larger or equal to the dimension
of the parameter vector θ. Every set of uniquely invertible functions of t is also a
sufficient statistic.

The relevance of sufficiency is expressed in a different way in the so-called suffi-
ciency principle:

If two different sets of observations have the same values of a sufficient statistic,
then the inference about the unknown parameter should be the same.

Of special interest is a minimal sufficient statistic. It consists of a minimal number
of components, ideally only of one element per parameter.

In what follows, we consider the case of a one-dimensional sufficient statistic
t(x1, . . . , xN ) and a single parameter θ. The likelihood function can according to
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(7.1) be written in the following way:

L = L1(θ|t(x)) · L2(x) . (7.2)

It is easy to realize that the second factor L2 which is independent of θ1, has no
bearing on the likelihood ratios of different values of θ. We obtain a data reduction
of N to 1. This means that all samples of size N which have the same value of the
statistic t lead to the same likelihood function and thus to the same MLE and the
same likelihood ratio interval.

If a minimal sufficient statistic of one element per parameter exists, then the MLE
itself is a minimal sufficient statistic and the MLE together with the sample size N
fix the likelihood function up to an irrelevant factor. (For the Cauchy distribution the
full sample is a minimal sufficient statistic. No further reduction in size is possible.
Thus its MLE is not sufficient.)

If in the general situation with P parameters a minimal sufficient statistic t of P
components exists, the data reduction is N to P and the MLE for the P parameters
will be a unique function of t and is therefore itself a sufficient statistic.

Once we have found a sufficient statistic it is mostly easy to compute the MLE.

Example 102. Sufficient statistic and expected value of a normal distribution

Let x1, . . . , xN be N normally distributed observations with width σ. The pa-
rameter of interest be the expected value µ of the distribution. The likelihood
function is

L(µ|x1, . . . , xN ) = c

N∏

i=1

exp[−(xi − µ)2/(2σ2]

= c exp[−
N∑

i=1

(xi − µ)2/(2σ2)] ,

with c = (
√
2πσ)−N . The exponent can be expressed in the following way:

N∑

i=1

(xi − µ)2/(2σ2) = N(x2 − 2xµ+ µ2)/(2σ2) .

Now the likelihood L factorizes:

L(µ, σ|x1, . . . , xN ) = exp[−N(−2xµ+µ2)/(2σ2)]·c exp[−Nx2/(2σ2)] . (7.3)

Only the first factor depends on µ. Consequently the experimental quantity
x contains the full information on µ and thus is a one-dimensional sufficient
statistic. Setting the derivative of the first factor equal to zero, we obtain the
MLE µ̂ = x.

In the following example we show that a sufficient two-dimensional statistic can
be found when besides the expectation value also the width σ is to be estimated.

Example 103. Sufficient statistic for mean value and width of a normal dis-
tribution

1Note, that also the domain of x has to be independent of θ.
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Let x1, . . . , xN be N normally distributed observations. The mean value µ
and the width σ be the parameters of interest. From (7.3) we deduce that x
and x2 together form a sufficient statistic {x, x2}. Alternatively, also x and
v2 =

∑
(xi−x)2 form a sufficient statistic. The MLE in the two-dimensional

parameter space µ, σ2 is

µ̂ = x , σ̂2 =
1

N
(x2 − x2) .

There is no one-dimensional sufficient statistic for σ alone, as has been the case for
µ.

Remark: In the examples which we have discussed, the likelihood function is
fixed up to an irrelevant multiplicative factor if we consider the sample size N as
a constant. In case N is also a random variable, then N is part of the sufficient
statistic, e.g. in the last example it is {x, x2, N}. Usually N is given and is then an
ancillary statistic.

Definition: A statistic y is called ancillary, if f(y|θ) = f(y), i.e. the p.d.f. of y is
independent of the parameter of interest2.

The value of the ancillary statistic has no influence on the MLE but is relevant for
the shape of the likelihood function and thus for the precision of the estimation. The
sample size is in most cases an ancillary statistic and responsible for the accuracy of
the estimation.

7.1.2 The Conditionality Principle

Imagine that a measurement is performed either with the precise device A or with
the imprecise device B. The device is selected by a stochastic process. After the
measurement has been realized, we know the device which had been selected. Let us
assume this was device B. The conditionality principle tells us that for the parameter
inference we are allowed to use this information which means that we may act as if
device A had not existed. The analysis is not “blind”. Stochastic results influence the
way we evaluate the parameters.

More generally, the conditionality principle states:

If an experiment concerning the inference about θ is chosen from a collection of
possible random experiments, independently of θ, then any experiment not chosen is
irrelevant to the inference.

Example 104. Conditionality

We measure the position coordinate of the trajectory of an ionizing particle
passing a drift chamber. A certain wire responds. Its position provides a
rough coordinate. In 90 % of all cases a drift time is registered and we obtain
a much more precise value of the coordinate. The conditionality principle
tells us that in this case we are allowed to use the drift time information
without considering the worse resolution of a possible but not realized failure
of the time measurement.

2Note that the combination of two ancillary statistics is not necessarily ancillary.
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The conditionality principle seems to be trivial. Nevertheless the belief in its
validity is not shared by all statisticians because it leads to the likelihood principle
with its far reaching consequences which are not always intuitively obvious.

7.1.3 The Likelihood Principle

We now discuss a principle which concerns the foundations of statistical inference
and which plays a central role in Bayesian statistics.

The likelihood principle (LP) states the following:

Given a p.d.f. f(x|θ) containing an unknown parameter of interest θ and an obser-
vation x, all information relevant for the estimation of the parameter θ is contained
in the likelihood function L(θ|x) = f(x|θ).

Furthermore, two likelihood functions which are proportional to each other, con-
tain the same information about θ. The general form of the p.d.f. is considered as
irrelevant. The p.d.f. at variate values which have not been observed has no bearing
for the parameter inference.

Correspondingly, for discrete hypotheses Hi the full experimental information
relevant for discriminating between them is contained in the likelihoods Li.

The following examples are intended to make plausible the LP which we have
implicitly used in Chap. 6.

Example 105. Likelihood principle, dice

We have a bag of biased dice of type A and B. Dice A produces the numbers
1 to 6 with probabilities 1/12, 1/6, 1/6, 1/6, 1/6, 3/12. The corresponding
probabilities for dice B are 3/12, 1/6, 1/6, 1/6, 1/6, 1/12. The result of an
experiment where one of the dice is selected randomly is “3”. We are asked
to bet for A or B. We are unable to draw a conclusion from the observed
result because both dice produce this number with the same probability, the
likelihood ratio is equal to one. The LP tells us – what intuitively is clear
– that for a decision the additional information, i.e. the probabilities of the
two dice to yield values different from “3”, are irrelevant.

Example 106. Likelihood principle, V −A

We come back to an example which we had discussed already in Sect. 6.3. An
experiment investigates τ− → µ−ντ ν̄µ, µ− → e−νµν̄e decays and measures
the slope α̂ of the cosine of the electron direction with respect to the muon
direction in the muon center-of-mass. The parameter α depends on the τ −µ
coupling. Is the τ decay proceeding through V −A or V +A coupling? The LP
implies that the probabilities f−(α), f+(α) of the two hypotheses to produce
values α different from the observed value α̂ do not matter.

When we now allow that the decay proceeds through a mixture r = gV /gA
of V and A interaction, the inference of the ratio r is based solely on the
observed value α̂, i.e. on L(r|α̂).

The LP follows inevitably from the sufficiency principle and the conditioning
principle. It goes back to Fisher, has been reformulated and derived several times
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[36, 37, 38, 39]. Some of the early promoters (Barnard, Birnbaum) of the LP later
came close to rejecting it or to restrict its applicability. The reason for the refusal
of the LP has probably its origin in its incompatibility with some concepts of the
classical statistics. A frequently expressed argument against the LP is that the con-
fidence intervals of the frequentist statistics cannot be derived from the likelihood
function alone and thus contradict the LP. But this fact merely shows that certain
statistical methods do not use the full information content of a measurement or /
and use irrelevant information. Another reason lies in problems applying the LP out-
side the natural sciences like in medicine or biology. There it is often not possible
to parameterize the empirical models in a stringent way. But uncertainties in the
model prohibit the application of the LP. The exact validity of the model is a basic
requirement for the application of the LP.

In the literature examples are presented which are pretended to contradict the LP.
These examples are not really convincing and rather strengthen the LP. Anyway, they
often contain quite exotic distributions which are irrelevant in physics applications
and which lead when treated in a frequentist way to unacceptable results [39].

We abstain from a reproduction of the rather abstract proof of the LP and limit
us to present a simple and transparent illustration of it:

The quantity which contains all the information we have on θ after the measure-
ment is the p.d.f. of θ,

g(θ) =
L(θ|x)π(θ)∫
L(θ|x)π(θ)dθ .

It is derived from the prior density and the likelihood function. The prior does not
depend on the data, thus the complete information that can be extracted from the
data, and which is relevant for g(θ), must be contained in the likelihood function.

A direct consequence of the LP is that in the absence of prior information, op-
timal parameter inference has to be based solely upon the likelihood function. It is
then logical to select for the estimate the value of the parameter which maximizes
the likelihood function and to choose the error interval such that the likelihood is
constant at the border, i.e. is smaller everywhere outside than inside. (see Chap. 8).
All approaches which are not based on the likelihood function are inferior to the
likelihood method or at best equivalent to it.

7.1.4 Bias of Maximum Likelihood Results

In frequentist statistics an important aspect of point estimation is the evaluation of
the bias of an estimator. The bias b of an estimate θ̂ is the deviation of its expectation
value from the true value θ of the parameter:

b = E(θ̂)− θ .

Example 107. Bias of the estimate of a decay parameter

We estimate the decay parameter γ from 5 observed decays of an unstable
particle. We have seen in a previous example that the MLE γ̂ is the inverse of
the average of the individual decay times, γ̂ = 1/t. The mean value t follows
a gamma distribution (see Sect. 3.6.8).

f(t|γ) = (5γ)5

4!
t
4
exp(−5γt) ,
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and thus the expectation value E(γ̂) of γ̂ is

E(γ̂) =

∫ ∞

0

γ̂f(t|γ) dt

=

∫ ∞

0

(5γ)5t
3

4!
exp(−5γt̄) dt =

5

4
γ .

When in a large number of similar experiments with 5 observed events the
MLE of the decay time is determined then the arithmetic mean differs from
the true value by 25%, the bias of the MLE is b = E(γ̂) − γ = γ/4. For a
single decay the bias is infinite.

With increasing number of observations the bias decreases, the MLE is a consis-
tent estimator (see Appendix 13.2.2).

Biases occur quite frequently at small samples. The word bias somehow suggests
that something is wrong and thus it appears quite disturbing at first sight that es-
timates may be systematically biased. In fact in most of the conventional statistical
literature it is recommended to correct for the bias. However, there is no obvious
reason for a correction and a closer study reveals that bias corrections lead to diffi-
culties when we combine different measurements θ̂i in the usual way, weighting the
results by the inverse covariance matrix, or in the one dimensional case according to
(4.7) simply by the inverse error squared

θ =

∑
θ̂i/δ

2
i∑

1/δ2i
.

Since usually the estimated errors depend on the value of the MLE, the weighting
introduces a bias which often partially compensates a bias of the MLE.

Let us resume our last example and assume that many experiments measure the
decay rate from sample sizes of N = 5. The estimates γ̂i will vary from experiment
to experiment. Each experiment will apart from the estimate evaluate the error
δi which will turn out to be proportional to γ̂i, namely δi = γ̂i/

√
5. Averaging

without bias correction according to our prescription, we will obtain E(γ) = 5/6 γ,
thus the bias is reduced, while averaging the bias corrected estimates would lead
to E(γ) = 2/3 γ, a result which is considerably worse. Anyway, the bias correction
is rather unsatisfactory for a small number of observations, for N = 1 the bias is
infinite and thus the corrected value would be zero!

As we have seen, likelihood estimates have the desirable property that they are
invariant against parameter transformations. For instance, the estimates for the rate
γ̂ and the mean life τ̂ obey the same relation as the true values, namely γ̂ = 1/τ̂
while the corresponding relation is not valid for the bias corrected quantities. Gen-
erally, the bias is not invariant against parameter transformations and thus its cor-
rection is problematic. The requirement of an unbiased estimate is in conflict with
the parametrization invariance.

Contrary to many colleagues, we argue that a systematic bias correction of the
estimate is baneful. It is in contradiction with the LP and should be applied only in
well-founded situations. It is much more sensible to present the full likelihood function
or to specify asymmetric errors since the exact procedure to combine measurements
is to add the log-likelihoods. We will come back to this point in Chap. 8 and discuss
the virtue of bias corrections again in Appendix 13.6.
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Fig. 7.1. Likelihood function of the width of a uniform distribution for 12 observations.

For a similar reason it is dangerous to interpret the likelihood function as p.d.f.
of the parameter. The following example illustrates this fact.

Example 108. Bias of the estimate of a Poisson rate with observation zero

We search for a rare decay but we do not observe any. The likelihood for the
mean rate λ is according to the Poisson statistic

L(λ) =
e−λλ0

0!
= e−λ .

When we normalize the likelihood function to obtain the Bayesian p.d.f. with
a uniform prior, we obtain the expectation value 〈λ〉 = 1 while the value λ̂ = 0
corresponds to the maximum of the likelihood function.

(It may seem astonishing, that an expectation value one follows from a null-
measurement. This result is a consequence of the assumption of a uniform
distribution of the prior which is not unreasonable because had we not antic-
ipated the possibility of a decay, we would not have performed the measure-
ment. Since also mean rates different from zero may lead to the observation
zero it is natural that the expectation value of λ is different from zero.)

Now if none of 10 similar experiments would observe a decay, a naive averag-
ing of the expected values alone would again result in a mean of one, a crazy
value. Strictly speaking, the likelihoods of the individual experiments should
be multiplied, or, equivalently the null rate would have to be normalized to
ten times the original time with the Bayesian result 1/10.

We study a further example.

Example 109. Bias of the measurement of the width of a uniform distribution
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Let x1, . . . , xN be N observations of a sample following a uniform distribution
f(x) = 1/θ with 0 < x < θ. We search for the value of the parameter θ.
Figure 7.1 shows the observations and the likelihood function for N = 12.
The likelihood function is

L = 0 for θ < xmax ,

=
1

θN
for θ ≥ xmax .

Obviously, the likelihood has its maximum when θ coincides with the largest
observation xmax of the sample: θ̂ = xmax. (Here xmax is a sufficient statistic.)
At smaller values of x, the likelihood is zero. The estimate is biased towards
small values. Given a sample size of N , we obtain N + 1 gaps between the
observations and the borders [0, θ]. The average distance of the largest ob-
servation from θ thus is θ/(N + 1). The bias is −θ̂/N . There is no reason
to correct for the bias. We rather prefer to present the biased result with a
one-sided error

θ = xmax
+xmax/N
−0

or, alternatively, the full likelihood function.

A further, more general discussion of the bias problem is given in Appendix 13.6.

7.1.5 Stopping Rules

An experiment searches for a rare reaction. Just after the first successful observation
at time t the experiment is stopped. Is the resulting rate 1/t systematically biased?
Do we have to consider the stopping rule in the inference process? The answer is
“no” but many people have a different opinion. This is the reason why we find the
expression stopping rule paradox in the literature.

The possibility to stop an experiment without compromising the data analysis,
for instance because a detector failed, no money was left or because the desired
precision has been reached, means a considerable simplification of the data analysis.

The validity of the independence of the parameter estimation on a large class of
stopping conditions is a direct consequence of the LP because the likelihood function
of a parameter determined from sequentially obtained data does not depend on
stopping rules.

In this context we examine a simple example.

Example 110. Stopping rule: four decays in a time interval

In two similar experiments the lifetime of the same instable particle is mea-
sured. In experiment A the time interval t is fixed and 4 decays are observed.
In experiment B the time t is measured which is required to observe 4 decays.
Accidentally the two times coincide. Thus in both experiments 4 decays are
registered in the time interval t but in experiment A the number n of decays
is the random variable whereas in experiment B it is the time t. Do both
experiments find the same rate, namely τ = t/4 and the same error inter-
val? We could think “no” because in the first experiment the fourth decay
has happened earlier than in the second. The likelihood functions for the two
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situations are deduced for experiment A from the Poisson distribution and
for experiment B from the exponential time distribution:

LA(θ|n) = P (n|θt)

=
e−θt(θt)4

4!
∼ θ4e−θt ,

LB(θ|t) = θ4e−θt ∼ LA(θ|n) .
The likelihood functions are equal up to an irrelevant factor and consequently
also the results are the same. The stopping rule does not influence the anal-
ysis. The only relevant data are the number of decays and the time interval.

The fact that an arbitrary sequential stopping rule does not change the expec-
tation value is illustrated with an example given in Fig. 7.2. A rate is determined.
The measurement is stopped if a sequence of 3 decays occurs within a short time
interval of only one second. It is probable that the observed rate is higher than the
true one, the estimate is too high in most cases. However, if we perform many such
experiments one after the other, their combination is equivalent to a single very long
experiment where the stopping rule does not influence the result and from which we
can estimate the mean value of the rate with high precision. Since the log-likelihood
of the long experiment is equal to the sum of the log-likelihoods of the short ex-
periments, the log-likelihoods of the short experiments obviously represent correctly
the measurements. The stopping rule does not enter into the likelihood function and
therefore must be irrelevant.

Why does the fact that neglecting the stopping rule is justified contradict our
intuition? Well, most of the sequences indeed lead to too high rates but when we
combine measurements the few long sequences get a higher weight and they tend
to produce lower rates, and the average is correct. On the other hand, one might
argue that the LP ignores the information that in most cases the true value of
the rate is lower than the MLE. This information clearly matters if we would bet
on this property, but it is irrelevant for estimating the probability density of the
parameter value. A bias correction would improve the not very precise estimate
somewhat for small sequences but be very unfavorable for the fewer but more precise
long sequences and for a single experiment we cannot know whether we have a short
or a long sequence. In fact, in exploratory experiments like those in particle physics
or astrophysics we are always concerned with a single experiment. (see also Appendix
13.6).

7.2 Further Methods of Parameter Inference

In the previous sections we have discussed in some detail the maximum likelihood
method. Another very popular method is the least square method which we can derive
from the maximum likelihood method. A further approach to estimate unknown
parameters of a distribution is the moments method which we will treat briefly in
the following section.

7.2.1 The Moments Method

The moments of a distribution which depends on a parameter θ usually also depend
on θ:
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Fig. 7.2. An experiment is stopped when 3 observations are registered within a short time
interval (indicated by a box). An arbitrarily long experiment can be subdivided into many
such sub-experiments following the stopping rule.

µn(θ) =

∫
xnf(x|θ) dx . (7.4)

The empirical moments

µ̂n =
1

N

∑

i

xni ,

e.g. the sample mean or the mean of squares, which we can extract trivially for a
sample, are estimators of the moments of the distribution. From the inverse function
µ−1 we obtain a consistent estimate of the parameter,

θ̂ = µ−1(µ̂) ,

because according to the law of large numbers we have (see Appendix 13.1)

lim
N→∞

P{|µ̂− µ| > ε} = 0 .

It is clear that any function u(x) for which expected value and variance exist, and
where 〈u〉 is an invertible function of θ, can be used instead of xn. Therefore the
method is somewhat more general than suggested by its name.

If the distribution has several parameters to be estimated, we must use several
moments or expected values, approximate them by empirical averages, and solve the
resulting system of – in general non-linear – equations for the unknown parameters.

The estimators derived from the lower moments are usually more precise than
those computed from the higher ones. Parameter estimation from the moments is
usually inferior to that of the ML method. Only if the moments used form a sufficient
statistic, the two approaches produce the same result.

The uncertainties of the fitted parameters have to be estimated from the covari-
ance matrix of the corresponding moments and subsequently by error propagation
or alternatively by a Monte Carlo simulation, generating the measurement several
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times. Also the bootstrap method which will be introduced in Chap. 12, can be em-
ployed. Sometimes the error calculation is a bit annoying and reproduces the ML
error intervals only in the large sample limit.

Example 111. Moments method: mean and variance of the normal distribu-
tion

We come back to the example from Sect. 6.5.2 For a sample {x1, . . . , xN}
following the distribution

f(x|µ, σ) = 1

σ
√
2π

exp
[
−(x− µ)2/(2σ2)

]
.

We determine independently the parameters µ and σ. We use the abbre-
viations x for the sample mean and x2 for the mean of the squares and
v2 = (x− x)2 = x2 − x2 for the empirical variance.

The relation between the moment µ1 and µ is simply µ1 = µ, therefore

µ̂ = µ̂1 = x .

In Chap. 3, we have derived the relation (3.15)
〈
v2
〉
= σ2(N −1)/N between

the expectation of the empirical variance and the variance of the distribution;
inverting it, we get

σ̂ = v

√
N

N − 1
.

The two estimates are uncorrelated. The error of µ̂ is derived from the esti-
mated variance

δµ =
σ̂√
N

,

and the error of σ̂ is determined from the expected variance of v. We omit
the calculation, the result is:

δσ =
σ̂√

2(N − 1)
.

In the special case of the normal distribution, the independent point estimates
of µ and σ of the moments method are identical to those of the maximum
likelihood method. The errors differ for small samples but coincide in the
limit N → ∞.

The moments method has the advantage of being very simple, especially in the
case of distributions which depend linearly on the parameters – see the next example
below:

Example 112. Moments method: asymmetry of an angular distribution

Suppose we have to determine from a sample the asymmetry parameter α
of a distribution f(x) = (1 + αx)/2 linear in x = cosβ. The first moment of
the distribution is µ1 = α/3. Thus we can compute the parameter from the
sample mean x =

∑
xi/N :

α̂ = 3 x .
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The mean square error from an individual measurement x is proportional to
the variance of the distribution:

var(α̂) = 9 var(x) = 3− α2 . (7.5)

Using instead of α its estimate, we get

δα̂ = 3 δx =

√
3− 9x2

N
.

A likelihood fit, according to the likelihood principle, is more accurate and
reflects much better the result of the experiment which, because of the kine-
matical limits3 |α| < 1, cannot be described very well by symmetric errors;
especially when the sample size is small and the estimate happens to lie
near the boundary. In this case the maximum likelihood method should be
applied.

An indication of the relative precision of the estimate moments method as
compared to the MLE is provided by a comparison of the asymptotic efficien-
cies. In the asymptotic limit N → ∞ the variance of the moments estimate
α̂ does not approach the limiting value given by the Cramer–Rao inequality,
see (13.6) in Appendix 13.2, which can be shown to be achieved by the MLE:

var(α̂ML) ≈
α2

N

[
1

2α
ln(

1 + α

1− α
)− 1

]−1

.

A comparison with (7.5) shows that the asymptotic efficiency of the moments
method, defined as

ε =
var(α̂ML)

var(α̂)
,

is unity only for α = 0. It is 0.92 for α = 0.5 and drops to 0.73 for α = 0.8.
(At the boundary, |α| = 1 the Cramer–Rao relation cannot be applied.)

Note that the p.d.f. of our example is a special case of the usual expansion
of an angular distribution into Legendre polynomials Pl(cosβ):

f(x|θ) = (1 +

L∑

l=1

θlPl(x))/2 .

From the orthogonality of the Pl with the usual normalization

∫ 1

−1

Pl(x)Pm(x)dx =
2

2l+ 1
δl,m

it is easy to see that θl = (2l + 1)〈Pl〉. In the case l = 1, P1 = x, this is the
first moment of the distribution and we reproduce µ1 = α/3.

The moments method can also be used to provide start values for approximations
of likelihood estimators which we discussed in Sect. 6.8.

3These limits stem from the obvious requirement that the p.d.f. has to be positive.
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Fig. 7.3. Fit of a curve to measurements.

7.2.2 The Least Square Method

A frequently occurring problem is that measured points and error margins are given
through which we want to fit a curve as shown in Fig. 7.3. The curve y = t(x, λ)
be measured at N positions xi, yielding the values yi(xi). The standard solution
of this so-called regression problem is provided by the least square method which
fixes parameters of a given function by minimizing the sum of the normalized square
deviations of the function from measured points.

Given N measured points xi, yi ± δi, and a function t(x, θ), known up to some
free parameters θ, the latter are determined such that

χ2 =

N∑

i=1

(yi − t(xi, θ))
2

δ2i
(7.6)

takes its minimal value.

The least square method goes back to Gauss. Historically it has successfully
been applied to astronomical problems and is still the best method we have to adjust
parameters of a curve to measured points if only the variance of the error distribution
is known. It is closely related to the likelihood method when the errors are normally
distributed. Then we can write the p.d.f. of the measurements in the following way:

f(y1, . . . , yN |θ) ∝ exp


−

N∑

i,j=1

(yi − ti(xi, θ))
2

2δ2i


 ,

and the log-likelihood is

lnL(θ|y) = −1

2

N∑

i,j=1

(yi − ti(xi, θ))
2

δ2i
,
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Fig. 7.4. χ2−Fit (dashed) of straight line through digital measurements.

= −1

2
χ2 . (7.7)

Thus minimizing χ2 is equivalent to maximizing the likelihood if the errors are
normally distributed, a condition which frequently is at least approximately satisfied.
From (7.7) we conclude that the standard deviation errors of the parameters in a
least square fit correspond to one unit, ∆χ2 = 1, twice the value 1/2 of the maximum
likelihood method. In Sect. 3.6.7 we have seen that χ2 follows a χ2 distribution of
f = N − Z (Z is the number of free parameters) degrees of freedom, provided
the normality of the errors is satisfied. Thus we expect χ2 to be of the order of f ,
large values indicate possible problems with the data or their description. We will
investigate this in chapter 10.

That the least square method can lead to false results if the condition of Gaussian
uncertainties is not fulfilled, is illustrated in the following example.

Example 113. Counter example to the least square method: gauging a digital
clock

A digital clock has to be gauged. Fig. 7.4 shows the time channel as a function
of the true time and a least square fit by a straight line. The error bars in the
figure are not error bars in the usual sense but indicate the channel width.
The fit fails to meet the allowed range of the fifth point and therefore is not
compatible with the data. All straight lines which meet all “error bars” have
the same likelihood. One correct solution is indicated in the figure.

We can easily generalize the expression (7.6) to the case of correlated errors. Then
we have

χ2 =

N∑

i,j=1

(yi − ti)Vij(yj − tj)

where V, the weight matrix, is the inverse of the covariance matrix. The quantity χ2

is up to a factor two equal to the negative log-likelihood of a multivariate normal
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distribution,

f(y1, . . . , yN |θ) ∝ exp


−1

2

N∑

i,j=1

(yi − ti)Vij(yj − tj)


 ,

see Sect. 6.5.6. Maximizing the likelihood is again equivalent to minimizing χ2 if the
errors are normally distributed.

The sum χ2 is not invariant against a non-linear variable transformation y′(y).
The least square method is also used when the error distribution is unknown. In this
situation we do not dispose of a better method.

Example 114. Least square method: fit of a straight line

We fit the parameters a, b of the straight line

y(x) = ax+ b (7.8)

to a sample of points (xi, yi) with uncertainties δi of the ordinates. We min-
imize χ2:

χ2 =
∑

i

(yi − a xi − b)2

δ2i
,

∂χ2

∂a
=
∑

i

(−yi + a xi + b)2xi
δ2i

,

∂χ2

∂b
=
∑

i

(−yi + a xi + b)2

δ2i
.

We set the derivatives to zero and introduce the following abbreviations. (In
parentheses we put the expressions for the special case where all uncertainties
are equal, δi = δ):

x =
∑

i

xi
δ2i
/
∑

i

1

δ2i
(
∑

i

xi/N) ,

y =
∑

i

yi
δ2i
/
∑

i

1

δ2i
(
∑

i

yi/N) ,

x2 =
∑

i

x2i
δ2i
/
∑

i

1

δ2i
(
∑

i

x2i /N) ,

xy =
∑

i

xiyi
δ2i

/
∑

i

1

δ2i
(
∑

i

xiyi/N) .

We obtain
b̂ = y − â x ,

xy − â x2 − b̂ x = 0 ,

and

â =
xy − x y

x2 − x2
,

b̂ =
x2 y − xxy

x2 − x2
.
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The problem is simplified when we put the origin of the abscissa at the center
of gravity x:

x′ = x− x ,

â′ =
x′y

x′2
,

b̂′ = y .

Now the equation of the straight line reads

y = â′(x− x) + b̂′ . (7.9)

We gain an additional advantage, the errors of the estimated parameters are
no longer correlated.

δ2(â′) = 1/
∑

i

x2i
δ2i

,

δ2(b̂′) = 1/
∑

i

1

δ2i
.

We recommend to use always the form (7.9) instead of (7.8).

7.2.3 Linear Regression

If the prediction depends only linearly on the parameters, we can compute the pa-
rameters which minimize χ2 analytically. We put

yt(θ) = a+ Tθ . (7.10)

Here θ is the P -dimensional parameter vector, a is a given N -dimensional vector,
yt is the N -dimensional vector of predictions. T, also called the design matrix, is a
rectangular matrix of given elements with P columns and N rows.

The straight line fit discussed in Example 114 is a special case of (7.10) with
yt = θ1x+ θ2, a = 0, and

T =

(
x1 · · · xN
1 · · · 1

)T

.

We have to find the minimum of

χ2 = (y − a− Tθ)TV(y − a− Tθ)

where, as usual, V is the weight matrix, the inverse of the covariance matrix: V = C−1.
In our case it is a diagonalN×N matrix with elements 1/δ2i . To simplify the notation
we transform the observations

y′ = y − a ,

derive
χ2 = (y′ − Tθ)TV(y′ − Tθ)

with respect to the parameters θ and set the derivatives equal to zero:

1

2

∂χ2

∂θ

∣∣
θ̂
= 0 = −T

T
V(y′ − Tθ̂) . (7.11)
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From these so-called normal equations we get the estimate for the P parameters θ̂ :

θ̂ = (TT
VT)

−1
T
T
Vy′ . (7.12)

Note that TTVT is a symmetric P × P matrix with unique inverse which turns out
to be the error (i.e. covariance) matrix of θ: With the usual propagation of errors we
obtain (see Sect. 4.3):

Eθ = DCD
T ,

= (TT
VT)

−1
,

substituting for D the matrix on the right hand side of (7.12), after some simplifica-
tions.

Linear regression provides an optimal solution only for normally distributed er-
rors. If the distribution of errors is not known up to their variance4, it is according
to the Gauss–Markov theorem optimal in the following restricted sense: If the er-
ror distribution has mean value zero, the estimator is unbiased and among all other
unbiased estimators which are linear in the observations its estimator has minimal
variance. In fact, the result then coincides with that of a likelihood fit if normally
distributed errors are assumed.

Linear problems are rare. When the prediction is a non-linear function of the
parameters, the problem can be linearized by a Taylor expansion as a first rough
approximation. By iteration the precision can be improved.

The importance of non-linear parameter inference by iterative linear regression
has decreased considerably. The minimum searching routines which we find in all
computer libraries are more efficient and easier to apply. Some basic minimum search-
ing approaches are presented in Appendix 13.9.

7.3 Comparison of Estimation Methods

The following table contains an evaluation of the virtues and properties of the esti-
mation approaches which we have been discussing.

Whenever possible, the likelihood method should be applied. It requires a sample
of observations and a p.d.f. in analytic or well defined numerical form and is very
sensitive to wrongly assigned observations in the sample. When the theoretical de-
scription of the data is given in form of a simulated histogram, the Poisson likelihood
adjustment of the simulation to the bin content should be chosen. When we have to
fit a function to measured data points, we use the least square method. If computing
time is a limitation like in some on-line applications, the moments method lends
itself. In many situations all three methods are equivalent.

All methods are sensitive to spurious background. Especially robust methods
have been invented to solve this problem. An introduction and references are given
in Appendix 13.15. For completeness we present in Appendix 13.3.1 some frequentist
criteria of point and interval estimation which are relevant when parameters of many
objects of the same type, for instance particle tracks, are measured. In the Appendix
13.6 we discuss the virtues of different point and interval inference approaches. Al-
gorithms for minimum search are sketched in Appendix 13.9.

4Usually, when the variance is known, we have also an idea about the the shape of the
distribution.
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Table 7.1. Virtues and caveats of different methods of parameter estimation.

moments χ2 max. likelihood
simplicity ++ + −
precision − + ++
individual observations + − +
measured points − + −
histograms + + +
upper and lower limits − − +
external constraints − + +
background included + + −
error assignment from error propagation χ2

min + 1 lnLmax − 0.5

requirement full p.d.f. only variance full p.d.f.



8

Interval Estimation

8.1 Introduction

In Chap. 4 we had presented a short introduction into error calculus. It was based on
probability theory. In principle, error estimation is an essential part of statistics and
of similar importance as parameter estimation. Measurements result from point esti-
mation of one or several parameters, measurement errors from interval1 estimation.
These two parts form an ensemble and have to be defined in an consistent way.

As we have already mentioned, the notation measurement error used by scientists
is somewhat misleading, more precise is the term measurement uncertainty. In the
field of statistics the common term is confidence intervals, an expression which often
is restricted to the specific frequentist intervals as introduced by Neyman which we
sketch in the Appendix.

It is in no way obvious how we ought define error or confidence intervals and this
is why statisticians have very different opinions on this subject. There are various
conventions in different fields of physics, and particle physicists have not yet adopted
a common solution.

Let us start with a wish list which summarizes the properties in the single pa-
rameter case which we would like to realize. The extrapolation to several parameters
is straight forward.

1. Error intervals should contain the wanted true parameter with a fixed probability.

2. For a given probability, the interval should be as short as possible.

3. The error interval should represent the mean square spread of measurements
around the true parameter value. In allusion to the corresponding probability
term we talk about standard deviation errors.

4. The definition has to be consistent, i.e. observations containing identical infor-
mation about the parameters should lead to identical intervals. More precise
measurements should have shorter intervals than less precise ones. The error
interval has to contain the point estimate.

5. Error intervals should be invariant under transformation of the estimated pa-
rameter.

1The term interval is not restricted to a single dimension. In n dimensions it describes
a n-dimensional volume.
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6. The computation of the intervals should be free from subjective, e.g. more or less
arbitrary model depending assumptions.

7. A consistent method for the combination of measurements and for error propa-
gation has to exist.

8. The approach has to be simple and transparent.

Unfortunately it is absolutely impossible to fulfil simultaneously all these condi-
tions which partially contradict each other. We will have to set priorities and some-
times we will have to use ad hoc solutions which are justified only from experience
and common sense. Under all circumstances, we will satisfy point 4, i.e. consistency.
As far as possible, we will follow the likelihood principle and derive the interval limits
solely from the likelihood function.

It turns out that not always the same procedure is optimum for the interval
estimation. For instance, if we measure the size or the weight of an object, precision
is the dominant requirement, i.e. properties denoting the reliability or reproducibility
of the data. Here, a quantity like the variance corresponding to the mean quadratic
deviation is appropriate to describe the error or uncertainty intervals. Contrary,
limits, for instance of the mass of a hypothetical particle like the Higgs particle, will
serve to verify theoretical predictions. Here the dominant aspect is probability and
we talk about confidence or credibility intervals2. Confidence intervals are usually
defined such that they contain a parameter with high probability, e.g. 90% or 95%
while error intervals comprise one standard deviation or something equivalent. The
exact calculation of the standard deviation as well as that of the probability that a
parameter is contained inside an interval require the knowledge of its p.d.f. which
depends not only on the likelihood function but in addition on the prior density which
in most cases is unknown. To introduce a subjective prior, however, is something
which we want to avoid.

First we treat situations where the aspect precision dominates. There, as far as
possible, we will base our considerations on the likelihood function only. Then we
will discuss cases where the probability aspect is important. These will deal mainly
with limits on hypothetical quantities, like masses of SUSY particles. There we will
be obliged to include prior densities.

8.2 Error Intervals

The purpose of error intervals is to document the precision of a measurement. They
are indispensable when we combine measurements. The combination of measure-
ments permits us to improve continuously the precision of a parameter estimate
with increasing number of measurements.

If the prior density is known with sufficient precision, we determine the probability
density of the parameter(s) and subsequently the moments. But this condition is so
rarely fulfilled that we need not discuss it. Normally, we are left with the likelihood
function only.

In what follows we will always assume that the likelihood function is of simple
shape, differentiable, with only one maximum and decreasing continuously to all

2The term credibility interval is used for Bayesian intervals.
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sides. This condition is realized in most cases. In the remaining ones where it is of
complicated shape we have to renounce the simple parametrization by point and
interval estimates and present the full likelihood function.

The width of the likelihood function indicates how precise a measurement is. The
standard error limits, as introduced in Sect. 6.5.1 – decrease by a factor e1/2 from
the maximum – rely on the likelihood ratio. These limits have the positive property
of being independent of the parameter metric: This means in the one-dimensional
case that for a parameter λ(θ) which is a monotonic function of θ that the limits
λ1, λ2, θ1, θ2 fulfill the relations λ1 = λ(θ1) and λ2 = λ(θ2). It does not matter
whether we write the likelihood as a function of θ or of λ.

In large experiments usually there are many different effects which influence the
final result and consequently also many different independent sources of uncertainty,
most of which are of the systematic type. Systematic errors (see Sect. 4.2.3) such as
calibration uncertainties can only be treated in the Bayesian formalism. We have to
estimate their p.d.f. or at least a mean value and a standard deviation.

8.2.1 Parabolic Approximation

The error assignment is problematic only for small samples. As is shown in Appendix
13.3, the likelihood function approaches a Gaussian with increasing size of the sample.
At the same time its width decreases with increasing sample size, and we can neglect
possible variations of the prior density in the region where the likelihood is significant.
Under this condition we obtain a normally distributed p.d.f. for the parameter(s) with
a standard deviation error interval given by the e1/2 decrease from the maximum.
It includes the parameter with probability 68.3 % (see Sect. 4.5) The log-likelihood
then is parabolic and the error interval corresponds to the region within which it
decreases from its maximum by a value of 1/2 as we had fixed it already previously.
This situation is certainly realized for the large majority of all measurements which
are published in the Particle Data Book [24].

In the parabolic approximation the MLE and the expectation value coincide, as
well as the likelihood ratio error squared and the variance. Thus we can also derive the
standard deviation δθ from the curvature of the likelihood function at its maximum.
For a single parameter we can approximate the likelihood function by the expression

− lnLp =
1

2
V (θ − θ̂)2 + const. . (8.1)

Consequently, a change of lnLp by 1/2 corresponds to the second derivative of L at
θ̂:

(δθ)2 = V −1 = −
(
d2 lnL

dθ2

∣∣
θ̂

)−1

.

For several parameters the parabolic approximation can be expressed by

− lnL =
1

2

∑

i,j

(θi − θ̂i)Vij(θj − θ̂j) + const. .

We obtain the symmetric weight matrix3
V from the derivatives

3It is also called Fisher-information.
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Vij = −∂
2 lnL

∂θi∂θj

∣∣
θ̂

and the covariance or error matrix from its inverse C = V
−1.

If we are interested only in part of the parameters, we can eliminate the remaining
nuisance parameters simply forgetting about the part of the matrix which contains
the corresponding elements. This is a consequence of the considerations from Sect.
6.9.

In most cases the likelihood function is not known analytically. Usually, we have
a computer program which delivers the likelihood function for arbitrary values of
the parameters. Once we have determined the maximum, we are able to estimate
the second derivative and the weight matrix V computing the likelihood function at
parameter points close to the MLE. To ensure that the parabolic approximation is
valid, we should increase the distance of the points and check whether the result
remains consistent.

In the literature we find frequently statements like “The measurement excludes
the theoretical prediction by four standard deviations.” These kind of statements
have to be interpreted with caution. Their validity relies on the assumption that the
log-likelihood is parabolic over a very wide parameter range. Neglecting tails can lead
to completely wrong conclusions. We have also to remember that for a given number
of standard deviations the probability decreases with the number of dimensions (see
Tab. 4.2 in Sect. 4.5).

In the following section we address more problematic situations which usually
occur with small data samples where the asymptotic solutions are not appropriate.
Fortunately, they are rather the exception. We keep in mind that a relatively rough
estimate of the error often is sufficient such that approximate methods in most cases
are justified.

8.2.2 General Situation

As above, we again use the likelihood ratio to define the error limits which now
usually are asymmetric. In the one-dimensional case the two errors δ− and δ+ satisfy

lnL(θ̂)− lnL(θ̂ − δ−) = lnL(θ̂)− lnL(θ̂ + δ+) = 1/2 . (8.2)

If the log-likelihood function deviates considerably from a parabola it makes sense to
supplement the one standard deviation limits ∆ lnL = −1/2 with the two standard
deviation limits ∆ lnL = −2 to provide a better documentation of the shape of the
likelihood function. This complication can be avoided if we can obtain an approx-
imately parabolic likelihood function by an appropriate parameter transformation.
In some situations it is useful to document in addition to the mode of the likelihood
function and the asymmetric errors, if available, also the mean and the standard
deviation which are relevant, for instance, in some cases of error propagation which
we will discuss below.

Example 115. Error of a lifetime measurement

To determine the mean lifetime τ of a particle from a sample of observed
decay times, we use the likelihood function
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Lτ =

N∏

i=1

1

τ
e−ti/τ =

1

τN
e−Nt/τ . (8.3)

The corresponding likelihood for the decay rate is

Lλ =

N∏

i=1

λe−λti = λN e−Ntλ.

The values of the functions are equal at equivalent values of the two param-
eters τ and λ, i.e. for λ = 1/τ :

Lλ(λ) = Lτ (τ) .

Fig. 8.1 shows the two log-likelihoods for a small sample of ten events with
mean value t = 0.5. The lower curves for the parameter τ are strongly asym-
metric. This is also visible in the limits for changes of the log-likelihood by
0.5 or 2 units which are indicated on the right hand cut-outs. The likelihood
with the decay rate as parameter (upper figures) is much more symmetric
than that of the mean life. This means that the decay rate is the more ap-
propriate parameter to document the shape of the likelihood function, to
average different measurement and to perform error propagation, see below.
On the other hand, we can of course transform the maximum likelihood esti-
mates and errors of the two parameters into each other without knowing the
likelihood function itself.

Generally, it does not matter whether we use one or the other parameter to
present the result but for further applications it is always simpler and more precise
to work with approximately symmetric limits. For this reason usually 1/p (p is the
absolute value of the momentum) instead of p is used as parameter when charged
particle trajectories are fitted to the measured hits in a magnetic spectrometer.

In the general case we satisfy the conditions 4 to 7 of our wish list but the first
three are only approximately valid. We neither can associate an exact probability
content to the intervals nor do the limits correspond to moments of a p.d.f..

8.3 Error Propagation

In many situations we have to evaluate a quantity which depends on one or several
measurements with individual uncertainties. We thus have a problem of point esti-
mation and of interval estimation. We look for the parameter which is best supported
by the different measurements and for its uncertainty. Ideally, we are able to con-
struct the likelihood function. In most cases this is not necessary and approximate
procedures are adequate.

8.3.1 Averaging Measurements

In Chap. 4 we have shown that the mean of measurements with Gaussian errors
δi which are independent of the measurement, is given by the weighted sum of the
individual measurements (4.7) with weights proportional to the inverse errors squared
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Fig. 8.1. Likelihood functions for the parameters decay rate (top) and lifetime (below).
The standard deviation limits are shown in the cut-outs on the right hand side.

1/δ2i . In case the errors are correlated with the measurements which occurs frequently
with small event numbers, this procedure introduces a bias (see Example 56 in Chap.
4) From (6.6) we conclude that the exact method is to add the log-likelihoods of
the individual measurements. Adding the log-likelihoods is equivalent to combining
the raw data as if they were obtained in a single experiment. There is no loss of
information and the method is not restricted to specific error conditions.

Example 116. Averaging lifetime measurements

N experiments quote lifetimes τ̂i ± δi of the same unstable particle. The
estimates and their errors are computed from the individual measurements
tij of the i-th experiment according to τ̂i =

∑ni

j=1 tij/ni, respectively δi =
τ̂i/

√
ni where ni is the number of observed decays. We can reconstruct the

individual log-likelihood functions and their sum lnL, with n, n =
∑N

i=1 ni,
the overall event number:
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lnL(τ) =

N∑

i=1

−ni(ln τ + τ̂i/τ)

= −n ln τ −
∑ niτ̂i

τ

with the maximum at

τ̂ =

∑
niτ̂i
n

and its error
δ =

τ̂√
n
.

The individual measurements are weighted by their event numbers, instead
of weights proportional to 1/δ2i . As the errors are correlated with the mea-
surements, the standard weighted mean (4.7) with weights proportional to
1/δ2i would be biased. In our specific example the correlation of the errors
and the parameter values is known and we could use weights proportional to
(τi/δi)

2.

Example 117. Averaging ratios of Poisson distributed numbers

In absorption measurements and many other situations we are interested in a
parameter which is the ratio of two numbers which follow the Poisson distri-
bution. Averaging naively these ratios θ̂i = mi/ni using the weighted mean
(4.7) can lead to strongly biased results. Instead we add the log-likelihood
functions which we have derived in Sect. 6.9.3

lnL =
∑

[ni ln(1 + 1/θ)−mi ln(1 + θ)]

= n ln(1 + 1/θ)−m ln(1 + θ)

with m =
∑
mi and n =

∑
ni. The MLE is θ̂ = m/n and the error limits

have to be computed numerically in the usual way or for not too small n,m
by linear error propagation, δ2θ/θ

2 = 1/n+ 1/m.

In the standard situation where we do not know the full likelihood function but
only the MLE and the error limits we have to be content with an approximate
procedure. If the likelihood functions which have been used to extract the error
limits are parabolic, then the standard weighted mean (4.7) is exactly equal to the
result which we obtain when we add the log-likelihood functions and extract then
the estimate and the error.

Proof: A sum of terms of the form (8.1) can be written in the following way:

1

2

∑
Vi(θ − θi)

2 =
1

2
Ṽ (θ − θ̃)2 + const. .

Since the right hand side is the most general form of a polynomial of second order,
a comparison of the coefficients of θ2 and θ yields

Ṽ =
∑

Vi ,

Ṽ θ̃ =
∑

Viθi ,
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that is just the weighted mean including its error. Consequently, we should aim
at approximately parabolic log-likelihood functions when we present experimental
results. Sometimes this is possible by a suitable choice of the parameter. For example,
we are free to quote either the estimate of the mass or of the mass squared.

8.3.2 Approximating the Likelihood Function

We also need a method to average statistical data with asymmetric errors, a method
which works without knowing the exact shape of the likelihood function. To this
end we try to reconstruct the log-likelihood functions approximately, add them, and
extract the parameter which maximize the sum and the likelihood ratio errors. The
approximation has to satisfy the constraints that the derivative at the MLE is zero
and the error relation (8.2).

The simplest parametrization uses two different parabola branches

− lnL(θ) =
1

2
(θ − θ̂)2/δ2± (8.4)

with
δ± =

1

2
δ+[1 + sgn(θ − θ̂)] +

1

2
δ−[1− sgn(θ − θ̂)] ,

i.e. the parabolas meet at the maximum and obey ( 8.2). Adding functions of this
type produces again a piecewise parabolic function which fixes the mean value and
its asymmetric errors. The solution for both the mean value and the limits is unique.

Parameterizations [43] varying the width σ of a parabola linearly or quadratically
with the parameter are usually superior to the simple two branch approximation. We
set

− lnL(θ) =
1

2

[
(θ − θ̂)/σ(θ)

]2

with
σ(θ) =

2δ+δ−
δ+ + δ−

+
δ+ − δ−
δ+ + δ−

(θ − θ̂) (8.5)

or
(σ(θ))2 = δ+δ− + (δ+ − δ−)(θ − θ̂) , (8.6)

respectively. The log-likelihood function has poles at locations of θ where the width
becomes zero, σ(θ) = 0. Thus our approximations are justified only in the range of
θ which excludes the corresponding parameter values.

In Fig. 8.2 we present four typical examples of asymmetric likelihood functions.
The log-likelihood function of the mean life of four exponentially distributed times
is shown in 8.2 a. Fig. 8.2 b is the corresponding log-likelihood function of the decay
time4. Figs. 8.2 c, d have been derived by a parameter transformation from normally
distributed observations where in one case the new parameter is one over the mean
and the square root of the mean5 in the other case. A method which is optimum for
all cases does not exist. All three approximations fit very well inside the one standard
deviation limits. Outside, the two parameterizations (8.5) and (8.6) are superior to
the two-parabola approximation.

We propose to use one of two parameterizations (8.5, 8.6) but to be careful if
σ(θ) becomes small.

4The likelihood function of a Poisson mean has the same shape.
5An example of such a situation is a fit of a particle mass from normally distributed

mass squared observations.
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Fig. 8.2. Asymmetric likelihood functions and parametrizations.

8.3.3 Incompatible Measurements

Before we rely on a mean value computed from the results of different experiments
we should make sure that the various input data are statistically compatible. What
we mean with compatible is not obvious at this point. It will become clearer in Chap.
10, where we discuss significance tests which lead to the following plausible procedure
that has proven to be quite useful in particle physics [24].

We compute the weighted mean value θ̃ of the N results and form the sum of the
quadratic deviations of the individual measurements from their average, normalized
to their expected errors squared:

χ2 =
∑

(θi − θ̃)2/δ2i .

The expectation value of this quantity is N − 1 if the deviations are normally dis-
tributed with variances δ2i . If χ2 is sizably (e.g. by 50%) higher than N − 1, then
we can suspect that at least one of the experiments has published a wrong value,
or what is more likely, has underestimated the error, for instance when systematic
errors have not been detected. Under the premise that none of the experiments can
be discarded a priori, we scale-up all declared errors by a common scaling factor
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S = χ2/(N − 1) and publish this factor together with mean value and the scaled
error. Large scaling factors indicate problems in one or several experiments.

A similar procedure is applied if the errors are asymmetric even though the con-
dition of normality then obviously is violated. We form

χ2 =
∑

(θi − θ̃)2/δ2i± ,

where δi+ and δi−, respectively, are valid for θi < θ̃ and θi > θ̃.

8.3.4 Error Propagation for a Scalar Function of a Single Parameter

If we have to propagate the MLE and its error limits of a parameter θ to another pa-
rameter θ′ = θ′(θ), we should apply the direct functional relation which is equivalent
to a transformation of the likelihood function:

θ̂
′

= θ′(θ̂) ,

θ̂
′

+ δ′+ = θ′(θ̂ + δ+) ,

θ̂
′ − δ′− = θ′(θ̂ − δ−) .

Here we have assumed that θ′(θ) is monotonically increasing. If it is decreasing, the
arguments of θ′ have to be interchanged.

The errors of the output quantity are asymmetric either because the input errors
are asymmetric or because the functional dependence is non-linear. For instance an
angular measurement α = 870 ± 10 would transform into sinα = 0.9986+.0008

−.0010.

8.3.5 Error Propagation for a Function of Several Parameters

A difficult problem is the determination of the error of a scalar quantity θ(µ) which
depends on several measured input parameters µ with asymmetric errors. We have
to eliminate nuisance parameters.

If the complete likelihood function lnL(µ) of the input parameters is available,
we derive the error limits from the profile likelihood function of θ as proposed in
Sect. 6.5.1.

The MLE of θ is simply θ̂ = θ(µ̂). The profile likelihood of θ has to fulfil the
relation ∆ lnL(θ) = lnL(θ̂)− lnL(θ) = lnL(µ̂)− lnL(µ). To find the two values of
θ for the given ∆ lnL, we have to find the maximum and the minimum of θ fulfilling
the constraint. The one standard deviation limits are the two extreme values of θ
located on the ∆ lnL(θ) = lnL(µ̂)− lnL(µ) = 1/2 surface6.

There are various numerical methods to compute these limits. Constraint prob-
lems are usually solved with the help of Lagrange multipliers. A simpler method is
the one which has been followed when we discussed constrained fits (see Sect. 6.6):
With an extremum finding program, we minimize

θ(µ) + c [lnL(µ̂)− lnL(µ)− 1/2]
2

6Since we assumed likelihood functions with a single maximum, this is a closed surface,
in two dimensions a line of constant height.
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where c is a number which has to be large compared to the absolute change of θ
within the ∆ lnL = 1/2 region. We get µlow and θlow = θ(µlow) and maximizing

θ(µ)− c [lnL(µ̂)− lnL(µ)− 1/2]
2

we get θup.

If the likelihood functions are not known, the only practical way is to resort to
a Bayesian treatment, i.e. to make assumptions about the p.d.f.s of the input pa-
rameters. In many cases part of the input parameters have systematic uncertainties.
Then, anyway, the p.d.f.s of those parameters have to be constructed. Once we have
established the complete p.d.f. f(µ), we can also determine the distribution of θ.
The analytic parameter transformation and reduction described in Chap. 3 will fail
in most cases and we will adopt the simple Monte Carlo solution where we generate
a sample of events distributed according to f(µ) and where θ(µ) provides the θ dis-
tribution in form of a histogram and the uncertainty of this parameter. To remain
consistent with our previously adopted definitions we would then interpret this p.d.f.
of θ as a likelihood function and derive from it the MLE θ̂ and and the likelihood
ratio error limits.

We will not discuss the general scheme in more detail but add a few remarks
related to special situations and discuss two simple examples.

Sum of Many Measurements

If the output parameter θ =
∑
ξi is a sum of “many” input quantities ξi with variances

σ2
i of similar size and their mean values and variances are known, then due to the

central limit theorem we have

θ̂ = 〈θ〉 = Σ〈ξi〉,
δ2θ = σ2

θ ≈ Σσ2
i

independent of the shape of the distributions of the input parameters and the er-
ror of θ is normally distributed. This situation occurs in experiments where many
systematic uncertainties of similar magnitude enter in a measurement.

Product of Many Measurements

If the output parameter θ =
∏
ξi is a product of “many” positive input quantities ξi

with relative uncertainties σi/ξi of similar size then due to the central limit theorem

〈ln θ〉 = Σ〈ln ξi〉 ,
σln θ ≈

√
Σσ2

ln ξi

independent of the shape of the distributions of the input parameters and the error
of ln θ is normally distributed which means that θ follows a log-normal distribution
(see Sect. 3.6.10). Such a situation may be realized if several multiplicative efficiencies
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Fig. 8.3. Distribution of the product of 10 variates with mean 1 and standard deviation
0.2.

with similar uncertainties enter into a measurement. The distribution of θ is fully
specified only once we know the quantities 〈ln ξi〉 and σln ξi . The latter condition
will usually not be fulfilled and 〈ln ξi〉 , σln ξi have to be set by some educated guess.
In most cases, however, the approximations 〈θ〉 =

∏ 〈ξi〉 and δ2θ/θ
2 =

∑
δ2i /ξ

2
i

may be adequate. These two quantities fix the log-normal distribution from which
we can derive the maximum and the asymmetric errors. If the relative errors are
sufficiently small, the log-normal distribution approaches a normal distribution and
we can simply use the standard linear error propagation with symmetric errors. As
always, it is useful to check approximations by a simulation.

Example 118. Distribution of a product of measurements

We simulate the distribution of θ =
∏
ξi, of 10 measured quantities with

mean equal to 1 and standard deviation of 0.2, all normally distributed. The
result is very different from a Gaussian and is well described by a log-normal
distribution as is shown in Fig. 8.3. The mean is compatible with 〈θ〉 = 1 and
the standard deviation is 0.69, slightly larger than the prediction from simple
error propagation of 0.63. These results remain the same when we replace
the Gaussian errors by uniform ones with the same standard deviation. Thus
details of the distributions of the input parameters are not important.

Sum of Weighted Poisson Numbers

If θ =
∑
wiηi is a sum of Poisson numbers ηi weighted with wi then we can apply

the simple linear error propagation rule:

θ̂ =
∑

wiηi ,

δ2θ =
∑

w2
i ηi .

The reason for this simple relation is founded on the fact that a sum of weighted
Poisson numbers can be approximated by the Poisson distribution of the equivalent
number of events (see Sect. 3.6.3). A condition for the validity of this approximation
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is that the number of equivalent events is large enough to use symmetric errors. If
this number is low we derive the limits from the Poisson distribution of the equivalent
number of events which then will be asymmetric.

Example 119. Sum of weighted Poisson numbers

Particles are detected in three detectors with efficiencies ε1 = 0.7, ε2 =
0.5, ε3 = 0.9. The observed event counts are n1 = 10, n2 = 12, n3 = 8.
A background contribution is estimated in a separate counting experiment
as b = 9 with a reduction factor of r = 2. The estimate n̂ for total number
of particles which traverse the detectors is n̂ =

∑
ni/εi − b/r = 43. From

linear error propagation we obtain the uncertainty δn = 9. A more precise
calculation based on the Poisson distribution of the equivalent number of
events would yield asymmetric errors, n̂ = 43+10

−8 .

Averaging Correlated Measurements

The following example is a warning that naive linear error propagation may lead to
false results.

Example 120. Average of correlated cross section measurements, Peelle’s per-
tinent puzzle

The results of a cross section measurements is ξ1 with uncertainties due to the
event count, δ10, and to the beam flux. The latter leads to an error δfξ which
is proportional to the cross section ξ. The two contributions are independent
and thus the estimated error squared in the Gaussian approximation is δ21 =
δ210 + δ2fξ

2
1 . A second measurement ξ2 with different statistics but the same

uncertainty on the flux has an uncertainty δ22 = δ220 + δ2fξ
2
2 . Combining the

two measurements we have to take into account the correlation of the errors.
In the literature [45] the following covariance matrix is discussed:

C =

(
δ210 + δ2fξ

2
1 δ2fξ1ξ2

δ2fξ1ξ2 δ220 + δ2fξ
2
2

)
.

It can lead to the strange result that the least square estimate ξ̂ of the two
cross sections is located outside the range defined by the individual results
[46] , e.g. ξ̂ < ξ1, ξ2. This anomaly is known as Peelle’s Pertinent Puzzle [44].
Its reason is that the normalization error is proportional to the true cross
section and not to the observed one and thus has to be the same for the two
measurements, i.e. in first approximation proportional to the estimate ξ̂ of
the true cross section. The correct covariance matrix is

C =

(
δ210 + δ2f ξ̂

2 δ2f ξ̂
2

δ2f ξ̂
2 δ220 + δ2f ξ̂

2

)
. (8.7)

Since the best estimate of ξ cannot depend on the common scaling error it
is given by the weighted mean

ξ̂ =
δ−2
10 ξ1 + δ−2

20 ξ2

δ−2
10 + δ−2

20

. (8.8)
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The error δ is obtained by the usual linear error propagation,

δ2 =
1

δ−2
10 + δ−2

20

+ δ2f ξ̂
2. (8.9)

Proof: The weighted mean for ξ̂ is defined as the combination

ξ̂ = w1ξ1 + w2ξ2

which, under the condition w1+w2 = 1, has minimal variance (see Sect. 4.3):

var(ξ̂) = w2
1C11 + w2

2C22 + 2w1w2C12 = min .

Using the correct C (8.7), this can be written as

var(ξ̂) = w2
1δ

2
10 + (1− w1)

2δ220 + δ2f ξ̂
2 .

Setting the derivative with respect to w1 to zero, we get the usual result

w1 =
δ−2
10

δ−2
10 + δ−2

20

, w2 = 1− w1 ,

δ2 = min[var(ξ̂)] =
δ−2
10

(δ−2
10 + δ−2

20 )
2
+

δ−2
20

(δ−2
10 + δ−2

20 )
2
+ δ2f ξ̂

2 ,

proving the above relations (8.8), (8.9).

8.4 One-sided Confidence Limits

8.4.1 General Case

Frequently, we cannot achieve the precision which is necessary to resolve a small
physical quantity. If we do not obtain a value which is significantly different from
zero, we usually present an upper limit. A typical example is the measurement of the
lifetime of a very short-lived particle which cannot be resolved by the measurement.
The result of such a measurement is then quoted by a phrase like “The lifetime
of the particle is smaller than ... with 90 % confidence.” Upper limits are often
quoted for rates of rare reactions if no reaction has been observed or the observation
is compatible with background. For masses of hypothetical particles postulated by
theory but not observed with the limited energy of present accelerators, experiments
provide lower limits.

In this situation we are interested in probabilities. Thus we have to introduce
prior densities or to remain with likelihood ratio limits. The latter are not very pop-
ular. As a standard, we fix the prior to be constant in order to achieve a uniform
procedure allowing to compare and to combine measurements from different experi-
ments. This means that a priori all values of the parameter are considered as equally
likely. As a consequence, the results of such a procedure depend on the choice of
the variable. For instance lower limits of a mass um and a mass squared um2 , re-
spectively, would not obey the relation um2 = (um)2. Unfortunately we cannot avoid
this unattractive property when we want to present probabilities. Knowing that a



8.4 One-sided Confidence Limits 215

uniform prior has been applied, the reader of a publication can interpret the limit as
a sensible parametrization of the experimental result and draw his own conclusions.
Of course, it is also useful to present the likelihood function which fully documents
the result.

To obtain the p.d.f. of the parameter of interest, we just have to normalize the
likelihood function7 to the allowed range of the parameter θ. The probability P{θ <
θ0} computed from this density is the confidence level C for the upper limit θ0:

C(θ0) =

∫ θo
−∞ L(θ) dθ∫∞
−∞ L(θ) dθ

. (8.10)

Lower limits are computed in an analogous way:

Clow(θ0) =

∫∞
θo
L(θ) dθ

∫∞
−∞ L(θ) dθ

. (8.11)

Here the confidence level C is given and the relations (8.10), (8.11) have to be
solved for θ0.

8.4.2 Upper Poisson Limits, Simple Case

When, in an experimental search for a certain reaction, we do not find the corre-
sponding events, we quote an upper limit for its existence. Similarly in some cases
where an experiment records one or two candidate events but where strong theoreti-
cal reasons speak against accepting those as real, it is common practice not to quote
a rate but rather an upper limit. The result is then expressed in the following way:
The rate for the reaction x is less than λ0 with 90 % confidence.

The upper limit is again obtained as above by integration of the normalized
likelihood function.

For k observed events, we want to determine an upper limit µ0 with C = 90%
confidence for the expectation value of the Poisson rate. The normalization integral
over the parameter µ of the Poisson distribution P (k|µ) = e−µ µk/k! is equal to one.
Thus we obtain:

C =

∫ µo

0

P (k|µ)dµ

=

∫ µo

0 e−µ µk dµ

k!
. (8.12)

The integral is solved by partial integration,

C = 1−
k∑

i=0

e−µ0 µi
0

i!

= 1−
k∑

i=0

P (i|µ0) .

7In case the likelihood function cannot be normalized, we have to renounce to produce
a p.d.f. and present only the likelihood function.
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However, the sum over the Poisson probabilities cannot be solved analytically for µ0.
It has to be solved numerically, or (8.12) is evaluated with the help of tables of the
incomplete gamma function.

A special role plays the case k = 0, e.g. when no event has been observed. The
integral simplifies to:

C = 1− e−µ0 ,

µ0 = − ln(1 − C) .

For C = 0.9 this relation is fulfilled for µ0 ≈ 2.3.

Remark that for Poisson limits of rates without background the frequentist statis-
tics (see Appendix 13.5) and the Bayesian statistics with uniform prior give the same
results. For the following more general situations, this does not hold anymore.

8.4.3 Poisson Limit for Data with Background

When we find in an experiment events which can be explained by a background
reaction with expected mean number b, we have to modify (8.12) correspondingly.
The expectation value of k is then µ+ b and the confidence C is

C =

∫ µo

0
P (k|µ+ b)dµ∫∞

0
P (k|µ+ b)dµ

.

Again the integrals can be replaced by sums:

C = 1−
∑k

i=0 P (i|µ0 + b)
∑k

i=0 P (i|b)
.

Example 121. Upper limit for a Poisson rate with background

Expected are two background events and observed are also two events. Thus
the mean signal rate µ is certainly small. We obtain an upper limit µ0 for
the signal with 90% confidence by solving numerically the equation

0.9 = 1−
∑2

i=0 P (i|µ0 + 2)
∑2

i=0 P (i|2)
.

We find µ0 = 3.88. The Bayesian probability that the mean rate µ is larger
than 3.88 is 10%. Fig. 8.4 shows the likelihood functions for the two cases
b = 2 and b = 0 together with the limits. For comparison are also given the
likelihood ratio limits which correspond to a decrease from the maximum
by e−2. (For a normal distribution this would be equivalent to two standard
deviations).

We now investigate the more general case that both the acceptance ε and the
background are not perfectly known, and that the p.d.f.s of the background and the
acceptance fb, fε are given. For a mean Poisson signal µ the probability to observe
k events is



8.4 One-sided Confidence Limits 217

0 2 4 6 8 10
0.0

0.5

1.0

b=2

b=0
Li
ke

lih
oo

d

Rate

Fig. 8.4. Upper limits for poisson rates. The dashed lines are likelihood ratio limits (de-
crease by e2).

g(k|µ) =
∫

db

∫
dε P (k|εµ+ b)fb(b)fε(ε) = L(µ|k) .

For k observations this is also the likelihood function of µ. According to our
scheme, we obtain the upper limit µ0 by normalization and integration,

C =

∫ µ0

0
L(µ|k)dµ∫∞

0
L(µ|k)dµ

which is solved numerically for µ0.

Example 122. Upper limit for a Poisson rate with uncertainty in background
and acceptance

Observed are 2 events, expected are background events following a normal
distribution N(b|2.0, 0.5) with mean value b0 = 2 and standard deviation
σb = 0.5. The acceptance is assumed to follow also a normal distribution
with mean ε0 = 0.5 and standard deviation σε = 0.1. The likelihood function
is

L(µ|2) =
∫

dε

∫
dbP (2|εµ+ b)N(ε|0.5, 0.1)N(b|2.0, 0.5) .

We solve this integral numerically for values of µ in the range of µmin = 0 to
µmax = 20, in which the likelihood function is noticeable different from zero
(see Fig. 8.5). Subsequently we determine µ0 such that the fraction C = 0.9
of the normalized likelihood function is located left of µ0. Since negative
values of the normal distributions are unphysical, we cut these distributions
and renormalize them. The computation in our case yields the upper limit
µ0 = 7.7. In the figure we also indicate the e−2 likelihood ratio limit.
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8.4.4 Unphysical Parameter Values

Sometimes the allowed range of a parameter is restricted by physical or mathematical
boundaries, for instance it may happen that we infer from the experimental data
a negative mass. In these circumstances the parameter range will be cut and the
likelihood function will be normalized to the allowed region. This is illustrated in
Fig. 8.6. The integral of the likelihood in the physical region is one. The shaded area
is equal to α. The parameter θ is less than θmax with confidence C = 1− α.

We have to treat observations which are outside the allowed physical region with
caution and check whether the errors have been estimated correctly and no systematic
uncertainties have been neglected.

8.5 Summary

Measurements are described by the likelihood function.

• The standard likelihood ratio limits are used to represent the precision of the
measurement.

• If the log-likelihood function is parabolic and the prior can be approximated by
a constant, e.g. the likelihood function is very narrow, the likelihood function is
proportional to the p.d.f. of the parameter, error limits represent one standard
deviation and a 68.3 % probability interval.

• If the likelihood function is asymmetric, we derive asymmetric errors from the
likelihood ratio. The variance of the measurement or probabilities can only be
derived if the prior is known or if additional assumptions are made. The likelihood
function should be published.

• Nuisance parameters are eliminated by the methods described in Chap. 7, usually
using the profile likelihood.

• Error propagation is performed using the direct functional dependence of the
parameters.

• Confidence intervals, upper and lower limits are computed from the normalized
likelihood function, i.e. using a flat prior. These intervals usually correspond to
90% or 95% probability.

• In many cases it is not possible to assign errors or confidence intervals to param-
eters without making assumptions which are not uniquely based on experimental
data. Then the results have to be presented such that the reader of a publication
is able to insert his own assumptions and the procedure used by the author has
to be documented.
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Deconvolution

9.1 Introduction

9.1.1 The Problem

In many experiments statistical samples are distorted by limited acceptance, sensi-
tivity, or resolution of the detectors. Is it possible to reconstruct from this distorted
sample the original distribution from which the undistorted sample has been drawn?

fre
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Fig. 9.1. Convolution of two different distributions. The distributions (top) differ hardly
after the convolution (bottom).
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The correction of losses is straight forward, but the deconvolution1 of effects
caused by the limited resolution is difficult because it implies a priori assumptions
about the solution. Therefore, we should ask ourselves, whether a deconvolution is
really a necessary step in our analysis. If we want to verify a theoretical prediction
for a distribution f(x), it is much easier and more accurate to convolute f with the
known resolution and to compare then the smeared prediction and the experimental
distributions with the methods discussed in Chaps. 6 and 10. If a prediction contains
interesting parameters, also those should be estimated by comparing the convoluted
distribution with the observed data. When we study, for instance, a sharp resonance
peak on a slowly varying background, we adapt the resonance parameters of a the-
oretical distribution and the background of the true distribution in such a way that
after the convolution it agrees with the observed distribution within the expected
uncertainties. However, in situations where a reliable theoretical description is miss-
ing, or where the measurement is to be compared with a distribution obtained in
another experiment with different experimental conditions, a deconvolution of the
data cannot be avoided.

In the following we will call the original distribution from which the sample
is drawn the true distribution. The convoluted (smeared, observed) distribution de-
scribes the observed sample consisting of the smeared events. We will also use the
terms coordinates and points to describe our variables.

The observed sample is taken from a convoluted distribution f ′(x′) which is
obtained from the true distribution f(x) via the convolution integral

f ′(x′) =

∫ ∞

−∞
t(x,x′)f(x)dx . (9.1)

Supposed to be known is the convolution or transfer function2 t(x,x′), which for a
sample element located at x leads with the probability t(x,x′)dx′ to an observation
in the interval dx′ at x′. In many cases it has the form of a normal distribution with
the argument x−x′. In any case it should approach zero for large values of |x−x′|.

To determine f(x) given t(x,x′) and f ′(x′) is called an inverse problem in numer-
ical mathematics. Solving the (9.1), a Fredholms integral equation of the first kind,
in the presence of statistical fluctuations is a difficult task because small variations
of the input f ′ can cause large changes in f . Because of this instability, the problem
is qualified by mathematicians as “ill-posed” and can only be solved by introducing
additional input.

More specifically, our task is to reconstruct the statistical distribution f(x) from
a sample {x′

1, . . . ,x
′
N} drawn from an distribution f ′(x′). Can this be accomplished

if nothing is known about f(x)?

Unfortunately, the answer to this question is negative.

Methods for solving our problem are offered by numerical mathematics. How-
ever, they do not always optimally take into account the statistical fluctuations. The
precision of the reconstruction of f depends on the size of the sample as well as on
the accuracy with which we know the convolution function. In nuclear- and particle
physics the sample size is often the limiting factor, in other sciences, like optics, the
difficulties more often are related to a limited knowledge of the measurement reso-
lution. In any case we have to take into account that the convolution leads to an

1In the literature frequently the term unfolding is used instead of deconvolution.
2Other names are resolution function, point spread function, or kernel.
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Fig. 9.2. Effect of deconvolution with a resolution wrong by 10%.

information loss. Since in realistic situations neither the sample size is infinite nor
the convolution function t is known exactly, to obtain a stable result, we are forced to
assume that the solution f(x) is smooth. The various deconvolution methods differ
in how they accomplish the smoothing which is called regularization.

Fig. 9.1 shows two different original distributions and the corresponding distribu-
tions smeared with a Gaussian. In spite of extremely different original distributions,
the distributions of the samples are very similar. This demonstrates the sizeable in-
formation loss, especially in the case of the distribution with two adjacent peaks
where the convolution function is broader than the structure. Sharp structures are
washed out. In case of the two peak distribution it will be difficult to reconstruct the
true distribution.

Fig. 9.2 shows the effect of using a wrong resolution function. The distribution
in the middle is produced from that on the left hand side by convolution with a
Gaussian with width σf . The deconvolution produces the distribution on the right
hand side, where the applied width σ′

f was taken too low by 10%. For a relative error
δ,

δ =

∣∣∣σf − σ′
f

∣∣∣
σf

,

we obtain an artificial broadening of a Gaussian line after deconvolution by

σ2
art =

∣∣σ2
f − σ′2

f

∣∣ ,
σart = σf (2δ − δ2)1/2 ≈

√
2δσf ,

where σ2
art has to be added to the squared width of the original line. Thus a Dirac

δ-function becomes a normal distribution of width σart. From Table 9.1 we find that
even small deviations in the resolution – e.g. estimates wrong by only 1 % – can
lead to substantial artificial broadening of sharp structures. In the following parts
of this chapter we will assume that the resolution is known exactly. Eventually, the
corresponding uncertainties have to be evaluated by a Monte Carlo simulation.

Since statistical fluctuations prevent narrow structures in the true distribution
from being resolved, we find it, vice versa, impossible to exclude artificially strongly
oscillating solutions of the deconvolution problem without additional restrictions.
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Table 9.1. Effect of different smearing in convolution and deconvolution.

δ σart/σf

0.50 0.87
0.20 0.60
0.10 0.44
0.05 0.31
0.01 0.14

In the following we first discuss the common case that the observed distribution
is given in the form of a histogram, and, accordingly, that a histogram should be
produced by the deconvolution. Later we will consider also binning-free methods.
We will assume that the convolution function also includes acceptance losses, since
this does not lead to additional complications.

9.1.2 Deconvolution by Matrix Inversion

We denote the content of the bin i in the observed histogram by di, and correspond-
ingly as θi in the true histogram. The relation 9.1 reads now

di =
∑

j

Tijθj , (9.2)

where the matrix element Tij gives the probability to find an event in bin i of the
observed histogram which was produced in bin j of the true histogram. Of course,
the relation 9.2 is valid only for expected values, the values observed in a specific
case d̂i fluctuate according to the Poisson distribution:

P (d̂i) =
e−didd̂i

i

d̂i!
.

In order to simplify the notation we consider in the following a one-dimensional
histogram and combine the bin contents to a vector d.

If we know the histogram, i.e. the vector d, and the transfer matrix T, we get
the true histogram θ by solving a set of linear equations. If both histograms have
the same number of bins, that means if the matrix T is quadratic, we have simply
to invert the matrix T .

d = Tθ ,

θ = T
−1d . (9.3)

Here we have to assume that T−1 exists. Without smearing and equal bin sizes in
both distributions, T and T−1 are diagonal and describe acceptance losses. Often the
number of bins in the true histogram is chosen smaller than in the observed one. We
will come back to this slightly more complicated situation at the end of this section.

We obtain an estimate θ̂ for the original distribution if we substitute in (9.3) the
expected value d by the observation d̂

θ̂ = T
−1 d̂ .

By the usual propagation of errors we find the error matrix
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Fig. 9.3. Original histogram (open) and result of deconvolution by matrix inversion
(shaded).

Cik =
∑

j

(T−1)ij(T
−1)kjdj .

Remark: For the error estimate it is not required to take into account explicitly
also the fluctuations of the bin counts in the true histogram. They are contained
already in the Poisson fluctuations (δdj)

2 = dj of the observed event numbers.

The non-diagonal elements of the error matrix can be sizeable when the resolution
is bad and correspondingly T differs considerably from a diagonal matrix.

The inversion method provides an exact solution of the deconvolution problem,
but is not really appreciated by the users, because the event numbers of neighbor-
ing bins in the deconvoluted histogram often differ considerably, even negative bin
contents are possible, which makes the result incompatible with our intuitive expec-
tation. This is seen in the example of Fig. 9.3. The reason for this effect is obvious:
The smeared distributions from two different true distributions cannot be distin-
guished if the latter are similar globally, but very different on a microscopic scale
which is below the experimental resolution. Even though the deconvoluted distribu-
tion is very different from the true distribution it is compatible with it within the
statistical errors which are strongly (anti-)correlated for neighboring bins.

In spite of the large fluctuations, the solution by matrix inversion is well suited
for a comparison with theoretical models if the complete error matrix is taken into
account. For histograms with many bins, however, the publication of the full error
matrix with important non-diagonal elements – due to strong correlations of neigh-
boring bins – is hardly practicable. Also the visual comparison with other data or
theories is disturbed by the oscillations. For this reason methods have been devel-
oped which suppress non-significant fluctuations. Before turning to these methods,
we come back once again to the transfer matrix.
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9.1.3 The Transfer Matrix

Until now we have assumed that we know exactly the probability Tij for observing
elements in bin i which originally were produced in bin j. This is, at least in principle,
impossible, as we have to average the true distribution f(x) – which we do not know
– over the respective bin interval

Tij =

∫
Bin_i

[∫
Bin_j t(x, x

′)f(x)dx
]
dx′

∫
Bin_j

f(x)dx
. (9.4)

Therefore T depends on f . Only if f can be approximated by constants in all bins
the dependence is negligible. This condition is satisfied if the width of the transfer
function, i.e. the smearing, is large compared to the bin width in the true histogram.
On the other hand, small bins mean strong oscillations and correlations between
neighboring bins. The matrix inversion method implies oscillations. Suppressing this
feature by using wide bins can lead to inconsistent results.

All methods working with histograms have to derive the transfer matrix from a
smooth distribution, which is not too different from the true one. For methods using
regularization (see below), an iteration is required, if the deconvoluted distribution
differs markedly from that used for the determination of T.

Remark: The deconvolution produces wrong results, if not all values of x′ which
are used as input in the deconvolution process are covered by x values of the consid-
ered true distribution. The range in x thus has to be larger than that of x′. The safest
thing is not to restrict it at all even if some regions suffer from low statistics and
thus will be reconstructed with marginal precision. We can eliminate these regions
after the deconvolution.

In practice, the transfer matrix is usually obtained not analytically from (9.4),
but by Monte Carlo simulation. In this case, the statistical fluctuations of the sim-
ulation eventually have to be taken into account. This leads to multinomial errors
of the transfer matrix elements. The correct treatment of these errors is rather in-
volved, thus, if possible, one should generate a number of simulated observations
which is much larger than the experimental sample such that the fluctuations can
be neglected. A rough estimate shows that for a factor of ten more simulated obser-
vations the contribution of the simulation to the statistical error of the result is only
about 5% and then certainly tolerable.

9.1.4 Regularization Methods

From the above discussions it follows that it makes sense to suppress insignificant os-
cillations in the deconvoluted distribution. The various methods developed to achieve
this, can be classified roughly as follows:

1. The deconvoluted function is processed by one of the usual smoothing procedures.

2. The true distribution is parameterized as a histogram. The parameters, i.e. the
bin contents, are fitted to the data. A regularization term Rregu is subtracted
from the purely statistical log-likelihood, respectively added to the squared de-
viation χ2:
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χ2 = χ2
stat +Rregu ,

lnL = lnLstat −Rregu .

This term is constructed in such a way that smooth functions are favored. It has
to get larger for stronger fluctuations of the solution.

3. The deconvolution is performed iteratively, starting from a smooth zeroth ap-
proximation of the true distribution. The iteration is stopped, once insignificant
oscillations appear.

4. Insignificant eigenvalues of the transfer matrix are suppressed.

Of course, the size of the regularization must be limited such that the deconvo-
luted function is still compatible with the observation. This condition is used to fix
the regularization parameter.

We will restrict our considerations to the methods 2 to 4. The accuracy of method
1 is hard to estimate. Reviews and comparisons of some deconvolution methods can
be found in [47, 48, 50, 51, 52].

9.2 Deconvolution of Histograms

9.2.1 Fitting the Bin Content

The Likelihood Function

The expected values of the bin contents are parameters to be estimated. They have
to be chosen such that the likelihood for the given observation is maximum. Since the
observed event numbers are Poisson distributed, the log-likelihood for an observed
bin is, according to (6.15) and the discussions in Sect. 6.5.6, given by

lnLi = d̂i ln di − di

= d̂i ln(
∑

j

Tijθj)−
∑

j

Tijθj ,

and for the whole histogram it is

lnLstat =
∑

i


d̂i ln(

∑

j

Tijθj)−
∑

j

Tijθj


 . (9.5)

The estimates of the parameters θj and their errors are obtained in the usual
way. Of course, also this solution will oscillate. But contrary to the method of matrix
inversion, it cannot produce negative values. As discussed above, we suppress the
oscillations by adding a regularization term Rregu to the purely statistical term
Lstat:

lnL(θ) = lnLstat(θ)−Rregu(θ) . (9.6)

For the likelihood method the number of bins in the true and in the observed
histogram may be different. In case they are equal, the likelihood solution without
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regularization and the solution by simple matrix inversion coincide, provided the
latter does not yield negative parameter values.

For large event numbers we may use instead of the maximum likelihood adjust-
ment a χ2 fit:

χ2
stat =

M∑

i=1

N∑

j=1

(Tijθj − d̂i)
2

Tijθj
,

χ2(θ) = χ2
stat(θ) +Rregu(θ) .

Curvature Regularization

An often applied regularization function Rregu is,

Rregu(x) = r

(
d2f

dx2

)2

. (9.7)

It increases with the curvature of f . It penalizes strong fluctuations and favors a linear
variation of the unfolded distribution. The regularization constant r determines the
power of the regularization.

For a histogram of N bins with constant bin width we approximate (9.7) by

Rregu = r
N−1∑

i=2

(2θi − θi−1 − θi+1)
2 . (9.8)

This function becomes zero for a linear distribution. It is not difficult to adapt (9.8)
to variable bin widths.

The terms of the sum (9.8) in general become large for strongly populated bins.
In less populated regions of the histogram, where the relative statistical fluctuations
are large, the regularization by (9.8) will not be very effective. Therefore the terms
should be weighted according to their statistical significance:

Rregu = r
N−1∑

i=2

(2θi − θi−1 − θi+1)
2

δ2i
. (9.9)

Here δ2i is the variance of the numerator. For Poisson distributed bin contents, it is

δ2i = 4θi + θi−1 + θi+1 .

Usually the deconvolution also corrects for acceptance losses. Then this error estimate
has to be modified. We leave the trivial calculation to the reader.

For higher dimensional histograms a regularization term can be introduced anal-
ogously by penalizing the deviation of each bin content from the mean value of its
neighbors as in (9.8).

There may be good reasons to use regularization functions other then (9.8), e.g.
when it is known that the function which we try to reconstruct is strongly non linear
and when its shape is appriximately known. Instead of suppressing the curvature,
we may penalize the deviation from the expected shape of the histogram. We accom-
plished this with the transformation
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θ = θ0 + τ ,

where θ0 refers to the expectation and the new parameter vector τ is fitted and
regularized.

Entropy Regularization

The entropy S of a discrete distribution with probabilities pi , i = 1, . . . , N is defined
through

S = −
N∑

i=1

pi ln pi .

We borough the entropy concept from thermodynamics, where the entropy S mea-
sures the randomness of a state and the maximum of S corresponds to the equilibrium
state which is the state with the highest probability. It has also been introduced into
information theory and into Bayesian statistics to fix prior probabilities.

For our deconvolution problem we consider a histogram to be constructed with
N bins containing θ1, . . . , θN events. The probability for one of the n events to fall
into true bin i is given by θi/n. Therefore the entropy of the distribution is

S = −
N∑

i=1

θi
n
ln
θi
n
.

The maximum of the entropy corresponds to an uniform population of the bins,
i.e. θi = const. = n/N , and equals Smax = lnN , while its minimum Smin = 0 is
found for the one-point distribution (all events in the same bin) θi = nδi,j . Thus
Rregu ∝ −S can be used to smoothen a distribution. We minimize

χ2 = χ2
stat − rS ,

or equivalently maximize
lnL = lnLstat + rS

where r determines again the strength of the regularization. For further details see
[55, 54, 56]. We do not recommend this method for the usual applications in particle
physics, see Sect. 9.4 below. It is included here because it is popular in astronomy.

Regularization Strength

As we have seen in Chap. 6, Sect. 6.5.6, for sufficiently large statistics the negative
log-likelihood is equivalent to the χ2 statistic:

χ2 ≈ −2 lnL+ const .

The regularized solution has to be statistically compatible with the observation.
The expectation of χ2 is equal to the number of degrees of freedom, N − 1 ≈ N , and
its standard deviation is

√
2(N − 1) ≈

√
2N , see Chap. 3. Therefore, the addition of

the regularization term should not increase the minimum of χ2 by more than about√
2N , the square root of twice the number of bins. The corresponding tolerable

decrease of the maximal log-likelihood is
√
N/2:
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Fig. 9.4. Comparison of the deconvoluted histogram (shaded) with the original histogram.
a) normal regularization strength, b) too strong regularization. (without regularization see
Fig. 9.3.)

min(χ2) = min(χ2
stat) +

√
2N ,

min(− lnL) = min(− lnLstat) +
√
N/2 .

Depending on the concrete problem, also a weaker or stronger regularization may
be adequate. In many cases it makes sense to tolerate some spurious fluctuations and
to conserve in this way possible fine structures in the spectra. If it is known that the
distribution is rather smooth, e.g. for structure functions, a stronger regularization
might make sense.

In Fig. 9.4a we compare the result of a deconvolution with regularization with
the true histogram. The agreement is very good. The initial true distribution is the
same as in Fig. 9.3, where the result of the deconvolution without regularization was
shown. Figure 9.4b indicates the effect of a too strong regularization: The narrow
peak is sizably broadened, because the regularization suppresses the curvature at its
top.

Choice of Bin Width

The bin width of the true histogram which is finally presented as the result should
be adapted to the experimental resolution. It does not make sense to choose it much
smaller than the f.w.h.m. of the transfer function. Too small intervals suggest a
measurement precision which does not really exist. On the other hand the binning
of the transfer matrix must be fine enough to justify the approximations discussed
above. Thus it may be not unreasonable to perform the deconvolution with relatively
small bins but to merge neighboring bins afterwards.

There is no reason, however, to choose a small number of bins in the observed
histogram. It is recommended to choose it larger than in the deconvoluted histogram.
Then the number of parameters is smaller than the number of measurements, and the
result is constrained. This has the advantage that we are able to apply goodness-of-fit
tests.
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9.2.2 Iterative Deconvolution

We have seen above that small variations in the observed distribution may produce
large changes in the reconstructed distribution, if we do not introduce additional
restrictions. To avoid this kind of numerical difficulties, an iterative procedure for
matrix inversion has been developed [49] which is also suited for the deconvolution
of histograms [50]. The stepwise inversion corresponds to a stepwise deconvolution.
We start with a first guess of the true distribution and modify it in such a way that
the difference between left and right hand side in (9.2) is reduced. Then we iterate
this procedure.

It is possible to show that it converges to the result of matrix inversion, if the
latter is positive in all bins. Similar to the maximum likelihood solution negative bin
contents are avoided. This represents some progress but the unpleasant oscillations
are still there. But since we start with a smooth initial distribution, the artifacts
occur only after a certain number of iterations. The regularization is then performed
simply by interrupting the iteration sequence.

To define an appropriate stopping rule, two ways offer themselves:

1. We calculate after each step χ2. The sequence is interrupted if χ2 differs by
N , the number if bins, from its minimal value which is reached in the limit of
infinitely many iterations.

2. We introduce an explicit regularization term, like (9.8), and calculate in each step
the regularized χ2 according to (9.6). The iteration is stopped at the maximum
of the log-likelihood.

We prefer the simpler first method.

We will now look at this method more closely and formulate the relevant relations.

A simple example for the first iteration is sketched in Fig. 9.5. The start dis-
tribution in 9.5a for the true histogram has been chosen as uniform. It consists of
three bins. Application of the transfer matrix produces 9.5b, a first prediction for
the data. The different shadings indicate the origin of the entries in the five observed
bins. Now the distribution 9.5b is compared with the observed distribution 9.5c. The
agreement is bad, for instance the second observed bin differs from the prediction
by a factor two. All contributions of the prediction to this bin are now multiplied by
two. Finally the scaled contributions are summed up according to their origin to a
new true distribution 9.5d. If there would be only losses, but no migration of entries,
this first iteration would lead to a complete correction.

This procedure corresponds to the following equations: The prediction d(k) of the
iteration k is obtained from the true vector θ(k):

d
(k)
i =

∑

j

Tijθ
(k)
j .

The components Tijθ
(k)
j are scaled with d̂i/d

(k)
i and added up into the bin j of the

true distribution from which it originated:

θ
(k+1)
j =

∑

i

Tijθ
(k)
j

d̂i

d
(k)
i
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d) distribution after 1. iteration

c) observed distribution

x1 x1
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x2        x1.5

b) convoluted start distribution

a) start distribution

Fig. 9.5. Iterative deconvolution.

=
∑

i

Tijθ
(k)
j

d̂i∑
l Tilθ

(k)
l

.

The result of the iteration method for the same example that has been decon-
voluted with a likelihood fit (Fig. 9.4) is shown in Fig. 9.6. After the first iteration
the agreement is still not optimal. After the eighth iteration we realize some obvious
oscillations. The sequence should be interrupted after the second iteration.

To control the regularization it may be necessary to have finer iteration steps.
This is achieved simply by multiplying the scaling factor by a constant smaller than
one.

9.2.3 Regularization of the Transfer Matrix

We transform the relation d = Tθ by a unitary transformation3 U to a basis in
which the transformed matrix D is diagonal:

D = UTU
−1 ,

3The matrix U is obtained by the usual methods, solving the characteristic equation
det(T−λI) = 0, giving the roots λ and determining the respective orthogonal and normalized
eigenvectors which form the columns of U.
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Fig. 9.6. Iterative deconvolution (shaded histograms) with different number of iterations.
The original distribution corresponds to the open histogram.

Ud = UTU
−1

Uθ

= DUθ .

The diagonal elements of D are the eigenvalues λi. In the transformed system the
observed histogram is found by multiplying the true histogram Uθ with the eigen-
values:

(Ud)i = λi(Uθ)i .

This new relation can be solved for the components of the transformed true vector:

(Uθ)i =
(Ud)i
λi

.

This equation is valid for the expected values. If we use it to calculate the true
histogram θ from the estimate d̂ which deviates by ε from the expected value,

d̂ = d+ ε ,

we find
̂(Uθ)i =

(Ud̂)i
λi

=
(U(d + ε))i

λi
,

where the fluctuations ε are weighted especially when the eigenvalues are small. This
is the origin of our problem!
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We may now regularize the transfer matrix by suppressing small eigenvalues λi <
λmin in D. This means, the corresponding components of the vector

̂(Uθ)i =
(Ud̂)i
λi

are set to zero. We then get the estimate θ̂ by the inverse transformation:

θ̂ = U
−1(̂Uθ) .

Instead of cutting abruptly the eigenvalues which are smaller than λmin, it has
been proposed to damp their contributions continuously. An advantage of such a
procedure is not evident, however.

The choice of the regularization parameter λmin follows the same scheme as for
the other methods. The solutions with and without regularization are convoluted and
compared with the observed histogram and in both cases χ2 is calculated. The value
of χ2 of the regularized solution should exceed the not regularized one not more than
allowed statistically.

Often the same bin width is chosen for the true and the observed histogram. It
is, however, often appropriate to add at least some marginal bins in the observed
histogram which is broader due to the finite resolution. The transfer matrix then
becomes rectangular. We have to recast (9.3) somewhat to obtain a quadratic matrix
TTT which can be inverted:

T
Td = T

T
Tθ ,

θ = (TT
T)−1

T
Td .

To shorten the notation we introduce the matrix T̃ and the vector d̃:

T̃ = T
T
T ,

d̃ = T
Td .

After this transformation the treatment is as above.

9.3 Binning-free Methods

We now present binning-free methods where the observations need not be combined
into bins. The deconvolution produces again a sample. The advantage of this ap-
proach is that arbitrary histograms under various selection criteria can be constructed
afterwards. It is especially suited for low statistics distributions in high dimensional
spaces where histograming methods fail.

9.3.1 Iterative Deconvolution

We can realize the iterative weighting method described in Sect. 9.2.2 also in a similar
way without binning [52].
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We start with a Monte Carlo sample of events, each event being defined by the
true coordinate x and the observation x′. During the iteration process we modify
at each step a weight which we associate to the events such that the densities in
the observation space of simulated and real events approach each other. Initially all
weights are equal to one. At the end of the procedure we have a sample of weighted
events which corresponds to the deconvoluted distribution.

To this end, we estimate a local density d′(x′i) in the vicinity of any point x′i in the
observation space. (For simplicity, we restrict ourselves again to a one-dimensional
space since the generalization to several dimensions is trivial.) The following density
estimation methods (see Chap. 12) lend themselves:

1. The density is taken as the number of observations within a certain fixed region
around x′i, divided by the length of the region. The length should correspond
roughly to the resolution, if the region contains a sufficient number of entries.

2. The density is chosen proportional to the inverse length of that interval which
contains the K nearest neighbors, where K should be not less than about 10 and
should be adjusted by the user to the available resolution and statistics.

We denote by t(x) the simulated density in the true space at location x, by t′(x′)
the observed simulated density at x′ and the corresponding data density be d′(x′).
The density d′(x′) is estimated from the length of the interval containing K events,
t′(x′) from the number of simulated events M(x′) in the same interval. The simulated
densities are updated in each iteration step k. We associate a preliminary weight

w
′(1)
i =

d′(x′i)

t′(0)(x′i)
=

K

M(x′)

to the Monte Carlo event i. The weighted events in the vicinity of x represent a
new density t(1)(x) in the true space. We now associate a true weight wi to the
event which is just the average over the preliminary weights of all K events in the
neighborhood of xi, wi =

∑
j w

′
j/K. With the smoothed weight wi a new observed

simulated density t′(1)is computed. In the k’th iteration the preliminary weight is
given by

w
′(k+1)
i =

d′(x′i)

t′(k)(x′i)
w

(k)
i .

The weight will remain constant once the densities t′ and d′ agree. As result we
obtain a discrete distribution of coordinates xi with appropriate weights wi, which
represents the deconvoluted distribution. The degree of regularization depends on
the parameters K used for the density estimation.

The method is obviously not restricted to one-dimensional distributions, and is
indeed useful in multi-dimensional cases, where histogram bins suffer from small
numbers of entries. We have to replace xi, x′i by xi, x′

i, and the regions for the
density estimation are multi-dimensional.

9.3.2 The Satellite Method

The basic idea of this method [53] is the following: We generate a Monte Carlo sam-
ple of the same size as the experimental data sample. We let the Monte Carlo events
migrate until the convolution of their position is compatible with the observed data.
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With the help of a test variable φ, which could for example be the negative log likeli-
hood and which we will specify later, we have the possibility to judge quantitatively
the compatibility. When the process has converged, i.e. φ has reached its minimum,
the Monte Carlo sample represents the deconvoluted distribution.

We proceed as follows:

We denote by {x′
1, . . . ,x

′
N} the locations of the points of the experimental sample

and by {y1, . . . ,yN} those of the Monte Carlo sample. The observed density of the
simulation is f(y′) =

∑
i
t(yi,y

′), where t is the resolution or transfer function. The
test variable φ [x′

1, . . . ,x
′
N ; f(y′)] is a function of the sample coordinates xi and the

density expected for the simulation. We execute the following steps:

1. The points of the experimental sample {x′
1, . . . ,x

′
N} are used as a first approxi-

mation to the true locations y1 = x′
1, . . . ,yN = x′

N .

2. We compute the test quantity φ of the system.

3. We select randomly a Monte Carlo event and let it migrate by a random amount
∆yi into a randomly chosen direction, yi → yi +∆yi.

4. We recompute φ. If φ has decreased, we keep the move, otherwise we reject it. If
φ has reached its minimum, we stop, if not, we return to step 3.

The resolution or smearing function t is normally not a simple analytic function,
but only numerically available through a Monte Carlo simulation. Thus we associate
to each true Monte Carlo point i a set of K generated observations {y′

i1, . . . ,y
′
iK},

which we call satellites and which move together with yi. The test quantity φ is now
a function of the N experimental positions and the N × K smeared Monte Carlo
positions.

Choices of the test variable φ are presented in Chap. 10. We recommend to use
the variable energy.

The migration distances ∆yi should be taken from a distribution with a width
somewhat larger than the measurement resolution, while the exact shape of the
distribution is not relevant. We therefore recommend to use a uniform distribution,
for which the generation of random numbers is faster than for a normal or other
distributions. The result of the deconvolution is independent from these choices, but
the number of iteration steps can raise appreciably for a bad choice of parameters.

Example 123. Deconvolution of a blurred picture

Figure 9.7 shows a two-dimensional application. The observed picture con-
sisted of lines and points which are convoluted with a two-dimensional normal
distribution. In the Monte Carlo simulation for each true point K = 25 satel-
lites have been generated. The energy φ is minimized. The resolution of the
lines in the deconvoluted figure on the right hand side is restricted by the
low experimental statistics. For the eyes the restriction is predominantly due
to the low Monte Carlo factor K. Each eye has N = 60 points. The maximal
resolution for a point measured N times is obtained for measurement error
σf as

∆x = σf

√
1

N
+

1

K
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Fig. 9.7. Deconvolution of a blurred pictur with the satellite method.

= σf

√
1

60
+

1

25
= 0.24 σf .

Measurement resolution and acceptance should stay approximately constant in
the region in which the events migrate. When we start with a reasonably good ap-
proximation of the true distribution, this condition is usually satisfied. In exceptional
cases it would be necessary to update the distribution of the satellites y′ik after each
move, i.e. to simulate or correct them once again. It is more efficient, however, to per-
form the adaptation for all elements periodically after a certain number of migration
steps.

The number K determines the maximal resolution after the deconvolution, it has
therefore a regularization effect; e.g. for a measurement resolution σf and K = 16

the minimal sampling interval is σT = σf/
√
K = σf/4.

If the true p.d.f. has several maxima, we may find several relative minima of the
energy. In this case a new stochastic element has to be introduced in the minimization
(see Sect. 5.2.7). In this case a move towards a position with smaller energy is not
performed automatically, but only preferred statistically.

We have not yet explained how acceptance losses are taken into account. The
simplest possibility is the following: If there are acceptance losses, we need Ki0 > K
trials to generate the K satellites of the event yi. Consequently, we relate a weight
wi = K0i/K to the element yi. After the deconvolution we then obtain a weighted
sample.

A more detailed description of the satellite method is found in [53].

9.3.3 The Maximum Likelihood Method

In the rare cases where the transfer function t(x, x′) is known analytically or easily
calculable otherwise, we can maximize the likelihood where the parameters are the
locations of the true points. Neglecting acceptance losses, the p.d.f. for an observation
x′, with the true values x1, . . . ,xN as parameters is
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Fig. 9.8. Deconvolution of point locations. The left hand side shows from top to bottom
the true distribution, the smeared distribution and the deconvoluted distribution. The right
hand side shows the corresponding projections onto the x axis in form of histograms.
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fN (x′|x1, . . . ,xN ) =
1

N

N∑

i=1

t(xi,x
′)

where t is assumed to be normalized with respect to x′. The log likelihood then is
given, up to a constant, by

lnL(x|x′) =
N∑

k=1

ln

N∑

i=1

t(xi,x
′
k) .

The maximum can either be found using the well known minimum searching
procedures or the migration method which we have described above and which is
not restricted to low event numbers. Of course maximizing the likelihood leads to
the same artifacts as observed in the histogram based methods. The true points form
clusters which, eventually, degenerate into discrete distributions. A smooth result is
obtained by stopping the maximizing process before the maximum has been reached.
For definiteness, similar to the case of histogram deconvolution, a fixed difference of
the likelihood from its maximum value should be chosen to stop the maximization
process. Similarly to the histogram case, this difference should be of the order of
∆L ≈

√
NDF/2 where the number of degrees of freedom NDF is equal to the

number of points times the dimension of the space.

Example 124. : Deconvolution by fitting the true event locations

Fig. 9.8 top shows 2000 points randomly generated according to the super-
position of two normal distributions denoted as N(x′, y′|µx, µy, σx, σy):

f(x′, y′) = 0.6N(x′, y′| − 2, 0, 1, 1) + 0.4N(x′, y′|+ 2, 0, 1, 1) .

The transfer function again is a normal distribution centered at the true
points with symmetric standard deviations of one unit. It is used to convolute
the original distribution with the result shown in Fig. 9.8 middle. The starting
values of the parameters x̂i, ŷi are set equal to the observed locations x′i, y

′
i.

Randomly selected points are then moved within squares of size 4 × 4 units
and moves that improve the likelihood are kept. After 5000 successful moves
the procedure is stopped to avoid clustering of the true points. The result is
shown in the lower plot of Fig. 9.8. On the right hand side of the same figure
the projections of the distribution onto the x axis in form of histograms are
presented.

Generally, as with other deconvolution methods, we have to find a sensible com-
promise between smoothness and resolution and to choose the corresponding regu-
larization strength. In astronomy and optics, often the signals originate from point
sources. In this case it is reasonable to completely omit the regularization, and to
determine the locations and strength of the sources by maximizing the likelihood.
Then, eventually, after inspection of the result, the number of sources might be fixed
and the parameters then could be determined in a standard likelihood fit.

9.4 Comparison of the Methods

We have discussed three different methods for deconvolution of histograms, and three
binning-free methods:
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1. Likelihood fit of the true histogram with curvature sensitive or entropy regular-
ization

2. Multiplication of the observed histogram vector with the inverted, regularized
transfer matrix

3. Iterative deconvolution

4. Iterative binning-free deconvolution

5. The satellite method

6. The binning-free likelihood method

The first method is more transparent than the others. The user has the possibility
to adapt the regularization function to his specific needs. With curvature regular-
ization he may, for instance, choose a different regularization for different regions
of the histogram, or for the different dimensions in a higher-dimensional histogram.
He may also regularize with respect to an assumed shape of the resulting histogram.
The statistical accuracy in different parts of the histogram can be taken into account.
Regularization with the entropy approach is technically simpler but it is not suited
for applications in particle physics, because it favors a globally uniform distribution
while the local smearing urges for a local smoothing. It has, however, been success-
fully applied in astronomy and been further adjusted to specific problems there. An
overview with critical remarks is given in [56].

The second method is independent from the shape of the distribution to be de-
convoluted. It depends on the transfer matrix only. This has the advantage to be
independent from subjective influences of the user. A disadvantage is that regions of
the true histogram with high statistics are treated not differently from those with
only a few entries. A refined version which has successfully been applied in several
experiments is presented in [8].

The third procedure is technically the simplest. It can be shown that it is very
similar to the second method. It also suppresses small eigenvalues of the transfer
matrix.

The binning-free, iterative method has the disadvantage that the user has to
choose some parameters. It requires sufficiently high statistics in all regions of the
observation space. An advantage is that there are no approximations related to the
binning. The deconvolution produces again single points in the observation space
which can be subjected to selection criteria and collected into arbitrary histograms,
while methods working with histograms have to decide on the corresponding param-
eters before the deconvolution is performed.

The satellite method has the same advantages. Important parameters must not be
chosen, however. It is especially well suited for small samples and multidimensional
distributions, where other methods have difficulties. For large samples it is rather
slow even on large computers.

The binning-free likelihood method requires an analytic transfer function. It is
much faster than the satellite method, and is especially well suited for the deconvo-
lution of narrow structures like point sources.

An qualitative comparison of the different methods does not show big differences
in the results. In the majority of problems the deconvolution of histograms with the
fitting method and curvature regularization is the preferred solution.
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Fig. 9.9. Result of a deconvolution with strong (top) and weak (bottom) regularization.
The errors depend on the regularization strength.

As stated above, whenever the possibility exists to parametrize the true distri-
bution, the deconvolution process should be avoided and replaced by a standard
fit.

9.5 Error Estimation for the Deconvoluted Distribution

The fitting methods produce error estimates automatically, for the other methods the
uncertainties can be obtained by the usual error propagation. But we run into another
unavoidable difficulty connected to the regularization: The size of the errors depends
on the strength of the regularization which on the other hand is unrelated to the
statistical accuracy of the data. This is illustrated in Fig. 9.9 where the deconvolution
of a structure function with different regularization strengths is shown. A strongly
regularized distribution may exhibit smaller errors than the distribution before the
convolution. This is unsatisfactory, as we loose information by the smearing. We
should present errors which do not depend on data manipulations.

As described above, the errors of neighboring bins of a histogram are negatively
correlated. The goodness-of-fit changes only slightly if we, for instance, enhance a
bin content and accordingly reduce both the two neighboring bin contents or vice
versa. The regularization has the effect to minimize the difference while keeping the
sum of entries nearly unchanged, as can be seen in the example of Fig. 9.9. The effect
of the regularization is sketched in Fig. 9.10. Even a soft regularization will reduce
the area of the error ellipse considerably.
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Fig. 9.10. Effect of regularization. The correlation of neighboring bins is reduced.
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Fig. 9.11. Deconvoluted distribution with strong and weak regularization. The horizotal
error bars represent the experimental resolution.

A sensible presentation of the result of a deconvolution where the values but not
the errors depend on the regularization is the following: For each deconvoluted point
we calculate its statistical error δθj neglecting uncertainties due to a possible wrong
association of observations to the corresponding bin. This means essentially, that the
relative error is equal to one over the square root of the number of observed events
associated to the true bin.
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The number of observed events belonging to bin j is
∑

i

Tijθj . Thus we get for

the relative bin error
δθj
θj

=
1√∑

i

Tijθj

.

Besides the pure Poisson fluctuations the graphical presentation should also show
the measurement resolution. We represent it by a horizontal bar for each point. Fig.
9.11 shows a deconvolution result for two regularizations of different strength. The
curve represents the true distribution. Contrary to the representation of Fig. 9.9, the
vertical error bars are now independent of the regularization strength. The horizontal
bars indicate the resolution. With the strong regularization the valley is somewhat
filled up due to the suppression of curvature and the points are following the curve
better than expected from the error bars. The experienced scientist is able to judge
also for the weak regularization that the curve is compatible with the data.

In multi-dimensional and in binning-free applications a graphical representation
of the resolution is difficult but the tranfer function has to be documented in some
way.
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Hypothesis Tests

10.1 Introduction

So far we treated problems where a data sample was used to discriminate between
completely fixed competing hypotheses or to estimate free parameters of a given
distribution. Now we turn to the case where we would like to find out whether a
single hypothesis, without a completely defined alternative, is true or not. Some of
the questions which we would like to address are the following:

1. Track parameters are fitted to some measured points. Are the deviations of the
coordinate from the adjusted track compatible with statistical fluctuations or
should we reject the hypothesis that they are related to a particle trajectory?

2. Can we describe a sample of e+e− reactions by quantum electrodynamics?

3. Do two samples obtained at different times in an experiment significantly differ
from each other?

4. Is a signal in a spectral distribution significant?

5. Can we describe a background distribution significantly better by a linear or by
a higher order polynomial.

To answer this kind of questions, we will have to set up a test procedure which
quantifies the compatibility of a given data sample with a hypothesis. The test has
to provide a quantitative result which is used to judge how plausible or unlikely a
hypothesis is, definite judgements – right or wrong – are outside the possibilities of
statistics. A test can never prove the validity of a hypothesis, it can only indicate
problems with it.

A scientist who chooses a certain test procedure has to fix all parameters of the
test before looking at the data1. Under no circumstances is it allowed to base the
selection of a test on the data which one wants to analyze, to optimize a test on the
bases of the data or to terminate the running time of an experiment as a function of
the output of a test. This would bias the result. Obviously, it is allowed to optimize
a test with a part of the data which is excluded in the final analysis.

1Scientists often call this a blind analysis.
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Usually a test is associated with a decision: accept or reject. We will not always
attempt a decision but confine ourselves to fix the parameters which form the bases
for a possible decision.

As mentioned, we will primarily deal with a part of test theory which is espe-
cially important in natural sciences and also in many other empirical research areas,
namely that only one hypothesis, we call it the null hypothesis H0, is tested while
the admitted alternative is so vague or general that it cannot be parameterized. The
alternative hypothesis H1 is simply “H0 is false”. The question is whether the sample
at hand is in agreement with H0 or whether it deviates significantly from it. The
corresponding tests are called goodness-of-fit (GOF) tests.

Strongly related to GOF tests are two-sample tests which check whether two
samples belong to the same population.

At the end of this chapter we will treat another case in which we have a partially
specified alternative and which plays an important role in physics. There the goal is
to investigate whether a small signal is significant or explainable by a fluctuation of
a background distribution corresponding to H0. We call this procedure signal test.

10.2 Some Definitions

Before addressing GOF tests, we introduce some notations.

10.2.1 Single and Composite Hypotheses

We distinguish between simple and composite hypotheses. The former fix the pop-
ulation uniquely. Thus H0: “The sample is drawn from a normal distribution with
mean zero and variance one, i.e. N(0, 1).” is a simple hypothesis. If the alternative is
also simple, e.g. H1 : “N(5, 1)”, then we have the task to decide between two simple
hypotheses which we have already treated in Chap. 6, Sect. 6.3. In this simple case
there exists an optimum test, the likelihood ratio test.

Composite hypotheses are characterized by free parameters, like H0: “The sample
is drawn from a normal distribution.” The user will adjust mean and variance of the
normal distribution and test whether the adjusted Gaussian is compatible with the
data.

The hypothesis that we want to test is always H0, the null hypothesis, and the
alternative H1 is in most cases the hypothesis that H0 does not apply. H1 then
represents an infinite number of specified hypotheses.

10.2.2 Test Statistic, Critical Region and Significance Level

After we have fixed the null hypothesis and the admitted alternative H1, we must
choose a test statistic t(x), which is a function of the sample values x ≡ {x1, . . . , xN},
possibly in such a way that the difference between the distribution f(t|H0) and
distributions belonging to H1 are as large as possible. To simplify the notation,
we consider one-dimensional distributions. The generalization to multi-dimensional
observations is trivial.
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When we test, for instance, the hypothesis that a coordinate is distributed accord-
ing to N(0, 1), then for a sample consisting of a single measurement x, a reasonable
test statistic is the absolute value |x|. We assume that if H0 is wrong then |x| would
be large. A typical test statistic is the χ2 deviation of a histogram from a prediction.
Large values of χ2 indicate that something might be wrong with the prediction.

Before we apply the test we have to fix a critical region K which leads to the
rejection of H0 if t is located inside of it. Under the condition that H0 is true, the
probability of rejecting H0 is α, P{t ∈ K|H0} = α where α ∈ [0, 1] normally is a
small quantity (e.g. 5 %). It is called significance level or size of the test. For a test
based on the χ2 statistic, the critical region is defined by χ2 > χ2

max(α) where the
parameter χ2

max is a function of the significance level α. It fixes the range of the
critical region.

To compute rejection probabilities we have to compute the p.d.f. f(t) of the test
statistic. In some cases it is known as we will see below, but in other cases it has to
be obtained by Monte Carlo simulation. The distribution f has to include all exper-
imental conditions under which t is determined, e.g. the measurement uncertainties
of t.

10.2.3 Errors of the First and Second Kind, Power of a Test

After the test parameters are selected, we can apply the test to our data. If the
actually obtained value of t is outside the critical region, t /∈ K, then we accept
H0, otherwise we reject it. This procedure implies four different outcomes with the
following a priori probabilities:

1. H0 ∩ t ∈ K, P{t ∈ K|H0} = α: error of the first kind. (H0 is true but rejected.),

2. H0 ∩ t /∈ K, P{t /∈ K|H0} = 1− α (H0 is true and accepted.),

3. H1 ∩ t ∈ K, P{t ∈ K|H1} = 1− β (H0 is false and rejected.),

4. H1 ∩ t /∈ K, P{t /∈ K|H1} = β: error of the second kind (H0 is false but
accepted.).

When we apply the test to a large number of data sets or events, then the rate
α, the error of the first kind, is the inefficiency in the selection of H0 events, while
the rate β, the error of the second kind, represents the background with which the
selected events are contaminated with H1 events. Of course, for α given, we would
like to have β as small as possible. Given the rejection region K which depends on α,
also β is fixed for given H1. For a reasonable test we expect that β is monotonically
decreasing with α increasing: With α → 0 also the critical region K is shrinking,
while the power 1 − β must decrease, and the background is less suppressed. For
fixed α, the power indicates the quality of a test, i.e. how well alternatives to H0 can
be rejected.

The power is a function, the power function, of the significance level α. Tests
which provide maximum power 1−β with respect to H1 for all values of α are called
Uniformly Most Powerful (UMP) tests. Only in rare cases where H1 is restricted in
some way, there exists an optimum, i.e. UMP test. If both hypotheses are simple
then as already mentioned in Chap. 6, Sect. 6.3, according to a lemma of Neyman
and E. S. Pearson, the likelihood ratio can be used as test statistic to discriminate
between H0 and H1 and provides a uniformly most powerful test.
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The interpretation of α and β as error rates makes sense when many experiments
or data sets of the same type are investigated. In a search experiment where we
want to find out whether a certain physical process or a phenomenon exists or in
an isolated GOF test they refer to virtual experiments and it is not obvious which
conclusions we can draw from their values.

10.2.4 P-Values

Strictly speaking, the result of a test is that a hypothesis is “accepted” or “rejected”.
In most practical situations it is useful to replace this digital answer by a continuous
parameter, the so called p-value which is a function p(t) of the test statistic t and
which measures the compatibility of the sample with the null hypothesis, a small
value of p casting some doubt on the validity of H0. For an observed value tobs of the
test statistic, p is the probability to obtain a value t ≥ tobs under the null hypothesis:

p = P{t ≥ tobs|H0} .

To simplify its definition, we assume that the test statistic t is confined to values
between zero and infinity with a critical region t > tc

2. Its distribution under H0 be
f0(t). Then we have

p(t) = 1−
∫ t

0

f0(t
′)dt′ = 1− F0(t) . (10.1)

Since p is a unique monotonic function of t, we can consider p as a normalized test
statistic which is completely equivalent to t.

The relationship between the different quantities which we have introduced is
illustrated in Fig. 10.1. The upper graph represents the p.d.f of the test statistic
under H0. The critical region extends from tc to infinity. The a priori rejection
probability for a sample under H0 is α, equal to the integral of the distribution of
the test statistic over the critical region. The lower graph shows the p-value function.
It starts at one and is continuously decreasing to zero at infinity. The smaller the
test statistic is – think of χ2 – the higher is the p-value. At t = tc the p-value is
equal to the significance level α. The condition p < α leads to rejection of H0. Due
to its construction, the p.d.f. of the p-value under H0 is uniform. The name p-value
is derived from the word probability, but its experimentally observed value does not
represent the probability that H0 is true. This is obvious from the fact that the
p-value is a function of the selected test statistic. We will come back to this point
when we discuss goodness-of-fit.

10.2.5 Consistency and Bias of Tests

A test is called consistent if its power tends to unity as the sample size tends to
infinity. In other words: If we have an infinitely large data sample, we should always
be able to decide between H0 and the alternative H1.

We also want that independent of α the rejection probability for H1 is higher than
for H0, i.e. α < 1− β. Tests that violate this condition are called biased. Consistent
tests are asymptotically unbiased.

2This condition can always be realized for one-sided tests. Two-sided tests are rare – see
Example 129.
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Fig. 10.1. Distribution of a test statistic and corresponding p-value curve.

When H1 represents a family of distributions, consistency and non-biasedness
are valid only if they apply to all members of the family. Thus in case that the
alternative H1 is not specified, a test is biased if there is an arbitrary hypothesis
different from H0 with rejection probability less than α and it is inconsistent if we
can find a hypothesis different from H0 which is not rejected with power unity in the
large sample limit.

Example 125. Bias and inconsistency of a test

Assume, we select in an experiment events of the type K0 → π+π−. The
invariant mass mππ of the pion pairs has to match the K0 mass. Due to
the finite experimental resolution the experimental masses of the pairs are
normally distributed around the kaon mass mK with variance σ2. With the
null hypothesis H0 that we observeK0 → π+π− decays, we may apply to our
sample a test with the test quantity t = (mππ −mK)2/σ2, the normalized
mean quadratic difference between the observed masses of N pairs and the
nominal K0 mass. Our sample is accepted if it satisfies t < t0 where t0 is
the critical quantity which determines the error of the first kind α and the
acceptance 1− α. The distribution of Nt under H0 is a χ2 distribution with
N degrees of freedom. Clearly, the test is biased, because we can imagine
mass distributions with acceptance larger than 1−α, for instance a uniform
distribution in the range t ≤ t0. This test is also inconsistent, because it
would favor this specific realization of H1 also for infinitely large samples.
Nevertheless it is not unreasonable for very small samples in the considered
case and for N = 1 there is no alternative. The situation is different for
large samples where more powerful tests exist which take into account the
Gaussian shape of the expected distribution under H0.
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While consistency is a necessary condition for a sensible test applied to a large
sample, bias and inconsistency of a test applied to a small sample cannot always be
avoided and are tolerable under certain circumstances.

10.3 Goodness-of-Fit Tests

10.3.1 General Remarks

Goodness-of-fit (GOF) tests check whether a sample is compatible with a given
distribution. Even though this is not possible in principle without a well defined
alternative, this works quite well in practice, the reason being that the choice of
the test statistic is influenced by speculations about the behavior of alternatives,
speculations which are based on our experience. Our presumptions depend on the
specific problem to be solved and therefore very different testing procedures are on
the market.

In the empirical research outside the exact sciences, questions like “Is a certain
drogue effective?”, “Have girls less mathematical ability than boys?”, “Does the IQ
follow a normal distribution? ” are to be answered. In the natural sciences, GOF tests
usually serve to detect unknown systematic errors in experimental results. When we
measure the mean life of an unstable particle, we know that the lifetime distribution
is exponential but to apply a GOF test is informative, because a low p-value may
indicate a contamination of the events by background or problems with the experi-
mental equipment. But there are also situations where we accept or reject hypotheses
as a result of a test. Examples are event selection (e.g. B-quark production), particle
track selection on the bases of the quality of reconstruction and particle identifi-
cation, (e.g. electron identification based on calorimeter or Cerenkov information).
Typical for these examples is that we examine a number of similar objects and accept
a certain error rate α, while when we consider the p-value of the final result of an
experiment, discussing an error rate does not make sense.

An experienced scientist has a quite good feeling for deviations between two dis-
tributions just by looking at a plot. For instance, when we examine the statistical
distribution of Fig. 10.2, we will realize that its description by an exponential distribu-
tion is rather unsatisfactory. The question is: How can we quantify the disagreement?
Without a concrete alternative it is rather difficult to make a judgement.

Let us discuss a different example: Throwing a dice produces “1” ten times in
sequence. Is this result compatible with the assumption H0 that the dice is unbiased?
Well, such a sequence does not occur frequently and the guess that something is wrong
with the dice is well justified. On the other hand, the sequence of ten times “1” is not
less probable than any other sequence, namely (1/6)10 = 1. 7 ·10−8. Our doubt relies
on our experience: We have an alternative to H0 in mind, namely asymmetric dice.
We can imagine asymmetric dice but not dice that produce with high probability a
sequence like “4,5,1,6,3,3,6,2,5,2”. As a consequence we would choose a test which is
sensitive to deviations from a uniform distribution. When we test a random number
generator we would be interested, for example, in a periodicity of the results or a
correlation between subsequent numbers and we would choose a different test. In
GOF tests, we cannot specify H1 precisely, but we need to have an idea of it which
then enters in the selection of the test. We search for test parameters where we
suppose that they discriminate between the null hypothesis and possible alternatives.
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Fig. 10.2. Comparison of an experimental distribution to a prediction.

However, there is not such a thing as a best test quantity as long as the alternative
is not completely specified.

A typical test quantity is the χ2-variable which we have introduced to adjust
parameters of functions to experimental histograms or measured points with known
error distributions. In the least square method of parameter inference, see Chap. 7,
the parameters are fixed such that the sum χ2 of the normalized quadratic deviations
is minimum. Deviating parameter values produce larger values of χ2, consequently
we expect the same effect when we compare the data to a wrong hypothesis. If χ2 is
abnormally large, it is likely that the null hypothesis is not correct.

Unfortunately, physicists use almost exclusively the χ2 test, even though for many
applications more powerful tests are available. Scientists also often overestimate the
significance of the χ2 test results. Other tests like the Kolmogorov–Smirnov Test and
tests of the Cramer–von Mises family avoid the always somewhat arbitrary binning
of histograms in the χ2 test. These tests are restricted to univariate distributions,
however. Other binning-free methods can also be applied to multivariate distribu-
tions.

Sometimes students think that a good test statistic would be the likelihood L0

of the null hypothesis, i.e. for H0 with single event distribution f0(x) the product
Πf0(xi). That this is not a good idea is illustrated in Fig. 10.3 where the null
hypothesis is represented by a fully specified normal distribution. From the two
samples, the narrow one clearly fits the distribution worse but it has the higher
likelihood. A sample where all observations are located at the center would per
definition maximize the likelihood but such a sample would certainly not support
the null hypothesis.

While the indicated methods are distribution-free, i.e. applicable to arbitrary
distributions specified by H0, there are procedures to check the agreement of data
with specific distributions like normal, uniform or exponential distributions. These
methods are of inferior importance for physics applications. We will deal only with
distribution-free methods.
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Fig. 10.3. Two different samples and a hypothesis.

We will also exclude tests based on order statistics from our discussion. These
tests are mainly used to test properties of time series and are not very powerful in
most of our applications.

At the end of this section we want to stress that parameter inference with a
valid hypothesis and GOF test which doubt the validity of a hypothesis touch two
completely different problems. Whenever possible deviations can be parameterized
it is always appropriate to determine the likelihood function of the parameter and
use the likelihood ratio to discriminate between different parameter values.

A good review of GOF tests can be found in [57], in which, however, more recent
developments are missing.

10.3.2 P-Values

Interpretation and Use of P-Values

We have introduced p-values p in order to dispose of a quantity which measures the
agreement between a sample and a distribution f0(t) of the test statistic t. Small
p-values should indicate a bad agreement. Since the distribution of p under H0 is
uniform in the interval [0, 1], all values of p in this interval are equally probable.
When we reject a hypothesis under the condition p < 0.1 we have a probability of
10% to reject H0. The rejection probability would be the same for a rejection region
p > 0.9. The reason for cutting at low p-values is the expectation that distributions
of H1 would produce low p-values.

The p-value is not the probability that the hypothesis under test is true. It is the
probability under H0 to obtain a p-value which is smaller than the one actually
observed. A p-value between zero and p is expected to occur in the fraction p of
experiments if H0 is true.
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Fig. 10.4. Comparison of two experimental histograms to a uniform distribution.

Example 126. The p-value and the probability of a hypothesis

In Fig. 10.4 we have histogrammed two distributions from two simulated
experiments A and B. Are these uniform distributions? For experiment B
with 10000 observations this is conceivable, while for experiment A with
only 100 observations it is difficult to guess the shape of the distribution.
Alternatives like strongly rising distributions are more strongly excluded in
B than in A. We would therefore attribute a higher probability for the validity
of the hypothesis of a uniform distribution for B than for A, but the p-values
based on the χ2 test are very similar in both cases, namely p ≈ 0.08. Thus
the deviations from a uniform distribution would have in both cases the same
significance

We learn from this example also that the p-value is more sensitive to deviations
in large samples than in small samples. Since in practice small unknown systematic
errors can rarely be excluded, we should not be astonished that in high statistics ex-
periments often small p-values occur. The systematic uncertainties which usually are
not considered in the null hypothesis then dominate the purely statistical fluctuation.

Even though we cannot transform significant deviations into probabilities for the
validity of a hypothesis, they provide useful hints for hidden measurement errors or
contamination with background. In our example a linearly rising distribution has
been added to uniform distributions. The fractions were 45% in experiment A and
5% in experiment B.

In some experimental situations we are able to compare many replicates of mea-
surements to the same hypothesis. In particle physics experiments usually a huge
number of tracks has to be reconstructed. The track parameters are adjusted by a
χ2 fit to measured points assuming normally distributed uncertainties. The χ2 value
of each fit can be used as a test statistic and transformed into a p-value, often called
χ2 probability. Histograms of p-values obtained in such a way are very instructive.
They often look like the one shown in Fig. 10.5. The plot has two interesting features:
It is slightly rising with increasing p-value which indicates that the errors have been
slightly overestimated. The peak at low p-values is due to fake tracks which do not
correspond to particle trajectories and which we would eliminate almost completely
by a cut at about pc = 0.05. We would have to pay for it by a loss of good tracks of
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Fig. 10.5. Experimental distribution of p-values.

somewhat less than 5 %. A more precise estimate of the loss can be obtained by an
extrapolation of the smooth part of the p-value distribution to p = 0.

Combination of p-Values

If two p-values p1, p2 which have been derived from independent test statistics t1, t2
are available, we would like to combine them to a single p-value p. The at first sight
obvious idea to set p = p1p2 suffers from the fact that the distribution of p will not
be uniform. A popular but arbitrary choice is

p = p1p2 [1− ln(p1p2)] (10.2)

which can be shown to be uniformly distributed [65]. This choice has the unpleasant
feature that the combination of the p-values is not associative, i.e. p [(p1, p2), p3] 6=
p [p1, (p2, p3)]. There is no satisfactory way to combine p-values.

We propose, if possible, not to use (10.2) but to go back to the original test
statistics and construct from them a combined statistic t and the corresponding p-
distribution. For instance, the obvious combination of two χ2 statistics would be
t = χ2

1 + χ2
2.

10.3.3 The χ2 Test in Generalized Form

The Idea of the χ2 Comparison

We consider a sample of N observations which are characterized by the values xi of
a variable x and a prediction f0(x) of their distribution. We subdivide the range of
x into B intervals to which we attach sequence numbers k. The prediction pk for the
probability that an observation is contained in interval k is:
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pk =

∫

k

f0(x) dx ,

with Σpk = 1. The integration extends over the interval k. The number of sample
observations dk found in this bin has to be compared with the expectation value
Npk. To interpret the deviation dk − Npk, we have to evaluate the expected mean
quadratic deviation δ2k under the condition that the prediction is correct. Since the
distribution of the observations into bins follows a binomial distribution, we have

δ2k = Npk(1 − pk) .

Usually the observations are distributed into typically 10 to 50 bins. Thus the
probabilities pk are small compared to unity and the expression in brackets can be
omitted. This is the Poisson approximation of the binomial distribution. The mean
quadratic deviation is equal to the number of expected observations in the bin:

δ2k = Npk .

We now normalize the observed to the expected mean quadratic deviation,

χ2
k =

(dk −Npk)
2

Npk
,

and sum over all B bins:

χ2 =

B∑

k=1

(dk −Npk)
2

Npk
. (10.3)

By construction we have:

〈χ2
k〉 ≈ 1 ,

〈χ2〉 ≈ B .

If the quantity χ2 is considerably larger than the number of bins, then obviously
the measurement deviates significantly from the prediction.

A significant deviation to small values χ2 ≪ B even though considered as unlikely
is tolerated, because we know that alternative hypotheses do not produce smaller 〈χ2〉
than H0.

The χ2 Distribution and the χ2 Test

We now want to be more quantitative. IfH0 is valid, the distribution of χ2 follows to a
very good approximation the χ2 distribution which we have introduced in Sect. 3.6.7
and which is displayed in Fig. 3.20. The approximation relies on the approximation of
the distribution of observations per bin by a normal distribution, a condition which
in most applications is sufficiently good if the expected number of entries per bin is
larger than about 10. The parameter number of degrees of freedom (NDF ) f of the
χ2 distribution is equal to the expectation value and to the number of bins minus
one:

〈χ2〉 = f = B − 1 . (10.4)
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Originally we had set 〈χ2〉 ≈ B but this relation overestimates χ2 slightly. The
smaller value B − 1 is plausible because the individual deviations are somewhat
smaller than one – remember, we had approximated the binomial distribution by a
Poisson distribution. For instance, in the limit of a single bin, the mean deviation is
not one but zero. We will come back to this point below.

In some cases we have not only a prediction of the shape of the distribution but
also a prediction N0 of the total number of observations. Then the number of entries
in each bin should follow a Poisson distribution with mean N0pk, (10.3) has to be
replaced by

χ2 =

B∑

k=1

(dk −N0pk)
2

N0pk
. (10.5)

and we have f = B = 〈χ2〉.
In experiments with low statistics the approximation that the distribution of the

number of entries in each bin follows a normal distribution is sometimes not justified
and the distribution of the χ2 quantity as defined by (10.3) or (10.5) is not very
well described by a χ2 distribution. Then we have the possibility to determine the
distribution of our χ2 variable under H0 by a Monte Carlo simulation3.

In Fig. 10.6 we illustrate how we can deduce the p-value or χ2 probability from
the distribution and the experimental value χ̂2 of our test statistic χ2. The exper-
imental value χ̂2 divides the χ2 distribution, which is fixed through the number of
degrees of freedom, and which is independent of the data, into two parts. According
to its definition (10.1), the p-value p(χ̂2) is equal to the area of the right hand part. It
is the fraction of many imagined experiments where χ2 is larger than the experimen-
tally observed value χ̂2 – always assuming that H0 is correct. As mentioned above,
high values of χ2 and correspondingly low values of p indicate that the theoretical
description is inadequate to describe the data. The reason is in most cases found in
experimental problems.

3We have to be especially careful when α is small.
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Fig. 10.7. Critical χ2 values as a fnction of the number of degrees of freedom with the
significance level as parameter.

The χ2 comparison becomes a test, if we accept the theoretical description of the
data only if the p-value exceeds a critical value, the significance level α, and reject it
for p < α. The χ2 test is also called Pearson test after the statistician Karl Pearson
who has introduced it already in 1900.

Figure 10.7 gives the critical values of χ2, as a function of the number of degrees
of freedom with the significance level as parameter. To simplify the presentation we
have replaced the discrete points by curves. The p-value as a function of χ2 with NDF
as parameter is available in the form of tables or in graphical form in many books.
For large f , about f > 20, the χ2 distribution can be approximated sufficiently well
by a normal distribution with mean value x0 = f and variance s2 = 2f . We are then
able to compute the p-values from integrals over the normal distribution. Tables can
be found in the literature or alternatively, the computation can be performed with
computer programs like Mathematica or Maple.

The Choice of Binning

There is no general rule for the choice of the number and width of the histogram
bins for the χ2 comparison but we note that the χ2 test looses significance when the
number of bins becomes too large.

To estimate the effect of fine binning for a smooth deviation, we consider a sys-
tematic deviation which is constant over a certain region with a total number of
entries N0 and which produces an excess of εN0 events. Partitioning the region into
B bins would add to the statistical χ2 in each single bin the contribution:
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Table 10.1. P-values for χ2 and EDF statistic.

test p value
χ2, 50 Bins 0.10
χ2, 50 Bins, e.p. 0.05
χ2, 20 Bins 0.08
χ2, 20 Bins, e.p. 0.07
χ2, 10 Bins 0.06
χ2, 10 Bins, e.p. 0.11
χ2, 5 Bins 0.004
χ2, 5 Bins, e.p. 0.01
Dmax 0.005
W 2 0.001
A2 0.0005

χ2
s =

(εN0/B)2

N0/B
=
ε2N0

B
.

For B bins we increase χ2 by ε2N0 which is to be compared to the purely statistical
contribution χ2

0 which is in average equal to B. The significance S, i.e. the systematic
deviation in units of the expected fluctuation

√
2B is

S = ε2
N0√
2B

.

It decreases with the square root of the number of bins.

We recommend a fine binning only if deviations are considered which are re-
stricted to narrow regions. This could be for instance pick-up spikes. These are
pretty rare in our applications. Rather we have systematic deviations produced by
non-linearity of measurement devices or by background and which extend over a
large region. Then wide intervals are to be preferred.

In [58] it is proposed to choose the number of bins according to the formula
B = 2N2/5 as a function of the sample size N .

Example 127. Comparison of different tests for background under an expo-
nential distribution

In Fig. 10.2 a histogrammed sample is compared to an exponential. The sam-
ple contains, besides observations following this distribution, a small contri-
bution of uniformly distributed events. From Table 10.1 we recognize that
this defect expresses itself by small p-values and that the corresponding de-
crease becomes more pronounced with decreasing number of bins.

Some statisticians propose to adjust the bin parameters such that the number of
events is the same in all bins. In our table this partitioning is denoted by e.p. (equal
probability). In the present example this does not improve the significance.

The value of χ2 is independent of the signs of the deviations. However, if several
adjacent bins show an excess (or lack) of events like in the left hand histogram of
Fig. 10.8 this indicates a systematic discrepancy which one would not expect at the
same level for the central histogram which produces the same value for χ2. Because
correlations between neighboring bins do not enter in the test, a visual inspection is
often more effective than the mathematical test. Sometimes it is helpful to present
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Fig. 10.8. The left hand and the central histogram produce the same χ2 p-value, the left
hand and the right hand histograms produce the same Kolmogorov p-value.

Table 10.2. χ2 values with sign of deviation for a two-dimensional histogram.

i \ j 1 2 3 4 5 6 7 8
1 0.1 -0.5 1.3 -0.3 1.6 -1.1 2.0 1.2
2 -1.9 0.5 -0.4 0.1 -1.2 1.3 1.5
3 -1.2 -0.8 0.2 0.1 1.3 1.9
4 0.2 0.7 -0.6 1.1 2.2

for every bin the value of χ2 multiplied by the sign of the deviation either graphically
or in form of a table.

Example 128. χ2comparison for a two-dimensional histogram

In Table 10.2 for a two-dimensional histogram the values of χ2 accompanied
with the sign are presented. The absolute values are well confined in the range
of our expectation but near the right hand border we observe an accumulation
of positive deviations which point to a systematic effect.

Generalization to Arbitrary Measurements

The Pearson method can be generalized to arbitrary measurements yk with mean
square errors δ2k. For theoretical predictions tk we compute χ2,

χ2 =
N∑

k=1

(yk − tk)
2

δ2k
,

where χ2 follows a χ2 distribution of f = N degrees of freedom. A necessary condi-
tion for the validity of the χ2 distribution is that the uncertainties follow a normal
distribution. For a large number N of individual measurements the central limit the-
orem applies and we can relax the condition of normality. Then χ2 is approximately
normally distributed with mean N and variance 2N .
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A further generalization is given in the Appendix 13.8 where weighted events and
statistical errors of the theoretical predictions, resulting from the usual Monte Carlo
calculation, are considered.

Remark : The quantity δ2 has to be calculated under the assumption that the
theoretical description which is to be tested is correct. This means, that normally
the raw measurement error cannot be inserted. For example, instead of ascribing to
a measured quantity an error δ′k which is proportional to its value yk, a corrected
error

δk = δ′k
tk
yk

should be used.

Sometimes extremely small values of χ2 are presented. The reason is in most cases
an overestimation of the errors.

The variable χ2 is frequently used to separate signal events from background. To
this end, the experimental distribution of χ2 is transformed into a p-value distribution
like the one presented in Fig. 10.5. In this situation it is not required that χ2 follows
the χ2 distribution. It is only necessary that it is a discriminative test variable.

The χ2 Test for Composite Hypotheses

In most cases measurements do not serve to verify a fixed theory but to estimate one
or more parameters. The method of least squares for parameter estimation has been
discussed in Sect. 7.2. To fit a curve y = t(x, θ) to measured points yi with Gaussian
errors σi, i = 1, . . . , N , we minimize the quantity

χ2 =

N∑

i=1

(yi − t(xi, θ1, . . . , θZ))
2

σ2
i

, (10.6)

with respect to the Z free parameters θk.

It is plausible that with increasing number of parameters, which are adjusted,
the description of the data improves, χ2 decreases. In the extreme case where the
number of parameters is equal to the number N of measured points or histogram
bins it becomes zero. The distribution of χ2 in the general case where Z parameters
are adjusted follows under conditions to be discussed below a χ2 distribution of
f = N − Z degrees of freedom.

Setting in (10.6) zi = (yi − t(xi, θ))/σi we may interpret χ2 =
∑N

1 z2i as the
(squared) distance of a point z with normally distributed components from the origin
in an N -dimensional space . If all parameters are fixed except one, say θ1, which is
left free and adjusted to the data by minimizing χ2, we have to set the derivative
with respect to θ1 equal to zero:

−1

2

∂χ2

∂θ1
=

N∑

i=1

zi
∂t

∂θ1
/σi = 0 .

If t is a linear function of the parameters, an assumption which is often justified at
least approximately4, the derivatives are constants, and we get a linear relation (con-
straint) of the form c1z1+ · · ·+cNzN = 0. It defines a (N−1)-dimensional subspace,

4Note that also the σi have to be independent of the parameters.
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a hyperplane containing the origin, of the N -dimensional z-space. Consequently, the
distance in z-space is confined to this subspace and derived from N − 1 components.
For Z free parameters we get Z constraints and a (N−Z)-dimensional subspace. The
independent components (dimensions) of this subspace are called degrees of freedom.
The number of degrees of freedom is f = N −Z as pretended above. Obviously, the
sum of f squared components will follow a χ2 distribution with f degrees of freedom.

In the case of fitting a normalized distribution to a histogram with B bins which
we have considered above, we had to set (see Sect. 3.6.7) f = B−1. This is explained
by a constraint of the form z1 + · · · + zB = 0 which is valid due to the equality of
the normalization for data and theory.

The χ2 Test for Small Samples

When the number of entries per histogram bin is small, the approximation that the
variations are normally distributed is not justified. Consequently, the χ2 distribution
should no longer be used to calculate the p-value.

Nevertheless we can use in this situation the sum of quadratic deviations χ2 as
test statistic. The distribution f0(χ

2) has then to be determined by a Monte Carlo
simulation. The test then is slightly biased but the method still works pretty well.

Warning

The assumption that the distribution of the test statistic under H0 is described by
a χ2 distribution relies on the following assumptions: 1. The entries in all bins of
the histogram are normality distributed. 2. The expected number of entries depends
linearly on the free parameters in the considered parameter range. An indication for
a non-linearity are asymmetric errors of the adjusted parameters. 3. The estimated
uncertainties σi in the denominators of the summands of χ2 are independent of the
parameters. Deviations from these conditions affect mostly the distribution at large
values of χ2 and thus the estimation of small p-values. Corresponding conditions
have to be satisfied when we test the GOF of a curve to measured points. Whenever
we are not convinced about their validity we have to generate the distribution of χ2

by a Monte Carlo simulation.

10.3.4 The Likelihood Ratio Test

General Form

The likelihood ratio test compares H0 to a parameter dependent alternative H1

which includes H0 as a special case. The two hypothesis are defined through the
p.d.f.s f(x|θ) and f(x|θ0) where the parameter set θ0 is a subset of θ, often just a
fixed value of θ. The test statistic is the likelihood ratio λ, the ratio of the likelihood
of H0 and the likelihood of H1 where the parameters are chosen such that they
maximize the likelihoods for the given observations x. It is given by the expression

λ =
supL(θ0|x)
supL(θ|x) , (10.7)
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or equivalently by
lnλ = sup lnL(θ0|x)− sup lnL(θ|x) .

If θ0 is a fixed value, this expression simplifies to lnλ = lnL(θ0|x)− sup lnL(θ|x).
From the definition (10.7) follows that λ always obeys λ ≤ 1.

Example 129. Likelihood ratio test for a Poisson count

Let us assume that H0 predicts µ0 = 10 decays in an hour, observed are 8.
The likelihood to observe 8 for the Poisson distribution is L0 = P (8|10) =
e−10108/8!. The likelihood is maximal for µ = 8, it is L = P (8|8) = e−888/8!
Thus the likelihood ratio is λ = P (8|10)/P (8|8) = e−2(5/4)8 = 0.807. The
probability to observe a ratio smaller than or equal to 0.807 is

p =
∑

k

P (k|10) for k with P (k|10) ≤ 0.807P (10|10) .

Relevant numerical values of λ(k, µ0) = P (k|µ0)/P (k|k) and P (k|µ0) for
µ0 = 10 are given in Table 10.3 It is seen, that the sum over k runs over

Table 10.3. Values of λ and P , see text.

k 8 9 10 11 12 13
λ 0.807 0.950 1.000 0.953 0.829 0.663
P 0.113 0.125 0.125 0.114 0.095 0.073

all k, except k = 9, 10, 11, 12: p = Σ8
k=0P (k|10) + Σ∞

k=13P (k|10) = 1 −
Σ12

k=9P (k|10) = 0.541 which is certainly acceptable. This is an example for
the p-value of a two-sided test.

The likelihood ratio test in this general form is useful to discriminate between a
specific and a more general hypothesis, a problem which we will study in Sect. 10.5.2.
To apply it as a goodness-of-fit test, we have to histogram the data.

The Likelihood Ratio Test for Histograms

We have shown that the likelihood L0 =
∏

i f0(xi) of a sample cannot be used as
a test statistic, but when we combine the data into bins, a likelihood ratio can be
defined for the histogram and used as test quantity. The test variable is the ratio
of the likelihood for the hypothesis that the bin content is predicted by H0 and the
likelihood for the hypothesis that maximizes the likelihood for the given sample. The
latter is the likelihood for the hypothesis where the prediction for the bin coincides
with its content. If H0 is not simple, we take the ratio of the maximum likelihood
allowed by H0 and the unconstrained maximum of L.

For a bin with content d, prediction t and p.d.f. f(d|t) this ratio is λ =
f(d|t)/f(d|d) since at t = d the likelihood is maximal. For the histogram we have to
multiply the ratios of the B individual bins. Instead we change to the log-likelihoods
and use as test statistic

V = lnλ =

B∑

i=1

[ln f(di|ti)− ln f(di|di)] .
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If the bin content follows the Poisson statistics we get (see Chap. 6, Sect. 6.5.6)

V =

B∑

i=1

[−ti + di ln ti − ln(di!) + di − di ln di + ln(di!)]

=

B∑

i=1

[di − ti + di ln(ti/di)] .

The distribution of the test statistic V is not universal, i.e. not independent of
the distribution to be tested as in the case of χ2. It has to be determined by a Monte
Carlo simulation. In case parameters of the prediction have been adjusted to data,
the parameter adjustment has to be included in the simulation.

The method can be extended to weighted events and to the case of Monte Carlo
generated predictions with corresponding statistical errors, see Appendix 13.8.

Asymptotically, N → ∞, the test statistic V approaches −χ2/2 as is seen from
the expansion of the logarithm, ln(1+x) ≈ x−x2/2. After introducing xi = (di−ti)/ti
which, according to the law of large numbers, becomes small for large di, we find

V =
B∑

i=1

[tixi − ti(1 + xi) ln(1 + xi)]

≈
B∑

i=1

ti

[
xi − (1 + xi)(xi −

1

2
x2i )

]

≈
B∑

i=1

ti

(
−1

2
x2i

)
= −1

2

B∑

i=1

(
(di − ti)

2

ti

)
= −1

2
χ2
B ,

and thus −2V is distributed according to a χ2 distribution with B degrees of freedom,
but then we may also use directly the χ2 test.

If the prediction is normalized to the data, we have to replace the Poisson dis-
tribution by the multinomial distribution. We omit the calculation and present the
result:

V =

B∑

i=1

di ln(ti/di) .

In this case, V approaches asymptotically the χ2 distribution with B − 1 degrees of
freedom.

10.3.5 The Kolmogorov–Smirnov Test

The subdivision of a sample into intervals is arbitrary and thus subjective. Unfortu-
nately some experimenters use the freedom to choose histogram bins such that the
data agree as well as possible with the theoretical description in which they believe.
This problem is excluded in binning-free tests which have the additional advantage
that they are also applicable to small samples.

The Kolmogorov–Smirnov test compares the distribution function

F0(x) =

∫ x

−∞
f0(x) dx



264 10 Hypothesis Tests

0.0 0.5 1.0
0.0

0.5

1.0

 

 

S(x)

D+

D-

F(x)

x

Fig. 10.9. Comparison of the empirical distribution function S(x) with the theoretical
distribution function F (x).

with the corresponding experimental quantity S,

S(x) =
Number of observations with xi < x

Total number
.

The test statistic is the maximum difference D between the two functions:

D = sup |F (x) − S(x)|
= sup(D+, D−) .

The quantities D+, D− denote the maximum positive and negative difference,
respectively. S(x) is a step function, an experimental approximation of the distribu-
tion function and is called Empirical Distribution Function (EDF ). It is depicted in
Fig. 10.9 for an example and compared to the distribution function F (x) of H0. To
calculate S(x) we sort all N elements in ascending order of their values, xi < xi+1

and add 1/N at each location xi to S(x). Then S(xi) is the fraction of observations
with x values less or equal to xi,

S(xi) =
i

N
,

S(xN ) = 1 .

As in the χ2 test we can determine the expected distribution of D, which will
depend on N and transform the experimental value of D into a p-value. To get
rid of the N dependence of the theoretical D distribution we use D∗ =

√
ND.

Its distribution under H0 is for not too small N (N >≈ 100) independent of N
and available in form of tables and graphs. For event numbers larger than 20 the
approximation D∗ = D(

√
N + 0.12+ 0.11/

√
N) is still a very good approximation5.

The function p(D∗) is displayed in Fig. 10.10.
5D does not scale exactly with

√
N because S increases in discrete steps.
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Fig. 10.10. P-value as a function of the Kolmogorov test statistic D∗.

The Kolmogorov–Smirnov test emphasizes more the center of the distribution
than the tails because there the distribution function is tied to the values zero and
one and thus is little sensitive to deviations at the borders. Since it is based on
the distribution function, deviations are integrated over a certain range. Therefore
it is not very sensitive to deviations which are localized in a narrow region. In Fig.
10.8 the left hand and the right hand histograms have the same excess of entries in
the region left of the center. The Kolmogorov–Smirnov test produces in both cases
approximately the same value of the test statistic, even though we would think that
the distribution of the right hand histogram is harder to explain by a statistical
fluctuation of a uniform distribution. This shows again, that the power of a test
depends strongly on the alternatives to H0. The deviations of the left hand histogram
are well detected by the Kolmogorov–Smirnov test, those of the right hand histogram
much better by the Anderson–Darling test which we will present below.

There exist other EDF tests [57], which in most situations are more effective than
the simple Kolmogorov–Smirnov test.

10.3.6 Tests of the Kolmogorov–Smirnov – and Cramer–von Mises
Families

In the Kuiper test one uses as the test statistic the sum V = D+ +D− of the two
deviations of the empirical distribution function S from F . This quantity is designed
for distributions “on the circle”. This are distributions where the beginning and the
end of the distributed quantity are arbitrary, like the distribution of the azimuthal
angle which can be presented with equal justification in all intervals [ϕ0, ϕ0 + 2π]
with arbitrary ϕ0.

The tests of the Cramer–von Mises family are based on the quadratic difference
between F and S. The simple Cramer–von Mises test employs the test statistic
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W 2 =

∫ ∞

−∞
[(F (x) − S(x)]

2
dF .

In most situations the Anderson–Darling test with the test statistic A2 and the
test of Watson with the test statistic U2

A2 = N

∫ ∞

−∞

[S(x)− F (x)]2

F (x) [1− F (x)]
dF ,

U2 = N

∫ ∞

−∞

{
S(x)− F (x) −

∫ ∞

−∞
[S(x)− F (x)] dF

}2

dF ,

are superior to the Kolmogorov–Smirnow test.

The test of Anderson emphasizes especially the tails of the distribution while
Watson’s test has been developed for distributions on the circle. The formulas above
look quite complicated at first sight. They simplify considerably when we perform a
probability integral transformation (PIT ). This term stands for a simple transfor-
mation of the variate x into the variate z = F0(x), which is uniformly distributed in
the interval [0, 1] and which has the simple distribution function H0(z) = z. With
the transformed step distribution S∗(z) of the sample we get

A2 = N

∫ ∞

−∞

[S∗(z)− z]
2

z(1− z)
dz ,

U2 = N

∫ ∞

−∞

{
S∗(z)− z −

∫ ∞

−∞
[S∗(z)− z] dz

}2

dz .

In the Appendix 13.7 we show how to compute the test statistics. There also the
asymptotic distributions are collected.

10.3.7 Neyman’s Smooth Test

This test [59] is different from those discussed so far in that it parameterizes the
alternative hypothesis. Neyman introduced the smooth test in 1937 (for a discussion
by E. S. Pearson see [60]) as an alternative to the χ2 test, in that it is insensitive
to deviations from H0 which are positive (or negative) in several consecutive bins.
He insisted that in hypothesis testing the investigator has to bear in mind which
departures from H0 are possible and thus to fix partially the p.d.f. of the alternative.
The test is called “smooth” because, contrary to the χ2 test, the alternative hypothesis
approaches H0 smoothly for vanishing parameter values. The hypothesis under test
H0 is again that the sample after the PIT, zi = F0(xi), follows a uniform distribution
in the interval [0, 1].

The smooth test excludes alternative distributions of the form

gk(z) =
k∑

i=0

θiπi(z), (10.8)

where θi are parameters and the functions πi(z) are modified orthogonal Legendre
polynomials that are normalized to the interval [0, 1] and symmetric or antisymmetric
with respect to z = 1/2:
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π0(z) ≡ 1 ,

π1(z) =
√
3(2z − 1) ,

. . . . . . . . .

πi(z) =
√
2i+ 1Pi(2z − 1) .

Here Pi(x) is the Legendre polynomial in the usual form. The first parameter θ0
is fixed, θ0 = 1, and the other parameters are restricted such that gk is positive.
The user has to choose the parameter k which limits the degree of the polynomials.
If the alternative hypothesis is suspected to contain narrow structures, we have to
admit large k. The test with k = 1 rejects a linear contribution, k = 2 in addition
a quadratic component and so on. Obviously, the null hypothesis H0 corresponds to
θ1 = · · · = θk = 0, or equivalently to

∑k
i=1 θ

2
i = 0. We have to look for a test statistic

which increases with the value of this sum.

For a sample of size N the test statistic proposed by Neyman is

r2k =
1

N

k∑

i=1

t2i =
1

N

k∑

i=1




N∑

j=1

πi(zj)




2

. (10.9)

This choice is plausible, because a large absolute value of ti is due to a strong con-
tribution of the polynomial πi to the observed distribution and thus also to a large
value of θ2i , while under H0 we have for i ≥ 1

〈ti〉 = N〈πi(z)〉 = 0 ,

because ∫ 1

0

πi(z) dz = 0 .

Asymptotically, N → ∞, under H0 the test statistic r2k follows a χ2 distribution
with k degrees of freedom (see 3.6.7). This is a consequence of the orthonormality of
the polynomials πi and the central limit theorem: We have

var(ti) = 〈t2i 〉 = N

∫ 1

0

π2
i (z) dz = N

and as a sum of N random variables the statistic ti/
√
N is normally distributed for

large N , with expectation value zero and variance one. Due to the orthogonality of
the πi, the ti are uncorrelated. For small N the distribution of the test statistic r2k
has to be obtained by a Monte Carlo simulation.

In any case, large values of r2k indicate bad agreement of the data with H0, but
for a fixed value of k the smooth test is not consistent6. Its power approaches unity
for N → ∞ only for the class of alternatives Hk having a PIT which is represented
by an expansion in Legendre polynomials up to order k. Hence with respect to these,
while usually uninteresting, restricted alternatives it is consistent. Thus for large
samples and especially for the exclusion of narrow structures k should not be chosen
too small. The value of k in the smooth test corresponds roughly to the number of
bins in the χ2-test.

The smooth test is in most cases superior to the χ2 test. This can be understood
in the following way: The smooth test scrutinizes not only for structures of a fixed

6For k = 1, for instance, the test cannot exclude distributions concentrated near z = 1/2.
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frequency but for all frequencies up to k while the χ2 test with B ≫ 1 bins is rather
insensitive to low frequency variations.

Remark: The alternative distribution quoted by Neyman was the exponential

gk(z) = C exp

(
k∑

i=0

θiπi(z)

)
(10.10)

where C(θ) is a normalization constant. Neyman probably chose the exponential
form, because it guaranties positivity without further restrictions of the parameters
θi. Moreover, with this class of alternatives, it has been shown by E. S. Pearson [60]
that the smooth test can be interpreted as a likelihood ratio test. Anyway, (10.8)
or (10.10) serve only as a motivation to choose the test statistic (10.9) which is the
relevant quantity.

10.3.8 The L2 Test

The binning-free tests discussed so far are restricted to one dimension, i.e. to uni-
variate distributions. We now turn to multivariate tests.

A very obvious way to express the difference between two distributions f and f0
is the integrated quadratic difference

L2 =

∫
[f(r)− f0(r)]

2
dr. (10.11)

Unfortunately, we cannot use this expression for the comparison of a sample {r1, . . . , rN}
with a continuous function f0. Though we can try to derive from our sample an ap-
proximation of f . Such a procedure is called probability density estimation (PDE ).
A common approach (see Chap. 12) is the Gaussian smearing or smoothing. The N
discrete observations at the locations ri are transformed into the function

fG(r) =
1

N

∑
e−α(ri−r)2 .

The smearing produces a broadening which has also to be applied to f0:

f0G(r) =

∫
f0(r

′)e−α(r−r
′)2dr′ .

We now obtain a useful test statistic L2G,

L2G =

∫
[fG(r)− f0G(r)]

2
dr .

So far the L2 test [61] has not found as much attention as it deserves because
the calculation of the integral is tedious. However its Monte Carlo version is pretty
simple. It offers the possibility to adjust the width of the smearing function to the
density f0. Where we expect large distances of observations, the Gaussian width
should be large, α ∼ f2

0 .

A more sophisticated version of the L2 test is presented in [61]. The Monte Carlo
version is included in Sect. 10.3.11, see below.
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10.3.9 Comparing a Data Sample to a Monte Carlo Sample and the
Metric

We know turn to tests where we compare our sample not to an analytic distribution
but to a Monte Carlo simulation of f0. This is not a serious restriction because anyhow
acceptance and resolution effects have to be taken into account in the majority of all
experiments. Thus the null hypothesis is usually represented by a simulation sample.

To compare two samples we have to construct a relation between observations
of the samples which in the multi-dimensional case has to depend in some way
on the distance between them. We can define the distance in the usual way using
the standard Euclidian metric but since the different dimensions often represent
completely different physical quantities, e.g. spatial distance, time, mass etc., we
have considerable freedom in the choice of the metric and we will try to adjust the
metric such that the test is powerful.

We usually want that all coordinates enter with about equal weight into the test.
If, for example, the distribution is very narrow in x but wide in y, then the distance
r of points is almost independent of y and it is reasonable to stretch the distribution
in the x direction before we apply a test. Therefore we propose for the general case
to scale linearly all coordinates such that the empirical variances of the sample are
the same in all dimensions. In addition we may want to get rid of correlations when
for instance a distribution is concentrated in a narrow band along the x-y diagonal.

Instead of transforming the coordinates we can use the Mahalanobis distance7 in
order to normalize distances between observations (x1, . . . ,xN} with sample mean
x. (The bold-face symbols here denote P -dimensional vectors describing different
features measured on each of the N sampled objects.)

The Mahalanobis distance dM of two observations x and x′ is

dM =
√
(x− x′)TC−1(x− x′) ,

with

Cij =

N∑

n=1

(xni − xi)(xnj − xj)/N .

It is equivalent to the Euclidian distance after a linear transformation of the vector
components which produces a sample with unity covariance matrix. If the covariance
matrix is diagonal, then the resulting distance is the normalized Euclidean distance
in the P -dimensional space:

dM =

√√√√
P∑

p=1

(xp − x′p)
2

σ2
p

.

In the following tests the choice of the metric is up to the user. In many situations
it is reasonable to use the Mahalanobis distance, even though moderate variations
of the metric normally have little influence on the power of a test.

7This is a distance measure introduced by P. C. Mahalanobis in 1936.
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Fig. 10.11. K-nearest neighbor test.

10.3.10 The k-Nearest Neighbor Test

We consider two samples, one generated by a Monte Carlo simulation of a null
distribution f0 and the experimental sample. The test statistic is the number n(k)
of observations of the mixed sample where all of its k nearest neighbors belong to
the same sample as the observation itself. This is illustrated in Fig. 10.11 for an
unrealistically simple configuration. We find n(1) = 4 and n(2) = 4. The parameter
k is a small number to be chosen by the user, in most cases it is one, two or three.

Of course we expect n to be large if the two parent distributions are very different.
The k-nearest neighbor test is very popular and quite powerful. It has one caveat:
We would like to have the number M of Monte Carlo observations much larger than
the number N of experimental observations. In the situation with M ≫ N each
observation tends to have as next neighbor a Monte Carlo observation and the test
becomes less significant.

10.3.11 The Energy Test

A very general expression that measures the difference between two distributions
f(r) and f0(r) in an n dimensional space is

φ =
1

2

∫
dr

∫
dr′ [f(r)− f0(r)] [f(r

′)− f0(r
′)]R(r, r′) . (10.12)

Here we call R the distance function. The factor 1/2 is introduced to simplify
formulas which we derive later. The special case R = δ(r − r′) leads to the simple
integrated quadratic deviation (10.11) of the L2 test

φ =
1

2

∫
dr [f(r)− f0(r)]

2
. (10.13)
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However, we do not intend to compare two distributions but rather two samples
A {r1, . . . , rN}, B {r01, . . . , r0M}, which are extracted from the distributions f and
f0, respectively. For this purpose we start with the more general expression (10.12)
which connects points at different locations. We restrict the function R in such a way
that it is a function of the distance |r − r′| only and that φ is minimum for f ≡ f0.

The function (10.12) with R = 1/|r − r′| describes the electrostatic energy of
the sum of two charge densities f and f0 with equal total charge but different sign
of the charge. In electrostatics the energy reaches a minimum if the charge is zero
everywhere, i.e. the two charge densities are equal up to the sign. Because of this
analogy we refer to φ as energy.

For our purposes the logarithmic function R(r) = − ln(r) and the bell function
R(r) ∼ exp(−cr2) are more suitable than 1/r.

We multiply the expressions in brackets in (10.12) and obtain

φ =
1

2

∫
dr

∫
dr′ [f(r)f(r′) + f0(r)f0(r

′)− 2f(r)f0(r
′)]R(|r − r′|) . (10.14)

A Monte Carlo integration of this expression is obtained when we generateM random
points {r01 . . . r0M} of the distribution f0(r) and N random points {r1, . . . , rN} of
the distribution f(r) and weight each combination of points with the corresponding
distance function. The Monte Carlo approximation is:

φ ≈ 1

N(N − 1)

∑

i

∑

j>i

R(|ri − rj |)−
1

NM

∑

i

∑

j

R(|ri − r0j |) +

+
1

M(M − 1)

∑

i

∑

j>i

R(|r0i − r0j |)

≈ 1

N2

∑

i

∑

j>i

R(|ri − rj |)−
1

NM

∑

i

∑

j

R(|ri − r0j |) +

+
1

M2

∑

i

∑

j>i

R(|r0i − r0j |) . (10.15)

This is the energy of a configuration of discrete charges. Alternatively we can un-
derstand this result as the sum of three expectation values which are estimated by
the two samples. The value of φ from (10.15) thus is the estimate of the energy of
two samples that are drawn from the distributions f0 and f and that have the total
charge zero.

We can use the expression (10.15) as test statistic when we compare the ex-
perimental sample to a Monte Carlo sample, the null sample representing the null
distribution f0. Small energies signify a good, large ones a bad agreement of the
experimental sample with H0. To be independent of statistical fluctuations of the
simulated sample, we choose M large compared to N , typically M ≈ 10N .

The test statistic energy φ is composed of three terms φ1, φ2, φ3 which correspond
to the interaction of the experimental sample with itself, to its interaction with the
null sample and with the interaction of the null sample with itself:

φ = φ1 − φ2 + φ3 , (10.16)

φ1 =
1

N(N − 1)

∑

i<j

R(|ri − rj|) , (10.17)
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φ2 =
1

NM

∑

i,j

R(|ri − r0j |) , (10.18)

φ3 =
1

M(M − 1)

∑

i<j

R(|r0i − r0j |) . (10.19)

The term φ3 is independent of the data and can be omitted but is normally included
to reduce statistical fluctuations.

The distance function R relates sample points and simulated points of the null
hypothesis to each other. Proven useful have the functions

Rl = − ln(r + ε) , (10.20)

Rs = e−r2/(2s2) . (10.21)

The small positive constant ε suppresses the pole of the logarithmic distance func-
tion. Its value should be chosen approximately equal to the experimental resolution8

but variations of ε by a large factor have no sizable influence on the result. With
the function R1 = 1/r we get the special case of electrostatics. With the Gaussian
distance function Rs the test is very similar to the χ2 test with bin width 2s but
avoids the arbitrary binning of the latter. For slowly varying functions we propose
to use the logarithmic distance function.

Empirical studies have shown that the test statistic follows to a very good ap-
proximation a distribution from the family of the extreme value distributions,

f(φ) =
1

σ

(
1 + ξ

φ− µ

σ

)−1/ξ−1

exp

{
−
(
1 + ξ

φ− µ

σ

)−1/ξ
}
,

with parameters µ, σ, ξ which we have discussed in Sect. 3.6.12. We have to compute
this distribution f0(φ) by a Monte Carlo simulation. To get a sufficient precision for
small p-values we have to generate a very large sample. We gain computing time
when we extract the first three moments of a relatively modest Monte Carlo sample
and compute from those the parameters of the extreme value distribution.

The energy test is consistent [63]. It is quite powerful in many situations and has
the advantage that it is not required to sort the sample elements.

The energy test with Gaussian distance function is completely equivalent to the
L2 test. It is more general than the latter in that it allows to use various distance
functions.

10.3.12 Tests Designed for Specific Problems

The power of tests depends on the alternatives. If we have an idea of it, even if it is
crude, we can design a GOF test which is especially sensitive to the deviations from
H0 which we have in mind. The distribution of the test statistic has to be produced
by a Monte Carlo simulation.

Example 130. Designed test: three region test
8Distances between two points that are smaller than the resolution are accidental and

thus insignificant.
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Fig. 10.12. Different admixtures to a uniform distribution.

Experimental distributions often show a local excess of observations which are
either just a statistical fluctuation or stem from a physical process. To check
whether an experimental sample is compatible with the absence of a bump
caused by a physical process, we propose the following three region test. We
subdivide the domain of the variable in three regions with expected numbers
of observations n10, n20, n30 and look for differences to the corresponding
experimental numbers n1, n2, n3. The subdivision is chosen such that the
sum of the differences is maximum. The test statistic R3 is

R3 = sup
n1,n2

[(n1 − n10) + (n2 − n20) + (n3 − n30)] .

Notice, that n3 = N −n1−n2 is a function of n1 and n2. The generalization
to more than three regions is trivial. Like in the χ2 test we could also divide
the individual squared differences by their expected value:

R′
3 = sup

n1,n2

[
(n1 − n10)

2

n10
+

(n2 − n20)
2

n20
+

(n3 − n30)
2

n30

]
.

10.3.13 Comparison of Tests

Univariate Distributions

Whether a test is able to detect deviations from H0 depends on the distribution f0
and on the kind of distortion. Thus there is no test which is most powerful in all
situations.

To get an idea of the power of different tests, we consider six different admixtures
to a uniform distribution and compute the fraction of cases in which the distortion
of the uniform distribution is detected at a significance level of 5%. For each distri-
bution constructed in this way, we generate stochastically 1000 mixtures with 100
observations each. The distributions which we add are depicted in Fig. 10.12. One of
them is linear, two are normal with different widths, and three are parabolic. The χ2

test was performed with 12 bins following the prescription of Ref. [58], the parameter
of Neyman’s smooth test was k = 2 and the width of the Gaussian of the energy test
was s = 1/8. The sensitivity of different tests is presented in Fig. 10.13.

The histogram of Fig. 10.13 shows that none of the tests is optimum in all cases.
The χ2 test performs only mediocrely. Probably a lower bin number would improve
the result. The tests of Neyman, Anderson–Darling and Kolmogorov–Smirnov are
sensitive to a shift of the mean value while the Anderson–Darling test reacts especially
to changes at the borders of the distribution. The tests of Watson and Kuiper detect
preferentially variations of the variance. Neyman’s test and the energy test with
logarithmic distance function are rather efficient in most cases.
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Fig. 10.13. Power (fraction of identified distortions) of different tests.

Multivariate Distributions

The goodness-of-fit of multivariate distributions cannot be tested very well with
simple tests. The χ2 test often suffers from the small number of entries per bin.
Here the k-nearest neighbor test and the energy test with the long range logarithmic
distance function are much more efficient.

Example 131. GOF test of a two-dimensional sample

Figure 10.14 shows a comparison of a sample H1 with a two-dimensional nor-
mal distribution (H0). H1 corresponds to the distribution of H0 but contains
an admixture of a linear distribution. The p-value of the energy test is 2%.
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 Fig. 10.14. Comparison of a normally distributed sample (circles) from H0 with a linear
admixture (triangles) with the normal distribution of H0.

With a χ2 test with 9 bins we obtain a p-value of 71%. It is unable to identify
the deformation of f0.

More detailed investigations can be found in [62].

10.4 Two-Sample Tests

10.4.1 The Problem

A standard situation in particle physics is that H0 cannot be compared directly
to the data but has first to be transformed to a Monte Carlo sample, to take into
account acceptance losses and resolution effects. We have to compare two samples,
a procedure which we had already applied in the energy test. Here the distribution
of the test statistic needed to compute p-values can be generated by a simple Monte
Carlo program.

In other sciences, a frequently occurring problem is that the effectiveness of two or
several procedures have to be compared. This may concern drugs, animal feed or the
quality of fabrication methods. A similar problem is to test whether a certain process
is stable or whether its results have changed during time. Also in the natural sciences
we frequently come across the problem that we observe an interesting phenomenon in
one data sample which apparently has disappeared in another sample taken at a later
time. It is important to investigate whether the two data samples are compatible
with each other. Sometimes it is also of interest to investigate whether a Monte
Carlo sample and an experimental sample are compatible. Thus we are interested in
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a statistical procedure which tells us whether two samples A and B are compatible,
i.e. drawn from the same parent distribution. Thereby we assume that the parent
distribution itself is unknown. If it were known, we could apply one of the GOF
tests which we have discussed above. We have to invent procedures to generate the
distribution of the test statistic. In some cases this is trivial. In the remaining cases,
we have to use combinatorial methods.

10.4.2 The χ2 Test

To test whether two samples are compatible, we can apply the χ2test or the
Kolmogorov–Smirnov test with minor modifications.

When we calculate the χ2 statistic we have to normalize the two samples A and
B of sizes N and M to each other. For ai and bi entries in bin i, ai/N − bi/M should
be compatible with zero. With the usual error propagation we obtain an estimate
ai/N

2 + bi/M
2 of the quadratic error of this quantity and

χ2 =

B∑

i=1

(ai/N − bi/M)2

(ai/N2 + bi/M2)
. (10.22)

It follows approximately a a χ2 distribution of B − 1 degrees of freedom, but
not exactly, as we had to replace the expected values by the observed numbers in
the error estimation. We have to be careful if the number of observations per bin is
small.

10.4.3 The Likelihood Ratio Test

The likelihood ratio test is less vulnerable to low event numbers than the χ2 test.

Setting r = M/N we compute the likelihood that we observe in a single bin a
entries with expectation λ and b entries with expectation ρλ, where the hypothesis
H0 is characterized by ρ = r:

L(λ, ρ|a, b) = e−λλa

a!

e−ρλ(ρλ)b

b!
.

Leaving out constant factors the log-likelihood is

lnL = −λ(1 + ρ) + (a+ b) lnλ+ b ln ρ .

We determine the conditional maximum likelihood value of λ under ρ = r and the
corresponding log-likelihood:

1 + r = (a+ b)
1

λ̂c
,

λ̂c =
a+ b

1 + r
,

lnLcmax = (a+ b)

[
−1 + ln

a+ b

1 + r

]
+ b ln r .

The unconditional maximum of the likelihood is found for λ̂ = a and ρ̂ = b/a:
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lnLumax = −(a+ b) + a ln a+ b ln b .

Our test statistic is VAB , the logarithm of the likelihood ratio, now summed over all
bins:

VAB = lnLcmax − lnLumax

=
∑

i

[
(ai + bi) ln

ai + bi
1 + r

− ai ln ai − bi ln bi + bi ln r

]
.

Note that VAB(r) = VBA(1/r), as it should.

Now we need a method to determine the expected distribution of the test statistic
VAB under the assumption that both samples originate from the same population.

To generate a distribution from a sample, the so-called bootstrap method [64](see
Chap. 12.2) has been developed. In our situation a variant of it, a simple permutation
method is appropriate.

We combine the two samples to a new sample with M+N elements and form new
pairs of samples, the bootstrap samples, with M and N elements by permutation:
We draw randomly M elements from the combined sample and associate them to
A and the remaining elements to B. Computationally this is easier than to use
systematically all individual possibilities. For each generated pair i we determine
the statistic Vi. This procedure is repeated many times and the values Vi form the
reference distribution. Our experimental p-value is equal to the fraction of generated
Vi which are larger than VAB:

p =
Number of permutations with Vi > VAB

Total number of permutations
.

10.4.4 The Kolmogorov–Smirnov Test

Also the Kolmogorov–Smirnov test can easily be adapted to a comparison of two
samples. We construct the test statistic in an analogous way as above. The test
statistic is D∗ = D

√
Neff , where D is the maximum difference between the two em-

pirical distribution functions SA, SB, and Neff is the effective or equivalent number
of events, which is computed from the relation:

1

Neff
=

1

N
+

1

M
.

In a similar way other EDF multi-dimensional tests which we have discussed above
can be adjusted.

10.4.5 The Energy Test

For a binning-free comparison of two samples A and B with M and N observations
we can again use the energy test [63] which in the multi-dimensional case has only
few competitors.

We compute the energy φAB in the same way as above, replacing the Monte
Carlo sample by one of the experimental samples. The expected distribution of the
test statistic φAB is computed in the same way as for the likelihood ratio test from
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Fig. 10.15. Two-sample test. Left hand: the samples which are to be compared. Right
hand: distribution of test statistic and actual value.

the combined sample using the bootstrap permutation technique. Our experimental
p-value is equal to the fraction of generated φi from the bootstrap sample which are
larger than φAB :

p =
Number of permutations with φi > φAB

Total number of permutations
.

Example 132. Comparison of two samples

We compare two two-dimensional samples with 15 and 30 observations with
the energy test. The two samples are depicted in a scatter plot at the left
hand side of Fig. 10.15. The energy of the system is φAB = −1.480 (The
negative value arises because we have omitted the term φ3). From the mixed
sample 10000 sample combinations have been selected at random. Its energy
distribution is shown as a histogram in the figure. The arrow indicates the
location of φAB. It corresponds to a p-value of 0.06. We can estimate the
error of the p-value p computing it from many permutation sets each with
a smaller number of permutations. From the variation of p from 100 times
100 permutations we find δp = 0.02. The p-value is small, indicating that
the samples belong to different populations. Indeed they have been drawn
from different distributions, a uniform distribution, −1.5 < x, y < 1.5 and a
normal distribution with standard deviations σx = σy = 1.

10.4.6 The k-Nearest Neighbor Test

The k-nearest neighbor test is per construction a two-sample test. The distribution
of the test statistic is obtained in exactly the same way as in the two-sample energy
test which we have discussed in the previous section.

The performance of the k-nearest neighbor test is similar to that of the energy
test. The energy test (and the L2 test which is automatically included in the former)
is more flexible than the k-nearest neighbor test and includes all observation of the
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sample in the continuous distance function. The k-nearest neighbor test on the other
hand is less sensitive to variations of the density which are problematic for the energy
test with the Gaussian distance function of constant width.

10.5 Significance of Signals

10.5.1 Introduction

Tests for signals are closely related to goodness-of-fit tests but their aim is different.
We are not interested to verify that H0 is compatible with a sample but we intend
to quantify the evidence of signals which are possibly present in a sample which
consists mainly of uninteresting background. Here not only the distribution of the
background has to be known but in addition we must be able to parameterize the
alternative which we search for. The null hypothesis H0 corresponds to the absence of
deviations from the background. The alternative Hs is not fully specified, otherwise
it would be sufficient to compute the simple likelihood ratio which we have discussed
in Chap. 6.

Signal tests are applied when we search for rare decays or reactions like neutrino
oscillations. Another frequently occurring problem is that we want to interpret a line
in a spectrum as indication for a resonance or a new particle. To establish the evidence
of a signal, we usually require a very significant deviation from the null hypothesis,
i.e. the sum of background and signal has to describe the data much better than
the background alone because particle physicists look in hundreds of histograms for
more or less wide lines and thus always find candidates9 which in most cases are just
background fluctuations. For this reason, signals are only accepted by the community
if they have a significance of at least four or five standard deviations. In cases where
we search more specifically for a certain phenomenon a smaller significance may be
sufficient. A high significance for a signal corresponds to a low p-value of the null
hypothesis.

To quote the p-value instead of the significance as expressed by the number of
standard deviations by which the signal exceeds the background expectation is to be
preferred because it is a measure which is independent of the form of the distribution.
However, the standard deviation scale is better suited to illustrate the significance
than the p-values scale where very small values dominate. For this reason it has
become customary to transform the p-value p into the number of Gaussian standard
deviations sG which are related through

p = 1/
√
2π

∫ ∞

sG

exp(−x2/2)dx (10.23)

=
[
1− erf(sG/

√
2)
]
/2 . (10.24)

The function sG(p) is given in Fig. 10.16. Relations (10.23), (10.24) refer to one-sided
tests. For two-sided tests, p has to be multiplied by a factor two.

When we require very low p-values for H0 to establish signals, we have to be espe-
cially careful in modeling the distribution of the test statistic. Often the distribution
corresponding to H0 is approximated by a polynomial and/or a signal by a Gaussian

9This is the so-called look-else-where effect.
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Fig. 10.16. Transformation of p-values to one-sided number of standard deviations.

with some uncertainties in the parameters and assumptions which are difficult to
implement in the test procedure. We then have to be especially conservative. It is
better to underestimate the significance of a signal than to present evidence for a
new phenomenon based on a doubtful number.

To illustrate this problem we return to our standard example where we search for a
line in a one-dimensional spectrum. Usually, the background under an observed bump
is estimated from the number of events outside but near the bump in the so-called
side bands. If the side bands are chosen too close to the signal they are affected by the
tails of the signal, if they are chosen too far away, the extrapolation into the signal
region is sensitive to the assumed shape of the background distribution which often
is approximated by a linear or quadratic function. This makes it difficult to estimate
the size and the uncertainty of the expected background with sufficient accuracy
to establish the p-value for a large (>4 st. dev.) signal. As numerical example let
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us consider an expectation of 1000 background events which is estimated by the
experimenter too low by 2%, i.e. equal to 980. Then a 4.3 st. dev. excess would be
claimed by him as a 5 st. dev. effect and he would find too low a p-value by a factor
of 28. We also have to be careful with numerical approximations, for instance when
we approximate a Poisson distribution by a Gaussian.

Usually, the likelihood ratio, i.e. the ratio of the likelihood which maximizes Hs

and the maximum likelihood for H0 is the most powerful test statistic. In some
situations a relevant parameter which characterizes the signal strength is more in-
formative.

10.5.2 The Likelihood Ratio Test

Definition

An obvious candidate for the test statistic is the likelihood ratio (LR) which we have
introduced and used in Sect. 10.3 to test goodness-of-fit of histograms, and in Sect.
10.4 as a two-sample test. We repeat here its general definition:

λ =
sup [L0(θ0|x)]
sup [Ls(θs|x)]

,

lnλ = ln sup [L0(θ0|x)]− ln sup [Ls(θs|x)]

where L0, Ls are the likelihoods under the null hypothesis and the signal hypothesis,
respectively. The supremum is to be evaluated relative to the parameters, i.e. the
likelihoods are to be taken at the MLEs of the parameters. The vector x represents
the sample of the N observations x1, . . . , xN of a one-dimensional geometric space.
The extension to a multi-dimensional space is trivial but complicates the writing of
the formulas. The parameter space of H0 is assumed to be a subset of that of Hs.
Therefore λ will be smaller or equal to one.

For example, we may want to find out whether a background distribution is
described significantly better by a cubic than by a linear distribution:

f0 = α0 + α1x , (10.25)

fs = α0 + α1x+ α2x
2 + α3x

3 .

We would fit separately the parameters of the two functions to the observed data
and then take the ratio of the corresponding maximized likelihoods.

Frequently the data sample is so large that we better analyze it in form of a his-
togram. Then the distribution of the number of events yi in bin i, i = 1, . . . , B can be
approximated by normal distributions around the parameter dependent predictions
ti(θ). As we have seen in Chap. 6, Sect. 6.5.6 we then get the log-likelihood

lnL = −1

2

B∑

i=1

[yi − ti]
2

ti
+ const.

which is equivalent to the χ2 statistic, χ2 ≈ −2 lnL. In this limit the likelihood
ratio statistic is equivalent to the χ2 difference, ∆χ2 = minχ2

0 − minχ2
s, of the

χ2 deviations, minχ2
0 with the parameters adjusted to the null hypothesis H0, and

minχ2
s with its parameters adjusted to the alternative hypothesis Hs, background

plus signal:
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lnλ = ln sup [L0(θ0|y)]− ln sup [Ls(θs|y)] (10.26)

≈ −1

2
(minχ2

0 −minχ2
s) . (10.27)

The p-value derived from the LR statistic does not take into account that a sim-
ple hypothesis is a priori more attractive than a composite one which contains free
parameters. Another point of criticism is that the LR is evaluated only at the pa-
rameters that maximize the likelihood while the parameters suffer from uncertainties.
Thus conclusions should not be based on the p-value only.

A Bayesian approach applies so-called Bayes factors to correct for the mentioned
effects but is not very popular because it has other caveats. Its essentials are presented
in the Appendix 13.14

Distribution of the Test Statistic

The distribution of λ under H0 in the general case is not known analytically; however,
if the approximation (10.27) is justified, the distribution of −2 lnλ under certain addi-
tional regularity conditions and the conditions mentioned at the end of Sect. 10.3.3
will be described by a χ2 distribution. In the example corresponding to relations
(10.25) this would be a χ2 distribution of 2 degrees of freedom since fs compared
to f0 has 2 additional free parameters. Knowing the distribution of the test statistic
reduces the computational effort required for the numerical evaluation of p-values
considerably.

Let us look at a specific problem: We want to check whether an observed bump
above a continuous background can be described by a fluctuation or whether it cor-
responds to a resonance. The two hypotheses may be described by the distributions

f0 = α0 + α1x+ α2x
2, (10.28)

fs = α0 + α1x+ α2x
2 + α3N(x|µ, σ) ,

and we can again use lnλ or ∆χ2 as test statistic. Since we have to define the test
before looking at the data, µ and σ will be free parameters in the fit of fs to the
data. Unfortunately, now ∆χ2 no longer follows a χ2 distribution of 3 degrees of
freedom and has a significantly larger expectation value than expected from the χ2

distribution. The reason for this dilemma is that for α3 = 0 which corresponds to
H0 the other parameters µ and σ are undefined and thus part of the χ2 fluctuation
in the fit to fs is unrelated to the difference between fs and f0.

More generally, only if the following conditions are satisfied, ∆χ2 follows in the
large number limit a χ2 distribution with the number of degrees of freedom given
by the difference of the number of free parameters of the null and the alternative
hypotheses:

1. The distribution f0 of H0 has to be a special realization of the distribution fs of
Hs.

2. The fitted parameters have to be inside the region, i.e. off the boundary, allowed
by the hypotheses. For example, the MLE of the location of a Gaussian should
not be outside the range covered by the data.

3. All parameters of Hs have to be defined under H0.



10.5 Significance of Signals 283

0 5 10 15
1E-6

1E-5

1E-4

1E-3

0.01

0.1

1

0 2 4 6 8
0

1000

2000

3000

4000

 

 

p-
va

lu
e

-ln(LR)

 

 

nu
m

be
r o

f e
ve

nt
s

-ln(LR)

Fig. 10.17. Distributions of the test statistic under H0 and p-value as a function of the
test statistic.

If one of these conditions is not satisfied, the distribution of the test statistic has
to be obtained via a Monte Carlo simulation. This means that we generate many
fictive experiments ofH0 and count how many of those have values of the test statistic
that exceed the one which has actually been observed. The corresponding fraction
is the p-value for H0. This is a fairly involved procedure because each simulation
includes fitting of the free parameters of the two hypotheses. In Ref. [65] it is shown
that the asymptotic behavior of the distribution can be described by an analytical
function. In this way the amount of simulation can be reduced.

Example 133. Distribution of the likelihood ratio statistic

We consider a uniform distribution (H0) of 1000 events in the interval [0, 1]
and as alternative a resonance with Gaussian width, σ = 0.05, and arbitrary
location µ in the range 0.2 ≤ µ ≤ 0.8 superposed to a uniform distribu-
tion. The free parameters are ε, the fraction of resonance events and µ. The
logarithm of the likelihood ratio statistic is

lnλ = ln sup [L0(θ0|x)]− ln sup [Ls(θs|x)]

=

1000∑

i=1

ln(1)−
1000∑

i=1

ln

[
1− ε̂+

ε̂√
2πσ

exp

(
− (xi − µ̂)2

2σ2

)]

= −
1000∑

i=1

ln

[
1− ε̂+

ε̂√
2πσ

exp

(
− (xi − µ̂)2

2σ2

)]
,

essentially the negative logarithm of the likelihood of the MLE. Fig. 10.17
shows the results from a million simulated experiments. The distribution
of − lnλ under H0 has a mean value of −1.502 which corresponds to
〈∆χ2〉 = 3.004. The p-value as a function of − lnλ follows asymptotically
an exponential as is illustrated in the right hand plot of Fig. 10.17. Thus it is
possible to extrapolate the function to smaller p-values which is necessary to



284 10 Hypothesis Tests

0.0 0.2 0.4 0.6 0.8 1.0
0

10

20

30

40

 

 

nu
m

be
r o

f e
ve

nt
s

energy

Fig. 10.18. Histogram of event sample used for the likelihood ratio test. The curve is an
unbinned likelihood fit to the data.

claim large effects. Figure 10.18 displays the result of an experiment where
a likelihood fit finds a resonance at the energy 0.257. It contains a fraction
of 0.0653 of the events. The logarithm of the likelihood ratio is 9.277. The
corresponding p-value for H0 is pLR = 1.8 · 10−4. Hence it is likely that the
observed bump is a resonance. In fact it had been generated as a 7 % contri-
bution of a Gaussian distribution N(x|0.25, 0.05) to a uniform distribution.

We have to remember though that the p-value is not the probability that H0 is
true, it is the probability that H0 simulates the resonance of the type seen in the data.
In a Bayesian treatment, see Appendix 13.14, we find betting odds in favor of H0 of
about 2% which is much less impressive. The two numbers refer to different issues
but nonetheless we have to face the fact that the two different statistical approaches
lead to different conclusions about how evident the existence of a bump really is.

In experiments with a large number of events, the computation of the p-value
distribution based on the unbinned likelihood ratio becomes excessively slow and
we have to turn to histograms and to compute the likelihood ratio of H0 and Hs

from the histogram. Figure 10.19 displays some results from the simulation of 106

experiments of the same type as above but with 10000 events distributed over 100
bins.

In the figure also the distribution of the signal fraction under H0 and for exper-
iments with 1.5% resonance added is shown. The large spread of the signal distri-
butions reflects the fact that identical experiments by chance may observe a very
significant signal or just a slight indication of a resonance.
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Fig. 10.19. Distributions of the test statistic under H0 and p-value as a function of the
test statistic. In the upper graph also the distribution for experiments with a resonance
contribution is shown.

General Multi-Channel Case

It is easy to extend the likelihood ratio test to the multi-channel case. We assume that
the observations xk of the channels k = 1, . . . ,K are independent of each other. The
overall likelihood is the product of the individual likelihoods. For the log-likelihood
ratio we then have to replace (10.26) by

lnλ =

K∑

k=1

{ln sup [L0k(θ0k|xk)]− ln sup [Lsk(θsk|xk)]} .

As an example, we consider an experiment where we observe bumps at the same
mass in K different decay channels, bumps which are associated to the same phe-
nomenon, i.e. a particle decaying into different secondaries.
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When we denote the decay contribution into channel k by εk, the p.d.f. of the
decay distribution by fk(xk|θk) and the corresponding background distributions by
f0k(xk|θ0k), the distribution under H0 is

f0(x1, . . . ,xK |θ01, . . . , θ0K) =

K∏

k=1

f0k(xk|θ0k)

and the alternative signal distribution is

fs(x1, . . . ,xK |θ01, . . . , θ0K ; θ1, . . . , θK ; ε1, . . . , εK) =
K∏

k=1

[ (1− εk)f0k(xk|θ0k) + εkfk(xk|θk)] .

The likelihood ratio is then

lnλ =

K∑

k=1

{
ln f0k(xk|θ̂0k)− ln

[
(1− ε̂k)f0k(xk|θ̂′

0k) + ε̂kfk(xk|θ̂k)
]}

.

Remark, that the MLEs of the parameters θ0k depend on the hypothesis. They are
different for the null and the signal hypotheses and, for this reason, have been marked
by an apostrophe in the latter.

10.5.3 Tests Based on the Signal Strength

Instead of using the LR statistic it is often preferable to use a parameter of Hs as
test statistic. In the simple example of (10.25) the test statistic t = α3 would be a
sensible choice. When we want to estimate the significance of a line in a background
distribution, instead of the likelihood ratio the number of events which we associate
to the line (or the parameter α3 in our example (10.28)) is a reasonable test statistic.
Compared to the LR statistic it has the advantage to represent a physical parameter
but usually the corresponding test is less powerful.

Example 134. Example 133 continued

Using the fitted fraction of resonance events as test statistic, the p-value for
H0 is pf = 2.2 · 10−4, slightly less stringent than that obtained from the
LR. Often physicists compare the number of observed events directly to the
prediction from H0. In our example we have 243 events within two standard
deviations around the fitted energy of the resonance compared to the expec-
tation of 200 from a uniform distribution. The probability to observe ≥ 243
for a Poisson distribution with mean 200 is pp = 7.3 · 10−4. This number
cannot be compared directly with pLR and pf because the latter two val-
ues include the look-else-where effect, i.e. that the simulated resonance may
be located at an arbitrary energy. A lower number for pp is obtained if the
background is estimated from the side bands, but then the computation be-
comes more involved because the error on the expectation has to be included.
Primitive methods are only useful for a first crude estimate.

We learn from this example that the LR statistic provides the most powerful test
among the considered alternatives. It does not only take into account the excess of
events of a signal but also its expected shape. For this reason pLR is smaller than pf .
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Often the significance of a signal s is stated in units of standard deviations σ:

s =
Ns√
N0 + δ20

.

Here Ns is the number of events associated to the signal, N0 is the number of events
in the signal region expected from H0 and δ0 its uncertainty. In the Gaussian ap-
proximation it can be transformed into a p-value via (10.23). Unless N0 is very large
and δ0 is very well known, this p-value has to be considered as a lower limit or a
rough guess.





11

Statistical Learning

11.1 Introduction

In the process of its mental evolution a child learns to classify objects, persons,
animals, and plants. This process partially proceeds through explanations by parents
and teachers (supervised learning), but partially also by cognition of the similarities
of different objects (unsupervised learning). But the process of learning – of children
and adults – is not restricted to the development of the ability merely to classify but
it includes also the realization of relations between similar objects, which leads to
ordering and quantifying physical quantities, like size, time, temperature, etc.. This
is relatively easy, when the laws of nature governing a specific relation have been
discovered. If this is not the case, we have to rely on approximations, like inter- or
extrapolations.

Also computers, when appropriately programmed, can perform learning processes
in a similar way, though to a rather modest degree. The achievements of the so-called
artificial intelligence are still rather moderate in most areas, however a substantial
progress has been achieved in the fields of supervised learning and classification
and there computers profit from their ability to handle a large amount of data in
a short time and to provide precise quantitative solutions to well defined specific
questions. The techniques and programs that allow computers to learn and to classify
are summarized in the literature under the term machine learning.

Let us now specify the type of problems which we discuss in this chapter: For
an input vector x we want to find an output ŷ. The input is also called predictor,
the output response. Usually, each input consists of several components (attributes,
properties), and is written therefore in boldface letters. Normally, it is a metric
(quantifiable) quantity but it could also be a categorical quantity like a color or a
particle type. The output can also contain several components or consists of a single
real or discrete (Yes or No) variable. Like a human being, a computer program learns
from past experience. The teaching process, called training, uses a training sample
{(x1,y1), (x2,y2) . . . (xN ,yN )}, where for each input vector xi the response yi is
known. When we ask for the response to an arbitrary continuous input x, usually its
estimate ŷ(x) will be more accurate when the distance to the nearest input vector
of the training sample is small than when it is far away. Consequently, the training
sample should be as large as possible or affordable. The region of interest should be
covered with input vectors homogeneously, and we should be aware that the accuracy
of the estimate decreases at the boundary of this region.
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Learning which exceeds simple memorizing relies on the existence of more or less
simple relations between input and response: Similar input corresponds to similar
response. In our approach this translates into the requirement that the responses
are similar for input vectors which are close. We can not learn much from erratic
distributions.

Example 135. Simple empirical relations

The resistance R of a wire is used for a measurement of the temperature T .
In the teaching process which here is called calibration, a sample of corre-
sponding values Ri, Ti is acquired. In the application we want to find for a
given input R an estimate of T . Usually a simple interpolation will solve this
problem.

For more complicated relations, approximations with polynomials, higher spline
functions or orthogonal functions are useful.

Example 136. Search for common properties

A certain class of molecules has a positive medical effect. The structure,
physical and chemical properties x of these molecules are known. In order to
find out which combination of the properties is relevant, the distribution of
all attributes of the molecules which represent the training objects is investi-
gated. A linear method for the solution of this task is the principal component
analysis.

Example 137. Two-class classification, SPAM mails

A sizable fraction of electronic mails are of no interest to the addressee and
considered by him as a nuisance. Many mailing systems use filter programs
to eliminate these undesired so-called SPAM1 mails. After evaluation of a
training sample where the classification into Yes or No (accept or reject) is
done by the user, the programs are able to take over the classification job.
They identify certain characteristic words, like Viagra, sex, profit, advantage,
meeting, experiment, university and other attributes like large letters, colors
to distinguish between SPAM and serious mails. This kind of problem is
efficiently solved by decision trees and artificial neural networks .

The attributes are here categorical variables. In the following we will restrict
ourselves mainly to continuous variables.

Example 138. Multi-class classification, pattern recognition

Hand-written letters or figures have to be recognized. Again a sample for
which the relation between the written pixels and the letters is known, is
used to train the program. Also this problem can be treated by decision
trees, artificial neural networks, and by kernel methods . Here the attributes
are the pixel coordinates.

As we have observed also previously, multivariate applications suffer from the
curse of dimensionality. There are two reasons: i) With increasing number d of di-
mensions, the distance between the input vectors increases and ii) the surface effects

1SPAM is an artificial nonsense word borrowed from a sketch of a British comedy series
of Monty Python’s Flying Circus where in a cafe every meal contains SPAM.
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are enhanced. When a fixed number of points is uniformly distributed over a hyper-
cube of dimension d, the mean distance between the points is proportional to

√
d.

The higher the dimension, the more empty is the space. At the same time the region
where estimates become less accurate due to surface effects increases. The fraction
of the volume taken by a hyper-sphere inscribed into a hyper-cube is only 5.2% for
d = 5, and the fraction of the volume within a distance to the surface less than 10%
of the edge length increases like 1− 0.8d, this means from 20% for d = 1 to 67% for
d = 5.

Example 139. Curse of dimensionality

A training sample of 1000 five-dimensional inputs is uniformly distributed
over a hyper-cube of edge length a. To estimate the function value at the
center of the region we take all sample elements within a distance of a/4 from
the center. These are on average one to two only ( 1000×0.052×0.55 = 1.6),
while in one dimension 500 elements would contribute.

In the following, we will first discuss the approximation of measurements afflicted
with errors by analytic functions and the interpolation by smoothing techniques.
Next we introduce the factor analysis, including the so-called principal component
analysis. The last section deals with classification methods, based on artificial neural
networks, kernel algorithms, and decision trees. In recent years we observed a fast
progress in this field due to new developments, i.e. support vector machines, boosting,
and the availability of powerful general computer algorithms. This book can only
introduce these methods, without claim of completeness. A nice review of the whole
field is given in [13].

11.2 Smoothing of Measurements and Approximation by

Analytic Functions

We start with two simple examples, which illustrate applications:

i) In a sequence of measurements the gas amplification of an ionization chamber
as a function of the applied voltage has been determined. We would like to describe
the dependence in form of a smooth curve.

ii) With optical probes it is possible to scan a surface profile point-wise. The
objects may be workpieces, tools, or human bodies. The measurements can be used
by milling machines or cutting devices to produce replicates or clothes. To steer these
machines, a complete surface profile of the objects is needed. The discrete points have
to be approximated by a continuous function. When the surface is sufficiently smooth,
this may be achieved by means of a spline approximation.

More generally, we are given a number N of measurements yi with uncertainties
δi at fixed locations xi, the independent variables, but are interested in the values
of the dependent or response variable y at different values of x, that is, we search
for a function f(x) which approximates the measurements, improves their precision
and inter- and extrapolates in x. The simplest way to achieve this is to smooth the
polygon connecting the data points.

More efficient is the approximation of the measurement by a parameter dependent
analytic function f(x, θ). We then determine the parameters by a least square fit, i.e.
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minimize the sum over the squared and normalized residuals
∑

[(yi − f(xi, θ)]
2 /δ2i

with respect to θ. The approximation should be compatible with the measurements
within their statistical errors but the number of free parameters should be as small as
possible. The accuracy of the measurements has a decisive influence on the number
of free parameters which we permit in the fit. For large errors we allow also for
large deviations of the approximation from the measurements. As a criterion for
the number of free parameters, we use statistical tests like the χ2 test. The value
of χ2 should then be compatible with the number of constraints, i.e. the number
of measured points minus the number of fitted parameters. Too low a number of
parameters leads to a bias of the predictions, while too many parameters reduce the
accuracy, since we profit less from constraints.

Both approaches rely on the presumption that the true function is simple and
smooth. Experience tells us that these conditions are justified in most cases.

The approximation of measurements which all have the same uncertainty by
analytic functions is called regression analysis. Linear regression had been described
in Chap. 7.2.3. In this section we treat the general non-linear case with arbitrary
errors.

In principle, the independent variable may also be multi-dimensional. Since then
the treatment is essentially the same as in the one-dimensional situation, we will
mainly discuss the latter.

11.2.1 Smoothing Methods

We use the measured points in the neighborhood of x to get an estimate of the value
of y(x). We denote the uncertainties of the output vectors of the training sample
by δj for the component j of y. When the points of the training sample have large
errors, we average over a larger region than in the case of small errors. The better
accuracy of the average for a larger region has to be paid for by a larger bias, due
to the possibility of larger fluctuations of the true function in this region. Weighting
methods work properly if the function is approximately linear. Difficulties arise in
regions with lot of structure and at the boundaries of the region if there the function
is not approximately constant.

k-Nearest Neighbors

The simplest method for a function approximation is similar to the density estima-
tion which we treat in Chap. 9 and which uses the nearest neighbors in the training
sample. We define a distance di = |x − xi| and sort the elements of the training
sample in the order of their distances di < di+1. We choose a number K of nearest
neighbors and average over the corresponding output vectors:

ŷ(x) =
1

K

K∑

i=1

yi .

This relation holds for constant errors. Otherwise for the component j of y the
corresponding weighted mean

ŷj(x) =

∑K
i=1 yij/δ

2
ij∑K

i=1 1/δ
2
ij
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has to be used. The choice of K depends on the density of points in the training
sample and the expected variation of the true function y(x).

If all individual points in the projection j have mean square errors δ2j , the error
of the prediction δyj is given by

(δyj)
2 =

δ2j
K

+ 〈yj(x)− ŷj(x)〉2 . (11.1)

The first term is the statistical fluctuation of the mean value. The second term is
the bias which is equal to the systematic shift squared, and which is usually difficult
to evaluate. There is the usual trade-off between the two error components: with
increasing K the statistical term decreases, but the bias increases by an amount
depending on the size of the fluctuations of the true function within the averaging
region.

k-Nearest Neighbors with Linear Approximation

The simple average suffers from the drawback that at the boundary of the variable
space the measurements contributing to the average are distributed asymmetrically
with respect to the point of interest x. If, for instance, the function falls strongly
toward the left-hand boundary of a one-dimensional space, averaging over points
which are predominantly located at the right hand side of x leads to too large a
result. (See also the example at the end of this section). This problem can be avoided
by fitting a linear function through the K neighboring points instead of using the
mean value of y.

Gaussian Kernels

To take all K-nearest neighbors into account with the same weight independent of
their distance to x is certainly not optimal. Furthermore, its output function is
piecewise constant (or linear) and thus discontinuous. Better should be a weighting
procedure, where the weights become smaller with increasing distances. An often
used weighting or kernel function2 is the Gaussian. The sum is now taken over all N
training inputs:

ŷ(x) =

∑N
i=1 yie

−α|x−xi|2

∑N
i=1 e

−α|x−xi|2
.

The constant α determines the range of the correlation. Therefore the width s =
1/

√
2α of the Gaussian has to be adjusted to the density of the points and to the

curvature of the function. If computing time has to be economized, the sum may
of course be truncated and restricted to the neighborhood of x, for instance to the
distance 2s. According to (11.1) the mean squared error becomes3:

(δyj)
2 = δ2j

∑
e−2α|x−xi|2

[∑
e−α|x−xi|2

]2 + 〈yj(x)− ŷj(x)〉2 .

2The denotation kernel will be justified later, when we introduce classification methods.
3This relation has to be modified if not all errors are equal.
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11.2.2 Approximation by Orthogonal Functions

Complete orthogonal function systems offer three attractive features: i) The fitted
function coefficients are uncorrelated, ii) The function systems are complete and thus
able to approximate any well behaved, i.e. square integrable, function, iii) They are
naturally ordered with increasing oscillation frequency4. The function system to be
used depends on the specific problem, i.e. on the domain of the variable and the
asymptotic behavior of the function. Since the standard orthogonal functions are
well known to physicists, we will be very brief and omit all mathematical details,
they can be looked-up in mathematical handbooks.

Complete normalized orthogonal function systems {ui(x)} defined on the finite
or infinite interval [a, b] fulfil the orthogonality and the completeness relations. To
simplify the notation, we introduce the inner product (g, h)

(g, h) ≡
∫ b

a

g∗(x)h(x)dx

and have

(ui, uj) = δij ,∑

i

u∗i (x)ui(x
′) = δ(x− x′) .

For instance, the functions of the well known Fourier system for the interval
[a, b] = [−L/2, L/2] are un(x) = 1√

L
exp(i2πnx/L).

Every square integrable function can be represented by the series

f(x) =

∞∑

i=0

aiui(x) , with ai = (ui, f)

in the sense that the squared difference converges to zero with increasing number of
terms5:

lim
K→∞

[
f(x)−

K∑

i=0

aiui(x)

]2
= 0 . (11.2)

The coefficients ai become small for large i, if f(x) is smooth as compared to
the ui(x), which oscillate faster and faster for increasing i. Truncation of the series
therefore causes some smoothing of the function.

The approximation of measurements by orthogonal functions works quite well for
very smooth data. When the measurements show strong short range variations, sharp
peaks or valleys, then a large number of functions is required to describe the data.
Neglecting individually insignificant contributions may lead to a poor approximation.
Typically, their truncation may produce spurious oscillations (“ringing”) in regions
near to the peaks, where the true function is already flat.

For large data sets with equidistant points and equal errors the Fast Fourier
Transform, FFT, plays an important role, especially for data smoothing and im-
age processing. Besides the trigonometric functions, other orthogonal systems are

4We use the term frequency also for spatial dimensions.
5At eventual discontinuities, f(x) should be taken as [f(x + 0) + f(x− 0)]/2.
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Table 11.1. Characteristics of orthogonal polynomials.

Polynomial Domain Weight function
Legendre, Pi(x) [−1,+1] w(x) = 1
Hermite, Hi(x) (−∞,+∞) w(x) = exp(−x2)
Laguerre, Li(x) [0,∞) w(x) = exp(−x)

useful, some of which are displayed in Table 11.2.2. The orthogonal functions are
proportional to polynomials pi(x) of degree i multiplied by the square root of a
weight function w(x), ui(x) = pi(x)

√
w(x). Specifying the domain [a, b] and w, and

requiring orthogonality for ui,j ,

(ui, uj) = ciδij ,

fixes the polynomials up to the somewhat conventional normalization factors
√
ci.

The most familiar orthogonal functions are the trigonometric functions used in
the Fourier series mentioned above. From electrodynamics and quantum mechanics
we are also familiar with Legendre polynomials and spherical harmonics. These func-
tions are useful for data depending on variables defined on the circle or on the sphere,
e.g. angular distributions. For example, the distribution of the intensity of the mi-
crowave background radiation which contains information about the curvature of the
space, the baryon density and the amount of dark matter in the universe, is usually
described as a function of the solid angle by a superposition of spherical harmonics.
In particle physics the angular distributions of scattered or produced particles can be
described by Legendre polynomials or spherical harmonics. Functions extending to
±∞ are often approximated by the eigenfunctions of the harmonic oscillator consist-
ing of Hermite polynomials multiplied by the exponential exp(−x2/2) and functions
bounded to x ≥ 0 by Laguerre polynomials multiplied by e−x/2.

In order to approximate a given measurement by one of the orthogonal function
systems, one usually has to shift and scale the independent variable x.

Polynomial Approximation

The simplest function approximation is achieved with a simple polynomial f(x) =∑
akx

k or more generally by f(x) =
∑

akuk where uk is a polynomial of order k.
Given data yν with uncertainties δν at locations xν we minimize

χ2 =
N∑

ν=1

1

δ2ν

[
yν −

K∑

k=0

akuk(xν)

]2
, (11.3)

in order to determine the coefficients ak. To constrain the coefficients, their number
K+1 has to be smaller than the number N of measurements. All polynomial systems
of the same order describe the data equally well but differ in the degree to which
the coefficients are correlated. The power of the polynomial is increased until it is
compatible within statistics with the data. The decision is based on a χ2 criterion.

The purpose of this section is to show how we can select polynomials with un-
correlated coefficients. In principle, these polynomials and their coefficients can be
computed through diagonalization of the error matrix but they can also be obtained
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directly with the Gram–Schmidt method. This method has the additional advantage
that the polynomials and their coefficients are given by simple algebraic relations.

For a given sample of measured points yν = f(xν) with errors δν , we fix the
weights in the usual way

wν = w(xν ) =
1

δ2ν
/
∑

j

1

δ2j
,

and now define the inner product of two functions g(x), h(x) by

(g, h) =
∑

ν

wνg(xν)h(xν)

with the requirement
(ui, uj) = δij .

Minimizing χ2 is equivalent to minimizing

X2 =
N∑

ν=1

wν

[
yν −

K∑

k=0

akuk(xν)

]2
.

For K = N − 1 the square bracket at the minimum of X2 is zero,

yν −
N−1∑

k=0

akuk(xν) = 0

for all ν, and forming the inner product with uj we get

(y, uj) = aj . (11.4)

This relation produces the coefficients also in the interesting case K < N − 1.

To construct the orthogonal polynomials, we set v0 = 1,

ui =
vi√

(vi, vi)
, (11.5)

vi+1 = xi+1 −
i∑

j=0

(uj , x
i+1)uj . (11.6)

The first two terms in the corresponding expansion, a0u0 and a1u1, are easily
calculated. From (11.5), (11.6), (11.4) and the following definition of the moments
of the weighted sample

x =
∑

ν

wνxν , s
2
x =

∑

ν

wν(xν − x)2 , sxy =
∑

ν

wν(xνyν − xy)

we find the coefficients and functions which fix the polynomial expansion of y:

y = y +
sxy
s2x

(x− x) .

We recover the well known result for the best fit by a straight line in the form
with independent coefficients: This is of course no surprise, as the functions that are
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minimized are identical, namely χ2 in both cases, see Example 114 in Chap. 7. The
calculation of higher order terms is straight forward but tedious. The uncertainties
δai of the coefficients are all equal independent of i and given by the simple relation

(δai)
2 = 1/

N∑

ν=1

1

δ2ν
.

The derivation of this formula is given in the Appendix 13.11 together with formulas
for the polynomials in the special case where all measurements have equal errors and
are uniformly distributed in x.

The Gram–Charlier Series

The following example for the application of Hermite functions, strictly speaking,
does not concern the approximation of measurements by a function but the approx-
imation of an empirical p.d.f. (see Sect. 12.1.1 in the following Chapter). We discuss
it here since it is mathematically closely related to the subject of this section.

The Gram–Charlier series is used to approximate empirical distributions which
do not differ very much from the normal distribution. It expresses the quotient of an
empirical p.d.f. f(x) to the standard normal distribution N(x|0, 1) as an expansion
in the slightly modified Hermite polynomials H̃i(x) in the form

f(x) = N(x)
∞∑

i=0

aiH̃i(x) . (11.7)

Here, N(x) ≡ (2π)−1/2 exp(−x2/2), the standard normal distribution, differs
somewhat from the weight function exp(−x2) used in the definition of the Hermite
polynomialsH(x) given above in Table 11.2.2. The two definitions of the polynomials
are related by

H̃i(x) =
1√
2i
Hi

(
x√
2

)
.

The orthogonality relation of the modified polynomials is

(H̃i, H̃j) =

∫ +∞

−∞
N(x)H̃i(x)H̃j(x)dx = i! δij , (11.8)

and their explicit form can be obtained by the simple recursion relation:

H̃i+1 = xH̃i − iH̃i−1 .

With H̃0 = 1 , H̃1 = x we get

H̃2 = x2 − 1 ,

H̃3 = x3 − 3x ,

H̃4 = x4 − 6x2 + 3 ,

and so on.

When we multiply both sides of (11.7) with H̃j(x) and integrate, we find, accord-
ing to (11.8), the coefficients ai from
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Fig. 11.1. Nine orthonormalized wavelets with three different frequencies..

ai =
1

i!

∫
f(x)H̃i(x)dx .

These integrals can be expressed as combinations of moments of f(x), which are
to be approximated by the sample moments of the experimental distribution. First,
the sample mean and the sample variance are used to shift and scale the experimental
distribution such that the transformed mean and variance equal 0 and 1, respectively.
Then a1,2 = 0, and the empirical skewness and excess of the normalized sample γ1,2
as defined in Sect. 3.2 are proportional to the parameters a3,4. The approximation
to this order is

f(x) ≈ N(x)(1 +
1

3!
γ1H̃3(x) +

1

4!
γ2H̃4(x)) .

As mentioned, this approximation is well suited to describe distributions which
are close to normal distributions. This is realized, for instance, when the variate
is a sum of independent variates such that the central limit theorem applies. It is
advisable to check the convergence of the corresponding Gram–Charlier series and
not to truncate the series too early [2].

11.2.3 Wavelets

The trigonometric functions used in the Fourier series are discrete in the frequency
domain, but extend from minus infinity to plus infinity in the spatial domain and
thus are not very well suited to describe strongly localized function variations. To
handle this kind of problems, the wavelet system has been invented. Wavelets are
able to describe pulse signals and spikes like those generated in electrocardiograms,
nuclear magnetic resonance (NMR) records or seismic records, in data transmission,
and for the coding of images and hand-written text. For data reduction and storage
they have become an indispensable tool.
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The simplest orthogonal system with the desired properties are the Haar wavelets
shown in Fig. 11.1. The lowest row shows three wavelets which are orthogonal, be-
cause they have no overlap. The next higher row contains again three wavelets with
one half the length of those below. They are orthogonal to each other and to the
wavelets in the lower row. In the same way the higher frequency wavelets in the
following row are constructed. We label them with two indices j, k indicating length
and position. We define a mother function ψ(x), the bottom left wavelet function of
Fig. 11.1.

ψ(x) =





1, if 0 ≤ x < 1
2

−1, if 1
2 ≤ x < 1

0, else

and set W00 = ψ(x). The remaining wavelets are then obtained by translations and
dilatations in discrete steps from the mother function ψ(x):

Wjk(x) = 2j/2ψ(2jx− k) .

The factor 2j/2 provides the normalization in the orthonormality relation6.
∫ +∞

−∞
W ∗

ik(x)Wjl(x)dx = δijδkl . (11.9)

It is evident that wavelets are much better suited to fit local structures than
the sine and cosine functions of the Fourier expansion, since the wavelet expansion
coefficients cjk contain information on frequency and location of a signal.

The simple Haar wavelets shown in Fig. 11.1 which we have introduced to demon-
strate the principal properties of wavelets are rarely used in applications as functions
with infinitely sharp edges are usually absent in a realistic phenomenon. More com-
mon are the smoother wavelets

ψ(x) = 1√
2πσ3

e−x2/(2σ2)(1− x2

σ2 ) (Mexican Hat) , (11.10)

ψ(x) = (eix − c)e−x2/(2σ2) (Morlet-Wavelet) , (11.11)

and many others. The first function, the Mexican hat, is the second derivative of
the Gaussian function, Fig. 11.2. The second, the Morlet function, is a complex
monochromatic wave, modulated by a Gaussian. The constant c = exp(−σ2/2) in
the Morlet function can usually be neglected by choosing a wide lowest order function,
σ >∼ 5. In both functions σ defines the width of the window.

The mother function ψ has to fulfil apart from the trivial normalization property
11.9, also the relation ∫

ψ(x)dx = 0 .

Any square integrable function f(x) fulfilling
∫
f(x)dx = 0 can be expanded in the

discrete wavelet series,
f(x) =

∑

j,k

cjkWjk(x) .

As usual, in order to regularize the function f(x), the expansion is truncated
when the coefficients become insignificant with increasing j, corresponding to small
details or large frequencies.

6The Haar wavelets are real, but some types of wavelets are complex.
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Fig. 11.2. Mexican hat wavelet.

The calculation of the coefficients cjk is in principle analogous to the calculation of
Fourier coefficients by convolution of f with the wavelets7. For given measurements a
least square fit can be applied. The success of the wavelet applications was promoted
by the appearance of fast numerical algorithms, like the multi-scale analysis. They
work on a function f which need not integrate to zero, sampled at equidistant points,
similarly to the fast Fourier transform (FFT).

An elementary introduction to the wavelet analysis is found in [66]. Programs are
available in program libraries and in the internet.

11.2.4 Spline Approximation

The mathematical and numerical treatment of polynomials is especially simple and
effective. Therefore, they are often chosen for the approximation of experimental
data. A disadvantage of polynomials is however that they tend to infinity for large
absolute values of the independent variable. This difficulty is resolved by using piece-
wise polynomial functions, the splines.

According to the degree of the polynomials used, we distinguish between linear,
quadratic, cubic etc. splines.

The simplest spline approximation is the linear one, consisting of a polygon. The
steps in the independent variable x between the knots are constant (Fig. 11.3). The
lower the chosen number of knots and the spline order are, the larger will be on
average the deviations of the points from the fitted curve. A sensible choice should
take into account the mean squared dispersion of the points, i.e. the χ2-sum should
be of the order of the number of degrees of freedom. When the response values y are
exact and equidistant, the points are simply connected by a polygon.

A smoother approximation with no kinks is obtained with quadratic splines. A
curve with continuous derivatives up to order n is produced with splines of degree

7The wavelets (11.10), (11.11) are not orthogonal. Thus the coefficients are correlated.
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Fig. 11.4. Linear, quadratic and cubic B-splines.

≥ n+1. Since a curve with continuous second derivatives looks smooth to the human
eye, splines of degree higher than cubic are rarely used.

Spline approximations are widely used in technical disciplines. They have also
been successfully applied to the deconvolution problem [8] (Chap. 9). Instead of
adapting a histogram to the true distribution, the amplitudes of spline functions
can be fitted. This has the advantage that we obtain a continuous function which
incorporates the desired degree of regularization.

For the numerical computations the so called B-splines (basis splines) are es-
pecially useful. Linear, quadratic and cubic B-splines are shown in Fig. 11.4. The
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superposition of B-splines fulfils the continuity conditions at the knots. The super-
position of the triangular linear B-splines produces a polygon, that of quadratic and
cubic B-splines a curve with continuous slope and curvature, respectively.

A B-spline of given degree is determined by the step width b and the position x0
of its center. Their explicit mathematical expressions are given in Appendix 13.12.

The function is approximated by

f̂(x) =

K∑

k=0

akBk(x) . (11.12)

The amplitudes ak can be obtained from a least squares fit. For values of the response
function yi and errors δyi at the input points xi, i = 1, . . . , N , we minimize

χ2 =

N∑

i=1

[
yi −

∑K
k=0 akBk(xi)

]2

(δyi)2
. (11.13)

Of course, the number N of input values has to be at least equal to the number K
of splines. Otherwise the number of degrees of freedom would become negative and
the approximation under-determined.

Spline Approximation in Higher Dimensions

In principle, the spline approximation can be generalized to higher dimensions. How-
ever, there the difficulty is that a grid of intervals (knots) destroys the rotation
symmetry. It is again advantageous to work with B-splines. Their definition becomes
more complicated: In two dimensions we have instead of triangular functions pyra-
mids and for quadratic splines also mixed terms ∝ x1x2 have to be taken into account.
In higher dimensions the number of mixed terms explodes, another example of the
curse of dimensionality.

11.2.5 Approximation by a Combination of Simple Functions

There is no general recipe for function approximation. An experienced scientist would
try, first of all, to find functions which describe the asymptotic behavior and the rough
distribution of the data, and then add further functions to describe the details. This
approach is more tedious than using programs from libraries but will usually produce
results superior to those of the general methods described above.

Besides polynomials, a0 + a1x + a2x
2 + · · ·, rational functions can be used, i.e.

quotients of two polynomials (Padé approximation), the exponential function eαx,
the logarithm b log x, the Gaussian e−ax2

, and combinations like xae−bx. In many
cases a simple polynomial will do. The results usually improve when the original
data are transformed by translation and dilatation x → a(x + b) to a normalized
form.

11.2.6 Example

In order to compare different methods, we have generated at equidistant values xi of
the variable x, function values yi according to the function xe−xwith superimposed
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Gaussian fluctuations. The measurements generated in this way are smoothed, re-
spectively fitted by different functions. The results are shown in Fig. 10.9. All eight
panels show the original function and the measured points connected by a polygon.

In the upper two panels smoothing has been performed by weighting. Typical
for both methods are that structures are washed-out and strong deviations at the
borders. The Gaussian weighting in the left hand panel performs better than the
method of nearest neighbors on the right hand side which also shows spurious short
range fluctuations which are typical for this method.

As expected, also the linear spline approximation is not satisfactory but the edges
are reproduced better than with the weighting methods. Both quadratic and cubic
splines with 10 free parameters describe the measurement points adequately, but the
cubic splines show some unwanted oscillations. The structure of the spline intervals
is clearly seen. Reducing the number of free parameters to 5 suppresses the spurious
fluctuations but then the spline functions cannot follow any more the steep rise at
small x. There is only a marginal difference between the quadratic and the cubic
spline approximations.

The approximation by a simple polynomial of fourth order, i.e. with 5 free param-
eters, works excellently. By the way, it differs substantially from the Taylor expansion
of the true function. The polynomial can adapt itself much better to regions of dif-
ferent curvature than the splines with their fixed step width.

To summarize: The physicist will usually prefer to construct a clever parametriza-
tion with simple analytic functions to describe his data and avoid the more gen-
eral standard methods available in program libraries. Those are useful to get a fast
overview and for the parametrization of a large amount of data.

As we have already mentioned, the approximation of measurements by the stan-
dard set of orthogonal functions works quite well for very smooth functions where
sharp peaks and valleys are absent. Peaks and bumps are better described with
wavelets than with the conventional orthogonal functions. Smoothing results of mea-
surements with the primitive kernel methods which we have discussed are usually
unsatisfactory. A better performance is obtained with kernels with variable width and
corrections for a possible boundary bias. The reader is referred to the literature [86].
Spline approximations are useful when the user has no idea about the shape of the
function and when the measurements are able to constrain the function sufficiently
to suppress fake oscillations.

11.3 Linear Factor Analysis and Principal Components

Factor analysis and principal component analysis (PCA) both reduce a multi-
dimensional variate space to lower dimensions. In the literature there is no clear
distinction between the two techniques.

Often several features of an object are correlated or redundant, and we want to
express them by a few uncorrelated components with the hope to gain deeper insight
into latent relations. One would like to reduce the number of features to as low a
number of components, called factors, as possible.

Let us imagine that for 20 cuboids we have determined 6 geometrical and physical
quantities: volume, surface, basis area, sum of edge lengths, mass, and principal mo-
ments of inertia. We submit these data which may be represented by a 6-dimensional
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vector to a colleague without further information. He will look for similarities and
correlations, and he might guess that these data can be derived for each cuboid from
only 4 parameters, namely length, width, height, and density. The search for these
basis parameters, the components or factors is called factor analysis [67, 68].

A general solution for this problem cannot be given, without an ansatz for the
functional relationship between the feature matrix, in our example build from the 20
six-dimensional data vectors and its errors. Our example indicates though, in which
direction we might search for a solution of this problem. Each body is represented
by a point in a six-dimensional feature space. The points are, however, restricted
to a four-dimensional subspace, the component space. The problem is to find this
subspace. This is relatively simple if it is linear.

In general, and in our example, the subspace is not linear, but a linear approxi-
mation might be justified if the cuboids are very similar such that the components
depend approximately linearly on the deviations of the input vectors from a cen-
ter of gravity. Certainly in the general situation it is reasonable to look first for a
linear relationship between features and parameters. Then the subspace is a linear
vector space and easy to identify. In the special situation where only one compo-
nent exists, all points lie approximately on a straight line, deviations being due to
measurement errors and non-linearity. To identify the multi-dimensional plane, we
have to investigate the correlation matrix. Its transformation into diagonal form de-
livers the principal components – linear combinations of the feature vectors in the
direction of the principal axes. The principal components are the eigenvectors of the
correlation matrix ordered according to decreasing eigenvalues. When we ignore the
principal components with small eigenvalues, the remaining components form the
planar subspace.

Factor analysis or PCA has been developed in psychology, but it is widely used
also in other descriptive fields, and there are numerous applications in chemistry and
biology. Its moderate computing requirements which are at the expense of the restric-
tion to linear relations, are certainly one of the historical reasons for its popularity.
We sketch it below, because it is still in use, and because it helps to get a quick idea
of hidden structures in multi-dimensional data. When no dominant components are
found, it may help to disprove expected relations between different observations.

A typical application is the search for factors explaining similar properties be-
tween different objects: Different chemical compounds may act similarly, e.g. de-
crease the surface tension of water. The compounds may differ in various features, as
molecular size and weight, electrical dipole moment, and others. We want to know
which parameter or combination of parameters is relevant for the interesting prop-
erty. Another application is the search for decisive factors for a similar curing effect
of different drugs. The knowledge of the principal factors helps to find new drugs
with the same positive effect.

In physics factor analysis does not play a central role, mainly because its results
are often difficult to interpret and, as we will see below, not unambiguous. It is not
easy, therefore, to find examples from our discipline. Here we illustrate the method
with an artificially constructed example taken from astronomy.

Example 140. Principal component analysis

Galaxies show the well known red-shift of the spectrum which is due to
their escape velocity. Besides the measurement value or feature red-shift x1
we know the brightness x2 of the galaxies. To be independent of scales and
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mean values, we transform these quantities in such a way that sample mean
and variance are zero, respectively unity. To demonstrate the concept, we
have invented some date which are shown in Fig. 11.6. The two coordinates
are strongly correlated. The correlation is eliminated in a rotated coordinate
system where the objects have coordinates y1 and y2 which are linear com-
binations of red-shift and brightness in the directions of the principal axes
of the correlation matrix. Now we consider as important those directions,
where the observed objects show the largest differences. In our case this is
the direction of y1, while y2 has apparently only a minor influence on both
features. We may conclude that red-shift and brightness have mainly one
and the same cause which determines the value of y1. In our example, we
know that this is the distance, both brightness and red shift depend on it.
Since, apparently, the distance determines y1, we can use it, after a suitable
calibration, as a measure for the distance.

We will now put these ideas into concrete terms.

The input data for the factor analysis are given in the form of a matrix X ofN rows
and P columns. The element xnp is the measured value of the feature p of the object
n, thus X is a rectangular matrix. In a first step we determine the correlations between
the P input attributes. By a simple transformation, we obtain uncorrelated linear
combinations of the features. The hope is that there are few dominant combinations
and that the others can be neglected. Then the data can be described by a small
number of Q < P linear combinations, the principal components.

We first transform the data Xnp into standardized form where the sample mean
and variance are zero, respectively unity. We get the normalized variables8

xnp =
Xnp −Xp

δp

with

Xp =
1

N

N∑

n=1

Xnp ,

8The normalization (division by δp) is not always required.
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δ2p =
1

N − 1

N∑

n=1

(Xnp −Xp)
2 .

The quantity xnp is the normalized deviation of the measurement value of type p for
the object n from the average over all objects for this measurement.

In the same way as in Chap. 4 we construct the correlation matrix for our sample
by averaging the P × P products of the components xn1 . . . xnP over all N objects:

C =
1

N − 1
X
T
X ,

Cpq =
1

N − 1

N∑

n=1

xnpxnq .

It is a symmetric positive definite P × P matrix. Due to the normalization the
diagonal elements are equal to unity.

Then this matrix is brought into diagonal form by an orthogonal transformation
corresponding to a rotation in the P -dimensional feature space.

C → V
T
CV = diag(λ1 . . . λP ) .

The uncorrelated feature vectors in the rotated space yn = {yn1, . . . , ynP } are given
by

yn = V
Txn , xn = Vyn .

To obtain eigenvalues and -vectors we solve the linear equation system

(C− λpI)vp = 0 , (11.14)

where λp is the eigenvalue belonging to the eigenvector vp:

Cvp = λpvp .

The P eigenvalues are found as the solutions of the characteristic equation

det(C− λI) = 0 .

In the simple case described above of only two features, this is a quadratic equation
∣∣∣∣
C11 − λ C12

C21 C22 − λ

∣∣∣∣ = 0 ,

that fixes the two eigenvalues. The eigenvectors are calculated from (11.14) after
substituting the respective eigenvalue. As they are fixed only up to an arbitrary
factor, they are usually normalized. The rotation matrix V is constructed by taking
the eigenvectors vp as its columns: vqp = (vp)q.

Since the eigenvalues are the diagonal elements in the rotated, diagonal correlation
matrix, they correspond to the variances of the data distribution with respect to the
principal axes. A small eigenvalue means that the projection of the data on this axis
has a narrow distribution. The respective component is then, presumably, only of
small influence on the data, and may perhaps be ignored in a model of the data.
Large eigenvalues belong to the important principal components.

Factors fnp are obtained by standardization of the transformed variables ynp by
division by the square root of the eigenvalues λp:
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fnp =
ynp√
λp

.

By construction, these factors represent variates with zero mean and unit variance.
In most cases they are assumed to be normally distributed. Their relation to the
original data xnp is given by a linear (not orthogonal) transformation with a matrix
A, the elements of which are called factor loadings. Its definition is

xn = Afn , or XT = AF
T . (11.15)

Its components show, how strongly the input data are influenced by certain factors.

In the classical factor analysis, the idea is to reduce the number of factors such
that the description of the data is still satisfactory within tolerable deviations ε:

x1 = a11f1 + · · ·+ a1QfQ + ε1

x2 = a21f1 + · · ·+ a2QfQ + ε2
...

...

xP = aP1f1 + · · ·+ aPQfQ + εP

with Q < P , where the “factors” (latent random variables) f1, . . . , fQ are considered
as uncorrelated and distributed according to N(0, 1), plus uncorrelated zero-mean
Gaussian variables εp, with variances σ2

p, representing the residual statistical fluctu-
ations not described by the linear combinations. As a first guess, Q is taken as the
index of the smallest eigenvalue λQ which is considered to be still significant. In the
ideal case Q = 1 only one decisive factor would be the dominant element able to
describe the data.

Generally, the aim is to estimate the loadings apq, the eigenvalues λp, and the
variances σ2

p from the sampling data, in order to reduce the number of relevant
quantities responsible for their description.

The same results as we have found above by the traditional method by solving
the eigenvalue problem for the correlation matrix9 can be obtained directly by using
the singular value decomposition (SVD) of the matrix X (remember that it has N
rows and P columns):

X = UDV
T ,

where U and V are orthogonal. U is not a square matrix, nevertheless UTU = I, where
the unit matrix I has dimension P . D is a diagonal matrix with elements

√
λp, ordered

according to decreasing values, and called here singular values. The decomposition
(11.15) is obtained by setting F = U and A = VD.

The decomposition (11.15) is not unique: If we multiply both F and A with a
rotation matrix R from the right we get an equivalent decomposition:

X = F̃ Ã
T = FR(AR)T = FRR

T
A
T = UDV

T , (11.16)

which is the same as (11.15), with factors and loadings being rotated.

There exist program packages which perform the numerical calculation of princi-
pal components and factors.

Remarks:

9Physicists may find the method familiar from the discussion of the inertial momentum
tensor and many similar problems.
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1. The transformation of the correlation matrix to diagonal form makes sense, as
we obtain in this way uncorrelated inputs. The new variables help to understand
better the relations between the various measurements.

2. The silent assumption that the principal components with larger eigenvalues are
the more important ones is not always convincing, since starting with uncorre-
lated measurements, due to the scaling procedure, would result in eigenvalues
which are all identical. An additional difficulty for interpreting the data comes
from the ambiguity (11.16) concerning rotations of factors and loadings.

11.4 Classification

We have come across classification already when we have treated goodness-of-fit.
There the problem was either to accept or to reject a hypothesis without a clear
alternative. Now we consider a situation where we dispose of information of two or
more classes of events.

The assignment of an object according to some quality to a class or category is
described by a so-called categorical variable. For two categories we can label the two
possibilities by discrete numbers; usually the values ±1 or 1 and 0 are chosen. In most
cases it makes sense, to give as a result instead of a discrete classification a continuous
variable as a measure for the correctness of the classification. The classification into
more than two cases can be performed sequentially by first combining classes such
that we have a two class system and then splitting them further.

Classification is indispensable in data analysis in many areas. Examples in particle
physics are the identification of particles from shower profiles or from Cerenkov
ring images, beauty, top or Higgs particles from kinematics and secondaries and the
separation of rare interactions from frequent ones. In astronomy the classification of
galaxies and other stellar objects is of interest. But classification is also a precondition
for decisions in many scientific fields and in everyday life.

We start with an example: A patient suffers from certain symptoms: stomach-
ache, diarrhoea, temperature, head-ache. The doctor has to give a diagnosis. He will
consider further factors, as age, sex, earlier diseases, possibility of infection, duration
of the illness, etc.. The diagnosis is based on the experience and education of the
doctor.

A computer program which is supposed to help the doctor in this matter should
be able to learn from past cases, and to compare new inputs in a sensible way with
the stored data. Of course, as opposed to most problems in science, it is not possible
here to provide a functional, parametric relation. Hence there is a need for suitable
methods which interpolate or extrapolate in the space of the input variables. If these
quantities cannot be ordered, e.g. sex, color, shape, they have to be classified. In a
broad sense, all this problems may be considered as variants of function approxima-
tion.

The most important methods for this kind of problems are the discriminant
analysis, artificial neural nets, kernel or weighting methods, and decision trees. In the
last years, remarkable progress in these fields could be realized with the development
of support vector machines, boosted decision trees, and random forests classifiers.

Before discussing these methods in more detail let us consider a further example.
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Fig. 11.7. Fraction of wrongly assigned events as a function of the efficiency.

Example 141. Classification of particles with calorimeters

The interactions of electrons and hadrons in calorimeter detectors of particle
physics differ in a many parameters. Calorimeters consist of a large number of
detector elements, for which the signal heights are evaluated and recorded.
The system should learn from a training sample obtained from test mea-
surements with known particle beams to classify electrons and hadrons with
minimal error rates.

An optimal classification is possible if the likelihood ratio is available which then
is used as a cut variable. The goal of intelligent classification methods is to approxi-
mate the likelihood ratio or an equivalent variable which is a unique function of the
likelihood ratio. The relation itself need not be known.

When we optimize a given method, it is not only the percentage of right decisions
which is of interest, but we will also consider the consequences of the various kinds
of errors. It is less serious if a SPAM has not been detected, as compared to the loss
of an important message. In statistics this is taken into account by a loss function
which has to be defined by the user. In the standard situation where we want to
select a certain class of events, we have to consider efficiency and contamination10.
The larger the efficiency, the larger is also the relative contamination by wrongly
assigned events. A typical curve showing this relation if plotted in Fig. 11.7. The
user will select the value of his cut variable on the bases of this curve.

The loss has to be evaluated from the training sample. It is recommended to use
a part of the training sample to develop the method and to reserve a certain fraction
to validate it. As statistics is nearly always too small, also more economic methods

10One minus the contamination is called purity.
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of validation, cross validation and bootstrap ( see Sect.12.2), have been developed
which permit to use the full sample to adjust the parameters of the method. In an
n-fold cross validation the whole sample is randomly divided into n equal parts of
N/n events each. In turn one of the parts is used for the validation of the training
result from the other n− 1 parts. All n validation results are then averaged. Typical
choices are n equal to 5 or 10.

11.4.1 The Discriminant Analysis

The classical discriminant analysis as developed by Fisher is a special case of the
classification method that we introduce in the following. We follow our discussions
of Chap. 6, Sect. 6.3.

If we know the p.d.f.s f1(x) and f2(x) for two classes of events it is easy to assign
an observation x to one of the two classes in such a way that the error rate is minimal
(case 1):

x → class 1, if f1(x) > f2(x) ,

x → class 2, if f1(x) < f2(x) .

Normally we will get a different number of wrong assignments for the two classes:
observations originating from the broader distribution will be miss-assigned more
often, see Fig. 11.8) than those of the narrower distribution. In most cases it will
matter whether an input from class 1 or from class 2 is wrongly assigned. An optimal
classification is then reached using an appropriately adjusted likelihood ratio:

x → class 1, if f1(x)/f2(x) > c ,

x → class 2, if f1(x)/f2(x) < c .

If we want to have the same error rates (case 2), we must choose the constant c
such that the integrals over the densities in the selected regions are equal:

∫

f1/f2>c

f1(x)dx =

∫

f1/f2<c

f2(x)dx . (11.17)

This assignment has again a minimal error rate, but now under the constraint (11.17).
We illustrate the two possibilities in Fig. 11.8 for univariate functions.

For normal distributions we can formulate the condition for the classification
explicitly: For case 2 we choose that class for which the observation x has the smallest
distance to the mean measured in standard deviations. This condition can then be
written as a function of the exponents. With the usual notations we get

(x− µ1)
T
V1(x− µ1)− (x− µ2)

T
V2(x− µ2) < 0 → class 1 ,

(x− µ1)
T
V1(x− µ1)− (x− µ2)

T
V2(x− µ2) > 0 → class 2 .

This condition can easily be generalized to more than two classes; the assignment
according to the standardized distances will then, however, no longer lead to equal
error rates for all classes.

The classical discriminant analysis sets V1 = V2. The left-hand side in the above
relations becomes a linear combination of the xp. The quadratic terms cancel. Equat-
ing it to zero defines a hyperplane which separates the two classes. The sign of this
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Fig. 11.8. Separation of two classes. The dashed line separates the events such that the
error rate is minimal, the dotted line such that the wrongly assigned events are the same
in both classes.

linear combination thus determines the class membership. Note that the separating
hyperplane is cutting the line connecting the distribution centers under a right angle
only for spherical symmetric distributions.

If the distributions are only known empirically from representative samples, we
approximate them by continuous distributions, usually by a normal distribution,
and fix their parameters to reproduce the empirical moments. In situations where
the empirical distributions strongly overlap, for instance when a narrow distribution
is located at the center of a broad one, the simple discriminant analysis does no
longer work. The classification methods introduced in the following sections have
been developed for this and other more complicated situations and where the only
source of information on the population is a training sample. The various approaches
are all based on the continuity assumption that observations with similar attributes
lead to similar outputs.

11.4.2 Artificial Neural Networks

Introduction

The application of artificial neural networks, ANN, has seen a remarkable boom
in the last decades, parallel to the exploding computing capacities. From its many
variants, in science the most popular are the relatively simple forward ANNs with
back-propagation, to which we will restrict our discussion. The interested reader
should consult the broad specialized literature on this subject, where fascinating self
organizing networks are described which certainly will play a role also in science, in
the more distant future. It could e.g. be imagined that a self-organizing ANN would
be able to classify a data set of events produced at an accelerator without human
intervention and thus would be able to discover new reactions and particles.



11.4 Classification 313

The species considered here has a comparably more modest aim: The network is
trained in a first step to ascribe a certain output (response) to the inputs. In this
supervised learning scheme, the response is compared with the target response, and
then the network parameters are modified to improve the agreement. After a training
phase the network is able to classify new data.

ANNs are used in many fields for a broad variety of problems. Examples are
pattern recognition, e.g. for hand-written letters or figures, or the forecast of stock
prices. They are successful in situations where the relations between many parameters
are too complex for an analytical treatment. In particle physics they have been
used, among other applications, to distinguish electron from hadron cascades and to
identify reactions with heavy quarks.

With ANNs, many independent computing steps have to be performed. Therefore
specialized computers have been developed which are able to evaluate the required
functions very fast by parallel processing.

Primarily, the net approximates an algebraic function which transforms the input
vector x into the response vector y,

y = f(x|w) .

Here w symbolizes a large set of parameters, typically there are, depending on the
application, 103 − 104 parameters. The training process corresponds to a fitting
problem. The parameters are adjusted such that the response agrees within the
uncertainties with a target vector yt which is known for the events of the training
sample.

There are two different applications of neural nets, simple function approxima-
tion11 and classification. The net could be trained, for instance, to estimate the
energy of a hadronic showers from the energies deposited in different cells of the
detector. The net could also be trained to separate electron from hadron showers.
Then it should produce a number close to 1 for electrons and close to 0 for hadrons.

With the large number of parameters it is evident that the solution is not always
unique. Networks with different parameters can perform the same function within
the desired accuracy.

For the fitting of the large number of parameters minimizing programs like sim-
plex (see Appendix 13.9) are not suited. The gradient descent method is much more
practicable here. It is able to handle a large number of parameters and to process
the input data sequentially.

A simple, more detailed introduction to the field of ANN is given in [69]

Network Structure

Our network consists of two layers of knots (neurons), see Fig. 11.9. Each component
xk of the n-component input vector x is transmitted to all knots, labeled i = 1, . . . ,m,
of the first layer. Each individual data line k → i is ascribed a weight W (1)

ik . In
each unit the weighted sum ui =

∑
kW

(1)
ik xk of the data components connected

11Here function approximation is used to perform calculations. In the previous section
its purpose was to parametrize data.
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Fig. 11.9. Back propagation. At each knot the sigmoid function of the sum of the weighted
inputs is computed.

to it is calculated. Each knot symbolizes a non-linear so-called activation function
x′i = s(ui), which is identical for all units. The first layer produces a new data vector
x′. The second layer, with m′ knots, acts analogously on the outputs of the first one.
We call the corresponding m×m′ weight matrix W(2). It produces the output vector
y. The first layer is called hidden layer, since its output is not observed directly. In
principle, additional hidden layers could be implemented but experience shows that
this does not improve the performance of the net.

The net executes the following functions:

x′j = s

(∑

k

W
(1)
jk xk

)
,

yi = s


∑

j

W
(2)
ij x′j


 .

This leads to the final result:

yi = s




∑

j

W
(2)
ij s

(∑

k

W
(1)
jk xk

)
 . (11.18)

Sometimes it is appropriate to shift the input of each unit in the first layer by a
constant amount (bias). This is easily realized by specifying an artificial additional
input component x0 ≡ 1.

The number of weights (the parameters to be fitted) is, when we include the
component x0, (n+ 1)×m+mm′.

Activation Function

The activation function s(x) has to be non-linear, in order to achieve that the su-
perposition (11.18) is able to approximate widely arbitrary functions. It is plausible
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Fig. 11.10. Sigmoid function.

that it should be more sensitive to variations of the arguments near zero than for
very large absolute values. The input bias x0 helps to shift input parameters which
have a large mean value into the sensitive region. The activation function is usually
standardized to vary between zero and one. The most popular activation function is
the sigmoid function

s(u) =
1

e−u + 1
,

which is similar to the Fermi function. It is shown in Fig. 11.10.

The Training Process

In the training phase the weights will be adapted after each new input object. Each
time the output vector of the network y is compared with the target vector yt. We
define again the loss function E:

E = (y − yt)
2, (11.19)

which measures for each training object the deviation of the response from the ex-
pected one.

To reduce the error E we walk downwards in the weight space. This means, we
change each weight component by ∆W , proportional to the sensitivity ∂E/∂W of E
to changes of W :

∆W = −1

2
α
∂E

∂W

= −α(y − yt) ·
∂y

∂W
.

The proportionality constant α, the learning rate, determines the step width.

We now have to find the derivatives. Let us start with s:

ds

du
=

e−u

(e−u + 1)2
= s(1 − s) . (11.20)

From (11.18) and (11.20) we compute the derivatives with respect to the weight
components of the first and the second layer,
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∂yi

∂W
(2)
ij

= yi(1 − yi)x
′
j ,

and
∂yi

∂W
(1)
jk

= yi(1− yi)x
′
jW

(2)
ij (1− x′j)xk .

It is seen that the derivatives depend on the same quantities which have already
been calculated for the determination of y (the forward run through the net). Now
we run backwards, change first the matrix W(2) and then with already computed
quantities also W(1). This is the reason why this process is called back propagation.
The weights are changed in the following way:

W
(1)
jk → W

(1)
jk − α(y − yt)

∑

i

yi(1− yi)x
′
jW

(2)
ij (1 − x′j)xk ,

W
(2)
ij → W

(2)
ij − α(y − yt)yi(1 − yi)x

′
j .

Testing and Interpreting

The gradient descending minimum search has not necessarily reached the minimum
after processing the training sample a single time, especially when the available sam-
ple is small. Then the should be used several times (e.g. 10 or 100 times). On the
other hand it may happen for too small a training sample that the net performs
correctly for the training data, but produces wrong results for new data. The net-
work has, so to say, learned the training data by heart. Similar to other minimizing
concepts, the net interpolates and extrapolates the training data. When the number
of fitted parameters (here the weights) become of the same order as the number of
constraints from the training data, the net will occasionally, after sufficient training
time, describe the training data exactly but fail for new input data. This effect is
called over-fitting and is common to all fitting schemes when too many parameters
are adjusted.

It is therefore indispensable to validate the network function after the optimiza-
tion, with data not used in the training phase or to perform a cross validation. If in
the training phase simulated data are used, it is easy to generate new data for testing.
If only experimental data are available with no possibility to enlarge the sample size,
usually a certain fraction of the data is reserved for testing. If the validation result
is not satisfactory, one should try to solve the problem by reducing the number of
network parameters or the number of repetitions of the training runs with the same
data set.

The neural network generates from the input data the response through the
fairly complicated function (11.18). It is impossible by an internal analysis of this
function to gain some understanding of the relation between input and resulting
response. Nevertheless, it is not necessary to regard the ANN as a “black box”. We
have the possibility to display graphically correlations between input quantities and
the result, and all functional relations. In this way we gain some insight into possible
connections. If, for instance, a physicist would have the idea to train a net with an
experimental data sample to predict for a certain gas the volume from the pressure
and the temperature, he would be able to reproduce, with a certain accuracy, the
results of the van-der-Waals equation. He could display the relations between the
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three quantities graphically. Of course the analytic form of the equation and its
interpretation cannot be delivered by the network.

Often a study of the optimized weights makes it possible to simplify the net. Very
small weights can be set to zero, i.e. the corresponding connections between knots
are cut. We can check whether switching off certain neurons has a sizable influence
on the response. If this is not the case, these neurons can be eliminated. Of course,
the modified network has to be trained again.

Practical Hints for the Application

Computer Programs for ANNs with back-propagation are relatively simple and avail-
able at many places but the effort to write an ANN program is also not very large.
The number of input vector components n and the number of knots m and m′ are
parameters to be chosen by the user, thus the program is universal, only the loss
function has to be adapted to the specific problem.

• The number of units in each layer should more or less match the number of input
components. Some experts plead for a higher number. The user should try to find
the optimal number.

• The sigmoid function has values only between zero and unity. Therefore the out-
put or the target value has to be appropriately scaled by the user.

• The raw input components are usually correlated. The net is more efficient if the
user orthogonalizes them. Then often some of the new components have negligible
effect on the output and can be discarded.

• The weights have to be initialized at the beginning of the training phase. This
can be done by a random number generator or they can be set to fixed values.

• The loss function E (11.19) has be adjusted to the problem to be solved.

• The learning rate α should be chosen relatively high at the beginning of a train-
ing phase, e.g. α = 10. In the course of fitting it should be reduced to avoid
oscillations.

• The convergence of minimizing process is slow if the gradient is small. If this
is the case, and the fit is still bad, it is recommended to increase the learning
constant for a certain number of iterations.

• In order to check whether a minimum is only local, one should train the net with
different start values of the weights.

• Other possibilities for the improvement of the convergence and the elimination of
local minima can be found in the substantial literature. An ANN program package
that proceeds automatically along many of the proposed steps is described in [70].

Example: Čerenkov circles

Charged, relativistic particles can emit photons by the Čerenkov effect. The photons
hit a detector plane at points located on a circle. Of interest are radius and center of
this circle, since they provide information on direction and velocity of the emitting
particle. The number of photons and the coordinates where they hit the detector
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differnt sequences of learning constants a.

fluctuate statistically and are disturbed by spurious noise signals. It has turned out
that ANNs can reconstruct the parameters of interest from the available coordinates
with good efficiency and accuracy.

We study this problem by a Monte Carlo simulation. In a simplified model, we
assume that exactly 5 photons are emitted by a particle and that the coordinate pairs
are located on a circle and registered. The center, the radii, and the hit coordinates
are generated stochastically. The input vector of the net thus consists of 10 compo-
nents, the 5 coordinate pairs. The output is a single value, the radius R. The loss
function is (R −Rtrue)

2, where the true value Rtrue is known from the simulation.

The relative accuracy of the reconstruction as a function of the iteration step
is shown in Fig. 11.11. Different sequences of the learning rate have been tried.
Typically, the process is running by steps, where after a flat phase follows a rather
abrupt improvement. The number of iterations required to reach the minimum is
quite large.

Hardware Realization

The structure of back propagation network can be implemented by a hardware net-
work. The weights are stored locally at the units which are realized by rather simple
microprocessors. Each microprocessor performs the knot function, e.g. the sigmoid
function. A trained net can then calculate the fitted function very fast, since all pro-
cessors are working in parallel. Such processors can be employed for the triggering
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in experiments where a quick decision is required, whether to accept an event and
to store the corresponding data.

11.4.3 Weighting Methods

For the decision whether to assign an observation at the location x to a certain class,
an obvious option is to do this according to the classification of neighboring objects
of the training sample. One possibility is to consider a certain region around x and
to take a “majority vote” of the training objects inside this region to decide about
the class membership of the input. The region to be considered here can be chosen
in different ways; it can be a fixed volume around x, or a variable volume defined
by requiring that it contains a fixed number of observations, or an infinite volume,
introducing weights for the training objects which decrease with their distance from
x.

In any case we need a metric to define the distance. The choice of a metric in
multi-dimensional applications is often a rather intricate problem, especially if some
of the input components are physically of very different nature. A way-out seems
to be to normalize the different quantities to equal variance and to eliminate global
correlations by a linear variable transformation. This corresponds to the transfor-
mation to principal components discussed above (see Sect. 11.3) with subsequent
scaling of the principal components. An alternative but equivalent possibility is to
use a direction dependent weighting. The same result is achieved when we apply the
Mahalanobis metric, which we have introduced in Sect. 10.3.9.

For a large training sample the calculation of all distances is expensive in com-
puting time. A drastic reduction of the number of distances to be calculated is in
many cases possible by the so-called support vector machines which we will discuss
below. Those are not machines, but programs which reduce the training sample to a
few, but decisive inputs, without impairing the results.

K-Nearest Neighbors

We choose a number K which of course will depend on the size of the training
sample and the overlap of the classes. For an input x we determine the K nearest
neighbors and the numbers k1, k2 = K − k1, of observations that belong to class I
and II, respectively. For a ratio k1/k2 greater than α, we assign the new observation
to class I, in the opposite case to class II:

k1/k2 > α =⇒ class I ,

k1/k2 < α =⇒ class II .

The choice of α depends on the loss function. When the loss function treats all classes
alike, then α will be unity and we get a simple majority vote. To find the optimal
value of K we minimize the average of the loss function computed for all observations
of the training sample.

Distance Dependent Weighting

Instead of treating all training vector inputs x′ within a given region in the same
way, one should attribute a larger weight to those located nearer to the input x. A
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sensible choice is again a Gaussian kernel,

K(x,x′) ∼ exp

(
− (x− x′)2

2s2

)
.

With this choice we obtain for the class β the weight wβ ,

wβ =
∑

i

K(x,xβi) , (11.21)

where xβi are the locations of the training vectors of the class β.

If there are only two classes, writing the training sample as

{x1, y1 . . .xN , yN}

with the response vector yi = ±1, the classification of a new input x is done according
to the value ±1 of the classifier ŷ(x), given by

ŷ(x) = sign

( ∑

yi=+1

K(x,xi)−
∑

yi=−1

K(x,xi)

)
= sign

(∑

i

yiK(x,xi)

)
. (11.22)

For a direction dependent density of the training sample, we can use a direction
dependent kernel, eventually in the Mahalanobis form mentioned above:

K(x,x′) ∼ exp

[
−1

2
(x− x′)TV(x− x′)

]
.

with the weight matrix V. When we first normalize the sample, this complication is
not necessary. The parameter s of the matrix V, which determines the width of the
kernel function, again is optimized by minimizing the loss for the training sample.

Support Vector Machines

Support vector machines (SVMs) produce similar results as ordinary distance de-
pending weighting methods, but they require less memory for the storage of learning
data and the classification is extremely fast. Therefore, they are especially useful in
on-line applications.

The class assignment usually is the same for all elements in large connected
regions of the variable x. Very often, in a two case classification, there are only two
regions separated by a hypersurface. For short range kernels it is obvious then that
for the classification of observations, the knowledge of only those input vectors of
the training sample is essential which are located in the vicinity of the hypersurface.
These input vectors are called support vectors [73]. SVMs are programs which try to
determine them, respectively their weights, in an optimal way, setting the weights of
all other inputs vectors to zero.

In the one-dimensional case with non-overlapping classes it is sufficient to know
those inputs of each class which are located nearest to the dividing limit between the
classes. Sums like (11.21) are then running over one element only. This, of course,
makes the calculation extremely fast.

In higher dimensional spaces with overlapping classes and for more than two
classes the problem to determine support vectors is of course more complicated. But
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Fig. 11.12. Separation of two classes. Top: learning sample, bottom: wrongly assigned
events of a test sample.

also in these circumstances the number of relevant training inputs can be reduced
drastically. The success of SVMs is based on the so-called kernel trick, by which non-
linear problems in the input space are treated as linear problems in some higher-
dimensional space by well known optimization algorithms. For the corresponding
algorithms and proofs we refer to the literature, e.g. [13, 72]. A short introduction is
given in Appendix 13.13.

Example and Discussion

In Fig. 11.12 are shown in the top panel two overlapping training samples of 500
inputs each. The loss function is the number of wrong assignments independent of
the respective class. Since the distributions are quite similar in both coordinates
we do not change the metric. We use a Gaussian kernel. The optimization of the
parameter s by means of the training sample shows only a small change of the error
rate for a change of s by a factor four. The lower panel displays the result of the
classification for a test sample of the same size (500 inputs per class). Only the wrong
assignments are shown.

We realize that wrongly assigned training observations occur in two separate, non
overlapping regions which can be separated by a curve or a polygon chain as indicated
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in the figure. Obviously all new observations would be assigned to the class corre-
sponding to the region in which they are located. If we would have used instead of
the distance-depending weighting the K-nearest neighbors method, the result would
have been almost identical. In spite of the opposite expectation, this more primitive
method is more expensive in both the programming and in the calculation, when
compared to the weighting with a distance dependent kernel.

Since for the classification only the separation curve between the classes is re-
quired, it must be sufficient to know the class assignment for those training obser-
vations which lie near this curve. They would define the support vectors of a SVM.
Thus the number of inputs needed for the assignment of new observations would be
drastically reduced. However, for a number of assignments below about 106 the effort
to determine support vectors usually does not pay. The SVMs are useful for large
event numbers in applications where computing time is relevant.

11.4.4 Decision Trees

Simple Trees

We consider the simple case, the two class classification, i.e. the assignment of inputs
to one of two classes I and II, and N observations with P features x1, x2, . . . , xP ,
which we consider, as before, as the components of an input vector.

In the first step we consider the first component x11, x21, . . . , xN1 for all N input
vectors of the training sample. We search for a value xc1 which optimally divides
the two classes and obtain a division of the training sample into two parts A and
B. Each of these parts which belong to two different subspaces, will now be further
treated separately. Next we take the subspace A, look at the feature x2, and divide
it, in the same way as before the full space, again into two parts. Analogously we
treat the subspace B. Now we can switch to the next feature or return to feature 1
and perform further splittings. The sequence of divisions leads to smaller and smaller
subspaces, each of them assigned to a certain class. This subdivision process can be
regarded as the development of a decision tree for input vectors for which the class
membership is to be determined. The growing of the tree is stopped by a pruning
rule. The final partitions are called leaves.

In Fig. 11.13 we show schematically the subdivision into subspaces and the cor-
responding decision tree for a training sample of 32 elements with only two features.
The training sample which determines the decisions is indicated. At the end of the
tree (here at the bottom) the decision about the class membership is taken.

It is not obvious, how one should optimize the sequence of partitions and the
position of cuts, and also not, under which circumstances the procedure should be
stopped.

For the optimization of splits we must again define a loss function which will
depend on the given problem. A simple possibility in the case of two classes is,
to maximize for each splitting the difference ∆N = Nr − Nf between right and
wrong assignments. We used this in our example Fig. 11.13. For the first division
this quantity was equal to 20− 12 = 8. To some extend the position of the splitting
hyperplane is still arbitrary, the loss function changes its value only when it hits the
nearest input. It could, for example, be put at the center between the two nearest
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Fig. 11.13. Decision tree (bottom) corresponding to the classification shown below.

points. Often the importance of efficiency and purity is different for the two classes.
Then we would chose an asymmetric loss function.

Very popular is the following, slightly more complicated criterion: We define the
impurity PI of class I

PI =
NI

NI +NII
, (11.23)

which for optimal classification would be 1 or 0. The quantity

G = PI(1− PI) + PII(1 − PII) (11.24)

the Gini-index, should be as small as possible. For each separation of a parent node
E with Gini index GE into two children nodes A, B with GA, respectively GB , we
minimize the sum GA +GB .

The difference
D = GE −GA −GB

is taken as stopping or pruning parameter. The quantity D measures the increase in
purity, it is large for a parent node with large G and two children nodes with small
G. When D becomes less than a certain critical value Dc the branch will not be split
further and ends at a leave. The leave is assigned to the class which has the majority
in it.

Besides the Gini index, also other measures for the purity or impurity are used
[13]. An interesting quantity is entropy S = −PI lnPI − PII lnPII , a well known
measure of disorder, i.e. of impurity.
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The purity parameter, e.g. G, is also used to organize the splitting sequence. We
choose always that input vector component in which the splitting produces the most
significant separation.

A further possibility would be to generalize the orthogonal splitting by allowing
also non-orthogonal planes to reach better separations. But in the standard case all
components are treated independently.

Unfortunately, the classification by decision trees is usually not perfect. The dis-
continuity at the boundaries and the fixed splitting sequence impair the accuracy.
On the other hand, they are simple, transparent and the corresponding computer
programs are extremely fast.

Boosted Decision Trees

Boosting [75] is based on a simple idea: By a weighted superposition of many mod-
erately effective classifiers it should be possible to reach a fairly precise assignment.
Instead of only one decision tree, many different trees are grown. Each time, before
the development of a new tree is started, wrongly assigned training inputs are boosted
to higher weights in order to lower their probability of being wrongly classified in
the following tree. The final class assignment is then done by averaging the decisions
from all trees. Obviously, the computing effort for these boosted decision trees is in-
creased, but the precision is significantly enhanced. The results of boosted decision
trees are usually as good as those of ANNs. Their algorithm is very well suited for
parallel processing. There are first applications in particle physics [76].

Before the first run, all training inputs have the weight 1. In the following run
each input gets a weight wi, determined by a certain boosting algorithm (see below)
which depends on the particular method. The definition of the node impurity P for
calculating the loss function, see (11.23), (11.24), is changed accordingly to

P =

∑
I wi∑

I wi +
∑

II wi
,

where the sums
∑

I ,
∑

II run over all events in class I or II, respectively. Again
the weights will be boosted and the next run started. Typically M ≈ 1000 trees are
generated in this way.

If we indicate the decision of a tree m for the input xi by Tm(xi) = 1 (for class
I) and = −1 (for class II), the final result will be given by the sign of the weighted
sum over the results from all trees

TM (xi) = sign

(
M∑

m=1

αmTm(xi)

)
.

We proceed in the following way: To the first tree we assign a weight α1 = 1. The
weights of the wrongly assigned input vectors are increased. The weight12 α2 of the
second tree T2(x) is chosen such that the overall loss from all input vectors of the
training sample is minimal for the combination [α1T1(x) + α2T2(x)] / [α1 + α2]. We
continue in the same way and add further trees. For tree i the weight αi is optimized
such that the existing trees are complemented in an optimal way. How this is done
depends of course on the loss function.

12We have two kinds of weight, weights of input vectors (wi) and weights of trees (αm).
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A well tested recipe for the choice of weights is AdaBoost [75]. The training
algorithm proceeds as follows:

• The i-th input xi gets the weight wi = 1 and the value yi = 1, (= −1), if it
belongs to class I, (II).

• Tm(xi) = 1 (= −1), if the input ends in a leave belonging to class I (II).
Sm(xi) = (1− yiTm(xi))/2 = 1 (= 0), if the assignment is wrong (right).

• The fraction of the weighted wrong assignments εm is used to change the weights
for the next iteration:

εm =
∑

i

wiSm(xi)/
∑

i

wi ,

αm = ln
1− εm
εm

,

wi → wie
αmSm .

Weights of correctly assigned training inputs thus remain unchanged. For exam-
ple, for εm = 0.1, wrongly assigned inputs will be boosted by a factor 0.9/0.1 = 9.
Note that αm > 0 if ε < 0.5; this is required because otherwise the replacement
Tm(xi) → −Tm(xi) would produce a better decision tree.

• The response for a new input which is to be classified is

TM (xi) = sign

(
M∑

m=1

αmTm(xi)

)
.

For εm = 0.1 the weight of the tree is αm = ln 9 ≈ 2.20. For certain applications
it may be useful to reduce the weight factors αm somewhat, for instance αm =
0.5 ln ((1− εm)/εm) [76].

11.4.5 Bagging and Random Forest

Bagging

The concept of bagging was first introduced by Breiman [83]. He has shown that the
performance of unstable classifiers can be improved considerably by training many
classifiers with bootstrap replicates and then using a majority vote of those: From
a training sample containing N input vectors, N vectors are drawn at random with
replacement. Some vectors will be contained several times. This bootstrap13 sample
is used to train a classifier. Many, 100 or 1000 classifiers are produced in this way.
New inputs are run through all trees and each tree “votes” for a certain classification.
The classification receiving the majority of votes is chosen. In a study of real data
[83] a reduction of error rates by bagging between 20% and 47% was found. There
the bagging concept had been applied to simple decision trees, however, the bagging
concept is quite general and can be adopted also to other classifiers.

13We will discuss bootstrap methods in the following chapter.
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Random Forest

Another new development [84] which includes the bootstrap idea, is the extension of
the decision tree concept to the random forest classifier.

Many trees are generated from bootstrap samples of the training sample, but
now part of the input vector components are suppressed. A tree is constructed in the
following way: First m out of the M components or attributes of the input vectors
are selected at random. The tree is grown in a m-dimensional subspace of the full
input vector space. It is not obvious how m is to be chosen, but the author proposes
m ≪ M and says that the results show little dependence on m. With large m the
individual trees are powerful but strongly correlated. The value of m is the same for
all trees.

From the N truncated bootstrap vectors, Nb are separated, put into a bag and
reserved for testing. A fraction f = Nb/N ≈ 1/3 is proposed. The remaining ones
are used to generate the tree. For each split that attribute out of the m available
attributes is chosen which gives the smallest number of wrong classifications. Each
leave contains only elements of a single class. There is no pruning.

Following the bagging concept, the classification of new input vectors is obtained
by the majority vote of all trees.

The out-of-the-bag (oob) data are used to estimate the error rate. To this end,
each oob-vector of the k-th sample is run through the k-th tree and classified. The
fraction of wrong classifications from all oob vectors is the error rate. (For T trees
there are in total T × Nb oob vectors.) The oob data can also be used to optimize
the constant m.

The random forest classifier has received quite some interest. The concept is
simple and seems to be similarly powerful as that of other classifiers. It is especially
well suited for large data sets in high dimensions.

11.4.6 Comparison of the Methods

We have discussed various methods for classification. Each of them has its advantages
and its drawbacks. It depends on the special problem, which one is the most suitable.

The discriminant analysis offers itself for one- or two dimensional continuous
distributions (preferably Gaussians or other unimodal distributions). It is useful for
event selection in simple situations.

Kernel methods are relatively easy to apply. They work well if the division line
between classes is sufficiently smooth and transitions between different classes are
continuous. Categorical variables cannot be treated. The variant with support vectors
reduces computing time and the memory space for the storage of the training sample.
In standard cases with not too extensive statistics one should avoid this additional
complication. Kernel methods can perform event selection in more complicated en-
vironments than is possible with the primitive discriminant analysis. For the better
performance the possibility of interpreting the results is diminished, however.

Artificial neural networks are, due to the enormous number of free parameters,
able to solve any problem in an optimal way. They suffer from the disadvantage
that the user usually has to intervene to guide the minimizing process to a correct
minimum. The user has to check and improve the result by changing the network
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structure, the learning constant and the start values of the weights. New program
packages are able to partially take over these tasks. ANN are able to separate classes
in very involved situations and extract very rare events from large samples.

Decision trees are a very attractive alternative to ANN. One should use boosted
decision trees, random forest or apply bagging though, since those discriminate much
better than simple trees. The advantage of simple trees is that they are very trans-
parent and that they can be displayed graphically. Like ANN, decision trees can,
with some modifications, also be applied to categorical variables.

At present, there is lack of theoretical framework and experimental information
on some of the new developments. We would like to know to what extent the different
classifiers are equivalent and which classifier should be selected in a given situation.
There will certainly be answers to these questions in the near future.
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Auxiliary Methods

12.1 Probability Density Estimation

12.1.1 Introduction

In the subsection function approximation we have considered measurements y at
fixed locations x where y due to statistical fluctuations deviates from an unknown
function. Now we start from a sample {x1, . . . ,xN} which follow an unknown sta-
tistical distribution which we want to approximate. We have to estimate the density
f̂(x) at the location x from the frequency of observations xi in the vicinity of x. The
corresponding technique, probability density estimation (PDE), is strongly correlated
with function approximation. Both problems are often treated together under the ti-
tle smoothing methods. In this section we discuss only non-parametric approaches; a
parametric method, where parameters are adjusted to approximate Gaussian like dis-
tributions has been described in Sect. 11.2.2. We will essentially present results and
omit the derivations. For details the reader has to consult the specialized literature.

PDE serves mainly to visualize an empirical frequency distribution. Visualization
of data is an important tool of scientific research. It can lead to new discoveries
and often constitutes the basis of experimental decisions. PDE also helps to classify
data and sometimes the density which has been estimated from some ancillary mea-
surement is used in subsequent Monte Carlo simulations of experiments. However,
to solve certain problems like the estimation of moments and other characteristic
properties of a distribution, it is preferable to deal directly with the sample instead
of performing a PDE. This path is followed by the bootstrap method which we will
discuss in a subsequent section. When we have some knowledge about the shape of
a distribution, then PDE can improve the precision of the bootstrap estimates. For
instance there may exist good reasons to assume that the distribution has only one
maximum and/or it may be known that the random variable is restricted to a certain
region with known boundary.

The PDE f̂(x) of the true density f(x) is obtained by a smoothing procedure
applied to the discrete experimental distribution of observations. This means, that
some kind of averaging is done which introduces a bias which is especially large if
the distribution f(x) varies strongly in the vicinity of x.

The simplest and most common way to measure the quality of the PDE is to
evaluate the integrated square error (ISE) L2
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L2 =

∫ ∞

−∞

[
f̂(x)− f(x)

]2
dx

and its expectation value E(L2), the mean integrated square error (MISE )1. The

mean quadratic difference E(
[
f̂(x)− f(x)

]2
) has two components, according to the

usual decomposition:

E

([
f̂(x)− f(x)

]2)
= var

(
f̂(x)

)
+ bias2

(
f̂(x)

)
.

The first term, the variance, caused by statistical fluctuations, decreases with in-
creasing smoothing and the second term, the bias squared, decreases with decreasing
smoothing. The challenge is to find the optimal balance between these two contribu-
tions.

We will give a short introduction to PDE mainly restricted to one-dimensional
distributions. The generalization of the simpler methods to multi-dimensional distri-
butions is straight forward but for the more sophisticated ones this is more involved.
A rather complete and comprehensive overview can be found in the books by J.S.
Simonoff [85], A.W. Bowman and A. Azzalini [86], D. W. Scott [87] and W. Härdle
et al. [89]. A summary is presented in an article by D. W. Scott and S. R. Sain [88].

12.1.2 Fixed Interval Methods

Histogram Approximation

The simplest and most popular method of density estimation is histogramming with
fixed bin width. For the number νk of N events falling into bin Bk and bin width h
the estimated density is

f̂(x) =
νk
Nh

for x ∈ Bk .

It is easy to construct, transparent, does not contain hidden parameters which often
are included in other more sophisticated methods and indicates quite well which
distributions are compatible with the data. However it has, as we have repeatedly
stated, the disadvantage of the rather arbitrary binning and its discontinuity. Fine
binning provides a good resolution of structures and low bias but has to be paid
for by large fluctuations. Histograms with wide bins have the advantage of small
statistical errors but are biased. A sensible choice for the bin width h is derived
from the requirement that the mean squared integrated error should be as small as
possible. The mean integrated square error, MISE,for a histogram is

MISE =
1

Nh
+

1

12
h2
∫
f ′(x)2dx+O

(
h4

N

)
. (12.1)

The integral
∫
f ′(x)2dx = R(f ′) is called roughness. For a normal density with

variance σ2 it is R = (4
√
πσ3)−1. Neglecting the small terms (h→ 0) we can derive

[88] the optimal bin width h∗ and the corresponding asymptotic mean integrated
square error AMISE:

1The estimate f̂(x) is a function of the set {x1, . . . ,xN} of random variables and thus
also a random variable.
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Fig. 12.1. Experimental signal with some background (left) and background reference
sample with two times longer exposure time (right). The fitted signal and background
functions are indicated.

h∗ ≈
[

6

N
∫
f ′(x)2dx

]1/3
≈ 3.5σN−1/3, (12.2)

AMISE ≈
[
9
∫
f ′(x)2dx

16N2

]1/3
≈ 0.43N−2/3/σ.

The second part of relation (12.2) holds for a Gaussian p.d.f. with variance σ2

and is a reasonable approximation for a distribution with typical σ. Even though the
derivative f ′ and the bandwidth2 σ are not precisely known, they can be estimated
from the data. As expected, the optimal bin width is proportional to the band width,
whereas its N−1/3 dependence on the sample size N is less obvious.

In d dimensions similar relations hold. Of course the N -dependence has to be
modified. For d-dimensional cubical bins the optimal bin width scales with N−1/(d+2)

and the mean square error scales with N−2/(d+2).

Example 142. PDE of a background distribution and signal fit

We analyze a signal sample containing a Gaussian signal N(x|µ, σ) with un-
known location and scale parameters µ, σ containing some unknown back-
ground. In addition, we dispose of a reference sample containing only back-
ground. From the data taking times and fluxes we know that the background
in the signal sample should nominally be half (r = 0.5) of that in the refer-
ence sample. In Fig. 12.1 we show the two experimental distributions. From
the shape of the experimental background distribution we estimate the slope

2Contrary to what is understood usually under bandwidth, in PDE this term is used to
describe the typical width of structures. For a Gaussian it equals the standard deviation.
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y′ = 0.05 of its p.d.f. h(x), and, using relation 12.2, find a bin width of 2
units. The heights β1, β2, β3, β4 of the 4 equally wide bins of the histogram
distribution are left as free parameters in the fit. Because of the normaliza-
tion, we have β4 = 1 − β1 − β2 − β3. Further parameters are the expected
rate of background events in the reference sample ρ and the fraction φ of true
signal events in the signal sample. These 7 parameters are to be determined
in a likelihood fit.

The log-likelihood function lnL = lnL1 + lnL2 + lnL3 + lnL4 comprises 4
terms, with:

1. L1, the likelihood of the ns events in the signal sample (superposition of
signal and background distribution):

lnL1(µ, σ, φ, β1, β2, β3) =

ns∑

i=1

ln [φN(xi|µ, σ) + (1 − φ)h(xi|β1, β2, β3)] .

2. L2, the likelihood of the nr events of the reference sample (background
distribution):

lnL2(β1, β2, β3) =

nr∑

i=1

lnh(xi|β1, β2, β3) .

3. L3, the likelihood to observe nr reference events where ρ are expected
(Poisson distribution):

lnL3 = −ρ+ nr ln ρ− lnnr! .

4. L4, the likelihood to get ns(1−φ) background events3 in the signal sample
where rρ are expected (Poisson distribution):

lnL4 = −rρ+ ns(1− φ) ln(rρ) − ln {[ns(1− φ)]!} .

The results of the fit are indicated in the Fig. 12.1 which is a histogram of the
observed events.The MLE of the interesting parameters are µ = −0.18±0.32,
σ = 0.85 ± 0.22, φ = 0.60+0.05

−0.09, the correlation coefficients are of the order
of 0.3. We abstain from showing the full error matrix. The samples have
been generated with the nominal parameter values µ0 = 0, σ0 = 1, φ = 0.6.
To check the influence of the background parametrization, we repeat the
fit with only two bins. The results change very little to µ = −0.12 ± 0.34,
σ = 0.85± 0.22, φ = 0.57+0.07

−0.11. When we represent the background p.d.f. by
a polygon (see next chapter) instead of a histogram, the result again remains
stable. We then get µ = −0.20± 0.30, σ = 0.82 ± 0.21, φ = 0.60+0.05

−0.09. The
method which we have applied in the present example is more precise than
that of Sect. 6.5.10 but depends to a certain degree on the presumed shape
of the background distribution.

Linear and Higher Order Parabolic Approximation

In the previous chapter we had adjusted spline functions to measurements with errors.
Similarly, we can use them to approximate the probability density. We will consider

3The fit will favor a natural number. It is recommended to replace here n! by Γ (n+ 1)
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here only the linear approximation by a polygon but it is obvious that the method can
be extended to higher order parabolic functions. The discontinuity corresponding to
the steps between bins is avoided when we transform the histogram into a polygon.
We just have to connect the points corresponding to the histogram functions at
the center of the bins. It can be shown that this reduces the MISE considerably,
especially for large samples. The optimum bin width in the one-dimensional case now
depends on the average second derivative f ′′ of the p.d.f. and is much wider than for
a histogram and the error is smaller [88] than in the corresponding histogram case:

h∗ ≈ 1.6

[
1

N
∫

f ′′(x)2dx

]1/5
,

MISE∗ ≈ 0.5

[∫
f ′′(x)2dx

N4

]1/5
.

In d dimensions the optimal bin width for polygon bins scales with N−1/(d+4)

and the mean square error scales with N−4/(d+4).

12.1.3 Fixed Number and Fixed Volume Methods

To estimate the density at a point x an obvious procedure is to divide the number
k of observations in the neighborhood of x by the volume V which they occupy,
f̂(x) = k/V . Either we can fix k and compute the corresponding volume V (x) or we
can choose V and count the number of observations contained in that volume. The
quadratic uncertainty is σ2 = k+bias2, hence the former emphasizes fixed statistical
uncertainty and the latter rather aims at small variations of the bias.

The k-nearest neighbor method avoids large fluctuations in regions where the
density is low. We obtain a constant statistical error if we estimate the density from
the spherical volume V taken by the k- nearest neighbors of point x:

f̂(x) =
k

Vk(x)
. (12.3)

As many other PDE methods, the k-nearest neighbor method is problematic in
regions with large curvature of f and at boundaries of x.

Instead of fixing the number of observations k in relation (12.3) we can fix the
volume V and determine k. Strong variations of the bias in the k-nearest neighbor
method are somewhat reduced but both methods suffer from the same deficiencies,
the boundary bias and a loss of precision due to the sharp cut-off due to either fixing
k or V . Furthermore it is not guaranteed that the estimated density is normalized
to one. Hence a renormalization has to be performed.

The main advantage of fixed number and fixed volume methods is their simplicity.

12.1.4 Kernel Methods

We now generalize the fixed volume method and replace (12.3) by

f̂(x) =
1

NV

∑
K(x− xi)
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where the kernel K is equal to 1 if xi is inside the sphere of volume V centered
at x and 0 otherwise. Obviously, smooth kernel functions are more attractive than
the uniform kernel of the fixed volume method. An obvious candidate for the kernel
function K(u) in the one-dimensional case is the Gaussian ∝ exp(−u2/2h2). A very
popular candidate is also the parabolically shaped Epanechnikov kernel ∝ (1−c2u2),
for |cu| ≤ 1, and else zero. Here c is a scaling constant to be adjusted to the band-
width of f . Under very general conditions the Epanechnikov kernel minimizes the
asymptotic mean integrated square error AMISE obtained in the limit where the ef-
fective binwidth tends to zero, but other kernels perform nearly as well. The AMISE
of the Gaussian kernel is only 5% larger and that of the uniform kernel by 8% [85].

The optimal bandwidth of the kernel function obviously depends on the true
density. For example for a Gaussian true density f(x) with variance σ2 the optimal
bandwidth h of a Gaussian kernel is hG ≈ 1.06σN−1/5 [85] and the corresponding
constant c of the Epanechnikov kernel is c ≈ 2.2/(2hG). In practice, we will have
to replace the Gaussian σ in the relation for h0 by some estimate depending on the
structure of the observed data. AMISE of the kernel PDE is converging at the rate
N−4/5 while this rate was only N−2/3 for the histogram.

12.1.5 Problems and Discussion

The simple PDE methods sketched above suffer from several problems, some of which
are unavoidable:

1. The boundary bias: When the variable x is bounded, say x < a, then f̂(x) is
biased downwards unless f(a) = 0 in case the averaging process includes the region
x > a where we have no data. When the averaging is restricted to the region x < a,
the bias is positive (negative) for a distribution decreasing (increasing) towards the
boundary. In both cases the size of the bias can be estimated and corrected for, using
so-called boundary kernels.

2. Many smoothing methods do not guarantee normalization of the estimated
probability density. While this effect can be corrected for easily by renormalizing f̂ ,
it indicates some problem of the method.

3. Fixed bandwidth methods over-smooth in regions where the density is high and
tend to produce fake bumps in regions where the density is low. Variable bandwidth
kernels are able to avoid this effect partially. Their bandwidth is chosen inversely
proportional to the square root of the density, h(xi) = h0f(xi)

−1/2. Since the true
density is not known, f must be replaced by a first estimate obtained for instance
with a fixed bandwidth kernel.

4. Kernel smoothing corresponds to a convolution of the discrete data distribution
with a smearing function and thus unavoidably tends to flatten peaks and to fill-up
valleys. This is especially pronounced where the distribution shows strong structure,
that is where the second derivative f ′′ is large. Convolution and thus also PDE
implies a loss of some information contained in the original data. This defect may
be acceptable if we gain sufficiently due to knowledge about f that we put into the
smoothing program. In the simplest case this is only the fact that the distribution is
continuous and differentiable but in some situations also the asymptotic behavior of
f may be given, or we may know that it is unimodal. Then we will try to implement
this information into the smoothing method.
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Fig. 12.2. Estimated probability density. Left hand: Nearest neighbor, center: Gaussian
kernel, right hand: Polygon.

Some of the remedies for the difficulties mentioned above use estimates of f and its
derivatives. Thus iterative procedures seem to be the solution. However, the iteration
process usually does not converge and thus has to be supervised and stopped before
artifacts appear.

In Fig. 12.2 three simple smoothing methods are compared. A sample of 1000
events has been generated from the function shown as a dashed curve in the figure.
A k-nearest neighbor approximation of the p.d.f. of a sample is shown in the left
hand graph of Fig. 12.2. The value of k chosen was 100 which is too small to produce
enough smoothing but too large to follow the distribution at the left hand border.
The result of the PDE with a Gaussian kernel with fixed width is presented in the
central graph and a polygon approximation is shown in the right-hand graph. All
three graphs show the typical defects of simple smoothing methods, broadening of
the peak and fake structures in the region where the statistics is low.

Alternatively to the standard smoothing methods, complementary approaches
often produce better results than the former. The typical smoothing problems can
partially be avoided when the p.d.f. is parameterized and adjusted to the data sample
in a likelihood fit. A simple parametrization is the superposition of normal distribu-
tions,

f(x) =
∑

αiN(x;µi,Σi) ,

with the free parameters, weights αi, mean values µi and covariance matrixes Σi.

If information about the shape of the distribution is available, more specific pa-
rameterizations which describe the asymptotic behavior can be applied. Distributions
which resemble a Gaussian should be approximated by the Gram-Charlier series (see
last paragraph of Sect. 11.2.2). If the data sample is sufficiently large and the dis-
tribution is unimodal with known asymptotic behavior the construction of the p.d.f.
from the moments as described in [74] is quite efficient.

Physicists use PDE mainly for the visualization of the data. Here, in one dimen-
sion, histogramming is the standard method. When the estimated distribution is
used to simulate an experiment, frequency polygons are to be preferred. Whenever
a useful parametrization is at hand, then PDE should be replaced by an adjustment
of the corresponding parameters in a likelihood fit. Only in rare situations it pays to
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construct complicated kernels. For a quick qualitative illustration of a distribution
off-the-shelf programs may do. For most quantitative evaluations of moments and
parameters of the unknown distribution we recommend to use the bootstrap method
which is discussed in the following section.

12.2 Resampling Techniques

12.2.1 Introduction

In the previous section we have discussed a method to construct a distribution ap-
proximately starting from a sample drawn from it. Knowing the distribution allows
us to calculate certain parameters like moments or quantiles. In most cases, how-
ever, it is preferable to determine the wanted quantities directly from the sample.
A trivial example for this approach is the estimation of the mean value and the
variance from a series of measurements as we have discussed in Chap. 4 treating
error calculation where we had used the sample mean x =

∑
xi/N and the empirical

variance s2 =
[∑

(xi − x)2
]
/(N − 1). In a similar way we can also determine higher

moments, correlations, quantiles and other statistical parameters. However, the an-
alytical derivation of the corresponding expressions is often not as simple as that of
the mean value or the variance. Here the bootstrap concept, which to a large extend
has been developed by Efron, helps. A comprehensive presentation of the method is
given in Ref. [64], which has served as bases for this section.

The name Bootstrap goes back to the famous book of Erich Raspe in which he
narrates the adventures of the lying Baron von Münchhausen. Münchhausen had
pretended to have saved himself out of a swamp by pulling himself up with his
own bootstraps4. In statistics, the expression bootstrap is used because from a small
sample the quasi complete distribution is generated. There is not quite as much lying
as in Münchhausen’s stories.

The bootstrap concept is based upon a simple idea: The sample itself replaces the
unknown distribution. The sample is the distribution from which we draw individual
observations.

As already mentioned, the bootstrap method permits us, apart from error esti-
mation, to compute p-values for significance tests and the error rate in classifications.
It relies, as will be shown in subsequent examples, on the combination of randomly
selected observations.

A subvariant of the bootstrap technique is called jackknife which is mainly used
to estimate biases from subsets of the data.

In Chap. 10 where we had evaluated the distribution of the energy test statistic in
two-sample problems, we have used another resampling technique. We had reshuffled
the elements of two partitions applying random permutations. Whereas in the boot-
strap method, elements are drawn with replacement, permutations generate samples
where every element occurs only a single time.

The reason for not using all possible permutations is simply that their number
is in most cases excessively large and a finite random sample provides sufficiently
precise results. While bootstrap techniques are used mainly to extract parameters

4In the original version he is pulling himself with his hair.
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of an unknown distribution from a single sample, randomization methods serve to
compare two or more samples taken under different conditions.

Remark: We may ask with some right whether resampling makes sense since
randomly choosing elements from a sample does not seem to be as efficient as a
systematic evaluation of the compete sample. Indeed, it should always be optimal to
evaluate the interesting parameter directly using all elements of the sample with the
same weight, either analytically or numerically; but, as in Monte Carlo simulations,
the big advantage of parameter estimation by randomly selecting elements relies
on the simplicity of the approach. Nowadays, lack of computing capacity is not a
problem and in the limit of an infinite number of drawn combinations of observations
the complete available information is exhausted.

12.2.2 Definition of Bootstrap and Simple Examples

We sort the N observations of a given data sample {x1, x2, . . . , xN} according to
their value, xi ≤ xi+1, and associate to each of them the probability 1/N . We call
this discrete distribution P0(xi) = 1/N the sample distribution. We obtain a boot-
strap sample {x∗1, x∗2, . . . , x∗M} by generating M observations following P0. Bootstrap
observations are marked with a star "∗". A bootstrap sample may contain the same
observation several times. The evaluation of interesting quantities follows closely
that which is used in Monte Carlo simulations. The p.d.f. used for event generation
in Monte Carlo procedures is replaced by the sample distribution.

Example 143. Bootstrap evaluation of the accuracy of the estimated mean
value of a distribution

We dispose already of an efficient method to estimate the variance. Here
we present an alternative approach in order to introduce and illustrate the
bootstrap method. Given be the sample of N = 10 observations {0.83, 0.79,
0.31, 0.09, 0.72, 2.31, 0.11, 0.32, 1.11, 0.75}. The estimate of the mean value
is obviously µ̂ = x =

∑
xi/N = 0.74. We have also derived in Sect. 3.2 a

formula to estimate the uncertainty, δµ = s/
√
N − 1 = 0.21. When we treat

the sample as representative of the distribution, we are able to produce an
empirical distribution of the mean value: We draw from the complete sample
sequentially N observations (drawing with replacement) and get for instance
the bootstrap sample {0.72, 0.32, 0.79, 0.32, 0.11, 2.31, 0.83, 0.83, 0.72, 1.11}.
We compute the sample mean and repeat this procedure B times and obtain
in this way B mean values µ∗

k. The number of bootstrap replicates should
be large compared to N , for example B typically equal to 100 or 1000 for
N = 10. From the distribution of the values µb, b = 1, . . . , B we can compute
again the mean value µ̂∗ and its uncertainty δµ:

µ̂∗ =
1

B

∑
µ∗
b ,

δ∗2µ =
1

B

∑
(µ∗

b − µ̂∗)2 .

Fig. 12.3 shows the sample distribution corresponding to the 10 observations
and the bootstrap distribution of the mean values. The bootstrap estimates
µ̂∗ = 0.74, δ∗µ = 0.19, agree reasonably well with the directly obtained val-
ues. The larger value of δµ compared to δ∗µ is due to the bias correction in
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Fig. 12.3. Sample distribution (left) and distribution of bootstrap sample mean values
(right).

its evaluation. The bootstrap values correspond to the maximum likelihood
estimates. The distribution of Fig. 12.3 contains further information. We re-
alize that the distribution is asymmetric, the reason being that the sample
was drawn from an exponential. We could, for example, also derive the skew-
ness or the frequency that the mean value exceeds 1.0 from the bootstrap
distribution.

While we know the exact solution for the estimation of the mean value and
mean squared error of an arbitrary function u(x), it is difficult to compute the same
quantities for more complicated functions like the median or for correlations.

Example 144. Error of mean distance of stochastically distributed points in
a square

Fig. 12.4 shows 20 points drawn from an unknown p.d.f. distributed in a
square. The mean distance is 0.55. We determine the standard deviation for
this quantity from 104 bootstrap samples and obtain the value 0.10. This
example is rather abstract and has been chosen because it is simple and
demonstrates that the bootstrap method is able to solve problems which are
hardly accessible with other methods.

Example 145. Acceptance of weighted events

We resume an example from Sect. 4.3.6 where we had presented an analytic
solution. Now we propose a simpler solution: We dispose of a sample of N
Monte Carlo generated events with weights wi, i = 1, . . . , N , where we know
for each of them whether it is accepted, εi = 1, or not, εi = 0. The mean
acceptance is ε =

∑
wiεi/

∑
wi. Now we draw from the sample randomly B

new bootstrap samples {(w∗
1 , ε

∗
1), . . . , (w

∗
N , ε

∗
N)} and compute in each case ε∗.

The empirical variance σ2of the distribution of ε∗ is the bootstrap estimate
of the error squared, δ2ε = σ2, of the acceptance ε.
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Fig. 12.4. Distribution of points in a unit square. The right hand graph shows the bootstrap
distribution of the mean distance of the points.

12.2.3 Precision of the Error Estimate

Usually we are not interested in the uncertainty σδ of the error estimate δ. This is a
higher order effect, yet we want to know how many bootstrap samples are required
to avoid additional error contributions related to the method.

The standard deviation has two components, σt, which depends on the shape of
the true distribution and the sample sizeN , and, σB, which depends on the number B
of bootstrap replicates. Since the two causes are independent and of purely statistical
nature, we can put

σ2
δ = σ2

t + σ2
B ,

σ2
δ

δ2
=
c1
N

+
c2
B
.

We can only influence the second term, N being given. Obviously it is sufficient
to choose the number B of bootstrap replicates large compared to the number N
of experimental observations. For a normal distribution the two constants c1, c2 are
both equal to 1/2. (A derivation is given in [64].) For distributions with long tails,
i.e. large excess γ2, they are larger. (Remember: γ2 = 0 for the normal distribution.)
The value of c2 is in the general case given by [64]:

c2 =
γ2 + 2

4
.

An estimate for γ2 can be derived from the empirical fourth moment of the
sample. Since error estimates are rather crude anyway, we are satisfied with the
choice B ≫ N .

12.2.4 Confidence Limits

To compute confidence limits or the p-value of a parameter we generate its distribu-
tion from bootstrap samples. In a preceding example where we computed the mean
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distance of random points, we extract from the distribution of Fig. 12.4 that the
probability to find a distance less than 0.4 is approximately equal to 10%. Exact
confidence intervals can only be derived from the exact distribution.

12.2.5 Precision of Classifiers

Classifiers like decision trees and ANNs usually subdivide the learning sample in two
parts, one part is used to train the classifier and a smaller part is reserved to test the
classifier. The precision can be enhanced considerably by using bootstrap samples
for both training and testing.

12.2.6 Random Permutations

In Chap. 10 we have treated the two-sample problem: “Do two experimental dis-
tributions belong to the same population?” In one of the tests, the energy test, we
had used permutations of the observations to determine the distribution of the test
quantity. The same method can be applied to an arbitrary test quantity which is
able to discriminate between samples.

Example 146. Two-sample test with a decision tree

Let us assume that we want to test whether the two samples {x1, . . . ,xN1},
{x1, . . . ,xN2} of sizes N1 and N2 belong to the same population. This is our
null hypothesis. Instead of using one of the established two-sample methods
we may train a decision tree to separate the two samples. As a test quantity
serves the number of misclassifications Ñ which of course is smaller than
(N1 + N2)/2, half the size of the total sample. Now we combine the two
samples, draw from the combined sample two new random samples of sizes
N1 and N2, train again a decision tree to identify for each element the sample
index and count the number of misclassifications. We repeat this procedure
many, say 1000, times and obtain this way the distribution of the test statistic
under the null hypothesis. The fraction of cases where the random selection
yields a smaller number of misclassifications than the original samples is
equal to the p-value of the null hypothesis.

Instead of a decision tree we can use any other classifier, for instance a ANN.
The corresponding tests are potentially very powerful but also quite involved. Even
with nowadays computer facilities, training of some 1000 decision trees or artificial
neural nets is quite an effort.

12.2.7 Jackknife and Bias Correction

Jackknife is mainly used for bias removal. It is assumed that in first order the bias
decreases withN , i.e. that it is proportional to 1/N . How jackknife works, is explained
in the following simple example where we know the exact result from Chap. 3.

When we estimate the mean squared error of a quantity x from a sample of size
N , using the formula

δ2N =
∑

(xi − x)2/N
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then δ2N is biased. We assume that the expected bias decreases linearly with N . Thus
it is possible to estimate the bias by changing N . We remove one observation at a
time and compute each time the mean squared error δ2N−1,i and average the results:

δ2N−1 =
1

N

N∑

i=1

δ2N−1,i .

A linear dependence of the average bias bN on 1/N implies

bNN = bN−1(N − 1) (12.4)[
E(δ2N )− σ2

]
N =

[
E(δ2N−1)− σ2

]
(N − 1) ,

σ2 = NE(δ2N )− (N − 1)E(δ2N−1) .

Thus an improved estimate is δ2c = Nδ2N − (N − 1)δ2N−1.

Inserting the known expectation values (see Chap. 3),

E(δ2N ) = σ2N − 1

N
, E(δ2N−1) = σ2N − 2

N − 1
,

we confirm the bias corrected result E(δ2c ) = σ2.

This result can be generalized to any estimate t with a dominantly linear bias,
b ∝ 1/N .

tc = NtN − (N − 1)tN−1

The remaining bias is zero, of order 1/N2, or of higher order.
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Appendix

13.1 Large Number Theorems

13.1.1 The Chebyshev Inequality and the Law of Large Numbers

For a probability density f(x) with expected value µ, finite variance σ and arbitrary
given positive δ, the following inequality, known as Chebyshev inequality, is valid:

P{|x− µ| ≥ δ} ≤ σ2

δ2
. (13.1)

This very general theorem says that a given, fixed deviation from the expected
value becomes less probable when the variance becomes smaller. It is also valid for
discrete distributions.

To prove the inequality, we use the definition

PI ≡ P{x ∈ I} =

∫

I

f(x)dx ,

where the domain of integration I is given by 1 ≤ |x − µ|/δ. The assertion follows
from the following inequalities for the integrals:

∫

I

f(x)dx ≤
∫

I

(
x− µ

δ

)2

f(x)dx ≤
∫ ∞

−∞

(
x− µ

δ

)2

f(x)dx = σ2/δ2 .

Applying (13.1) to the arithmetic mean x from N independent identical distributed
random variables x1, . . . , xN results in one of the so-called laws of large numbers:

P{|x− 〈x〉| ≥ δ} ≤ var(x)/(Nδ2) , (13.2)

with the relations 〈x〉 = 〈x〉 , var(x) = var(x)/N obtained in Sects. 3.2.2 and 3.2.3.
The right-hand side disappears for N → ∞, thus in this limit the probability to
observe an arithmetic mean value outside an arbitrary interval centered at the ex-
pected value approaches zero. We talk about stochastic convergence or convergence
in probability, here of the arithmetic mean against the expected value.

We now apply (13.2) to the indicator function II(x) = 1 for x ∈ I, else 0. The
sample mean II =

∑ II(xi)/N is the observed relative frequency of events x ∈ I in
the sample. The expected value and the variance are
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〈II〉 =
∫

II(x)f(x)dx

= PI ,

var(II) =
∫

I2
I (x)f(x)dx − 〈II〉2

= PI(1− PI) ≤ 1/4 ,

where, as above, PI is the probability P {x ∈ I} to find x in the set I. When we
insert these results into (13.2), we obtain

P{|II − PI | ≥ δ} ≤ 1/(4Nδ2) . (13.3)

The relative frequency of events of a certain type in a sample converges with increas-
ing N stochastically to the probability to observe an event of that type1.

13.1.2 The Central Limit Theorem

The central limit theorem states that the distribution of the sample mean x,

x =
1

N

N∑

i=1

xi ,

of N i.i.d. variables xi with finite variance σ2 in the limit N → ∞ will approach a
normal distribution with variance σ2/N independent of the form of the distribution
f(x). The following proof assumes that its characteristic function exists.

To simplify the notation, we transform the variable to y = (x−µ)/(
√
Nσ), where

µ is the mean of x. The characteristic function of a p.d.f. with mean zero and variance
1/N and thus also the p.d.f. of y is of the form

φ(t) = 1− t2

2N
+ c

t3

N3/2
+ · · ·

The characteristic function of the sum z =
N∑

i=1

yi is given by the product

φz =

[
1− t2

2N
+ c

t3

N3/2
+ · · ·

]N

which in the limit N → ∞, where only the first two terms survive, approaches the
characteristic function of the standard normal distribution N(0, 1):

lim
N→∞

φz = lim
N→∞

[
1− t2

2N

]N
= e−t2/2 .

It can be shown that the convergence of characteristic functions implies the conver-
gence of the distributions. The distribution of x for large N is then approximately

f(x) ≈
√
N√
2πσ

exp

[
−N(x− µ)2

σ2

]
.

Remark: The law of large numbers and the central limit theorem can be general-
ized to sums of independent but not identically distributed variates. The convergence
is relatively fast when the variances of all variates are of similar size.

1This theorem was derived by the Dutch-Swiss mathematician Jakob I. Bernoulli (1654-
1705).
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13.2 Consistency, Bias and Efficiency of Estimators

The following estimator properties are essential in frequentist statistics. We will
discuss their relevance in Appendix 13.6.

Throughout this chapter we assume that samples consist of N i.i.d. variables xi,
the true parameter value is θ0, estimates are θ̂ or t.

13.2.1 Consistency

We expect from an useful estimator that it becomes more accurate with increasing
size of the sample, i.e. larger deviations from the true value should become more and
more improbable.

A sequence of estimators tN of a parameter θ is called consistent, if their p.d.f.s
for N → ∞ are shrinking towards a central value equal to the true parameter value
θ0, or, expressing it mathematically, if

lim
N→∞

P{|tN − θ0| > ε} = 0 (13.4)

is valid for arbitrary ε. A sufficient condition for consistency which can be easier
checked than (13.4), is the combination of the two requirements

lim
N→∞

〈tN 〉 = θ0 , lim
N→∞

var(tN ) = 0 ,

where of course the existence of mean value and variance for the estimator tN has
to be assumed.

For instance, as implied by the law of large numbers, the sample moments

tm =
1

N

N∑

i=1

xmi

are consistent estimators for the respectivem-th moments µm of f(x) if this moments
exist.

13.2.2 Bias of Estimates

The bias of an estimate has been already introduced in Sect. 7.1.4: An estimate tN
for θ is unbiased if already for finite N (eventually N > N0) and all parameter values
considered, the estimator satisfies the condition

〈tN 〉 = θ .

The bias of an estimate is defined as:

b = 〈tN 〉 − θ .

Obviously, consistent estimators are asymptotically unbiased:

lim
N→∞

b(N) = 0 .

The bias of a consistent estimator can be removed without affecting the consis-
tency by multiplying the estimate with a factor like (N+a)/(N+b) which approaches
unity for N → ∞.
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13.2.3 Efficiency

An important characteristics is of course the accuracy of the statistical estimate. A
useful measure for accuracy is the mean square deviation 〈(t− θ0)

2〉 of the estimate
from the true value of the parameter. According to (3.11) it is related to the variance
of the estimator and the bias by

〈
(t− θ0)

2
〉
= var(t) + b2 . (13.5)

Definition: An estimator t is (asymptotically) efficient for the parameter θ if for
all permitted parameter values it fulfils the following conditions for N → ∞:

1.
√
N(t − θ) approaches a normal distribution of constant width and mean equal

to zero.

2. var(t) ≤ var(t′) for any other estimator t′ which satisfies condition 1.

In other words, an efficient estimate is asymptotically normally distributed and
has minimal variance. According to condition 1, its variance decreases with 1/N . An
efficient estimator therefore reaches the same accuracy as a competing one with a
smaller sample size N , and is therefore economically superior. Not in all situations
an efficient estimator exists.

Example 147. Efficiency of different estimates of the location parameter of a
Gaussian [77]

Let us compare three methods to estimate the expected value µ of a Gaussian
N(x|µ, σ) with given width σ from a sample {xi} , i = 1, . . . , N . For large N
we obtain for var(t):

Method 1: sample mean σ2/N
Method 2: sample median σ2/N · π/2
Method 3: (xmin + xmax)/2 σ2/N ·Nπ2/(12 lnN)

Obviously methods 2 and 3 are not efficient. Especially the third method,
taking the mean of the two extremal values found in the sample, performs
badly here. For other distributions, different results will be found. For the
rather exotic two-sided exponential distribution (an exponential distribution
of the absolute value of the variate, also called Laplace distribution) method
2 would be efficient and equal to the MLE. For a uniform distribution the
estimator of method 3 would be efficient and also equal to the MLE.

While it is of interest to find the estimator which provides the smallest variance, it
is not obvious how we could prove this property, since a comparison with all thinkable
methods is of course impossible. Here a useful tool is the Cramer–Rao inequality. It
provides a lower bound of the variance of an estimator. If we reach this minimum,
we can be sure that the optimal accuracy is obtained.

The Cramer–Rao inequality states:

var(t) ≥ [1 + (db/dθ)]2

N〈(∂ ln f/∂θ)2〉 . (13.6)

The denominator of the right-hand side is also called, after R. A. Fisher, the infor-
mation2 about the parameter θ from a sample of size N of i.i.d. variates.

2This is a special use of the word information as a technical term.
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To prove this inequality, we define the random variable y =
∑
yi with

yi =
∂ ln fi
∂θ

, fi ≡ f(xi|θ) . (13.7)

It has the expected value

〈yi〉 =
∫

1

fi

∂fi
∂θ

fi dxi

=

∫
∂fi
∂θ

dxi

=
∂

∂θ

∫
fi dxi

=
∂

∂θ
1 = 0 . (13.8)

Because of the independence of the yi we have 〈yiyj〉 = 〈yi〉〈yj〉 = 0 and

var(y) = N〈y2i 〉 = N

〈(
∂ ln f

∂θ

)2
〉
. (13.9)

Using the definition L =
∏
fi, we find for cov(ty) = 〈(t− 〈t〉)(y − 〈y〉)〉:

cov(ty) =
∫
t
∂ lnL

∂θ
L dx1 · · ·dxN

=

∫
t
∂

∂θ
L dx1 · · ·dxN

=
∂

∂θ
〈t〉

= 1 +
db

dθ
. (13.10)

From the Cauchy–Schwarz inequality

[cov(ty)]2 ≤ var(t)var(y)

and (13.9), (13.10) follows (13.6).

The equality sign in (13.6) is valid if and only if the two factors t, y in the
covariance are proportional to each other. In this case t is called a Minimum Variance
Bound (MVB) estimator. It can be shown to be also minimal sufficient.

In most of the literature efficiency is defined by the stronger condition: An esti-
mator is called efficient, if it is bias-free and if it satisfies the MVB.

13.3 Properties of the Maximum Likelihood Estimator

13.3.1 Consistency

The maximum likelihood estimator (MLE) is consistent under mild assumptions.

To prove this, we consider the expected value of
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lnL(θ|x) =
N∑

i=1

ln f(xi|θ) (13.11)

which is to be calculated by integration over the variables3 x using the true p.d.f.
(with the true parameter θ0). First we prove the inequality

〈lnL(θ|x)〉 < 〈lnL(θ0|x)〉 , (13.12)

for θ 6= θ0: Since the logarithm is a strongly convex function, there is always
〈ln(. . .)〉 < ln〈(. . .)〉, hence

〈
ln

L(θ|x)
L(θ0|x)

〉
< ln

〈
L(θ|x)
L(θ0|x)

〉
= ln

∫
L(θ|x)
L(θ0|x)

L(θ0|x)dx = ln 1 = 0 .

In the last step we used
∫
L(θ|x)dx =

∫ ∏
f(xi|θ)dx1 · · · dxN = 1 .

Since lnL(θ|x)/N =
∑

ln f(xi|θ)/N is an arithmetic sample mean which, ac-
cording to the law of large numbers (13.2), converges stochastically to the expected
value for N → ∞, we have also (in the sense of stochastic convergence)

lnL(θ|x)/N → 〈ln f(x|θ)〉 =
∑

〈ln f(xi|θ)〉 /N = 〈lnL(θ|x)〉 /N ,

and from (13.12)

lim
N→∞

P{lnL(θ|x) < lnL(θ0|x)} = 1 , θ 6= θ0 . (13.13)

On the other hand, the MLE θ̂ is defined by its extremal condition

lnL(θ̂|x) ≥ lnL(θ0|x) .

A contradiction to (13.13) can be avoided only, if also

lim
N→∞

P{|θ̂ − θ0| < ε} = 1

is valid. This means consistency of the MLE.

13.3.2 Efficiency

Since the MLE is consistent, it is unbiased asymptotically for N → ∞. Under certain
assumptions in addition to the usually required regularity4 the MLE is also efficient
asymptotically.

Proof :

3We keep the form of the argument list of L, although now x is not considered as fixed
to the experimentally sampled values, but as a random vector with given p.d.f..

4The boundaries of the domain of x must not depend on θ and the maximum of L should
not be reached at the boundary of the range of θ.
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With the notations of the last paragraph with L =
∏
fi and using (13.8), the

expected value and variance of y =
∑
yi = ∂ lnL/∂θ are given by the following

expressions:

〈y〉 =
∫
∂ lnL

∂θ
L dx = 0 , (13.14)

σ2
y = var(y) =

〈(
∂ lnL

∂θ

)2
〉

= −
〈
∂2

∂θ2
lnL

〉
. (13.15)

The last relation follows after further differentiation of (13.14) and from the relation
∫
∂2 lnL

∂θ2
L dx = −

∫
∂ lnL

∂θ

∂L

∂θ
dx = −

∫
∂ lnL

∂θ

∂ lnL

∂θ
L dx .

From the Taylor expansion of ∂ lnL/∂θ|θ=θ̂ which is zero by definition and with
(13.15) we find

0 =
∂ lnL

∂θ
|θ=θ̂ ≈ ∂ lnL

∂θ
|θ=θ0 + (θ̂ − θ0)

∂2 lnL

∂θ2
|θ=θ0

≈ y − (θ̂ − θ0)σ
2
y , (13.16)

where the consistency of the MLE guaranties the validity of this approximation in
the sense of stochastic convergence. Following the central limit theorem, y/σy being
the sum of i.i.d. variables, is asymptotically normally distributed with mean zero and
variance unity. The same is then true for (θ̂ − θ0)σy, i.e. θ̂ follows asymptotically a
normal distribution with mean θ0 and asymptotically vanishing variance 1/σ2

y ∼ 1/N ,
as seen from (13.9).

13.3.3 Asymptotic Form of the Likelihood Function

A similar result as derived in the last paragraph for the p.d.f. of the MLE θ̂ can be
derived for the likelihood function itself.

If one considers the Taylor expansion of y = ∂ lnL/∂θ around the MLE θ̂, we get
with y(θ̂) = 0

y(θ) ≈ (θ − θ̂)y′(θ̂) . (13.17)

As discussed in the last paragraph, we have for N → ∞

y′(θ̂) → y′(θ0) → 〈y′〉 = −σ2
y = const .

Thus y′(θ̂) is independent of θ̂ and higher derivatives disappear. After integration of
(13.17) over θ we obtain a parabolic form for lnL:

lnL(θ) = lnL(θ̂)− 1

2
σ2
y(θ − θ̂)2 ,

where the width of the parabola decreases with σ−2
y ∼ 1/N (13.9). Up to the missing

normalization, the likelihood function has the same form as the distribution of the
MLE with θ̂ − θ0 replaced by θ − θ̂.
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13.3.4 Properties of the Maximum Likelihood Estimate for Small
Samples

The criterium of asymptotic efficiency, fulfilled by the MLE for large samples, is
usually extended to small samples, where the normal approximation of the sampling
distribution does not apply, in the following way: A bias-free estimate t is called a
minimum variance (MV) estimate if var(t) ≤ var(t′) for any other bias-free estimate
t′. If, moreover, the Cramer–Rao inequality (13.6) is fulfilled as an equality, one
speaks of a minimum variance bound (MVB) estimate, often also called efficient or
most efficient, estimate (not to be confused with the asymptotic efficiency which
we have considered before in Appendix 13.2). The latter, however, exists only for a
certain function τ(θ) of the parameter θ if it has a one-dimensional sufficient statistic
(see 7.1.1). It can be shown [2] that under exactly this condition the MLE for τ will
be this MVB estimate, and therefore bias-free for any N . The MLE for any non-
linear function of τ will in general be biased, but still optimal in the following sense:
if bias-corrected, it becomes an MV estimate, i.e. it will have the smallest variance
among all unbiased estimates.

Example 148. : Efficiency of small sample MLEs

The MLE for the variance σ2 of a normal distribution with known mean µ,

σ̂2 =
1

N

∑
(xi − µ)2 ,

is unbiased and efficient, reaching the MVB for all N . The MLE for σ is of
course

σ̂ =

√
σ̂2 ,

according to the relation between σ and σ2. It is biased and thus not efficient
in the sense of the above definition.

A bias-corrected estimator for σ is (see for instance [90])

σ̂corr =

√
N

2

Γ
(
N
2

)

Γ
(
N+1
2

) σ̂ .

This estimator can be shown to have the smallest variance of all unbiased
estimators, independent of the sample size N .

In the above example a one-dimensional sufficient statistic exists. If this is not
the case, the question of optimality of the MLE for small samples has – from the
frequentist point of view – no general answer.

In summary, also for finite N the MLE for a certain parameter achieves the
optimal – from the frequentist point of view – properties of an MVB estimator,
if the latter does exist. Of course these properties cannot be preserved for other
parameterizations, since variance and bias are not invariant properties.

13.4 Error of Background-Contaminated Parameter Estimates

In order to calculate the additional uncertainty of a parameter estimate due to the
presence of background, if the latter is taken from a reference experiment in the
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way described in Sect. 6.5.10, we consider the general definition of the pseudo log-
likelihood

ln L̃ =

N∑

i=1

ln f(xi|θ)− r

M∑

i=1

ln f(x′i|θ) ,

restricting ourselves at first to a single parameter θ, see (6.20). The generalization to
multi-dimensional parameter spaces is straight forward, and will be indicated later.
From ∂ ln L̃/∂θ|θ̂ = 0, we find

[
S∑

i=1

∂ ln f(x
(S)
i |θ)

∂θ
+

B∑

i=1

∂ ln f(x
(B)
i |θ)

∂θ
− r

M∑

i=1

∂ ln f(x′i|θ)
∂θ

]

θ̂

= 0 .

This formula defines the background-corrected estimate θ̂. It differs from the “ideal”
estimate θ̂(S) which would be obtained in the absence of background, i.e. by equating
to zero the first sum on the left hand side. Writing θ̂ = θ̂(S) +∆θ̂ in the first sum,
and Taylor expanding it up to the first order, we get

S∑

i=1

∂2 ln f(x
(S)
i |θ)

∂θ2
|θ̂(S)∆θ̂ +

[
B∑

i=1

∂ ln f(x
(B)
i |θ)

∂θ
− r

M∑

i=1

∂ ln f(x′i|θ)
∂θ

]

θ̂

= 0 . (13.18)

The first sum, if taken with a minus sign, is the Fisher information of the signal
sample on θ(S), and equals −1/var(θ̂(S)), asymptotically. The approximation relies
on the assumption that

∑
ln f(xi|θ) is parabolic in the region θ̂(S) ±∆θ̂. Then we

have

∆θ̂ ≈ var(θ̂(S))

[
B∑

i=1

∂ ln f(x
(B)
i |θ)

∂θ
− r

M∑

i=1

∂ ln f(x′i|θ)
∂θ

]

θ̂

. (13.19)

We take the expected value with respect to the background distribution and obtain

〈∆θ̂〉 = var(θ̂(S))〈B − rM〉〈∂ ln f(x|θ)
∂θ

|θ̂〉 .

Since 〈B − rM〉 = 0, the background correction is asymptotically bias-free.

Squaring (13.19), and writing the summands in short hand as yi, y′i, we get

(∆θ̂)2 = (var(θ̂(S)))2

[
B∑

i=1

yi − r

M∑

i=1

y′i

]2
,

[· · ·]2 =

B∑

i

B∑

j

yiyj + r2
M∑

i

M∑

j

y′iy
′
j − 2r

B∑

i

M∑

j

yiy
′
j

=
B∑

i

y2i + r2
M∑

i

y′2i +
B∑

j 6=i

yiyj + r2
M∑

j 6=i

y′iy
′
j − 2r

B∑

i

M∑

j

yiy
′
j ,

= (var(θ̂(S)))2
[
〈B + r2M〉〈(y2〉 − 〈y〉2) + 〈(B − rM)2〉〈y〉2

]
. (13.20)

In physics experiments, the event numbers M , B, S are independently fluctuating
according to Poisson distributions with expected values 〈M〉 = 〈B〉/r, and 〈S〉. Then
〈B + r2M〉 = 〈B〉(1 + r) and

〈(B − rM)2〉 = 〈B2〉+ 〈r2M2〉 − 2r〈B〉〈M〉 = 〈B〉+ r2〈M〉 = 〈B〉(1 + r) .
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Adding the contribution from the uncontaminated estimate, var(θ̂(S)), to (13.20)
leads to the final result

var(θ̂) = var(θ̂(S)) +
〈
(∆θ̂)2

〉

= var(θ̂(S)) + (1 + r)(var(θ̂(S)))2〈B〉〈y2〉 (13.21)

= var(θ̂(S)) + r(1 + r)(var(θ̂(S)))2〈M〉〈y2〉 .

But 〈M〉, the expected number of background events in both the main- and the
control sample, is not known and can only be estimated by the empirical value M .
In the same way we have to use empirical estimates for the expected values 〈y〉 and
〈y2〉, since the distribution of background events is unknown. Thus we replace

〈M〉 →M , 〈y〉 →
M∑

i=1

yi/M , 〈y2〉 →
M∑

i=1

y2i /M

where yi = ∂ ln f(x′i|θ)/∂θ. As usual in error calculation, the dependence of yi on
the true value of θ has to be approximated by a dependence on the estimated value
θ̂. Similarly, we approximate var(θ̂(S)):

−1/var(θ̂(S)) =

S∑

i=1

∂2 ln f(xi|θ)
∂θ2

|θ̂(S)

≈
[

N∑

i=1

∂2 ln f(xi|θ)
∂θ2

− r

M∑

i=1

∂2 ln f(x′i|θ)
∂θ2

]

θ̂

.

We realize from (13.21) that it is advantageous to take a large reference sam-
ple, i.e. r small. The variance 〈(∆θ̂)2〉 increases with the square of the error of the
uncontaminated sample. Via the quantity 〈y2〉 it depends also on the shape of the
background distribution.

For P -dimensional parameter space θ we see from (13.18) that the first sum
is given by the weight matrix V(S) of the estimated parameters in the absence of
background

−
P∑

l=1

S∑

i=1

∂2 ln f(x
(S)
i |θ)

∂θk∂θl
|
θ̂
(S)∆θ̂l =

P∑

l=1

(V(S))kl∆θ̂l .

Solving the linear equation system for ∆θ̂ and constructing from its components the
error matrix E, we find in close analogy to the one-dimensional case

E = C
(S)

YC
(S) ,

with C(S) = V(S)−1 being the covariance matrix of the background-free estimates
and Y defined as

Ykl = r(1 + r)〈M〉〈ykyl〉 ,
with yk = yk(xi) short hand for ∂ ln f(x′i|θ)/∂θk. As in the one-dimensional case,
the total covariance matrix of the estimated parameters is the sum

cov(θ̂k, θ̂l) = C
(S)
kl + Ekl .

The following example illustrates the error due to background contamination for
the above estimation method.
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Example 149. Parameter uncertainty for background contaminated signals

We investigate how well our asymptotic error formula works in a specific
example. To this end, we consider a Gaussian signal distribution with width
unity and mean zero over a background modeled by an exponential distri-
bution with decay constant γ = 0.2 of the form c exp[−γ(x+ 4)] where both
distributions are restricted to the range [−4, 4]. The numbers of signal events
S, background events B and reference events M follow Poisson distributions
with mean values 〈S〉 = 60, 〈B〉 = 40 and 〈M〉 = 100. This implies a cor-
rection factor r = 〈B〉/〈M〉 = 0.4 for the reference experiment. From 104

MC experiments we obtain a distribution of µ̂, with mean value and width
0.019 and 0.34, respectively. The pure signal µ̂(S) has mean and width 0.001
and 0.13 (= 1/

√
60). From our asymptotic error formula (13.21) we derive

an error of 0.31, slightly smaller than the MC result. The discrepancy will
be larger for lower statistics. It is typical for Poisson fluctuations.

13.5 Frequentist Confidence Intervals

We associate error intervals to measurements to indicate that the parameter of inter-
est has a reasonably high probability to be located inside the interval. However to
compute the probability a prior probability has to be introduced with the problem
which we have discussed in Sect. 6.1. To circumvent this problem, J. Neyman has
proposed a method to construct intervals without using prior probabilities. Unfortu-
nately, as it is often the case, one problem is traded for another one.

Neyman’s confidence intervals have the following defining property: The true pa-
rameter lies in the interval on the average in the fraction C of intervals of confidence
level C. In other words: Given a true value θ, a measurement t will include it in its
associated confidence interval [t1, t2] – “cover” it – with probability C. (Remark that
this does not necessarily imply that given a certain confidence interval the true value
is included in it with probability C.)

Traditionally chosen values for the confidence level are 68.3%, 90%, 95% – the
former corresponds to the standard error interval of the normal distribution.

Confidence intervals are constructed in the following way:

For each parameter value θ a probability interval [t1(θ), t2(θ)] is defined, such
that the probability that the observed value t of θ is located in the interval is equal
to the confidence level C:

P{t1(θ) ≤ t ≤ t2(θ)} =

∫ t2

t1

f(t|θ)dt = C . (13.22)

Of course the p.d.f. f(t|θ) or error distribution of the estimator t must be known. To
fix the interval completely, an additional condition is applied. In the univariate case,
a common procedure is to choose central intervals,

P{t < t1} = P{t > t2} =
1− C

2
.

Other conventions are minimum length and equal probability intervals defined by
f(t1) = f(t2). The confidence interval consists of those parameter values which in-
clude the measurement t̂ within their probability intervals. Somewhat simplified:
Parameter values are accepted, if the observation is compatible with them.
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Fig. 13.1. Confidence belt. The shaded area is the confidence belt, consisting of the proba-
bility intervals [t1(θ), t2(θ)] for the estimator t. The observation t = 4 leads to the confidence
interval [θmin, θmax].

The one-dimensional case is illustrated in Fig. 13.1. The pair of curves t =
t1(θ) , t = t2(θ) in the (t, θ)-plane comprise the so-called confidence belt . To the
measurement t̂ = 4 then corresponds the confidence interval [θmin, θmax] obtained
by inverting the relations t1,2(θmax,min) = t̂, i.e. the section of the straight line t = t̂
parallel to the θ axis.

The construction shown in Fig. 13.1 is not always feasible: It has to be assumed
that t1,2(θ) are monotone functions. If the curve t1(θ) has a maximum say at θ = θ0,
then the relation t1(θ) = t̂ cannot always be inverted: For t̂ > t1(θ0) the confidence
belt degenerates into a region bounded from below, while for t̂ < t1(θ0) there is no
unique solution. In the first case one usually declares a lower confidence bound as an
infinite interval bounded from below. In the second case one could construct a set of
disconnected intervals, some of which may be excluded by other arguments.

The construction of the confidence contour in the two-parameter case is illus-
trated in Fig. 13.2 where for simplicity the parameter and the observation space are
chosen such that they coincide. For each point θ1, θ2 in the parameter space we fix a
probability contour which contains a measurement of the parameters with probabil-
ity C. Those parameter points with probability contours passing through the actual
measurement θ̂1, θ̂2 are located at the confidence contour. All parameter pairs located
inside the shaded area contain the measurement in their probability region.

Frequentist statistics avoids prior probabilities. This feature, while desirable in
general, can have negative consequences if prior information exists. This is the case
if the parameter space is constrained by mathematical or physical conditions. In fre-
quentist statistics it is not possible to exclude un-physical parameter values without
introducing additional complications. Thus, for instance, a measurement could lead
for a mass to a 90% confidence interval which is situated completely in the negative
region, or for an angle to a complex angular region. The problem is mitigated some-
what by a newer method [78], but not without introducing other complications [79],
[80].
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Fig. 13.2. Confidence interval. The shaded area is the confidence region for the two-
dimensional measurement (θ̂1,θ̂2). The dashed curves indicate probability regions associated
to the locations denoted by capital letters.

13.6 Comparison of Different Inference Methods

13.6.1 A Few Examples

Before we compare the different statistical philosophies let us look at a few examples.

Example 150. Coverage: performance of magnets

A company produces magnets which have to satisfy the specified field
strength within certain tolerances. The various measurements performed by
the company are fed into a fitting procedure producing 99% confidence inter-
vals which are used to accept (if they are inside the tolerances) or reject the
product before sending it off. The client is able to repeat the measurement
with high precision and accepts only magnets within the agreed specification.
To calculate the price the company must rely on the condition that the con-
fidence interval in fact covers the true value with the presumed confidence
level.

Example 151. Bias in the measurements for a mass determination
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The mass of a particle is determined from the momenta and the angular
configuration of its decay products. The mean value of the masses from many
events is reported. The momenta of the charged particles are measured by
means of a spectrometer consisting of a magnet and tracking chambers. In
this configuration, the χ2 fit of the absolute values of track momenta and
consequently also the mass estimates are biased. This bias, which can be
shown to be positive, propagates into the mean value. Here a bias in the
momentum fit has to be corrected for, because it would lead to a systematic
shift of the resulting average of the mass values.

Example 152. Inference with known prior

We repeat an example presented in Sect. 6.2.2. In the reconstruction of a
specific, very interesting event, for instance providing experimental evidence
for a new particle, we have to infer the distance θ between the production
and decay vertices of an unstable particle produced in the reaction. From its
momentum and its known mean life we calculate its expected decay length λ.
The prior density for the actual decay length θ is π(θ) = exp(−θ/λ)/λ. The
experimental distance measurement which follows a Gaussian with standard
deviation s yields d. According to (6.2.2), the p.d.f. for the actual distance is
given by

f(θ|d) = e−(d−θ)2/(2s2)e−θ/λ

∫∞
0

e−(d−θ)2/(2s2)e−θ/λdθ
.

This is an ideal situation. We can determine the mean value and the standard
deviation or the mode of the θ distribution and an asymmetric error interval
with well defined probability content, for instance 68.3%. The confidence
level is of no interest and due to the application of the prior the estimate of
θ is biased, but this is irrelevant.

Example 153. Bias introduced by a prior

We now modify and extend our example. Instead of the decay length we
discuss the lifetime of the particle. The reasoning is the same, we can apply
the prior and determine an estimate and an error interval. We now study
N decays, to improve our knowledge of the mean lifetime τ of the particle
species. For each individual decay we use a prior with an estimate of τ as
known from previous experiments, determine each time the lifetime t̂i and the
mean value t̄ =

∑
t̂i/N from all measurements. Even though the individual

time estimates are improved by applying the prior the average t̄ is a very bad
estimate of τ because the t̂i are biased towards low values and consequently
also their mean value is shifted. (Remark that in this and in the third example
we have two types of parameters which we have to distinguish. We discuss
the effect of a bias afflicting the primary parameter set, i.e. λ, respectively
τ).

Example 154. Comparing predictions with strongly differing accuracies: Earth
quake

Two theories H1, H2 predict the time θ of an earth quake. The predictions
differ in the expected values as well as in the size of the Gaussian errors:

H1 : θ1 = (7.50± 2.25)h ,

H2 : θ2 = (50± 100)h .
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Fig. 13.3. Two hypotheses compared to an observation. The likelihood ratio supports
hypothesis 1 while the distance in units of st.dev. supports hypothesis 2.

To keep the discussion simple, we do not exclude negative times t. The earth-
quake then takes place at time t = 10 h. In Fig. 13.3 are shown both hypo-
thetical distributions in logarithmic form together with the actually observed
time. The first prediction H1 differs by more than one standard deviation
from the observation, prediction H2 by less than one standard deviation. Is
then H2 the more probable theory? Well, we cannot attribute probabilities
to the theories but the likelihood ratio R which here has the value R = 26,
strongly supports hypothesis H1. We could, however, also consider both hy-
potheses as special cases of a third general theory with the parametrization

f(t) =
25√
2πθ2

exp

[
−625(t− θ)2

2θ4

]

and now try to infer the parameter θ and its error interval. The observation
produces the likelihood function shown in the lower part of Fig. 13.3. The
usual likelihood ratio interval contains the parameter θ1 and excludes θ2
while the frequentist standard confidence interval [7.66,∞] would lead to the
reverse conclusion which contradicts the likelihood ratio result and also our
intuitive conclusions.

The presented examples indicate that depending on the kind of problem, different
statistical methods are to be applied.
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13.6.2 The Frequentist approach

The frequentist approach emphasizes efficiency, i.e. minimal variance combined with
unbiasedness, and coverage. These quantities are defined through the expected fluctu-
ations of the estimated parameter of interest given its true value. The compute these
quantities we need to know the full p.d.f.. Variance and bias are related to point
estimation. A bias has to be avoided whenever we average over several estimates like
in the second and the fourth example. Frequentist interval estimation guarantees
coverage5. A producer of technical items has to guarantee that a certain fraction
of a sample fulfils given tolerances. He will choose, for example, a 99 % confidence
interval for the lifetime of a bulb and then be sure that complaints will occur only
in 1 % of the cases. Insurance companies want to estimate their risk and thus have
to know, how frequently damage claims will occur.

Common to frequentist parameter inference (examples 1, 2 and 4) is that we
are interested in the properties of a set of parameter values. The parameters are
associated to many different objects, events or accidents, e.g. field strengths of various
magnets, momenta of different events, or individual lifetimes. Here coverage and
unbiasedness are essential, and efficiency is an important quality. As seen in the fourth
example, the application of prior information – even when it is known exactly – would
be destructive. Physicists usually impose transformation invariance to important
parameters (The estimates of the lifetime τ̂ and the decay rate γ̂ of a particle should
satisfy γ̂ = 1/τ̂ but only one of these two parameters can be unbiased.) but in
many situations the fact that bias and efficiency are not invariant under parameter
transformations does not matter. In a business contract in the bulb example an
agreement would be on the lifetime and the decay rate would be of no interest. The
combination of the results from different measurements is difficult but mostly of
minor interest.

13.6.3 The Bayesian Approach

The Bayesian statistics defines probability or credibility intervals. The interest is di-
rected towards the true value given the observed data. As the probability of data that
are not observed is irrelevant, the p.d.f. is not needed, the likelihood principle ap-
plies, only the prior and the likelihood function are relevant. The Bayesian approach
is justified if we are interested in a constant of nature, a particle mass, a coupling
constant or in a parameter describing a unique event like in examples three and five.
In these situations we have to associate to the measurement an error interval in a
consistent way. In the Bayesian approach the interval has a well defined probability
content. Point and interval estimation cannot be treated independently. Coverage
and bias are of no importance – in fact it does not make much sense to state that
a certain fraction of physical constants are covered by their error intervals and it is
of no use to know that out of 10 measurements of a particle mass one has to expect
that about 7 contain the true value within their error intervals. Systematic errors
and nuisance parameters for which no p.d.f. is available can only be treated in the
Bayesian framework.

The drawback of the Bayesian method is the need to invent a prior probability. In
example three the prior is known but this is one of the rare cases. In the fifth example,

5In the frequentist statistics point and interval estimation are unrelated.
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like in many other situations, a uniform prior would be acceptable to most scientists
and then the Bayesian interval would coincide with a likelihood ratio interval.

13.6.4 The Likelihood Ratio Approach

To avoid the introduction of prior probabilities, physicists are usually satisfied with
the information contained in the likelihood function. In most cases the MLE and
the likelihood ratio error interval are sufficient to summarize the result. Contrary
to the frequentist confidence interval this concept is compatible with the maximum
likelihood point estimation as well as with the likelihood ratio comparison of discrete
hypotheses and allows to combine results in a consistent way. Parameter transforma-
tion invariance holds. However, there is no coverage guarantee and an interpretation
in terms of probability is possible only for small error intervals, where prior densities
can be assumed to be constant within the accuracy of the measurement.

13.6.5 Conclusion

The choice of the statistical method has to be adapted to the concrete application.
The frequentist reasoning is relevant in rare situations like event selection, where
coverage could be of some importance or when secondary statistics is performed with
estimated parameters. In some situations Bayesian tools are required to proceed to
sensible results. In all other cases the presentation of the likelihood function, or,
as a summary of it, the MLE and a likelihood ratio interval are the best choice to
document the inference result.

13.7 P-Values for EDF-Statistics

The formulas reviewed here are taken from the book of D’Agostino and Stephens
[81] and generalized to include the case of the two-sample comparison.

Calculation of the Test Statistics

The calculation of the supremum statistics D and of V = D++D− is simple enough,
so we will skip a further discussion.

The quadratic statistics W 2, U2 and A2 are calculated after a probability integral
transformation (PIT). The PIT transforms the expected theoretical distribution of
x into a uniform distribution. The new variate z is found from the relation z = F (x),
whereby F is the integral distribution function of x.

With the transformed observations zi, ordered according to increasing values, we
get for W 2, U2 and A2:

W 2 =
1

12N
+

N∑

i=1

(zi −
2i− 1

2N
)2 , (13.23)
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Fig. 13.4. P-values for empirical test statistics.

U2 =

N∑

i=2

(zi − zi−1)
2

∑N
i=1 z

2
i

,

A2 = −N +
N−1∑

i=1

(zi − 1) (ln zi + ln(1− zN+1−i)) . (13.24)

If we know the distribution function not analytically but only from a Monte-Carlo
simulation, the z-value for an observation x is approximately z ≈ (number of Monte-
Carlo observations with xMC < x) /(total number of Monte Carlo observations).
(Somewhat more accurate is an interpolation). For the comparison with a simulated
distribution is N to be taken as the equivalent number of observations
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1

N
=

1

Nexp
+

1

NMC
.

Here Nexp and NMC are the experimental respectively the simulated sample sizes.

Calculation of p-Values

After normalizing the test variables with appropriate powers of N they follow p.d.f.s
which are independent of N . The test statistics’ D∗, W 2∗, A2∗ modified in this way
are defined by the following empirical relations

D∗ = Dmax(
√
N + 0.12 +

0.11√
N

) , (13.25)

W 2∗ = (W 2 − 0.4

N
+

0.6

N2
)(1.0 +

1.0

N
) , (13.26)

A2∗ = A2 . (13.27)

The relation between these modified statistics and the p-values is given in Fig.
13.7.

13.8 Comparison of two Histograms, Goodness-of-Fit and

Parameter Estimation

In the main text we have treated goodness-of-fit and parameter estimation from a
comparison of two histograms in the simple situation where the statistical errors of
one of the histograms (generated by Monte Carlo simulation) was negligible compared
to the uncertainties of the other histogram. Here we take the errors of both histograms
into account and also permit that the histogram bins contain weighted entries.

13.8.1 Comparison of two Poisson Numbers with Different
Normalization

We compare cnn with cmm where the normalization constants cn, cm are known
and n,m are Poisson distributed. The null hypothesis H0 is that n is drawn from a
distribution with mean λ/cn and m from a distribution with mean λ/cm. We form
a χ2 expression

χ2 =
(cnn− cmm)2

δ2
(13.28)

where the denominator δ2 is the expected variance of the parenthesis in the numerator
under the null hypothesis.

The log-likelihood of λ is

lnL(λ) = n ln
λ

cn
− λ

cn
+m ln

λ

cm
− λ

cm
+ const.

with the MLE
λ̂ =

n+m

1/cn + 1/cm
= cncm

n+m

cn + cm
. (13.29)
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We compute δ2 under the assumption that n is distributed according to a Poisson
distribution with mean n̂ = λ̂/cn and respectively, mean m̂ = λ̂/cm.

δ2 = c2nn̂+ c2mm̂

= (cn + cm)λ̂

= cncm(n+m)

and inserting the result into (13.28), we obtain

χ2 =
1

cncm

(cnn− cmm)2

n+m
. (13.30)

Notice that the normalization constants are defined up to a common factor, only
the relative normalization cn/cm is relevant.

13.8.2 Comparison of Weighted Sums

When we compare experimental data to a Monte Carlo simulation, the simulated
events frequently are weighted. We generalize our result to the situation where both
numbers n,m consist of a sum of weights. Now the equivalent numbers of events ñ
and m̃ are approximately Poisson distributed. We simply have to replace (13.30) by

χ2 =
1

c̃nc̃m

(c̃nñ− c̃mm̃)2

ñ+ m̃
(13.31)

where now c̃n, c̃m are the relative normalization constants for the equivalent numbers
of events. We summarize in short the relevant relations, assuming that n =

∑
vk

is composed of a sum of individual events with weights vk and correspondingly,
m =

∑
wk and as before cnn is supposed to agree with cmm as before. As discussed

in 3.6.3 we set

ñ =

[∑
vk

]2

∑
v2k

, m̃ =

[∑
wk

]2

∑
w2

k

and find with c̃nñ = cnn, c̃mm̃ = cmm:

c̃n = cn

∑
vk
∑

v2k
[∑

vk

]2 , c̃m = cm

∑
wk

∑
w2

k
[∑

wk

]2 .

13.8.3 χ2 of Histograms

We have to evaluate the expression (13.31) for each bin and sum over all B bins

χ2 =

B∑

i=1

[
1

c̃nc̃m

(c̃nñ− c̃mm̃)2

ñ+ m̃

]

i

(13.32)

where the prescription indicated by the index i means that all quantities in the
bracket have to be evaluated for bin i. In case the entries are not weighted the
tilde is obsolete. The cn, cm usually are overall normalization constants and equal
for all bins of the corresponding histogram. If the histograms are normalized with
respect to each other, we have cnΣni = cmΣmi and we can set cn = Σmi =M and
cm = Σni = N .
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χ2 Goodness-of-Fit Test

This expression can be used for goodness-of-fit tests. In case the normalization con-
stants are given externally, for instance through the luminosity, χ2 follows approx-
imately a χ2 distribution of B degrees of freedom. Frequently the histograms are
normalized with respect to each other. Then we have one degree of freedom less, i.e.
B − 1. If P parameters have been adjusted in addition, then we have B − P − 1
degrees of freedom.

Likelihood Ratio Test

In Chap. 10, Sect. 10.3.4 we have introduced the likelihood ratio test for histograms.
For a pair of Poisson numbers n,m the likelihood ratio is the ratio of the maximal
likelihood under the condition that the two numbers are drawn from the same dis-
tribution to the unconditioned maximum of the likelihood for the observation of n.
The corresponding difference of the logarithms is our test statistic V (see likelihood
ratio test for histograms):

V = n ln
λ

cn
− λ

cn
− lnn! +m ln

λ

cm
− λ

cm
− lnm!− [n lnn− n− lnn!]

= n ln
λ

cn
− λ

cn
+m ln

λ

cm
− λ

cm
− lnm!− n lnn+ n .

We now turn to weighted events and perform the same replacements as above:

V = ñ ln
λ̃

c̃n
− λ̃

c̃n
+ m̃ ln

λ̃

c̃m
− λ̃

c̃m
− ln m̃!− ñ ln ñ+ ñ .

Here the parameter λ̃ is the MLE corresponding to (13.29) for weighted events:

λ̃ = c̃nc̃m
ñ+ m̃

c̃n + c̃m
.

The test statistic of the full histogram is the sum of the contributions from all bins:

V =

B∑

i=1

[
ñ ln

λ̃

c̃n
− λ̃

c̃n
+ m̃ ln

λ̃

c̃m
− λ̃

c̃m
− ln m̃!− ñ ln ñ+ ñ

]

i

.

The distribution of the test statistic under H0 for large event number follows
approximately a χ2 distribution of B − 1 degrees of freedom, for small numbers it
has to be obtained by simulation.

13.8.4 Parameter Estimation

When we compare experimental data to a parameter dependent Monte Carlo simula-
tion, one of the histograms depends on the parameter, e.g. m(θ) and the comparison
is used to determine the parameter. During the fitting procedure, the parameter is
modified and this implies a change of the weights of the Monte Carlo events.
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χ2 Parameter Estimation

In principle all weights [wk]i of all bins might depend on θ. We have to minimize
(13.32) and recompute all weights for each minimization step. The standard situation
is however, that the experimental events are not weighted and that the weights of the
Monte Carlo events are equal for all events of the same bin. Then (13.32) simplifies
with ñi = ni, c̃n = cn, c̃m = cmw and m̃i is just the number of unweighted Monte
Carlo events in bin i:

χ2 =
B∑

i=1

[
1

cncmw

(cnn− cmwm̃)2

(n+ m̃)

]

i

with

cn =M =

B∑

i=1

wim̃i, cm = N .

Maximum Likelihood Method

We generalize the binned likelihood fit to the situation with weighted events. We have
to establish the likelihood to observe ñ, m̃ equivalent events given λ̂ from (13.29).
We start with a single bin. The probability to observe ñ (m̃) is given by the Poisson
distribution with mean λ̃/cn, (λ̃/cm). The corresponding likelihood function is

lnL = ñ ln(λ̃/c̃n)− (λ̃/c̃n) + m̃ ln(λ̃/c̃m)− (λ̃/c̃m)− ln m̃! + const.

We omit the constant term lnn!, sum over all bins, and obtain

lnL =

B∑

i=1

[
ñ ln

λ̃

c̃n
− λ̃

c̃n
+ m̃ ln

λ̃

c̃m
− λ̃

c̃m
− ln m̃!

]

i

which we have to maximize with respect to the parameters entering into the Monte
Carlo simulation hidden in λ̃, c̃m, m̃.

For the standard case which we have treated in the χ2 fit, we can apply here the
same simplifications:

lnL =

B∑

i=1

[
n ln

λ̂

cn
− λ̂

cn
+ m̃ ln

λ̂

cmw
− λ̂

cmw
− ln m̃!

]

i

.

13.9 Extremum Search

If we apply the maximum-likelihood method for parameter estimation, we have to
find the maximum of a function in the parameter space. This is, as a rule, not
possible without numerical tools. An analogous problem is posed by the method of
least squares. Minimum and maximum search are principally not different problems,
since we can invert the sign of the function. We restrict ourselves to the minimum
search.

Before we engage off-the-shelf computer programs, we should obtain some rough
idea of their function. The best way in most cases is a graphical presentation. It is
not important for the user to know the details of the programs, but some knowledge
of their underlying principles is helpful.
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Fig. 13.5. Simplex algorithm.

13.9.1 Monte Carlo Search

In order to obtain a rough impression of the function to be investigated, and of the
approximate location of its minimum, we may sample the parameter stochastically.
A starting region has to be selected. Usual programs will then further restrict the
parameter space in dependence of the search results. An advantage of this method
is that the probability to end up in a relative minimum is rather small. In the
literature this rather simple and not very effective method is sometimes sold under
the somewhat pretentious name genetic algorithm. Since it is fairly inefficient, it
should be used only for the first step of a minimization procedure.

13.9.2 The Simplex Algorithm

Simplex is a quite slow but robust algorithm, as it needs no derivatives. For an n-
dimensional parameter space n + 1 starting points are selected, and for each point
the function values calculated. The point which delivers the largest function value
is rejected and replaced by a new point. How this point is found is demonstrated in
two dimensions.

Fig. 13.5 shows in the upper picture three points. let us assume that A has the
lowest function value and point C the largest f(xC , yC). We want to eliminate C
and to replace it by a superior point C ′. We take its mirror image with respect to
the center of gravity of points A,B and obtain the test point CT . If f(xCT , yCT ) <
f(xC , yC) we did find a better point, thus we replace C by CT and continue with the
new triplet. In the opposite case we double the step width (13.5b) with respect to
the center of gravity and find C ′. Again we accept C ′, if it is superior to C. If not,
we compare it with the test point CT and if f(xCT , yCT ) < f(xC′ , yC′) holds, the
step width is halved and reversed in direction (13.5a). The point C ′ now moves to
the inner region of the simplex triangle. If it is superior to C it replaces C as above.
In all other cases the original simplex is shrunk by a factor two in the direction of
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Fig. 13.6. Method of steepest descent.

the best point A (13.5c). In each case one of the four configurations is chosen and
the iteration continued.

13.9.3 The Parabola Method

Again we begin with starting points in parameter space. In the one-dimensional case
we choose 3 points and put a parabola through them. The point with the largest
function value is dropped and replaced by the minimum of the parabola and a new
parabola is computed. In the general situation of an n-dimensional space, 2n + 1
points are selected which determine a paraboloid. Again the worst point is replaced
by the vertex of the paraboloid. The iteration converges for functions which are
convex in the search region.

13.9.4 The Method of Steepest Descent

A traveler, walking in a landscape unknown to him, who wants to find a lake, will
chose a direction down-hill perpendicular to the curves of equal height (if there are
no insurmountable obstacles). The same method is applied when searching for a
minimum by the method of steepest descent. We consider this local method in more
detail, as in some cases it has to be programmed by the user himself.

We start from a certain point λ0 in the parameter space, calculate the gradient
∇λf(λ) of the function f(λ) which we want to minimize and move by ∆λ downhill.

∆λ = −α∇λf(λ) .

The step length depends on the learning constant α which is chosen by the user.
This process is iterated until the function remains essentially constant. The method
is sketched in Fig. 13.6.

The method of steepest descent has advantages as well as drawbacks:
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• The decisive advantage is its simplicity which permits to handle a large number
of parameters at the same time. If convenient, for the calculation of the gradient
rough approximations can be used. Important is only that the function decreases
with each step. As opposed to the simplex and parabola methods its complexity
increases only linear with the number of parameters. Therefore problems with
huge parameter sets can be handled.

• It is possible to evaluate a sample sequentially, element by element, which is
especially useful for the back-propagation algorithm of neural networks.

• Unsatisfactory is that the learning constant is not dimensionless. In other words,
the method is not independent of the parameter scales. For a space-time param-
eter set the gradient path will depend, for instance, on the choice whether to
measure the parameters in meters or millimeters, respectively hours or seconds.

• In regions with flat parameter space the convergency is slow. In a narrow valley
oscillations may appear. For too large values of α oscillations will make exact
minimizing difficult.

The last mentioned problems can be reduced by various measures where the step
length and direction partially depend on results of previous steps. When the function
change is small and similar in successive steps α is increased. Oscillations in a valley
can be avoided by adding to the gradient in step i a fraction of the gradient of step
i− 1:

∆λi = α (∇λf(λi) + 0.5∇λf(λi−1)) .

Oscillations near the minimum are easily recognized and removed by decreasing α.

The method of steepest descent is applied in ANN and useful in the updating
alignment of tracking detectors [82].

13.9.5 Stochastic Elements in Minimum Search

A physical system which is cooled down to the absolute zero point will principally
occupy an energetic minimum. When cooled down fast it may, though, be captured in
a local (relative) minimum. An example is a particle in a potential wall. For somewhat
higher temperature it may leave the local minimum, thanks to the statistical energy
distribution (Fig. 13.7). This is used for instance in the stimulated annealing of
defects in solid matter.

This principle can be used for minimum search in general. A step in the wrong
direction, where the function increases by ∆f , can be accepted, when using the
method of steepest descent, e.g. with a probability

P (∆f) =
1

1 + e∆f/T
.

The scale factor T (“temperature”) steers the strength of the effect. It has been shown
that for successively decreasing T the absolute minimum will be reached.



368 13 Appendix

Fig. 13.7. Stochastic annealing. A local minimum can be left with a certain probability.

13.10 Linear Regression with Constraints

We considerN measurements y at known locations x, with aN×N covariance matrix
CN and a corresponding weight matrix VN = C

−1
N . (We indicate the dimensions of

quadratic matrices with an index).

In the linear model the measurements are described by P < N parameters θ in
form of linear relations

y = T(x)θ ,

with the rectangular N × P “design” matrix T.

In 7.2.3 we have found that the corresponding χ2 expression is minimized by

θ̂ = (TT
VNT)−1

T
T
VNy .

We now include constraints between the parameters, expressed by K < P linear
relations:

Hθ = ρ ,

with H(x) a given rectangular K × P matrix and ρ a K-dimensional vector.

This problem is solved by introducing K Lagrange multipliers α and looking for
a stationary point of the lagrangian

Λ = (y − Tθ)TVN (y − Tθ) + 2αT (Hθ − ρ) .

Differentiating with respect to θ and α gives the normal equations

T
T
VNTθ + Hα = T

T
VNy , (13.33)

Hθ = ρ (13.34)

to be solved for θ̂ and α̂. Note that Λ is minimized only with respect to θ, but max-
imized with respect to α: The stationary point is a saddle point, which complicates
a direct extremum search. Solving (13.33) for θ and inserting it into (13.34), we find

α̂ = C
−1
K (HCPT

T
VNy − ρ)

and, re-inserting the estimates into (13.33), we obtain
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θ̂ = CP [T
T
VNy − H

T
C
−1
K (HCPT

T
VNy − ρ)] ,

where the abbreviations CP = (TTVNT)−1, CK = HCPH
T have been used.

The covariance matrix is found from linear error propagation, after a somewhat
lengthy calculation, as

cov(θ̂) = DCND
T = (IP − CPH

T
C
−1
K H)CP ,

where
D = CP (IP − H

T
C
−1
K HCP )T

T
VN

has been used. The covariance matrix is symmetric positive definite. Without con-
straints, it equals CP , the negative term is absent. Of course, the introduction of
constraints reduces the errors and thus improves the parameter estimation.

13.11 Formulas Related to the Polynomial Approximation

Errors of the Expansion Coefficients

In Sect. 11.2.2 we have discussed the approximation of measurements by orthogonal
polynomials and given the following formula for the error of the expansion coefficients
ak,

var(ak) = 1/
N∑

ν=1

1

δ2ν

which is valid for all k = 1, . . . ,K. Thus all errors are equal to the error of the
weighted mean of the measurements yν .

Proof: from linear error propagation we have, for independent measurements yν ,

var(ak) = var

(∑

ν

wνuk(xν)yν

)

=
∑

ν

w2
ν(uk(xν))

2δ2ν

=
∑

ν

wνu
2
k(xν)/

∑

ν

1

δ2ν

= 1/
∑

ν

1

δ2ν
,

where in the third step we used the definition of the weights, and in the last step the
normalization of the polynomials uk.

Polynomials for Data with Uniform Errors

If the errors δ1, . . . , δN are uniform, the weights become equal to 1/N , and for cer-
tain patterns of the locations x1, . . . , xN , for instance for an equidistant distribu-
tion, the orthogonalized polynomials uk(x) can be calculated. They are given in
mathematical handbooks, for instance in Ref. [94]. Although the general expres-
sion is quite involved, we reproduce it here for the convenience of the reader. For
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x defined in the domain [−1, 1] (eventually after some linear transformation and
shift), and N = 2M + 1 equidistant (with distance ∆x = 1/M) measured points
xν = ν/M, ν = 0,±1, . . . ,±M , they are given by

uk(x) =

(
(2M + 1)(2k + 1)[(2M)!]2

(2M + k + 1)!(2M − k)!

)1/2 k∑

i=0

(−1)i+k (i+ k)[2i](M + t)[i]

(i!)2(2M)[i]
,

for k = 0, 1, 2, . . .2M , where we used the notation t = x/∆x = xM and the defini-
tions

z[i] = z(z − 1)(z − 2) · · · (z − i+ 1)

z[0] = 1, z ≥ 0, 0[i] = 0, i = 1, 2, . . . .

13.12 Formulas for B-Spline Functions

13.12.1 Linear B-Splines

Linear B-splines cover an interval 2b and overlap with both neighbors:

B(x;x0) = 2
x− x0 − b

b
for x0 − b ≤ x ≤ x0 ,

= 2
−x− x0 + b

b
for x0 ≤ x ≤ x0 + b ,

= 0 else .

They are normalized to unit area. Since the central values are equidistant, we fix
them by the lower limit xmin of the x-interval and count them as x0(k) = xmin + kb,
with the index k running from kmin = 0 to kmax = (xmax − xmin)/b = K.

At the borders only half of a spline is used.

Remark: The border splines are defined in the same way as the other splines.
After the fit the part of the function outside of its original domain is ignored. In the
literature the definition of the border splines is often different.

13.12.2 Quadratic B-Splines

The definition of quadratic splines is analogous:

B(x;x0) =
1

2b

(
x− x0 + 3/2b

b

)2

for x0 − 3b/2 ≤ x ≤ x0 − b/2 ,

=
1

2b

[
3

2
− 2

(
x− x0
b

)2
]

for x0 − b/2 ≤ x ≤ x0 + b/2 ,

=
1

2b

(
x− x0 − 3/2b

b

)2

for x0 + b/2 ≤ x ≤ x0 + 3b/2 ,

= 0 else .

The supporting points x0 = xmin + (k − 1/2)b lie now partly outside of the x-
domain. The index k runs from 0 to kmax = (xmax − xmin)/b+ 2. Thus, the number
K of splines is by two higher than the number of intervals. The relations (11.13) and
(11.12) are valid as before.
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13.12.3 Cubic B-Splines

Cubic B-splines are defined as follows:

B(x;x0) =
1

6b

(
2 +

x− x0
b

)3

for x0 − 2b ≤ x ≤ x0 − b ,

=
1

6b

[
−3

(
x− x0
b

)3

− 6

(
x− x0
b

)2

+ 4

]
for x0 − b ≤ x ≤ x0 ,

=
1

6b

[
3

(
x− x0
b

)3

− 6

(
x− x0
b

)2

+ 4

]
for x0 ≤ x ≤ x0 + b ,

=
1

6b

(
2− x− x0

b

)3

for x0 + b ≤ x ≤ x0 + 2b ,

= 0 else .

The shift of the center of the spline is performed as before: x0 = xmin + (k− 1)b.
The index k runs from 0 to kmax = (xmax − xmin)/b + 3. The number kmax + 1 of
splines is equal to the number of intervals plus 3.

13.13 Support Vector Classifiers

Support vector machines are described some detail in Refs. [13, 71, 72, 73].

13.13.1 Linear Classifiers

Linear classifiers6 separate the two training samples by a hyperplane. Let us initially
assume that in this way a complete separation is possible. Then an optimal hyper-
plane is the plane which divides the two samples with the largest margin. This is
shown in Fig. 13.8. The hyperplane can be constructed in the following way: The
shortest connection ∆ between the convex hulls7 of the two non-overlapping classes
determines the direction w/|w| of the normal w of this plane which cuts the distance
at its center. We represent the hyperplane in the form

w · x+ b = 0 , (13.35)

where b fixes its distance from the origin. Note that w is not normalized, a com-
mon factor in w and b does not change condition (13.35). Once we have found the
hyperplane {w, b} which separates the two classes yi = ±1 of the training sample
{(x1, y1), . . . , (xN , yN )} we can use it to classify new input:

ŷ = f(x) = sign(w · x+ b) . (13.36)

To find the optimal hyperplane which divides ∆ into equal parts, we define the
two marginal planes which touch the hulls:

6A linear classification scheme was already introduced in Sect. 11.4.1.
7The convex hull is the smallest polyhedron which contains all points and their connect-

ing straight lines.
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Fig. 13.8. The central hyperplane separates squares from circles. Shown are the convex
hulls and the support vectors (open symbols).

w · x+ b = ±1 .

If x+,x− are located at the two marginal hyperplanes, the following relations hold
which also fix the norm of w:

w · (x+ − x−) = 2 ⇒ ∆ =
w

|w| · (x
+ − x−) =

2

|w| .

The optimal hyperplane is now found by solving a constrained quadratic optimization
problem

|w|2 = minimum , subject to yi(w · xi + b) ≥ 1 , i = 1, . . . , N .

For the solution, only the constraints with equals sign are relevant. The vectors
corresponding to points on the marginal planes form the so-called active set and are
called support vectors (see Fig. 13.8). The optimal solution can be written as

w =
∑

i

αiyixi

with αi > 0 for the active set, else αi = 0, and furthermore
∑
αiyi = 0. The last

condition ensures translation invariance: w(xi − a) = w(xi). Together with the
active constraints, after substituting the above expression for w, it provides just the
required number of linear equations to fix αi and b. Of course, the main problem is
to find the active set. For realistic cases this requires the solution of a large quadratic
optimization problem, subject to linear inequalities. For this purpose an extended
literature as well as program libraries exist.

This picture can be generalized to the case of overlapping classes. Assuming that
the optimal separation is still given by a hyperplane, the picture remains essentially
the same, but the optimization process is substantially more complex. The standard
way is to introduce so called soft margin classifiers. There some points on the wrong
side of their marginal plane are tolerated, but with a certain penalty in the optimiza-
tion process. It is chosen proportional to the sum of their distances or their square
distance from their own territory. The proportionality constant is adjusted to the
given problem.
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13.13.2 General Kernel Classifiers

All quantities determining the linear classifier ŷ (13.36) depend only on inner prod-
ucts of vectors of the input space. This concerns not only the dividing hyperplane,
given by (13.35), but also the expressions for w, b and the factors αi associated to
the support vectors. The inner product x · x′ which is a bilinear symmetric scalar
function of two vectors, is now replaced by another scalar function K(x,x′) of two
vectors, the kernel, which need not be bilinear, but should also be symmetric, and
is usually required to be positive definite. In this way a linear problem in an inner
product space is mapped into a very non-linear problem in the original input space
where the kernel is defined. We then are able to separate the classes by a hyperplane
in the inner product space that may correspond to a very complicated hypersurface
in the input space. This is the so-called kernel trick.

To illustrate how a non-linear surface can be mapped into a hyperplane, we
consider a simple example. In order to work with a linear cut, i.e. with a dividing
hyperplane, we transform our input variables x into new variables: x → X(x). For
instance, if x1, x2, x3 are momentum components and a cut in energy, x21+x

2
2+x

2
3 <

r2, is to be applied, we could transform the momentum space into a space

X = {x21, x22, x23, . . .} .

where the cut corresponds to the hyperplane X1 +X2 +X3 = r2. Such a mapping
can be realized by substituting the inner product by a kernel:

x · x′ → K(x,x′) = X(x) ·X(x′).

In our example a kernel of the so-called monomial form is appropriate:

K(x,x′) = (x · x′)d with d = 2 ,

(x · x′)2 = (x1x
′
1 + x2x

′
2 + x3x

′
3)

2 = X(x) ·X(x′) (13.37)

with
X(x) = {x21, x22, x23,

√
2x1x2,

√
2x1x3,

√
2x2x3} .

The sphere x21+x
2
2+x

2
3 = r2 in x-space is mapped into the 5-dimensional hyperplane

X1+X2+X3 = r2 in 6-dimensionalX-space. (A kernel inducing instead of monomials
of order d (13.37), polynomials of all orders, up to order d is K(x,x′) = (1+x ·x′)d.)

The most common kernel used for classification is the Gaussian (see Sect. 11.2.1):

K(x,x′) = exp

(
− (x− x′)2

2s2

)
.

It can be shown that it induces a mapping into a space of infinite dimensions [71] and
that nevertheless the training vectors can in most cases be replaced by a relatively
small number of support vectors. The only free parameter is the penalty constant
which regulates the degree of overlap of the two classes. A high value leads to a
very irregular shape of the hypersurface separating the training samples of the two
classes to a high degree in the original space whereas for a low value its shape is
much smoother and more minority observations are tolerated.

In practice, this mapping into the inner product space is not performed explicitly,
in fact it is even rarely known. All calculations are performed in x-space, especially
the determination of the support vectors and their weights α. The kernel trick merely
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serves to prove that a classification with support vectors is feasible. The classification
of new input then proceeds with the kernel K and the support vectors directly:

ŷ = sign

( ∑

yi=+1

αiK(x,xi)−
∑

yi=−1

αiK(x,xi)

)
.

The use of a relatively small number of support vectors (typically only about 5%
of all αi are different from zero) drastically reduces the storage requirement and the
computing time for the classification. Remark that the result of the support vector
classifier is not identical to that of the original kernel classifier but very similar.

13.14 The Bayes Factor

In Chap. 6 we have introduced the likelihood ratio to discriminate between simple
hypotheses. For two composite hypotheses H1 and H2 with free parameters, in the
Bayesian approach the simple ratio is to be replaced by the so-called Bayes factors.

Let us assume for a moment that H1 applies. Then the actual parameters will
follow a p.d.f. proportional to L1(θ1|x)π1(θ1) where L1(θ1|x) is the likelihood func-
tion and π1(θ1) the prior density of the parameters. The same reasoning is valid for
H2. The probability that H1 (H2) is true is proportional to the integral over the
parameter space,

∫
L1(θ1|x)π1(θ1)dθ1 (

∫
L2(θ2|x)π2(θ2)dθ2). The relative betting

odds thus are given by the Bayes factor B,

B =

∫
L1(θ1|x)π1(θ1)dθ1∫
L2(θ2|x)π2(θ2)dθ2

.

In the case with no free parameters, B reduces to the simple likelihood ratio L1/L2.

The two terms forming the ratio are called marginal likelihoods. The integration
automatically introduces a penalty for additional parameters and related overfitting:
The higher the dimensionality of the parameter space is, the larger is in average
the contribution of low likelihood regions to the integral. In this way the concept
follows the philosophy of Ockham’s razor8 which in short states that from different
competing theories, the one with the fewest assumptions, i.e. the simplest, should be
preferred.

The Bayes factor is intended to replace the p-value of frequentist statistics.

H. Jeffreys [19] has suggested a classification of Bayes factors into different cate-
gories ranging from < 3 (barely worth mentioning) to > 100 (decisive).

For the example of Chap. 10 Sect. 10.5, Fig.10.18 with a resonance above a
uniform background for uniform prior densities in the signal fraction t, 0 ≤ t ≤ 0.5
and the location µ, 0.2 ≤ µ ≤ 0.8 the Bayes factor is B = 54 which is considered as
very significant. This result is inversely proportional to the range in µ as is expected
because the probability to find a fake signal in a flat background is proportional to
its range. In the cited example we had found a likelihood ratio of 1.1 · 104 taken at
the MLE. The corresponding p-value was p = 1.8 · 10−4 for the hypothesis of a flat
background, much smaller than the betting odds of 1/54 for this hypothesis. While

8Postulated by William of Ockham, English logician in the 14th century.
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the Bayes factor takes into account the uncertainty of the parameter estimate, the
uncertainty is completely neglected in the the p-value derived from the likelihood
ratio taken simply at the MLE. On the other hand, for the calculation of the Bayes
factor an at least partially subjective prior probability has to be included.

For the final rating the Bayes factor has to be multiplied by the prior factors of
the competing hypotheses:

R = B
πH1

πH2
=

∫
L1(θ1|x)π1(θ1)dθ1∫
L2(θ2|x)π2(θ2)dθ2

πH1

πH2
.

The posterior rating is equal to the prior rating times the Bayes factor.

The Bayes factor is a very reasonable and conceptually attractive concept which
requires little computational effort. It is to be preferred to the frequentist p-value ap-
proach in decision making. However, for the documentation of a measurement it has
the typical Bayesian drawback that it depends on prior densities and unfortunately
there is no objective way to fix those.

13.15 Robust Fitting Methods

13.15.1 Introduction

If one or a few observations in a sample are separated from the bulk of the data,
we speak of outliers. The reasons for their existence range from trivial mistakes or
detector failures to important physical effects. In any case, the assumed statistical
model has to be questioned if one is not willing to admit that a large and very
improbable fluctuation did occur.

Outliers are quite disturbing: They can change parameter estimates by large
amounts and increase their errors drastically.

Frequently outliers can be detected simply by inspection of appropriate plots. It
goes without saying, that simply dropping them is not a good advice. In any case
at least a complete documentation of such an event is required. Clearly, objective
methods for their detection and treatment are preferable.

In the following, we restrict our treatment to the simple one-dimensional case
of Gaussian-like distributions, where outliers are located far from the average, and
where we are interested in the mean value. If a possible outlier is contained in the
allowed variate range of the distribution – which is always true for a Gaussian – a
statistical fluctuation cannot be excluded as a logical possibility. Since the outliers
are removed on the basis of a statistical procedure, the corresponding modification
of results due to the possible removal of correct observations can be evaluated.

We distinguish three cases:

1. The standard deviations of the measured points are known.

2. The standard deviations of the measured points are unknown but known to be
the same for all points.

3. The standard deviations are unknown and different.
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It is obvious that case 3 of unknown and unequal standard deviations cannot be
treated.

The treatment of outliers, especially in situations like case 2, within the LS for-
malism is not really satisfying. If the data are of bad quality we may expect a sizeable
fraction of outliers with large deviations. These may distort the LS fit to such an
extend that outliers become difficult to define (masking of outliers). This kind of
fragility of the LS method, and the fact that in higher dimensions the outlier detec-
tion becomes even more critical, has lead statisticians to look for estimators which
are less disturbed by data not obeying the assumed statistical model (typical are
deviations from the assumed normal distribution), even when the efficiency suffers.
In a second – not robust – fit procedure with cleaned data it is always possible to
optimize the efficiency.

In particle physics, a typical problem is the reconstruction of particle tracks from
hits in wire or silicon detectors. Here outliers due to other tracks or noise are a
common difficulty, and for a first rough estimate of the track parameters and the
associated hit selection for the pattern recognition, robust methods are useful.

13.15.2 Robust Methods

Truncated Least Square Fits

The simplest method to remove outliers is to eliminate those measurements which
contribute excessively to the χ2 of a least square (LS) fit. In this truncated least
square fit (LST) all observations that deviate by more than a certain number of stan-
dard deviations from the mean are excluded. Reasonable values lie between 1.5 and 2
standard deviations, corresponding to a χ2 cut χ2

max = 2. 25 to 4. The optimal value
of this cut depends on the expected amount of background or false measurements
and the number of observations. In case 2 the variance has to be estimated from the
data and the estimated variance δ̂2 is, according to Chap. 3.2.3, given by

δ̂2 =
∑

(yi − µ̂)2/(N − 1) .

This method can be improved by removing outliers sequentially (LSTS). In a
first step we use all measurements y1, . . . , yN , with standard deviations δ1, . . . , δN
to determine the mean value µ̂ which in our case is just the weighted mean. Then
we compute the normalized residuals, also called pulls, ri = (yi − µ̂)/δi and select
the measurement with the largest value of r2i . The value of χ2 is computed with re-
spect to the mean and variance of the remaining observations and the measurement
is excluded if it exceeds the parameter χ2

max
9. The fit is repeated until all measure-

ments are within the margin. In case that all measurements are genuine Gaussian
measurements, this procedure only marginally reduces the precision of the fit.

In both methods LST and LSTS a minimum fraction of measurements has to be
retained. A reasonable value is 50 % but depending on the problem other values may
be appropriate.

9If the variance has to be estimated from the data its value is biased towards smaller
values because for a genuine Gaussian distribution eliminating the measurement with the
largest pull reduces the expected variance.
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The Sample Median

A first step (already proposed by Laplace) in the direction to estimators more robust
than the sample mean is the introduction of the sample median as estimator for lo-
cation parameters. While the former follows to an extremely outlying observation up
to ±∞, the latter stays nearly unchanged in this case. This change can be expressed
as a change of the object function, i.e. the function to be minimized with respect to
µ, from

∑
i(yi −µ)2 to

∑
i |yi −µ| which is indeed minimized if µ̂ coincides with the

sample median in case of N odd. For even N , µ̂ is the mean of the two innermost
points. Besides the slightly more involved computation (sorting instead of summing),
the median is not an optimal estimator for a pure Gaussian distribution:

var(median) =
π

2
var(mean) = 1.571 var(mean) ,

but it weights large residuals less and therefore performs better than the arithmetic
mean for distributions which have longer tails than the Gaussian. Indeed for large N
we find for the Cauchy distribution var(median) = π2/(4N), while var(mean) = ∞
(see 3.6.9), and for the two-sided exponential (Laplace) distribution var(median) =
var(mean)/2.

M-Estimators

The object function of the LS approach can be generalized to

∑

i

ρ

(
yi − t(xi, θ)

δi

)
(13.38)

with ρ(z) = z2 for the LS method which is optimal for Gaussian errors. For the
Laplace distribution mentioned above the optimal object function is based on ρ(z) =
|z|, derived from the likelihood analog which suggests ρ ∝ ln f . To obtain a more
robust estimation the function ρ can be modified in various ways but we have to
retain the symmetry, ρ(z) = ρ(−z) and to require a single minimum at z = 0. This
kind of estimators with object functions ρ different from z2 are called M-estimators,
“M” reminding maximum likelihood. The best known example is due to Huber, [92].
His proposal is a kind of mixture of the appropriate functions of the Gauss and the
Laplace cases:

ρ(z) =

{
z2/2 if |z| ≤ c
c(|z| − c/2) if |z| > c .

The constant c has to be adapted to the given problem. For a normal population
the estimate is of course not efficient. For example with c = 1.345 the inverse of the
variance is reduced to 95% of the standard value. Obviously, the fitted object function
(13.38) no longer follows a χ2 distribution with appropriate degrees of freedom.

Estimators with High Breakdown Point

In order to compare different estimators with respect to their robustness, the concept
of the breakdown point has been introduced. It is the smallest fraction ε of corrupted
data points which can lead the fitted values to differ by an arbitrary large amount
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from the correct ones. For LS, ε approaches zero, but for M-estimators or truncated
fits, changing a single point would be not sufficient to shift the fitted parameter
by a large amount. The maximal value of ε is smaller than 50% if the outliers are
the minority. It is not difficult to construct estimators which approach this limit,
see [93]. This is achieved, for instance, by ordering the residuals according to their
absolute value (or ordering the squared residuals, resulting in the same ranking) and
retaining only a certain fraction, at least 50%, for the minimization. This so-called
least trimmed squares (LTS) fit is to be distinguished from truncated least square fit
(LST, LSTS) with a fixed cut against large residuals.

An other method relying on rank order statistics is the so-called least median of
squares (LMS) method . It is defined as follows: Instead of minimizing with respect
to the parameters µ the sum of squared residuals,

∑
i r

2
i , one searches the minimum

of the sample median of the squared residuals:

minimizeµ
{
median(r2i (µ))

}
.

This definition implies that for N data points, N/2 + 1 points enter for N even
and (N + 1)/2 for N odd. Assuming equal errors, this definition can be illustrated
geometrically in the one-dimensional case considered here: µ̂ is the center of the
smallest interval (vertical strip in Fig. 13.9) which covers half of all x values. The
width 2∆ of this strip can be used as an estimate of the error. Many variations are of
course possible: Instead of requiring 50% of the observations to be covered, a larger
fraction can be chosen. Usually, in a second step, a LS fit is performed with the
retained observations, thus using the LMS only for outlier detection. This procedure
is chosen, since it can be shown that, at least in the case of normal distributions,
ranking methods are statistically inferior as compared to LS fits.

Example 155. Fitting a mean value in presence of outliers

In Fig.13.9 a simple example is presented. Three data points, representing the
outliers, are taken from N(3, 1) and seven from N(10, 1). The LS fit (7.7±1.1)
is quite disturbed by the outliers. The sample median is here initially 9.5, and
becomes 10.2 after excluding the outliers. It is less disturbed by the outliers.
The LMS fit corresponds to the thick line, and the minimal strip of width
2∆ to the dashed lines. It prefers the region with largest point density and is
therefore a kind of mode estimator. While the median is a location estimate
which is robust against large symmetric tails, the mode is also robust against
asymmetric tails, i.e. skew distributions of outliers.

A more quantitative comparison of different fitting methods is presented in
Table 13.1. We have generated 100000 samples with a 7 point signal given
by N(10, 1) and 3 points of background, a) asymmetric: N(3, 1) (the same
parameters as used in the example before), b) uniform in the interval [5, 15],
and in addition c) pure normally distributed points following N(10, 1) without
background. The table contains the root mean squared deviation of the mean
values from the nominal value of 10. To make the comparison fair, as in the
LMS method also in the trimmed LS fit 6 points have been retained and in
the sequentially truncated LS fit a minimum of 6 points was used.

With the asymmetric background, the first three methods lead to biased
mean values (7.90 for the simple LS, 9.44 for the median and 9.57 for the
trimmed LS) and thus the corresponding r.m.s. values are relatively large.
As expected the median suffers much less from the background than a stan-
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Fig. 13.9. Estimates of the location parameter for a sample with three outliers.

Table 13.1. Root mean squared deviation of different estimates from the nominal value.

method background

asymm. uniform none
simple LS 2.12 0.57 0.32
median 0.72 0.49 0.37

LS trimmed 0.60 0.52 0.37
LS sequentially truncated 0.56 0.62 0.53
least median of squares 0.55 0.66 0.59

dard LS fit. The results of the other two methods, LMS and LS sequentially
truncated perform reasonable in this situation, they succeed to eliminate the
background completely without biasing the result but are rather weak when
little or no background is present. The result of LMS is not improved in our
example when a least square fit is performed with the retained data.

The methods can be generalized to the multi-parameter case. Essentially, the
r.m.s deviation is replaced by χ2. In the least square fits, truncated or trimmed, the
measurements with the larges χ2 values are excluded. The LMS method searches for
the parameter set where the median of the χ2 values is minimal.

More information than presented in this short and simplified introduction into
the field of robust methods can be found in the literature cited above and the newer
book of R. Maronna, D. Martin and V. Yohai [91].
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- Electronic Statistics Book : http://wiki.stat.ucla.edu/socr/index.php/EBook
- Life and Work of Statisticians (University of York, Dept. of Mathematics):
http://www.york.ac.uk/depts /maths/histstat/lifework.htm
- Definition of Measurement Uncertainty Terms ( D. L. Deardorff,
University of North Carolina, Dept. of Physics and Astronomy:)
http://www.physics.unc.edu/∼deardorf/uncertainty/definitions.html
- Some enhancements of Decision Tree Bagging (P. Geurts):
http://www.montefiore.ulg.ac.be/services /stochastic/pubs/2000/Geu00/geurts-
pkdd2000-bagging.pdf
- Wavelet script (in German): http://www.math.ethz.ch/∼blatter/Waveletsvortrag.pdf
- A Tutorial on Support Vector Machines for Pattern Recognition (Ch. J. C. Burges):
http://www.umiacs .umd.edu/∼joseph/support-vector-machines4.pdf
- Tutorial on SVM : http://www.dimap.ufrn.br/∼marcilio/AM/SVM-01.ppt
- Recent Advances in Predictive (Machine) Learning (J. B. Friedman) http://www-
stat.stanford.edu /∼jhf/ftp/machine.pdf



Table of Symbols

Symbol Explanation

A , B Events
A Negation of A
Ω / ∅ Certain / impossible event
A ∪B ,A ∩B ,A ⊂ B A OR B, A AND B, A implies B etc.
P{A} Probability of A
P{A|B} Conditional probability of A

(for given B)
x , y , z ; k , l ,m (Continuous; discrete) random variable (variate)
θ , µ , σ Parameter of distributions
f(x) , f(x|θ) Probability density function
F (x) , F (x|θ) Integral (probability-) distribution function

(for parameter value θ, respectively)(p. 16)
f(x) , f(x|θ) Respective multidimensional generalizations (p. 42)
L(θ) , L(θ|x1, . . . , xN ) Likelihood function (p. 137)
L(θ|x1, . . . , xN ) Generalization to more dimensional parameter space
θ̂ Statistical estimate of the parameter θ(p. 143)
E(u(x)) , 〈u(x)〉 Expected value of u(x)
u(x) Arithmetic sample mean, average (p. 21)
δx Measurement error of x (p. 83)
σx Standard deviation of x
σ2
x , var(x) Variance (dispersion) of x (p. 23)

cov(x, y) , σxy Covariance (p. 45)
ρxy Correlation coefficient
µi Moment of order i with respect to origin 0, initial moment
µ′
i Central moment (p. 32)
µij , µ

′
ij etc. Two-dimensional generalizations (p. 44)

γ1 , β2 , γ2 Skewness , kurtosis , excess (p. 26)
κi Semiinvariants (cumulants) of order i, (p. 35)
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acceptance fluctuations, 57
activation function, 314
AdaBoost, 325
AMISE, see asymptotic mean integrated

square error
ancillary statistic, 185
Anderson–Darling statistic, 359
Anderson-Darling test, 266
angular distribution, 53

generation, 113
ANN, see artificial neural network
approximation of functions, see function

approximation
artificial neural network, see neural network
asymptotic mean integrated square error

of histogram approximation, 330
attributes, 289
averaging measurements, 205

B-splines, 301
back propagation of ANN, 316
bagging, 325
Bayes factor, 282, 374

Bayes’ postulat, 5
Bayes’ probability, 5
Bayes’ theorem, 11, 133, 135

for probability densities, 43
Bayesian statistics, 3
Bernoulli distribution, 56
bias, 187

of estimate, 345, 358
of measurement, 103

binomial distribution, 55
Poisson limit, 60
weighted observations, 57

boosting, 324
bootstrap, 277, 336

confidence limits, 339
estimation of variance, 337
jackknife, 340
precision, 339

two-sample test, 340
breakdown point, 377
Breit-Wigner distribution, 74

generation, 113
brownian motion, 30

categorical variables, 309
Cauchy distribution, 74

generation, 113
central limit theorem, 66, 73, 344
characteristic function, 33

of binomial distribution, 56
of Cauchy distribution, 74
of exponential distribution, 37
of extremal value distribution, 78
of normal distribution, 66
of Poisson distribution, 36
of uniform distribution, 65

Chebyshev inequality, 343
chi-square, 151, 196

of histograms, 153
histogram of weighted events, 364
of histograms of weighted events, 362

chi-square distribution, 41, 70

chi-square probability, 253
chi-square test, 254

binning, 257
composite hypothesis, 260
generalized, 259
small samples, 261
two-sample, 276

CL, see confidence level
classification, 290, 309

decision tree, 322
k-nearest neighbors, 319
kernel methods, 319

support vector machines, 320
weighting, 319

classifiers
training and testing, 340

combining measurements, 151, 205
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conditional probability, 11
conditionality principle, 185
confidence belt, 354
confidence interval, 104, 202

classical, 353
unphysical parameter values, 219
upper limits, 214

confidence level, 353
confidence region, 354
consistency

of estimate, 345, 358
of test, 248

constraints, 163, 368
convolution function, 222
convolution integral, 48, 222
convolution matrix, 226
correlation, 45, 52

coefficient, 45, 96
covariance, 45
covariance matrix, 97
coverage probability, 353
Cramer–Rao inequality, 346
Cramer–von Mises test, 265
Cramer–von-Mises statistic, 359
credibility interval, 202
critical region, 247
cross validation, 311
cumulants, 35
curse of dimensionality, 290

decision tree, 290, 322, 327
boosted, 324

deconvolution, 221
binning of histograms, 230
binning-free, 234
by matrix inversion, 224
error estimation, 241
iterative, 231
migration method, 236
of histograms, 227
regularization, 226, 229
regularization of transfer matrix, 232

degree of belief, 3
degrees of freedom, 71, 72, 255
diffusion, 30
digital measurements, 31
direct probability, 138
discriminant analysis, 311
distribution

angular, 53
continuous, 16
discrete, 16
multivariate, 51
sample width, 71

distribution function, 16

EDF, see empirical distribution function

EDF statistics, 359
efficiency

of estimators, 346
efficiency fluctuations, 57
efficiency of estimate, 358
empirical distribution function, 264
empirical moments, 87
energy test, 270

distance function, 270, 272

two-sample, 277
entropy regularization, 229
Epanechnikov kernel, 334
equivalent number of events, 63
error, 81, 201

declaration of, 82
definition, 83
definition of, 204
determination of, 85
of a product, 211
of a sum, 211, 212
of average, 98
of correlated measurements, 98
of empirical variance, 87
of error, 87
of ratio, 207
of weighted sum, 102
one-sided, 214
parabolic, 203
propagation of, 94, 94, 205, 210
relative, 82
several variables, 100
statistical, 84
systematic, 88, 90
types of, 84
unphysical parameter values, 219
verification of, 82

error ellipsoid, 97
error interval, 202
error matrix, 97
error of the first kind, 247
error of the second kind, 247
error propagation, 94, 94, 205, 210
estimate, 3
estimator

minimum variance bound, 347
event, 2, 9
excess, 26
expected value, 20

definition, 21
exponential distribution, 69

generation, 112
generation from uniform distribution, 42

extended likelihood, 154
extreme value distribution

generation, 113
extreme value distributions, 77
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extremum search, 364
method of steepest descent, 366
Monte Carlo methods, 365
parabola method, 366
simplex algorithm, 365
stochastic, 367

f.w.h.m., see full width at half maximum
factor analysis, 303
Fisher information, 346
Fisher’s spherical distribution, 55
Fisher–Tippett distribution, 78
frequentist confidence intervals, 353
frequentist statistics, 3
full width at half maximum, 28
function approximation, 291

adapted functions, 302
Gaussian weighting, 293
k-nearest neighbors, 292
orthogonal functions, 294
polynomial, 295, 369
splines, 300
wavelets, 298
weighting methods, 292

gamma distribution, 72
Gauss distribution, 65
Gauss–Markov theorem, 199
Gini-index, 323
GOF test, see goodness of fit test
goodness-of-fit test, 250, 363
Gram–Charlier series, 297
Gram–Schmidt method, 296
Gumbel distribution, 78

Haar wavelet, 299
Hermite polynomial, 295
histogram, comparison of, 361
hypothesis

composite, 246
simple, 246

hypothesis test, 245
multivariate, 268

i.i.d. variables, see independent, identically
distributed varaiables

importance sampling, 115
incompatible measurements, 209
independence, 52
independence of variates, 46
independent, identically distributed

variables, 52
information, 186
input vector, 289
integrated square error, 329
interval estimation, 201, 355
inverse probability, 137

ISE, see integrated square error
iterative deconvolution, 231

jackknife, 340

k-nearest neighbor test, 278
two-sample, 270

k-nearest neighbors, 292, 319
kernel method, 326
kernel methods, 290, 333

classification, 319
kernel trick, 373
kinematical fit, 165
Kolmogorov–Smirnov test, 263, 277
Kuiper test, 265
kurtosis, 26

coeffizient of, 26

L2 test, 268
Laguerre polynomial, 295
law of large numbers, 73, 343
learning, 289
least median of squares, 378
least square fit, 195

truncated, 376
least square method, 195

counter example, 196
least trimmed squares, 378
Legendre polynomial, 295
lifetime distribution

moments of, 28
Monte Carlo adjustment, 158

likelihood, 137
definition, 137
extended, 154
histogram of weighted events, 364
histograms, 152
histograms with background, 153
map, 155

likelihood function, 137
approximation, 208
asymptotic form, 349
parametrization, 208
transformation invariance, 142

likelihood principle, 186
likelihood ratio, 137, 137, 140

examples, 140
likelihood ratio test, 261, 281

for histograms, 262, 363
two-samples, 276

linear distribution
generation, 112

linear regression, 198, 292
with constraints, 368

literature, 6
LMS, see least median of squares
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loadings, 308
location parameter, 27
log-likelihood, 138
log-normal distribution, 75, 211
log-Weibull distribution, 78

generation, 113
look-else-where effect, 279, 286
Lorentz distribution, 74

generation, 113
loss function

decision tree, 324
LP, see likelihood principle
LS, see least squares
LST, see least squares truncated
LTS, see least trimmed squares

machine learning, 289
Mahalanobis distance, 269
marginal distribution, 43
marginal likelihood, 374
Markov chain Monte Carlo, 120
maximum likelihood estimate, 142

bias of, 187
consistency, 347
efficiency, 348
small sample properties, 350

maximum likelihood method, 142
examples, 144
recipe, 143
several parameters, 148
signal with background, 150

MCMC, see Markov chain Monte Carlo
mean integrated square error, 330, 333

of histogram approximation, 330
of linear spline approximation, 333

mean value, 22
measurement, 2

average, 205
bias, 103
combination of correlated results, 98
combining, 98, 151, 202, 205

measurement error, see error
measurement uncertainty, see error
median, 27, 377
method of steepest descent, 366
Mexican hat wavelet, 299
minimal sufficient statistic, 183
minimum search, 364
minimum variance bound estimate, 350
minimum variance estimate, 350
MISE, see mean integrated square error
MLE, see maximum likelihood estimate
mode, 27
moments, 32

exponential distribution, 38
higher-dimensional distributions, 44

of Poisson distribution, 36
Monte Carlo integration, 123

accuracy, 57
advantages of, 129
expected values, 128
importance sampling, 126
selection method, 123
stratified sampling, 128
subtraction method, 127
weighting method, 127
with improved selection, 125

Monte Carlo search, 365
Monte Carlo simulation, 107

additive distributions, 118
by variate transformation, 110
discrete distributions, 114
generation of distributions, 109
histogram distributions, 114
importance sampling, 115
Markov chain Monte Carlo, 120
Metropolis algorithm, 120
parameter inference, 155, 157
Planck distribution, 117
selection method, 115
with weights, 119

Morlet wavelet, 299
multinomial distribution, 58
multivariate distributions

correlation, 52
correlaton matrix, 52
covariance matrix, 52
expected values, 52
independence, 52
transformation, 52

MV estimate, see minimum variance
estimate

MVB estimate, see minimum variance
bound estimate

neural network, 290, 312, 326
activation function, 314
loss function, 315
testing, 316
training, 315

Neyman’s smooth test, 266
normal distribution, 65

generation, 113
generation from uniform p.d.f., 51
in polar coordinates, 47
two-dimensional, 66
two-dimensional rotation, 68

nuisance parameter, 174
dependence on, 181
elimination, 174
elimination by factorization, 176
elimination by integration, 181
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elimination by restructuring, 177
profile likelihood, 179

null hypothesis, 246, 246

number of degrees of freedom, 71, 72, 255

observation, 2
Ockham’s razor, 374
optimal variable method, 171
orthogonal functions, 294

p-value, 248, 252
combination of, 254

p.d.f., see probability density function
parameter inference, 131

approximated likelihood estimator, 171
least square method, 195
moments method, 191
Monte Carlo simulation, 155
optimal variable method, 171
reduction of number of variates, 168
weighted Monte Carlo , 157
with constraints, 163
with given prior, 133

PCA, see principal component analysis
PDE, see probability density estimation
Pearson test, 257
Peelle’s pertinent puzzle, 213
PIT, 266, 359
Planck distribution

generation, 117
point spread function, 222
Poisson distribution, 58

weighted observations, 61
Poisson numbers

weighted, 63
polynomial approximation, 295
population, 3
power law distribution

generation, 112
principal component analysis, 290, 303

principal components, 306
prior probability, 134, 136

for particle mass, 5
probability, 3

assignment of, 4
axioms, 10
conditional, 11
independent, 11

probability density
conditional, 43
two-dimensional, 42

probability density estimation, 268, 329

by Gram–Charlier series, 297
fixed volume, 333
histogram approximation, 330
k-nearest neighbors, 333

kernel methods, 333
linear spline approximation, 332

probability density function, 16
probability integral transformation, 266,

359
probability of causes, 137
profile likelihood, 179
propagation of errors, 94, 94

linear, 94
several variables, 95

pseudo random number, 109

quantile, 28

random event, 2, 9
random forest, 325
random number, 109
random variable, 10
random walk, 30
reduction of number of variables, 47
regression, 195
regression analysis, 292
regularization, 226, 229, 241

minimize curvature, 228
of the transfer matrix, 232

regularization function, 228
resampling techniques, 336
response, 289
robust fitting methods, 375

breakdown point, 377
least median of squares, 378
least trimmed squares, 378
M-estimator, 377
sample median, 377
truncated least square fit, 376

sample, 1
sample mean, 22
sample width, 25, 71

relation to variance, 25
scale parameter, 27
shape parameter, 27
sigmoid function, 315
signal test, 246

multi-channel, 285
signal with background, 61
significance, 63
significance level, 247
significance test, 245

small signals, 279
simplex, 365
singular value decomposition, 308
skewness, 26

coefficient of, 26
soft margin classifier, 372
solid angle, 55
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spline approximation, 300
spline functions, 370

cubic, 371
linear, 370
normalized, 301
quadratic, 370

stability, 37
standard deviation, 23
statistic, 144

ancillary, 185
minimal sufficient, 183
sufficient, 183

statistical error
definition, 91

statistical learning, 289
statistics

Bayesian, 3
frequentist, 3
goal of, 1

stimulated annealing, 367
stopping rule paradox, 190
stopping rules, 190
straight line fit, 179, 197

Student’s t distribution, 75
sufficiency, 145, 183

sufficiency principle, 183
sufficient statistic, 183
support vector, 322
support vector machine, 291, 320, 371
SVD, see singular value decomposition
SVM, see support vector machine
systematic error, 88, 90

definition, 91
detection of, 92
examples, 91

test, 245
bias, 248
comparison, 273
consistency, 248
distribution-free, 251
goodness-of-fit, 250, 363
power, 247
significance, 245
size, 247

uniformly most powerful, 247
test statistic, 246
training sample, 289
transfer function, 222
transfer matrix, 226
transformation of variables, 38

multivariate, 46
transformation function, 50

truncated least square fit, 376
two-point distribution, 56
two-sample test, 246, 275

chi-square test, 276
energy test, 277
k-nearest neighbor test, 278
Kolmogorov–Smirnov test, 277
likelihood ratio, 276

UMP test, see test, uniformly most powerful
unfolding, see deconvolution
uniform distribution, 31, 65

upper limit, 214
Poisson statistics with background, 216
Posson statistics, 215

v. Mises distribution, 53
variables

independent, identically distributed, 52
variance, 23

estimation by bootstrap, 337
of a sum, 23
of a sum of distributions, 25
of sample mean, 24

variate, 10
transformation, 41

Venn diagram, 10, 134

Watson statistic, 359
Watson test, 266
wavelets, 298
Weibull distribution, 78
weight matrix, 69
weighted observations, 61

statistics of, 61
width of sample, 25

relation to variance, 25



List of Examples

Chapter 1

1. Uniform prior for a particle mass

Chapter 2

2. Card game, independent events

3. Random coincidences, measuring the efficiency of a counter

4. Bayes’ theorem, fraction of women among students

5. Bayes’ theorem, beauty filter

Chapter 3

6. Discrete probability distribution (dice)

7. Probability density of an exponential distribution

8. Probability density of the normal distribution

9. Relation between the expected values of the track momentum and of its curvature

10. Variance of the convolution of two distributions

11. Expected values, dice

12. Expected values, lifetime distribution

13. Mean value of the volume of a sphere with a normally distributed radius

14. Playing poker until the bitter end

15. Diffusion

16. Mean kinetic energy of a gas molecule

17. Reading accuracy of a digital clock

18. Efficiency fluctuations of a detector

19. Characteristic function of the Poisson distribution

20. Distribution of a sum of independent, Poisson distributed variates

21. Characteristic function and moments of the exponential distribution

22. Calculation of the p.d.f. for the volume of a sphere from the p.d.f. of the radius
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23. Distribution of the quadratic deviation

24. Distribution of kinetic energy in the one-dimensional ideal gas

25. Generation of an exponential distribution starting from a uniform distribution

26. Superposition of two two-dimensional normal distributions

27. Correlated variates

28. Dependent variates with correlation coefficient zero

29. Transformation of a normal distribution from cartesian into polar coordinates

30. Distribution of the difference of two digitally measured times

31. Distribution of the transverse momentum squared of particle tracks

32. Quotient of two normally distributed variates

33. Generation of a two-dimensional normal distribution starting from uniform dis-
tributions

34. The v. Mises distribution

35. Fisher’s spherical distribution

36. Efficiency fluctuations of a Geiger counter

37. Accuracy of a Monte Carlo integration

38. Acceptance fluctuations for weighted events

39. Poisson limit of the binomial distribution

40. Fluctuation of a counting rate minus background

41. Distribution of weighted, Poisson distributed observations

42. Distribution of the mean value of decay times

Chapter 4

43. Scaling error

44. Low decay rate

45. Poisson distributed rate

46. Digital measurement (uniform distribution)

47. Efficiency of a detector (binomial distribution)

48. Calorimetric energy measurement (normal distribution)

49. Average from 5 measurements

50. Average of measurements with common off-set error

51. Average outside the range defined by the individual measurements

52. Error propagation: velocity of a sprinter

53. Error propagation: area of a rectangular table

54. Straight line through two measured points

55. Error of a sum of weighted measurements
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56. Bias in averaging measurements

57. Confidence levels for the mean of normally distributed measurements

Chapter 5

58. Area of a circle of diameter d

59. Volume of the intersection of a cone and a torus

60. Correction of decay times

61. Efficiency of particle detection

62. Measurement of a cross section in a collider experiment

63. Reaction rates of gas mixtures

64. Importance sampling

65. Generation of the Planck distribution

66. Generation of an exponential distribution with constant background

67. Mean distance of gas molecules

68. Photon-yield for a particle crossing a scintillating fiber

69. Determination of π

Chapter 6

70. Bayes’ theorem: pion- or kaon decay?

71. Time of a decay with exponential prior

72. Likelihood ratio: V +A or V −A reaction?

73. Likelihood ratio of Poisson frequencies

74. Likelihood ratio of normal distributions

75. Likelihood ratio for two decay time distributions

76. MLE of the mean life of an unstable particle

77. MLE of the mean value of a normal distribution with known width (case Ia)

78. MLE of the width of a normal distribution with given mean (case Ib)

79. MLE of the mean of a normal distribution with unknown width (case IIa)

80. MLE of the width of a normal distribution with unknown mean (case IIb)

81. MLEs of the mean value and the width of a normal distribution

82. Determination of the axis of a given distribution of directions

83. Likelihood analysis for a signal with background

84. Adjustment of a linear distribution to a histogram

85. Fit of the slope of a linear distribution with Monte Carlo correction

86. Fit of a lifetime with Monte Carlo correction

87. Signal over background with background reference sample

88. Fit with constraint: two pieces of a rope
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89. Fit of the particle composition of an event sample

90. Kinematical fit with constraints: eliminating parameters

91. Example 88 continued

92. Example 90 continued

93. Example 88 continued

94. Reduction of the variate space

95. Approximated likelihood estimator: lifetime fit from a distorted distribution

96. Approximated likelihood estimator: linear and quadratic distributions

97. Nuisance parameter: decay distribution with background

98. Nuisance parameter: measurement of a Poisson rate with a digital clock

99. Elimination of a nuisance parameter by factorization of a two-dimensional normal
distribution

100. Elimination of a nuisance parameter by restructuring: absorption measurement

101. Eliminating a nuisance parameter by restructuring: slope of a straight line with
the y-axis intercept as nuisance parameter

Chapter 7

102. Sufficient statistic and expected value of a normal distribution

103. Sufficient statistic for mean value and width of a normal distribution

104. Conditionality

105. Likelihood principle, dice

106. Likelihood principle, V −A

107. Bias of the estimate of a decay parameter

108. Bias of the estimate of a Poisson rate with observation zero

109. Bias of the measurement of the width of a uniform distribution

110. Stopping rule: four decays in a time interval

111. Moments method: mean and variance of the normal distribution

112. Moments method: asymmetry of an angular distribution

113. Counter example to the least square method: gauging a digital clock

114. Least square method: Fit of a straight line

Chapter 8

115. Error of a lifetime measurement

116. Averaging lifetime measurements

117. Averaging ratios of Poisson distributed numbers

118. Distribution of a product of measurements

119. Sum of weighted Poisson numbers

120. Average of correlated cross section measurements, Peelle’pertinent puzzle
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121. Upper limit for a Poisson rate with background

122. Upper limit for a Poisson rate with uncertainty in background and acceptance

Chapter 9

123. Deconvolution of a blurred picture

124. Deconvolution by fitting the true event locations

Chapter 10

125. Bias and inconsistency of a test

126. The p-value and the probability of a hypothesis

127. Comparison of different tests for background under an exponential distribution

128. χ2 comparison for a two-dimensional histogram

129. Likelihood ratio test for a Poisson count

130. Designed test: three region test

131. GOF test of a two-dimensional sample

132. Comparison of two samples

133. Significance test: signal over background, distribution of the likelihood ratio
statistic

134. Example 133 continued

Chapter 11

135. Simple empirical relations

136. Search for common properties

137. Two-class classification, SPAM mails

138. Multiclass classification, pattern recognition

139. Curse of dimensionality

140. Principal component analysis

141. Calorimeters in particle physics

Chapter 12

142. PDE of a background distribution and signal fit

143. Bootstrap evaluation of the accuracy of the estimated mean value of a distribu-
tion

144. Error of mean distance of stochastically distributed points in a square

145. Acceptance of weighted events

146. Two-sample test with a decision tree

Appendix

147. Efficiencies of different estimates of the location parameter of a Gaussian [77]

148. Efficiency of small sample MLEs

149. Parameter uncertainty for background contaminated signals
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150. Coverage: performance of magnets

151. Bias in the measurements for a mass determination

152. Inference with known prior

153. Bias introduced by a prior

154. Comparing predictions with strongly differing accuracies: Earth quake

155. Fitting a mean value in presence of outliers


