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We propose an overview on the Gauge/Gravity correspondence applied to the dynamics of high-energy collisions,
such as the properties and formation of the quark-gluon plasma in heavy-ion collisions. Some recent applications
to other high-energy scattering processes are also discussed.

1. Gauge/Gravity correspondence and
AdS/CFT

The history of the relations between high-
energy collisions and string theory is quite re-
markable. It starts with 1968 and the Veneziano
formula for 2-particle amplitudes, which theoret-
ical foundation, after some years of intense work,
led to the discovery of quantum string theory.
The original motivation for the Veneziano ampli-
tude was indeed to describe the strong interac-
tion amplitudes at small transverse momentum,
where a perturbative expansion in the coupling
seemed to be hopeless. However, in 1974, al-
most at the same time when this theoretical task
was achieved, Quantum Chromodynamics and
asymptotic freedom were discovered and found
to prevail over string theory as the correct the-
oretical basis for strong interactions at small cou-
pling. At the same time, string theory shifted
from the proton mass scale to the Planck mass,
i.e. from strong interactions to an unified descrip-
tion of gravity and gauge interactions. Indeed,
the consistency for a (super)string theory to be
viable required an embedding of the string in a
10-dimensional space, the existence of zero-mass
states including the graviton and very probably
a supersymmetric framework with all the associ-
ated fermions. All those requirements happen to
be far from the reality of strong interactions and
QCD.

The situation changed quite dramatically
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around 1998 when a nontrivial correspondence
between gauge and gravity interactions was dis-
covered [1]. In this scheme, a gauge interac-
tion in the “physical” world, corresponding to the
3+1-dimensional Minkowski space on a stack of
D3 branes is related to a 9+1-dimensional bulk
space of a consistent string theory, hence imply-
ing gravity in this higher-dimensional space. This
is in fact a “weak-strong” duality relation, since a
gauge theory at strong coupling can in practice be
put in correspondence with a weakly coupled and
semi-classical gravitational interaction. A precise
calculational framework has been found, and till
now studied and extended in numerous works,
the paradigmatic case being the AdS/CFT corre-
spondence, where a N =4 supersymmetric gauge
theory is related to the type II-B string theory
on a particular 10-dimensional background space,
namely AdS5 ⊗ S5, that is the tensor product of
a 5-dimensional Anti-de Sitter space with the 5-
sphere. We will give some more details on this
construction in the following.

Gauge/Gravity correspondence for high-energy
collisions gives hope to describe the high-energy
amplitudes at strong coupling which are beyond
reach of the perturbative expansion of QCD, re-
lating them to the semi-classical gravitational
regime of the bulk interactions. The goal of our
contribution is to explain how high-energy in-
teractions may be formulated and some results
obtained thanks to the Gauge/Gravity corre-
spondence and in particular using the AdS/CFT
framework. We will see what can be obtained and
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where are the reach and present.

2. AdS/CFT: a brief introduction

The AdS/CFT correspondence allows for a pre-
cise computational scheme. It can be consid-
ered as a kind of idealized laboratory where some
strong coupling investigations on gauge field the-
ories can be fully and rigorously led. It can
give some more realistic estimates when its su-
persymmetric and conformal (no asymptotic free-
dom) features can be considered less stringent, as
seems to be the case for heavy-ion reactions, as
we shall see later on. There is however a gen-
eral argument [2] which gives hope that the du-
ality properties are much more general. Consider
Fig. 1, the exchange of a closed string between
two branes. It can be equivalently considered as

Figure 1. Open/Closed string duality.

a one-loop interaction due to open strings. At
long distance, the closed string corresponds to
a weakly-coupled, classical, gravitational inter-
action, while the open-string set-up is expected
to be a strongly-coupled, quantum gauge interac-
tion. String theory would then identify the two
descriptions, being of identical topology.

The specific AdS5 ⊗ S5 background occurs [1]
from the following (here schematic) derivation.
One starts from the (super)gravity classical so-
lution of a system of N D3-branes in a 10− d
space of the (type IIB) superstrings. The metrics

solution of the (super)Einstein equations read

ds2 = f−1/2(−dt2+
∑

1−3

dx2
i )+f1/2(dr2+r2dΩ5) ,(1)

where the first four coordinates are on the brane
and r corresponds to the coordinate along the
normal to the branes. In formula (1), one defines

f = 1 +
R4

r4
; R = 4πg2

Y Mα′2N , (2)

where g2
Y MN is the so-called ‘t Hooft-Yang-Mills

coupling equal to the string coupling gs and α′

the string tension.
One considers the limiting behaviour

R fixed ;
α′(→ 0)

r(→ 0)
→ z fixed . (3)

where one zooms on the neighbourhood of the
branes. This, from the second equation of (2)
obviously implies

α′ → 0 , g2
Y MN ∼

1

α′2
→ ∞ , (4)

i.e. a weak coupling limit for the string theory
and a strong coupling limit for the dual gauge
field theory. By reorganizing the two parts of the
metrics one obtains

ds2 =
1

z2
(−dt2 +

3∑

1

dx2
i + dz2) + R2dΩ5 , (5)

which corresponds to the AdS5⊗S5 background
structure.

In the case of confining backgrounds, an in-
trinsic scale breaks conformal invariance and is
brought in the dual theory through e.g. a geo-
metrical constraint. For instance [1] a confining
gauge theory is dual to string theory in an AdSBH

black hole (BH) background

ds2
BH =

16

9

1

f(z)

dz2

z2
+

ηµνdxµdxν

z2
+ . . . (6)

where f(z) = z2/3[1 − (z/R0)
4] and R0 is the

position of the horizon.
One fascinating aspect of the Gauge/Gravity

duality is the property of holography. Quali-
tatively, it states that the amount of informa-
tion contained in the boundary gauge theory (on
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the brane) is the same as the one contained
in the bulk string theory. In fact, it acquires
the status of a quantitative tool that we shall
use in practice. For heavy-ion collisions, for in-
stance, where the energy-momentum tensor of the
quark-gluon plasma appears to be an important
characteristic of the collision process, a remark-
able and useful example is provided by the so-
called “holographic renormalization” [3]. Using
the Fefferman-Graham coordinate system for the
generalized AdS5 metric in the presence of the
plasma (here, in N =4 YM theory),

ds2 =
gµν(z) dxµdxν + dz2

z2
(7)

one can write

gµν = g(0)
µν (= ηµν) + z2g(2)

µν (= 0) + z4 〈Tµν〉+ (8)

where gµν is the bulk metric in 5 dimensions,
ηµν is the boundary metric in physical (3+1)
Minkowski space and 〈Tµν〉 is the v.e.v. of the
physical energy-momentum tensor. The higher
coefficients of the expansion over the fifth dimen-
sion z can be obtained by the Einstein equa-
tions in the bulk provided the boundary energy-
momentum tensor fulfills the zero-trace and con-
tinuity equations.

3. Gravity dual of an expanding medium

Among the problems arising from high-energy
collisions in the strong coupling regime, the hy-
drodynamic behaviour of the expanding quark-
gluon plasma experienced at RHIC is most strik-
ing (see Fig. 2). Numerical simulations show
a very small (if not the smallest in the physi-
cal world) viscosity over entropy ratio η/s. Quite

pre-equilibrium stage
QGP
mixed phase
hadronic gas

described
by hydrodynamics

Figure 2. Sketch of a heavy-ion collision in (1+1)
configuration space (by courtesy of F.Gélis).

surprisingly, the Gauge/Gravity correspondence
(using again the AdS/CFT laboratory) approach
leads to associate the geometry of a 5-dimensional
Black Hole (BH) to this physical process. Let us
examine in more detail this intriguing correspon-
dence.

Let us first consider the static configuration of
perfect fluid with a stress-energy tensor equipped
with diagonal elements

〈Tµν〉 ∝ g(4)
µν =

Diag{3/z4
0 = ε; 1/z4

0 = pi, [i = 1, 2, 3]} ,

where ε is the energy density and p1 = p2 = p3 =
p = ε/3 is the pressure density. One can resum
the whole holographic expansion (8) and, after a
change of variable z → z̃ gives

ds2 = −
1 − z̃4/z̃4

0

z̃2
dt2+

dx2

z̃2
+

1

1 − z̃4/z̃4
0

dz̃2

z̃2
, (9)

where one recognizes the BH (in fact an extended
black brane) with a static horizon at z̃0 in the 5th
dimension.

In fact there exists a one-to-one correspon-
dence between the thermodynamic properties of
the BH and those of the perfect fluid , namely
its temperature (TBH = ε

1
4 = TPF ) and entropy

(SBH ∼ Area = ε
3
4 = SPF ). It is in this con-

text of a static Black hole configuration that one
can go further than the perfect fluid approxima-
tion and derive the viscosity [4], using the Kubo
formula.

The previous results were obtained for static
configurations, i.e. for a thermalized QGP at rest.
In order to take into account the actual kinemat-
ics of a heavy-ion collision, it is required to intro-
duce the proper-time expansion of the plasma.
On the gravity side, it calls for studying non-
equilibrium geometries of 5d Black Hole configu-
rations, which represent in itself a nontrivial and
interesting issue. Let us now sketch how to build
[5] the dual geometries of the Bjorken flow, that
is the description of a boost-invariant expansion
of the QGP, which is expected to correspond to
the physical situation in the central rapidity re-
gion of the collision. In this context the questions
why the QGP fluid appears to be nearly perfect
(small viscosity) and why its thermalization time
is short can be addressed.
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Let us consider the equations obeyed by a phys-
ical energy-momentum tensor expressed in the
{τ, y, x=x1 =x2} coordinate system, where τ 2 =
x+x− is the proper-time and 2y = log(x+/x−) is
the space-time rapidity:

T µ
µ ≡ −Tττ +

1

τ2
Tηη + 2Txx = 0 (10)

DνT µν ≡ τ
d

dτ
Tττ + Tττ +

1

τ2
Tηη = 0

In a boost-invariant framework, one may consider
a general family of solutions of proper-time de-
pendent, boundary energy-momentum tensors

〈Tµν〉 ≡ Diag{f(τ);−τ3 d

dτ
f(τ) − τ2f(τ) ;

1

2
τ

d

dτ
f(τ);

1

2
τ

d

dτ
f(τ)} (11)

where the function f(τ) ∝ τ−s, satisfying the pos-
itivity condition Tµνtµtν ≥ 0 ⇒ 0 ≤ s ≤ 4 corre-
sponds to an interpolation between different rel-
evant regimes, namely

f(τ) ∝ τ−
4
3 : Perfect fluid ε = p1 = p2 = p3

f(τ) ∝ τ−1 : Free streaming ε = p2,3; p1 = 0
f(τ) ∝ τ−0 : “Full anisotropy” ε = p2,3 = −p1

Using the holographic renormalization to com-
pute the coefficients of the corresponding metrics
in the expansion on the fifth dimension and after
resummation, it was possible to solve the dual ge-
ometry for given s at asymptotic proper-time τ. It
reveals the existence of a scaling property of the
solutions in terms of the proper-time dependent
variable

v =
z

τ1/3
.

Analyzing the family of solutions as a function
of s, it appears that the only nonsingular solution
for invariant scalar quantities (here the square of
the Ricci tensor R2 = RµναβRµναβ ,) see Fig. 3,
is obtained for s = 4/3. Indeed, we find asymp-
totically in τ :

ds2 ∼ −
1− ṽ4/ṽ4

0

ṽ2
dt2+

dx2

ṽ2
+

1

1 − ṽ4/ṽ4
0

dṽ2

ṽ2
(12)

by a suitable change of variable v → ṽ. This
metric is similar to the metrics of the static BH
(9), but substituting the fixed horizon at z0 by
a moving one z0 → z4/τ1/3. This BH solution is
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Figure 3. The curvature scaler R2. The curves
correspond to the cases s = 4/3±, and s = 4/3,
the only finite case.

unique (cf. only for s = 4/3) and corresponds to
a Black Brane moving away in the fifth dimen-
sion when the corresponding plasma cools down.
Hence the perfect-fluid case is singled out and the
moving BH in the bulk corresponds through du-
ality to the expansion of the QGP taking place in
the boundary.

Consequently, the BH horizon moves as
zh(τ) ∝ τ

1
3 , the temperature as T (τ) ∼ 1/zh ∼

τ−
1
3 , and the entropy stays constant since S(τ) ∼

Area ∼ τ · 1/z3
h ∼ const. Note that again the

physical thermodynamical variables of the QGP
are the same as those one may attribute to the
BH in the bulk (with the reservation that ther-
modynamics of a moving BH may raise nontrivial
interpretation problems).

4. Some recent results

4.1. Beyond the perfect fluid

The geometry (12) is only a solution of Einstein
equations in the scaling limit. However with some
effort, one can get also the first subleading correc-
tions to the metric. One expects an energy den-
sity described by a viscous Bjorken expansion,
namely

ε(τ) =
1

τ
4
3

(

1 −
2η0

τ
2
3

+ . . .

)

(13)
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where η0 is related to the shear viscosity through
η = η0/τ (which follows from the scaling η ∝ T 3).
Let us show how this arises using the AdS/CFT
methods. Using the holographic renormalization,
one finds [6] that the curvature scalar has the
form

R2 = R0(v) +
1

τr
Rr(v) +

1

τ2r
R2r(v)

+
1

τ
4
3

R2(v) + . . . (14)

with R0(v) and Rr(v) being nonsingular, while a

priori, both R2r(v) and R2(v) turn out to have
4th order pole singularities. In order for them to
have a chance to cancel we find the conditions

r =
2

3
; η/s = 1/4π (15)

which is exactly the scaling of a viscosity correc-
tion to Bjorken flow and the value found previ-
ously in the static configuration [4]. In a simi-
lar manner one can go one-order higher and de-
termines the transport coefficients of second or-
der (nonlinear) hydrodynamics. At that order,
it turns out that there remains a leftover loga-
rithmic singularity but it has been proven that
it is merely due to a pathology of the Fefferman-
Graham expansion and can be avoided when one
uses a different metric [7].

4.2. Beyond boost-invariance

The calculations presented in the previous sec-
tions were performed for systems with boost in-
variance symmetry and full translational and ro-
tational symmetry in the transverse plane. This
allowed one to perform explicit computations as
the symmetry assumptions effectively reduced
the calculation to systems of ordinary differen-
tial equations. In this manner one obtains di-
rectly the solution for gauge theory energy den-
sity ε(τ). Then, in order to find the link with
hydrodynamics, one finds that this solution is a
solution of hydrodynamic equations with specific
values for the transport coefficients. However, the
boost-invariance assumption is crucial to get the
results.

This approach has both an advantage and a
drawback. The advantage is that one does not
presuppose any kind of initial or early-time dy-
namics and one may try to apply it in contexts

very far from equilibrium, where hydrodynamic
description does not apply. The drawback is that
the appearance of hydrodynamic equations is not
transparent and it is difficult to relax the symme-
try assumptions.

Recently the latter drawback was addressed
and it was shown in general how the equations
of hydrodynamics arise from the gravity side [8].
Here we will briefly review this approach. The
idea of ref.[8] is to allow uµ, the local 4-velocity
of the fluid and T, the temperature, to be (slowly-
varying) functions of the space-time coordinates.
Once this is done the geometries (9) or (12) cease
to be an exact solution of Einstein equation be-
cause of non-vanishing gradients of the param-
eters uµ and T . This suggests to perform an
expansion of the solution in terms of gradients
which has been carried out in [8] up to second
order in derivatives. The integration constants
arising at each order are again fixed by requiring
regularity of the metric at the horizon. The re-
sulting metric is expressed in terms of 4-velocities
and temperatures and their derivatives, so when
one extracts the energy-momentum tensor it will
be given directly in terms of those quantities.

Up to first order the expression is

T µν = (πT )4(ηµν + 4uµuν)
︸ ︷︷ ︸

perfect fluid

− 2(πT )3σµν

︸ ︷︷ ︸

viscosity

+

(πT )2
(

log 2T µν
2a + 2T µν

2b
+(2−log 2)

(
1

3
T µν
2c +T µν

2d
+T µν

2e

))

︸ ︷︷ ︸

second order hydrodynamics

The first term is just the perfect fluid energy
momentum tensor, the second term involves the
shear viscosity and the third, the other trans-
port coefficients. This result essentially demon-
strates how general hydrodynamic equations arise
from gravity in AdS/CFT. Once the general form
of the gauge theory energy-momentum tensor is
fixed, then conservation of energy momentum
∂µT µν = 0 is equivalent to conformal relativis-
tic Navier-Stokes equations. As a byproduct, the
above construction also gives a map from solu-
tions of (viscous) hydrodynamics to gravity solu-
tions. However this setup requires that the start-
ing point is not far off from equilibrium. For pro-
cesses which do not admit a hydrodynamic de-
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scription (like the early stage of a heavy-ion col-
lision) one has to resort to different methods.

4.3. Beyond hydrodynamics

Far from equilibrium behavior of gauge theo-
ries is a fascinating and pretty much open prob-
lem of experimental importance, like the early
universe or initial stages of heavy ion collisions.
The AdS/CFT correspondence is surely capable
to shed new light on these problems, or even be
understood as a formulation of far from equilib-
rium gauge theory.

In the context of heavy-ion collisions the most
important and probably the most difficult ques-
tions concern the issues of early-time dynamics
and the transition to an isotropic and thermal-
ized medium, see for instance [9,10]. One of the
puzzles here is the short time in which nuclear
matter approach local equilibrium. Perhaps some
of these questions might be answered by studying
collisions of shock-waves in AdS. The geometry
corresponding to a projectile in 3+1 dimensions
was constructed in [5] using holographic renor-
malization. The solution is

ds2 =
−2dx+dx−+f

(
x−

)
z4

(
dx−

)2
+dx2

⊥+dz2

z2
(16)

with an arbitrary function f
(
x−

)
.

Choosing f
(
x−

)
∝ δ

(
x−

)
leads to a shock-wave

– infinitely thin plane of matter moving at the speed
of light, which is a toy-model for a highly boosted
nucleus. The idea is to collide two such projectiles
and single out the physical behavior of the plasma
from the regularity of the dual geometry. This is a
difficult problem, but some interesting attempts have
been made and are still in progress (see, for instance,
[11–13].

5. Gravity dual of scattering amplitudes

5.1. Holography, Wilson lines and minimal surfaces

In gauge field theories, scattering amplitudes can
be appropriately formulated in terms of expectation
values of Wilson loops, which is useful for our pur-
pose. Indeed, the Gauge/Gravity “dictionary” for
Wilson loops has been proved to be well suitable for
duality properties. Let us thus introduce this dictio-
nary.

Within the general holographic framework, Wilson
loops in the “boundary” gauge field theory are in cor-
respondence with minimal surfaces in the “bulk”.

In order to illustrate the way one may formulate in
practice the AdS/CFT correspondence in a context
similar to QCD, let us consider first the example of
the vacuum expectation value (vev) of Wilson loops
in a configuration parallel to the time direction of the
branes. we consider the large time limit and thus the
loops close “near” infinity in the time direction (see
Fig. 4). This configuration allows for a determination

HORIZON

Boundary

Figure 4. Sketch of minimal surfaces with Wilson
lines boundaries. Left: Minimal surface in the
presence of a confining background; Right: Min-
imal surface for an AdS5-like background.

of the potential between colour charges [14]. The rôle
of colour charges is played by open string states elon-
gated between a stack of Nc D3 branes on one side
and one D3 brane near the boundary of AdS space.

The correspondence can be formulated2 as follows

〈 e
iP

∫

C

~A·~dl
〉 =

∫

Σ

e−
Area(Σ)

α′ , (17)

where C is the Wilson loop contour near the D3

branes and Σ any surface in AdS-space with C as
the boundary, see Fig. 4.

In the semi-classical approximation for the right-
hand (gravity) side of the relation where the
Gauge/Gravity correspondence would give the strong
coupling value of the left-hand (gauge) side, the inte-
gration over surfaces Σ which boils down to

〈 e
iP

∫

C

~A·~dl
〉 ≈ e−

Areamin
α′ × F luct. , (18)

where Areamin is the minimal surface whose bound-
ary is the gauge-theory Wilson loop. The factor de-
noted F luct. refers to the fluctuation determinant

2For simplicity, an extra singlet term in the left-hand ex-
ponent is here neglected.
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around the minimal surface, corresponding to the first
quantum correction beyond the classical approxima-
tion. It gives an interesting calculable semi-classical
correction, as we shall see on the example of ampli-
tudes.

In Fig. 4, we have sketched the form of minimal
surface solutions for the “confining” AdSBH case,
(see above (6)). For large separation of Wilson lines,
the minimal surface “feels” the horizon and is conse-
quently curved. At smaller separation, the solution
becomes again similar to the conformal case, since the
horizon cut-off does not play a rôle.

In gauge theory, the quark-quark potential is
known to be obtained from a suitable time-like in-
finite limit of the quadrangular Wilson loop vev. One
has

V (L) = lim
T→∞

1

T
× log〈 Wilson Loop 〉 (19)

Thanks to the Gauge/Gravity correspondence (17)
and the classical approximation (18), one is able to
get the strong coupling limit of the interquark po-
tential from the large time limit of the Wilson loop
v.e.v.:

AdS5 : 〈Wilson Loop〉 = eTV (L) ∼ e#1T/L

AdSBH : 〈Wilson Loop〉 = eTV (L) ∼ e#2TL/R2
0 ,

where, the potential behaviour obeys the nonconfin-
ing Coulomb law V (L) ∝ 1/L for the AdS case and
the confining law V (L) ∝ L for the AdSBH case. An
interesting nontrivial square-root dependent coupling
appears (here denoted only by #1,2). Note again
that, even in the case of a confining geometry with
a horizon at R0, Wilson lines separated by a distance
L << R0 do not give rise to minimal surfaces sen-
sitive to the horizon (see Fig. 4), and thus leads to
classical solutions similar to the non-confining case,
which can give interesting indications for small spa-
tial separation.

The important rôle of fluctuation corrections for
scattering amplitudes and the way of computing it
in some non-trivial cases is discussed in the following
subsection.

5.2. Dual models for scattering amplitudes

There are different approaches to scattering ampli-
tudes at strong coupling using gravity duals. We will
mention one of them, namely the holographic eval-
uation of Wilson loop correlators corresponding to
dipole-dipole amplitudes [15]. Even if not recent, it
starts from a general approach based on Wilson loops
which has found recently remarkable applications,

namely the formulation of gluon amplitudes at strong
coupling in the SU(N) gauge theory with N = 4 su-
persymmetries [16] and the first steps towards a de-
scription of deep-inelastic scattering at strong cou-
pling [17] (see also [18] for a different method).

The basic principle of the method is as follows.
Since we are interested in the present lecture in the
approach to hadronic scattering amplitudes, one is
led to search for both a field-theoretical formulation
based on QCD and the determination of the gravity
duals of the corresponding amplitudes. Concerning
the nature of the dual theory, the gravity dual the-
ory of QCD has not yet been identified. More gener-
ally, the problem of deriving a correspondence for a
confining theory with asymptotic freedom is not yet
achieved. In the following we shall use an approach
where only generic features of confining backgrounds
allow to determine some properties of the amplitudes.
The price we pay is that we will only be able to
discuss the high-energy behaviour of the amplitudes.
Other properties of the amplitudes will not be dis-
cussed, and probably are more difficult to derive in
the absence of a better determined dual background
to QCD. Using the AdS/CFT correspondence, we will
find that two-body high energy amplitudes in gauge
field theories can be related to specific configurations
of minimal surfaces.

Using the Wilson loop properties, it is now possi-
ble to formulate the Gauge/Gravity correspondence
for the elastic and inelastic scattering amplitude of
massive qq̄ states forming colourless QCD dipoles. In
Fig. 5, one considers the elastic and inelastic ampli-

a a

L

θ

t

x

y

Figure 5. Wilson loops for Dipole-Dipole scatter-
ing. The figure is drawn in the physical configu-
ration space (t, x, y, z).
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tudes of two dipoles in configuration space, denoted
respectively to Ad−d

P
(s, q2), and Ad−d

R
(s, q2). We will

here consider the amplitudes at high energy, i.e. the
problem of “Reggeization”. Indeed, at high energy,
fast moving colour sources propagate along linear tra-
jectories in coordinate space thanks to the eikonal ap-
proximation. This important property of high energy
propagation of colour sources will be helpful for the
evaluation of the amplitudes through Gauge/Gravity
duality.

Let us first consider the elastic dipole amplitude
Ad−d

P
(s, q2) , i.e. the diagram of Fig. 5. In the gauge

field theory, one may write it in terms of a correla-
tor between two Wilson lines in configuration space,
namely

Ad−d
P

(s, q2) = −2is

∫

d2x⊥eiqx⊥

〈
W1W2

〈W1〉 〈W2〉
−1

〉

(20)

where the Wilson loops W1, W2 correspond to the
two colliding dipoles which follow classical straight
lines for quark(antiquark) trajectories and close at
infinite time, as for the potential. The normalization
〈W1〉 〈W2〉 of the correlator ensures that the ampli-
tude vanishes when the Wilson loops get decorrelated
at large distances.

One useful technique is to formulate the duality
property in Euclidean R4 space where it takes the
form of a well-defined geometrical interpretation in
terms of a minimal surface problem and then the ana-
lytic continuation from Euclidean to Minkowski space
allows one to find the physical solution.

The Wilson line vev can be expressed as a minimal
surface problem with (approximately) two copies (for
dipole size a ∼ 0) of a minimal surface whose bound-
aries are straight lines in a 3-dimensional coordinate
space, placed at an impact parameter distance L and
rotated one with respect to the other by an angle
θ. see Fig. 5. Then the amplitude will be obtained
through the analytic continuation

θ ↔ −iχ ; tEucl ↔ itMink , (21)

where χ = log s/m2 is the total rapidity interval.
In flat space, with the same boundary conditions,

the minimal surface is the helicoid. One thus realizes
that the problem can be formulated as a minimal sur-
face problem whose mathematically well-defined so-
lution is a generalized helicoidal manifold embedded
in curved background spaces, such as Euclidean AdS
Spaces. Unfortunately, this problem is rather difficult
to solve analytically, even in flat space. It is known
in mathematics as the Plateau problem, namely the

determination of minimal surfaces for given boundary
conditions3.

In fact, the definition of the minimal surface geom-
etry in the conditions of a confined AdSBH metrics
(6) appears to be simpler, at least for the leading con-
tribution. Indeed, in the configuration of Wilson lines
of a confining theory, the AdSBH metrics is charac-
terized by a singularity at z = 0 which implies a rapid
growth in the z direction towards the D3 branes, then
stopped near the horizon at z0. Thus, to a good ap-
proximation, and for large enough impact parameter
(compared to the horizon distance), the main con-
tribution to the minimal area is from the metrics in
the bulk near z0 which is nearly flat. Hence, near z0,
the relevant minimal area can be drawn on a classical

helicoid, whose analytic expression is known.
After analytic continuation, one obtains

AP(s, q2) = 2is

∫

d~l e

i~q·~l−

{√
2Ng2

Y M

2R2
0

χ

}

~l2

∝

∝ s

1−q2 R2
0√

8Ng2
Y M (22)

which represents a Reggeized elastic amplitude, with
a linear Regge trajectory

α
P

(q2) = α
P

(0) − q2α′

P
≡ 1 − q2 R2

0
√

8Ng2
Y M

(23)

characterized by a “Pomeron” intercept α
P

(0) = 1
and a Regge slope, defined in terms of the gravity dual

parameters by α′

P
=

R2
0√

8Ng2
Y M

, where g2
Y MN ≡ gs is

the string or ‘t Hooft coupling.
Let us now consider the dipole-dipole inelastic am-

plitude. The helicoidal geometry remains valid due to
the eikonal approximation for the “spectator quarks”
while the “exchanged quarks” define a trajectory
drawn on the helicoid. This trajectory plays the rôle
of a dynamical time-like cut-off which takes part in
the minimization procedure. The resulting amplitude
reads:

AR(s, q2) = 2i

∫

d~l e

i~q·~l−

{√
8Ng2

Y M
R2

0

χ

}

~l2

∝

∝ s

−q2 2R2
0√

2Ng2
Y M , (24)

3It is interesting to remark that the derivation of the re-
markable results of [16] are just related to the nontrivial
determination of a minimal surface in AdS5.
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corresponding to a linear Regge trajectory

α
R

(q2) = α
R

(0) − q2α′

R
≡ −q2 2R2

0
√

2Ng2
Y M

(25)

characterized by a “Reggeon” intercept α
R

(0) = 0

and a Regge slope α′

R
=

2R2
0√

2Ng2
Y M

. Note that the

slope α′

R
is related to the quark potential calculated

within the same AdS/CFT framework and, quite in-
terestingly we find α′

R
= 4α′

P
. It is interesting to

note the difference between the relation obtained at
strong coupling with the expectation for weakly cou-
pled strings, namely α′

R
= 2α′

P
.

Up to now, we restricted ourselves to a classical ap-
proximation based on the evaluation of minimal sur-
faces solutions for the various Wilson loops involved
in the preceding calculations. It is interesting to note
[19] that a further step can be done by evaluating the
contribution of quadratic fluctuations of the string
worldsheet around the minimal surfaces in the case
where these surfaces are embedded in helicoids, as
discussed for the confining backgrounds. The semi
classical correction comes from the fluctuations near
the minimal surface (see Fig. 6). The main outcome

Figure 6. Fluctuations around the minimal heli-
coid.

is that this semi classical correction can be computed
and is intimately related to the well-known “univer-
sal” Lüscher term contribution to the interquark po-
tential .

After some nontrivial steps, the formulae (23,25)
get corrected as follows

AP(s, q2) ∝ sαP (−q2) = s1+
n⊥
96

−q2
α′

R
4

AR(s, q2) ∝ sαR(−q2) = s
n⊥
24

−q2α′

R (26)

where n⊥ is the number of zero modes of the gravity
dual theory in the transverse-to-the-branes directions.
The result is just equivalent to the Lüscher term in
the potential except that the number of zero modes

n⊥ = D − 2 can be larger than the usual value 2
corresponding to flat 4D space.

It is interesting to note that this theoretical feature
is in qualitative agreement with the phenomenology
of soft scattering. Indeed once we fix the α′ from
the phenomenological value of the static qq̄ potential
(α′ ∼ 0.9 GeV −2) we get for the slopes α′

R = α′ ∼
0.9 GeV −2 and α′

P = α′/4 ∼ 0.23 GeV −2 in good
agreement with the phenomenological slopes.

A second feature is the relation between the
Pomeron and Reggeon intercepts. At the classical
level of our approach these are respectively 1 and 0.
Note that this classical piece is in agreement with
what is obtained from simple exchanges of two gluons
and quark-antiquark pair, respectively, in the t ≡ −q2

channel. The fluctuation (quantum) contributions to
the Reggeon and Pomeron are also related by the fac-
tor four.

Adding both classical and fluctuation contributions
gives an estimate which is in qualitative agreement
with the observed intercepts. Indeed, when calculat-
ing the fluctuations around a minimal surface near
the horizon in the BH backgrounds there could be
n⊥ = 7, 8 massless bosonic modes . For n⊥ = 7, 8 one
gets 1.073 − 1.083 for the Pomeron and 0.3− 0.33 for
the Reggeon. This result is in agreement with the ob-
served intercept for the “Pomeron” and somewhat be-
low the intercepts of around 0.5 observed for the dom-
inant Reggeon trajectories. The interesting output of
the application of AdS/CFT correspondence to high
energy amplitudes at strong coupling is to emphasize
the relation between Reggeization and confinement,
using the description of two-body scattering ampli-
tudes in the dual string theory. Lattice calculations,
which is the only presently known way to evaluate
directly QCD observables at strong coupling, are not
able to compute high-energy amplitudes.

6. Conclusion

From the present rapid (and partial) survey of some
of the results obtained in the AdS/CFT approach,
it appears that the Gauge/Gravity correspondence is
a promising way to explore some features of QCD
at strong coupling. Indeed some general features of
this correspondence, relating at long distances the
closed and open string geometries are expected to be
valid in principle for various dual schemes and thus,
hopefully, QCD. However the “Gravity dual of QCD”
is not yet understood, in particular the asymptotic
freedom property which represents the renormaliza-
tion flow connecting the strong and weak coupling
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regimes. However, there exist situations, described
in this lecture, where the correspondence may give
physical lessons, either because the system is far from
its confined phase, or if some general results can be
obtained in a confining geometry irrespective of a par-
ticular realization.

For the quark-gluon plasma problems, quantitative
dual schemes have been more precisely elaborated for
the specific AdS/CFT case, i.e. the gauge theory with
N = 4 supersymmetries. Among the results, it gives
a calculable link between the hydrodynamic quasi-
perfect fluid behaviour on the gauge theory side with
a BH geometry in the higher dimensional gravity side
in and AdS background. This relation can be ex-
tended from the static case to a dynamical regime
reflecting (within the AdS/CFT framework) the rela-
tivistic expansion of the corresponding quark-gluon
plasma. This, and many other applications, some
of them using more complex geometries, less super-
symmetric backgrounds and examining other observ-
ables, gives hope for the fruitful possibilities of the
Gauge/Gravity approach to the QGP formation.

For the scattering amplitude problems, the formal-
ism using Wilson loops and their corresponding semi-
classical evaluation through minimal surface prob-
lems (+ fluctuations) in the gravity dual seem also
to lead to interesting results either connected with
Reggeization (cf.[15,19]) or to the strong coupling
limit of deep inelastic scattering (cf.[17]) or even,
quite remarkably to gluon amplitudes (cf. [16]).
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