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I discuss the procedure of interpolating from scales lower than, or similar to the quark masses mH , to those
much higher than mH via the use of a General Mass Variable flavour Number Scheme (GM-VFNS). The precise
definitions used in MRST and MSTW global fits are explained and the consequences for the extracted parton
distributions investigated.

1. Introduction

The correct treatment of heavy flavours in
an analysis of parton distributions is essential
for precision measurements at hadron colliders.
Cross sections at colliders depend on precise
knowledge of the heavy quark parton densities,
but a reliable determination of the heavy-flavour
distributions is also important because of the
“knock-on” effect on the other parton densities.
It has become clear in recent years that it is a del-
icate issue to obtain a proper treatment of heavy
flavours. There are various choices which can be
made, and also many ways in which subtle mis-
takes can occur. Both the choices and the mis-
takes can lead to changes in parton distributions
which may be similar to, or even greater than, the
quoted uncertainties – though the mistakes usu-
ally lead to the more dramatic changes. Hence,
I will here provide a full description of our pro-
cedure, along with a comparison to alternatives
and some illustrations of pitfalls which must be
avoided. I begin by describing the two distinct
regimes for heavy quarks where the pictures are
relatively simple. These are the so-called Fixed
Flavour Number Scheme (FFNS) and zero-mass
Variable Flavour Number Scheme (ZM-VFNS).

1.1. FFNS and ZM-VFNS

First, there is the region where the hard scale
of the process is similar to, or smaller than, the
quark mass1, i.e. Q2 <

∼ m2
H . In this case it is most

1Throughout H to denotes a heavy quark; H = c, b or t.

natural to describe the massive quarks as final
state particles, and not as partons within the pro-
ton. This requirement defines the FFNS, where
only light quarks are partons, and the number of
flavours is fixed. We label the number of quark
flavours appearing as parton distributions by nf .
Note, however, that there are FFNS with different
numbers of active flavours nf . The number nf is
normally equal to 3, where up, down and strange
are the light quarks, but we can treat charm as a
light quark while bottom remains heavy at high
scales, i.e. nf = 4, and it may also be equal to 5.
In each example of an FFNS the structure func-
tions are given by2

Fi(x, Q2) = C
FF,nf

i,k (
Q2

m2
H

) ⊗ f
nf

i,k (Q2). (1)

This approach contains all the mH -dependent
contributions, and is conceptually simple so is fre-
quently used in analyses of structure functions.
Even in this case one must be careful to be self-
consistent in defining all quantities, i.e. parton
distributions, coefficient functions and coupling
constant in the same renormalization schemes.
The mistake made by not doing so can lead to
errors in the gluon distribution similar to the un-
certainty [1].

2I use the convention that the factorization scale and
renormalization scale are both equal to Q2. It is also the
choice made in the analysis. Alternative choices are pos-
sible, and cause no problems in principle, but can lead to
considerable technical complication.
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Despite its conceptual simplicity, the FFNS has
problems. It does not sum αm

S lnl Q2/m2
H , l ≤ m

terms in the perturbative expansion, and the ac-
curacy of the fixed-order expansion becomes in-
creasingly uncertain as Q2 increases above m2

H .
There are additional practical issues. Since cal-
culations including full mass dependence are com-
plicated, there are only a few cross sections known
even to NLO in αS within this framework, so the
resulting parton distributions are not universally
useful. Even for neutral-current structure func-
tions, the FFNS coefficient functions are known
only up to NLO [2], and are not calculated at

NNLO – i.e. the α3
S coefficient3, C

FF,nf ,3

2,Hg , for
F2 is unknown, so one cannot determine parton
distributions at NNLO in this scheme.

The problems of the FFNS are solved in
the so-called zero-mass Variable Flavour Num-
ber Scheme (ZM-VFNS). Here, the heavy quarks
evolve according to the splitting functions for
massless quarks and the resummation of the large
logarithms in Q2/m2

H is achieved by the introduc-
tion of heavy-flavour parton distributions and the
solution of the evolution equations. It assumes
that at high scales, Q2 � m2

H , the massive quarks
behave like massless partons, and the coefficient
functions are simply those in the massless limit,
e.g. for structure functions

Fi(x, Q2) = C
ZMVF,nf

i,j ⊗ f
nf

j (Q2), (2)

where nf−3 is the number of active heavy quarks,
with masses above some transition point for turn-
ing on the heavy flavour distribution, typically at
a scale similar to m2

H . This is technically simpler
than the FFNS, and many more cross sections
are known in this scheme. The nomenclature of
“zero-mass” is a little misleading because some
mass dependence is included. The parton densi-
ties in different quark number regimes are related
to each other perturbatively, i.e.

fn+1
j (Q2) = Ajk(

Q2

m2
H

) ⊗ fn
k (Q2), (3)

where the matrix elements Ajk(Q2/m2
H) [3] con-

taining ln(Q2/m2
H) terms are known to NNLO,

3I add a subscript H to distinguish the g → H coeffi-
cient function CHg from the usual coefficient function Cg

describing the g → q transition of light quarks.

i.e. O(α2
S). They relate fn

i (Q2) and fn+1
i (Q2),

guaranteeing the correct evolution for both
regimes. At NLO in the MS scheme they con-
strain the heavy quarks to evolve from a zero
value at Q2 = m2

H , and the other partons to
be continuous at this choice of transition point,
hence making it the natural choice.

The ZM-VFNS has many advantages. How-
ever, it has the failing that it simply ignores
O(m2

H/Q2) corrections to the coefficient func-
tions, and hence is inaccurate in the region where
Q2 is not so much greater than m2

H . The nomen-
clature scheme is misleading since it usually im-
plies an alternative choice in ordering the expan-
sion, or a particular separation of contributions
between coefficient functions and parton densi-
ties, i.e. the inherent ambiguity in a perturba-
tive QCD calculation allows a choice, the effects
of which become increasing smaller as higher or-
ders are included. The ZM-VFNS involves miss-
ing out O(m2

H/Q2) contributions completely, and
there is a permanent error of this order. The er-
ror induced by fitting to HERA structure func-
tion data using a ZM-VFNS was shown to be up
to ∼ 6% in the small-x light-quark distributions
by CTEQ in [4], resulting in a systematic error
of ∼ 8% in predictions for vector boson produc-
tion at the LHC. This NLO result seems to pro-
vide ample evidence for the use of a general mass
Variable Flavour Number Scheme (GM-VFNS) to
provide default parton distributions, and CTEQ
have since adopted this convention. However, the
inherent problems with the ZM-VFNS are thrown
into particularly sharp relief at NNLO. At O(α2

S)
the Ajk(Q2/m2

H) are no longer zero at Q2 = m2
H ,

and lead to discontinuities in the parton densities.
This is similar to the discontinuity at µ2 = m2

H in
αS(µ2) at NNLO. For the coupling constant this
discontinuity is rather small. The corresponding
discontinuities can be significant for the gluon,
about 10%, but it turns out that c(x, m2

c) is con-
siderably negative at small x, see e.g. Fig. 3 of
[5]. The effect of the NNLO massless coefficient
function is to make this worse rather than better
at x ∼ 0.0001− 0.01, and the charm contribution
to F2(x, Q2) is negative at the transition point to
such a degree that there is an O(10%) disconti-
nuity in the total structure function at Q2 = m2

c ,
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as illustrated in Fig. 1.
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Figure 1. The discontinuity in F2(x, Q2) using
the ZM-VFNS at NNLO.

Hence, for a precise analysis of structure func-
tion, and other data, one must use a General
Mass Variable Flavour Number Scheme which
smoothly connects the two well-defined limits of
Q2 ≤ m2

H and Q2 � m2
H . A definition of a

GM-VFNS was first proposed in [6] – the ACOT
scheme, and the MRST group have been using
the alternative TR scheme [7] as the default since
MRST98[8]. However, despite the above reason-
ing, a GM-VFNS is not always used as default
even today. This is partially due to the extra
complication compared to the simple ZM-VFNS.
However, part of the reason may be because the
definition is not unique. The reasons for this
and the consequences will now be discussed, along
with a detailed outline of the prescription used in
the MRST/MSTW analysis. A less detailed, but
more introductory and comparative discussion of

the schemes used by MRST/MSTW and CTEQ
can be found in [9].

2. General-Mass Variable Flavour Number

Schemes

A GM-VFNS is defined by demanding equiv-
alence of the n (FFNS) and n + 1-flavour (GM-
VFNS) descriptions above the transition point for
the new parton distribution (they are by defini-
tion identical below this), at all orders, i.e.

Fi(x, Q2) = CFF,n
i,k (

Q2

m2
H

) ⊗ fn
k (Q2) (4)

= CVF,n+1

i,j (
Q2

m2
H

) ⊗ fn+1
j (Q2)

≡ CVF,n+1

i,j (
Q2

m2
H

) ⊗ Ajk(
Q2

m2
H

) ⊗ fn
k (Q2).

The description where the number of active par-
tons is taken to be nf = n must be identical to
that when it increases, i.e. nf = n + 1. Hence,
the GM-VFNS coefficient functions satisfy4

CFF,n
i,k (

Q2

m2
H

) = CVF,n+1

i,j (
Q2

m2
H

) ⊗ Ajk(
Q2

m2
H

), (5)

which, for example, at O(αS) gives for F2(x, Q2)

CFF,n,1
2,g (

Q2

m2
H

)=CVF,n+1,0
2,HH (

Q2

m2
H

) ⊗ P 0
qg ln(

Q2

m2
H

)(6)

+ CVF,n+1,1
2,g (

Q2

m2
H

).

The GM-VFNS coefficient functions, CVF, are
constrained to tend to the massless limits as
Q2/m2

H → ∞ and the Ajk(Q2/m2
H) are such

that this happens self consistently. However, the

C
VF,nf

i,j (Q2/m2
H) are only uniquely defined in this

massless limit. For finite Q2/m2
H one can swap

O(m2
H/Q2) terms between CVF,n+1,0

2,HH (Q2/m2
H)

and CVF,n+1,1
2,g (Q2/m2

H) while maintaining the
exact definition in (7). This general feature ap-
plies to all relationships in (5). Although the
equivalence (5) was first pointed out in general

4It is implicit that the coupling constant is a function of
n flavours on the left-hand side and of n + 1 flavours on
the right-hand side.
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in [3], and (7) is effectively used in defining
the original ACOT scheme, the freedom to swap
O(m2

H/Q2) terms without violating the definition
of a GM-VFNS was first noticed in [7] and put to
use to define the TR scheme, as described below.
This freedom to redistribute O(m2

H/Q2) terms
can be classified as a change in scheme since it
leads to an ambiguity in the result at a fixed or-
der, but the ambiguity becomes higher order if
the order of the calculation increases, much like
the renormalization scheme (and scale) ambigu-
ity. Moreover, it is a change of scheme which
does not change the definition of the parton dis-
tributions, only the coefficient functions. This
is perhaps a surprising result, which occurs be-
cause there is a redundancy in (5), there being
one more coefficient function above the transition
point than below, i.e. that for the heavy quark.

The original ACOT prescription calculated the
coefficient functions for single heavy quark scat-
tering from a virtual photon exactly. This might
seem the most natural definition. However, it
assumes that immediately above the transition
point a single heavy quark or antiquark can ex-
ist in isolation. Each coefficient function violates
the real physical threshold W 2 > 4m2

H , since only
one heavy quark is produced in the final state.
Moreover, this definition requires the calculation
of mass-dependent coefficient functions which be-
comes progressively more difficult at higher or-

ders. In the TR scheme [7] C
VF,nf ,0

2,HH (Q2/m2
H)

was defined by the constraint that (d F H
2 /d ln Q2)

was continuous at the transition point (in the
gluon sector). This imposed the correct threshold
dependence on all coefficient functions and im-
proved the smoothness at Q2 = m2

H , and did not
involve the calculation of new mass-dependent di-
agrams. However, it required the convolution of
the formal inverse of splitting functions with coef-
ficient functions, which itself becomes technically
difficult at higher orders.

Since these early definitions there have been
various modifications, including a precise defini-
tion of an ACOT-like scheme up to NNLO by
Chuvakin, Smith and van Neerven [10]5. A major

5Indeed in [10] it is pointed out that at NNLO a fur-
ther complication appears for the first time. There are

simplification was achieved when the flexibility
in the choice of heavy-quark coefficient functions
was used to define the ACOT(χ) prescription [11],
which in the language used in this paper (and in
[7]) would be defined by

C
VF,nf ,0

2,HH (z,
Q2

m2
H

) = z(1+4
m2

H

Q2
)δ(z−

Q2

Q2 + 4m2
H

).(7)

This gives the LO definition

F H,0
2 (x, Q2) = (h + h̄)(x/xmax, Q2), (8)

where xmax = Q2/(Q2 + 4m2
H). It automatically

reduces to the massless limit C
ZM,nf ,0

2,HH (z) = δ(1−

z) for Q2/m2
H → ∞, and also imposes the true

physical threshold

W 2 = Q2(1 − x)/x ≥ 4m2
H . (9)

This choice of the LO heavy-flavour coefficient
function has been adopted in our current prescrip-
tion, the TR′ scheme, described in detail in [12].
For the GM-VFNS to remain simple (and physi-
cal) at all orders, m, it is necessary to choose

C
VF,nf ,m

2,HH (Q2/m2
H , z) = C

ZM,nf ,m

2,HH (z/xmax), (10)

which is the implicit ACOT(χ) definition, and is
our choice. It removes one of the sources of am-
biguity in defining a GM-VFNS. However, there
are others.

One major issue in a complete definition of the
GM-VFNS is that of the ordering of the pertur-
bative expansion. This ambiguity comes about
because the ordering in αS for F H

2 (x, Q2) is dif-
ferent for the number of active flavours nf = n
and nf = n + 1 regions.

n − flavour n + 1 − flavour

LO αS

4π
CFF,n,1

2,Hg ⊗ gn CVF,n+1,0
2,HH ⊗ (h + h̄)

(11)

ln3(Q2/m2
H

) divergences at O(α2
S
) coming from gluon

splitting into heavy quark-antiquark pairs. These diver-
gences arise from heavy quark emission diagrams which
cancel with opposite ones originating from virtual heavy
quarks loops in the “light quark” coefficient functions.
This cancellation is achieved in a physically meaningful
manner by imposing a cut on the softness of the heavy
quark final state in the former process. In practice, af-
ter cancellation both contributions are very small so we
currently include the total in the “light quark” sector. In
the O(α2

S
) FFNS they are usually combined instead in the

“heavy quark” contribution.



Heavy quarks in MRST/MSTW global fits 5

with generalization to higher orders. Switching
directly from n flavours at fixed order to n + 1 at
fixed order leads to a discontinuity in F H

2 (x, Q2).
As with the discontinuities in the ZM-VFNS this
is not just a problem in principle – the disconti-
nuity is comparable to the errors on data.

Hence, any definition of a GM-VFNS must
make some decision how to deal with this, and the
ACOT-type schemes have always made a differ-
ent choice to that for the TR-type schemes used
in our analyses. The ACOT-type schemes sim-
ply define the same order of αS both below and
above the transition point. For example at NLO
the definition is

F H
2 (x, Q2) =

αS

4π
CFF,n,1

2,Hg ⊗ gn (12)

→
αS

4π
(CVF,n+1,1

2,HH ⊗ (h + h̄) + CFF,n+1,1
2,Hg ⊗ gn+1).

This clearly maintains continuity in the structure
function across the transition point. However, it
only contains information on LO heavy flavour
evolution below Q2 = m2

H , since CFF,n,1
2,Hg only

contains information on the LO splitting function,
but the heavy quarks evolve using NLO splitting
functions above Q2 = m2

H – a big change at small
x. The TR scheme, and all subsequent variations
used in our analyses, try to maintain the correct
ordering in each region as closely as possible. For
example at LO

F H
2 (x, Q2)=

αS(Q2)

4π
CFF,n,1

2,Hg (
Q2

m2
H

) ⊗ gn(Q2) (13)

→
αS(m2

H )

4π
CFF,n,1

2,Hg (1) ⊗ gn(m2
H)

+ CVF,n+1,0
2,HH (

Q2

m2
H

) ⊗ (h + h̄)(Q2),

i.e. we freeze the O(αS) term when going up-
wards through Q2 = m2

H . This generalises to
higher orders by freezing the term with the high-
est power of αS in the definition for Q2 < m2

H

when moving upwards above m2
H . Hence, the def-

inition of the ordering is consistent within each
region, except for the addition of a constant term
(which does not affect evolution) above Q2 = m2

H

which becomes progressively less important at
higher Q2, and whose power of αS increases as
the order of the perturbative expansion increases.

This definition means that in order to de-
fine our VFNS at NNLO [12] we need to use
the O(α3

S) heavy-flavour coefficient functions for
Q2 ≤ m2

H (and that the contribution will be
frozen for Q2 > m2

H). As mentioned above, these
coefficient functions are not yet calculated. How-
ever, we can model this contribution using the
known leading threshold logarithms [13] and lead-
ing ln(1/x) terms derived from the kT -dependent
impact factors [14]. This results in a significant
contribution at small Q2 and x with some model
dependence, though variation in the free param-
eters does not lead to a large change.6 Up to this
small model-dependence we have a full NNLO
GM-VFNS with automatic continuity of structure
functions across heavy flavour transition points.7

This is certainly the most complete treatment of
heavy-flavour effects currently used in any NNLO
analysis.

3. Scheme dependence

Although all definitions of the GM-VFNS be-
come very similar at very high Q2, the difference
in choice can be phenomenologically important.
For example, our definition is effectively includ-
ing exactly one higher order than ACOT-type
schemes for Q2 < m2

H , and the value of this con-
tribution at Q2 = m2

H is carried to higher Q2.
Since at small x the higher orders in αS are ac-
companied by large corrections this leads to large
differences below the transition point, which are
still important a little way above the transition
point. This is shown for F c

2 (x, Q2) in Fig. 2 of
[12] where the two choices are shown for the same
parton distributions. More clearly, this difference
in the definition of the ordering is the main dif-
ference in the NLO predictions from MRST and

6It should be stressed that this model is only valid for
the region Q2 ≤ m2

H
, and contains no information on the

large Q2/m2
H

limits of the coefficient functions.
7There are O(α3

S
) discontinuities due to terms such as

CVF,n+1,1

2,HH
⊗(h+ h̄) and CVF,n+1,1

2,Hg
⊗gn+1, i.e. O(αS) co-

efficient functions convoluted with O(α2
S
) discontinuities

in partons. These would be cancelled at NNNLO by dis-
continuities in O(α3

S
) coefficient functions. In practice the

imposition of the correct threshold behaviour in all coef-
ficient functions minimises these effects and they are very
small.
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CTEQ in the comparison to H1 data on F b
2 (x, Q2)

[15], shown in Fig. 2.
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Figure 2. Comparison of the MRST and CTEQ
predictions for F c

b (x, Q2) compared with pub-
lished H1 data [15].

The inclusion of the complete GM-VFNS in a
global fit at NNLO first appeared in [5], and led to
some important changes compared to the previ-
ous NNLO analyses, which had a much more ap-
proximate inclusion of heavy flavours (explained
in the Appendix of [16]). A consequence of in-
cluding the positive O(α3

S) coefficient functions at
low Q2 is that the NNLO F c

2 (x, Q2) automatically
starts from a higher value at low Q2. However,
at high Q2, the structure function is dominated
by (c + c̄)(x, Q2). This has started evolving from
a significantly negative value at Q2 = m2

c . The
partons in an NNLO fit readjust so that the light

flavours evolve similarly to those at NLO, in or-
der to fit the data. Since the heavy flavour quarks
evolve at the same rate as light quarks, but at
NNLO start from a negative starting value, they
remain lower than at NLO for higher Q2. Hence,
there is a general trend – F c

2 (x, Q2) is flatter in
Q2 at NNLO than at NLO, as shown in Fig. 4 of
[5]. It is also flatter than our previous approxi-
mate NNLO prescription. This had an important
effect on the gluon distribution. As seen in Fig. 5
of [5], it led to a larger gluon for x ∼ 0.0001−0.01,
as well as a larger value of αS(M2

Z), both compen-
sating for the naturally flatter evolution, and con-
sequently leading to more evolution of the light
quark sea. Both the gluon and the light quark
sea were up to 6 − 7% greater than in the 2004
set [17] for Q2 = 104 GeV2, the increase max-
imising at x = 0.0001 − 0.001. As a result there
was a 6% increase in the predictions for σW and
σZ at the LHC. This surprisingly large change is
a correction rather than a reflection of the un-
certainty due to the freedom in choosing heavy
flavour schemes.

The 2006 MRST NNLO parton update [5] was
made because this was the first time the heavy
flavour prescription had been treated precisely at
NNLO and also because there was previously no
MRST NNLO set with uncertainties. The data
used in the analysis were very similar to the 2004
set, and since a consistent GM-VFNS was already
used at NLO, and a set with uncertainties al-
ready existed, no new corresponding release of an
NLO set was made along with the 2006 NNLO
set. With the benefit of hindsight, it would be
interesting to check the effect on the distribu-
tions due to the change in the prescription for
the GM-VFNS at NLO without complicating the
issue by also changing many other things in the
analysis. To this end we have obtained an unoffi-
cial “MRST2006 NLO” set, which is fit to exactly
the same data as the MRST2006 NNLO set.

The comparison of the up quark and gluon dis-
tributions for the “MRST2006 NLO” set and the
MRST2004 NLO set, i.e. the comparable plot to
Fig. 5 of [5] for NNLO, is shown in Fig. 3. As can
be seen it leads to the same trend for the par-
tons as at NNLO, i.e. an increase in the small-x
gluon and light quarks, but the effect is much
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Figure 3. A comparison of the unpublished
“MRST2006 NLO” parton distributions to the
MRST2004 NLO distributions at Q2 = 104 GeV2.
In order to illustrate the significance of the size of
the differences, the uncertainty on the MRST2001
distributions is used for the 2004 distributions.
The corresponding comparison at NNLO can be
seen in Fig. 5 of [5].

smaller – a maximum of a 2% change. Also, the
value of the coupling constant increases by 0.001
from the 2004 value of αS(M2

Z) = 0.120. Again,
this is similar to, but smaller than, the change at
NNLO. Hence, we can conclude that the change
in our choice of the heavy-flavour coefficient func-
tion alone leads to changes in the distributions
of up to 2%, and since the change is simply a
freedom we have in making a definition, this is
a theoretical uncertainty on the partons, much
like the frequently invoked scale uncertainty. Like
the latter, it should decrease as we go to higher

orders. The ambiguity simultaneously moves to
higher order, but it is difficult to check this explic-
itly since our main reason for making our change
in the choice of heavy-quark coefficient functions
was the difficulty of applying the original proce-
dure in [7] at NNLO. Certainly an absolute max-
imum of 2% of the 6 − 7% change, in the predic-
tions for σW and σZ at the LHC in going from the
2004 to the 2006 NNLO parton sets, is due to true
ambiguities and the remaining 5% is due to the
correction of the flaws in the previous approach.
The “MRST2006 NLO” distributions lead to a
2% increase in the predictions for σW and σZ

at the LHC compared to MRST2004 NLO, but
there is very little change at the Tevatron, where
the typical values of x probed are nearly an order
of magnitude higher.

4. Longitudinal Structure Function

One also has to be careful in defining the GM-
VFNS for the longitudinal structure function. In
one sense this is not so important since the lon-
gitudinal contribution to the total cross section
measured in structure function experiments is
small, and the errors on direct measurements are
comparatively large. However, the importance is
increased by the larger ambiguity inherent in the
definition of FL as compared to F2.

This large ambiguity occurs because, if one cal-
culates the coefficient function for a single mas-
sive quark scattering off a virtual photon, there
is an explicit zeroth-order contribution

C
VF,nf ,0

L,HH (z, Q2/m2
H) = z

4m2
H

Q2
δ
(

z−
Q2

Q2 + m2
H

)

.(14)

This disappears at high Q2 and the correct zero-
mass limit is reached.

Such a zeroth-order coefficient function is used
in the original ACOT definition of a GM-VFNS,
and leads to a peculiar behaviour of F c

L just above
Q2 = m2

c . It is convoluted with the heavy flavour
distribution, which for Q2 just above m2

c is small
in magnitude. However, the coefficient function
is large near m2

c , while the unsubtracted (i.e.
FFNS) gluon and singlet-quark coefficient func-
tions are suppressed by a factor of v3, where v is
the velocity of the heavy quark in the centre-of-
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mass frame, and are very small for low Q2. This
means that this zeroth-order heavy-flavour con-
tribution dominates just above Q2 = m2

c , despite
the fact that if a cc̄ pair has to be created, as it
must in reality, the contribution is absent.

The contribution from C
VF,nf ,0

L,cc ⊗ (c + c̄) turns

on rapidly just above m2
c , dominating other con-

tributions, then dies away as m2
H/Q2 becomes

small. This leads to a distinct bump in F c
L(x, Q2)

for Q2 just above m2
c , as pointed out in [7]. In

principle this cancels between orders in a properly
defined GM-VFNS, as this contribution implicitly
appears in the subtraction terms for the gluon
and singlet-quark coefficient functions with oppo-
site sign to its explicit contribution. However, the
cancellation is imperfect at finite order, and even
the partially cancelled contribution dominates at
NLO. At NNLO, where heavy-flavour distribu-
tions begin at Q2 = m2

c with negative values, the
“bump” in F c

L(x, Q2) is negative, as illustrated in
Fig. 18 of [10], highlighting the unphysical nature
of this contribution.

Hence, as in [7] we choose to ignore the explicit
single heavy quark-photon scattering results. We
define the longitudinal sector in what seems to us
to be the most physical generalization of the def-
inition for F H

2 (x, Q2), as explained in [12]. The
heavy-quark coefficient functions are simply those
for the light quarks, with the upper limit of inte-
gration moved from 1 to xmax = Q2/(Q2+4m2

H).
Thus the physical threshold of W 2 ≥ 4m2

H is
contained in all terms, and there are no spuri-
ous zeroth-order terms. These could only make
a contribution if one works in the framework of
single heavy quark scattering in the region of low
Q2 where the parton model for the heavy quark is
least appropriate. The definition of the SACOT
type scheme [18], and particularly the SACOT(χ)
scheme used in the global fits [4] also avoids this
undesirable zeroth-order coefficient function.

5. Charged Currents

The general procedure for the GM-VFNS for
charged-current deep inelastic scattering works
on the same principles as for neutral currents
– one can now produce a single charm quark
from a strange quark so the threshold is now at

xmax = 1/(1 + m2
c/Q2). However, as explained

in [12], there is a complication because the mas-
sive FFNS coefficient functions are not known at
O(α2

S) (only asymptotic limits [19] have been cal-
culated). These coefficient functions are needed
in our GM-VFNS at low Q2 at NLO, and at all
Q2 at NNLO - though in the latter case the defini-
tion of the GM-VFNS means that the ln(Q2/m2

c)
terms are subtracted, and the O(m2

c/Q2) terms
die away at high Q2, so the GM-VFNS coefficient
functions tend to the precisely known massless
limits for large Q2/m2

c.
The initial proposal to deal with this, outlined

in [12], was to assume that the mass-dependence
in the O(α2

S) coefficient functions is the same as
for the neutral current functions, but with the
threshold in 4m2

c replaced by a threshold in m2
c .

It was noted that this meant that the coefficient
functions at least satisfy the threshold require-
ments, and tend smoothly to the correct mass-
less limits, so were very likely to be an improve-
ment on the ZM-VFNS. However, in the course
of the analyses performed in the latest global fit
we have noticed various complications. One con-
sideration is that the neutrino cross sections are
given by expressions where F2(x, Q2), F3(x, Q2)
and FL(x, Q2) are all important and in the heavy-
flavour contribution there are significant cancel-
lations between them, so all need to be treated
very carefully.

Let us first discuss F CC
2 (x, Q2). At O(α2

S) this
is dominated by the gluon contribution. The sim-
ple prescription, suggested in [12], gives large cor-
rections to FCC

2 (x, Q2) at low Q2 because the
lower threshold compared to the neutral current
case leads to a longer convolution length. How-
ever, let us consider the comparison of the gluon
coefficient functions at O(αS), represented by the
two diagrams in Fig. 4.

The neutral-current coefficient function is in-
frared finite and positive. On the other hand the
charged-current coefficient function diverges due
to the collinear emission of a light (i.e. strange)
quark. After subtraction of this divergence, via
the usual factorization theorem in MS scheme,
there is an approximate factor of (1+2 log(1−z))
in the coefficient function at low Q2. It is negative
for high z even in the FFNS. At higher Q2, the
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Figure 4. The gluon coefficient function at O(αS)
in NC and CC processes

finite parts of the neutral-current and charged-
current GM-VFNS coefficient functions, after the
subtraction of the log(Q2/m2

c) terms, converge to
the same massless expression, but from qualita-
tively different forms at lower Q2.

At O(α2
S), the neutral-current FFNS coefficient

function is positive with threshold log enhance-
ments. On the other hand, obtaining the ap-
proximate charged-current expression by just a
change in threshold limits leads to a large contri-
bution, which, bearing in mind the above discus-
sion, is unlikely to be accurate. At O(α2

S), the
charged-current diagram will still have an extra
emission of a strange quark and a corresponding
collinear subtraction. So we choose to obtain the
charged-current coefficient function by both the
change in threshold kinematics and by introduc-
ing a (1 + 2(m2

c/Q2) log(1 − z)) factor. This still
leads to the correct large Q2/m2

c limit, but is very
likely to be a more accurate representation of the
low Q2 region. The same procedure is applied to
the similar O(α2

S) singlet-quark contribution.
We now consider F CC

3 (x, Q2) at O(α2
S). For

massless quarks this contribution is zero for ini-
tial gluons and singlet quarks, but the coeffi-

cient function C
CC,nf

3,g (x, m2
c , Q

2) is non-zero for

finite Q2/m2
c . However, it must vanish at both

Q2/m2
c → ∞ and W 2/m2

c → ∞. Hence, our

model for C
CC,nf ,2

3,g (x, m2
c , Q

2) is weighted by a

factor m2
c/Ŵ 2 = m2

cz/((1 − z)Q2), as is the
singlet-quark contribution. It is important that a
suppression of this type is implemented. Other-

wise the contribution is potentially anomalously
important at low Q2 and x.

Finally, there is a complication in the ordering
for the longitudinal charged-current heavy flavour
production. In the massless limit the lowest-order
contribution is

FCC,c
L (x, Q2) = αS(CL,g⊗g(Q2)+CL,q⊗s(Q2)).(15)

However, for a massive quark there is a zeroth-
order contribution

FCC,c
L (x, Q2) =

m2
c

m2
c + Q2

s(ξ, Q2), (16)

where ξ = x(1 + m2
c/Q2). Note that this is un-

like the neutral-current case for FL(x, Q2), where
there was also a zeroth-order contribution. Here
it is due to a real physical process, i.e. W + +s →

c, rather than one which only makes sense in the
limit where the charm quark is most definitely
behaving like a massless parton. Hence, for the
charged-current case the zero-order contribution
must be included. This means that there is a dif-
ference in orders below and above the transition
point, i.e. FFNS begins at zeroth order whereas
the ZM-VFNS begins at first order – opposite to
the case for the neutral current F2(x, Q2). Again
a choice in ordering must be made. We choose to
obtain the correct limits in both regimes and to
maintain continuity. We use (16) to define the LO
contribution for Q2 < m2

c , whereas for Q2 > m2
c

the LO contribution is defined by

FCC,c
L (x, Q2) =

m2
c

m2
c + Q2

s(ξ, Q2) (17)

+

(

1 −
m2

c

Q2

)

αS(CL,g ⊗ g(Q2) + CL,q ⊗ s(Q2)).

At high Q2 the first term dies away leading to the
normal massless limit. We can easily generalise
the prescription to higher orders by including the
next term in the αS expansion both sides of the
transition point, with the (1 − m2

c/Q2) factor al-
ways multiplying the highest-order term in the
region above the transition point.

In principle, we would also make some use of
the O(α3

S) charged-current coefficient functions
in the same way as we do for neutral currents.
However, the region where they make a signif-
icant impact is overwhelmingly in the small x
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and Q2 regime accessed only by HERA neutral-
current measurements. The amount of modelling
required for these terms in charged-current pro-
cesses is large. Since they are unlikely to have
much effect at all, we simply omit them.

6. Conclusions

A well defined version of a GM-VFNS is
used as as default for heavy flavours in NLO
MRST/MSTW global PDF fits, and has been
since [8]. The coefficient functions for heavy
quarks are now based on those in the SACOT(χ)
scheme and this leads to a physically sensible and
simple definition of a GM-VFNS. However, the
ordering is different in the MRST/MSTW and
CTEQ approaches for a variety of quantities. For-
mally this is a higher order effect, but the phe-
nomenological impact is sometimes large.

We now implement a full NNLO GM-VFNS,
which has small amount of necessary modelling
which only impacts at low Q2. This improves
the fit to the lowest x and Q2 data and has an
important impact on the gluon. Pre 2006 NNLO
MRST sets used an approximate NNLO heavy
flavour treatment, and are now obsolete.

The recent changes in the TR prescription lead
to differences in partons of at most 2% at NLO.
This represents an inherent theoretical uncer-
tainty. In principle this decreases with pertur-
bative order, and it will be an interesting project
to compare different definitions of the GM-VFNS
at NNLO.

MSTW have also implemented a detailed GM-
VFNS prescription for charged currents. This
needs more modelling at low Q2 than the neu-
tral current case, but contains the complete set
of physics constraints and is guaranteed to tend
to correct asymptotic limit for Q2 � m2

H .
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