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Abstract

We describe a method, based on neural networks, of revealing Compton form factors in the deeply virtual region.
We compare this approach to standard least-squares model fitting both for a simplified toy case and for HERMES

data.
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1. Introduction

Extraction of generalized parton distribution (GPD)
functions [1, 2, 3] from exclusive scattering data is
an important endeavour, related to such practical ques-
tions as the partonic decomposition of the nucleon spin
[4] and characterization of multiple-hard reactions in
proton-proton collisions at LHC collider [5, 6]. To re-
veal the shape of GPDs, one employs global or local fits
to data [7, 8, 9, 10, 11, 12, 13]. However, compared to
familiar global parton distribution (PDF) fits, fitting of
GPDs is intricate due to their dependence on three kine-
matical variables (at fixed input scale Qp), and the fact
that they cannot be fully constrained even by ideal data.
Thus, final results can be significantly influenced by the
choice of the particular fitting ansatz. To deal with this
source of theoretical uncertainties, we used an alterna-
tive approach [14], in which neural networks are used
in place of specific models. This approach has already
been successfully applied to extraction of the deeply in-
elastic scattering (DIS) structure function F, and nor-
mal PDFs [15, 16, 17]. We expect that the power of
this approach is even larger in the case of GPDs. In
the light of the scarce experimental data, in this pilot
study we attempted the mathematically simpler extrac-
tion of form factor H(xp, t) of deeply virtual Compton
scattering (DVCS). We used data from the kinematical

region where this Compton form factor (CFF) domi-
nates the observables and depends essentially only on
two kinematical variables: Bjorken’s scaling variable xp
and proton momentum transfer squared ¢. These simpli-
fications make the whole problem more tractable.

2. The method

Neural networks were invented some decades ago in
an attempt to create computer algorithms that would be
able to classify (i.e. recognize) complex patterns. The
specific neural network type used in this work, known as
multilayer perceptron, is a mathematical structure con-
sisting of a number of interconnected “neurons” orga-
nized in several layers. It is schematically shown in
Fig. 1, where each blob symbolizes a single neuron.
Each neuron has several inputs and one output. The
value at the output is given as a function f(};w;x;)
of a sum of input values xp, x5, - -, each weighted by
a certain number w;.

The parameters of a neural network (weights w;) are
adjusted by a procedure known as “training” or “learn-
ing”. Thereby, the input part of a chosen set of training
input-output patterns is presented to the input layer and
propagated through the network to the output layer. The
output values are then compared to known values of the
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Figure 1: The structure of a neural network that represents a set of CFFs {H (xg, ), E(xg, 1), . . .}. The network is trained by calculating
observables (cross-sections o(xg, ) or asymmetries) from CFFs, comparing them to experimentally measured values, and then by

adjusting network parameters to minimize the squared errors.

output part of training patterns and the calculated differ-
ences are used to adjust the network weights. This pro-
cedure is repeated until the network can correctly clas-
sify all (or most of all) input patterns. If this is done
properly, the trained neural network is capable of gener-
alization, i.e., it can successfully classify patterns it has
never seen before.

This whole paradigm can be applied also to fitting
of functions to data. Here, measured data are the pat-
terns, the input are the values of the kinematical vari-
ables the observable in question depends upon, and the
output is the value of this observable, see Fig. 1. In this
case, the generalization property of neural networks rep-
resents its ability to provide a reasonable estimate of the
actual underlying physical law. For the particular ap-
plication of neural networks to fits of hadron structure
functions we refer the reader to papers of the NNPDF
group [15, 16, 17, 18]. Our approach is similar and is
described in detail in [14, 19].

To propagate experimental uncertainties into the final
result, we use the “Monte Carlo” method [20], where
neural networks are not trained on actual data but on
a collection of “replica data sets”. These sets are ob-
tained from original data by generating random artifi-
cial data points according to Gaussian probability dis-
tribution with a width defined by the error bar of exper-
imental measurements. Taking a large number N,,, of
such replicas, the resulting collection of trained neural
networks H, ..., HN=) defines a probability distri-
bution P[H] of the represented CFF H (xp, t) and of any
functional #[#] thereof. Thus, the mean value of such
a functional and its variance are [20, 15]

(FIH1) = f DH PIH FIH] = Nl %ﬂﬂ“‘)},
rep =1
(1
2 2 2
(AF1HY)" = (FIHP) - (FIHI) 2

3. Toy example

To illustrate the neural network fitting method, we
shall now present a toy example where we will extract
a known function of one variable by fitting to fake data.
First we define some simple target function f(x) as a
random composition of simple polynomial and loga-
rithm functions constrained by the property

f)=0. 3)

This function is plotted in Fig. 2 as a thick dashed line
and labeled as “target”.

Next, np=10 fake data points (x;,y; = Ay;) are gen-
erated equidistantly in x. Their mean values y; are
smeared around target values by random Gaussian fluc-
tuations with standard deviation Ay;=0.05, which is also
taken to be the uncertainty of generated points. These
fake data are then used for fits, first using the standard
least-squares method with a two-parameter model

) =x" (1 =0, “

and, second, utilizing the neural network method. Note
that the Monte Carlo method of error propagation,
which we use together with neural network fitting, it-
self requires to generate artificial data sets. Thus, we
generated N,,,=12 replicas from original fake data and
used them to train 12 neural networks that represent 12
functions, plotted as thin solid lines on the second panel
of Fig. 2. These functions define a probability distri-
bution in the space of functions f(x) which, according
to Egs. (1-2), provides an estimate of the sought func-
tion f(x), together with its uncertainty. This estimate is
shown on the right panel of Fig. 2 as a (red) band with
ascending hatches. The corresponding model fit result,
obtained by the standard method of least-squares opti-
mization and error propagation using the Hessian ma-
trix, is shown in the left panel of Fig. 2 as a (green)
band with descending hatches.
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Figure 2: Toy examples of fitting to fake data, generated from the underlying target function (dashed). The first panel shows the result of a standard
least-squares model fit, the second one shows twelve neural networks that are trained on the Monte Carlo replicas of fake data, and the third panel
shows the uncertainty band obtained by statistical averaging of neural networks (displayed in the second panel).

We have deliberately chosen the ansatz (4) with two
properties, incorporating theoretical biases about end-
points: f(1) = 0 and f(0) = 0. The first of these actu-
ally “corresponds to the truth”, i.e., to Eq. (3), whereas
the second one is erroneous. As a result, for x — 1
the model fit is in much better agreement with the target
function (thick dashed line) than neural networks, which
rely only on data and are insensitive to this endpoint be-
haviour. On the other side, for x — 0 the model fit is in
some small disagreement with the target function, and,
what is much worse, it very much underestimates the
uncertainty of the fitted function there (the uncertainty
becomes zero at endpoints!), demonstrating the dangers
of unwarranted theoretical prejudices.

We can be more quantitative and say that according
to the standard y> measure,

Npts

=),

both methods lead to functions that correctly describe
data':

0i = f()?
Ay? '

Nooder/ots = 11.9/10 5y oo /mps = 12.3/10 .

We can now further ask to what extent the two methods
extract the underlying target function f(x). Naturally,

'We ignore here the difference between the number of data points
npts and the degrees of freedom — neural networks have very many
free parameters and for them degrees of freedom is not such an im-
portant characteristic as in the case of standard model fits.

we can measure this by a kind of g2 criterion

O () = f)?
s AfCD?

where the denominator is now the propagated uncer-
tainty Af(x;) rather than the experimental one Ay;. In
our toy example we get

/?ﬁwdel/npls =25.6/10; /\_/rzleur.net/’/lpls =8.4/10,

showing that the model fit underestimates its uncertain-
ties, while neural networks are much more realistic.

This example shows that the neural network method
has a clear advantage if we want bias-free propagation
of information from experimental measurements into
the CFFs. Still, if we want to use some additional input,
e.g., if we rely on the spectral property (3), we can do
so also within the neural network method. For example,
we could take the output of neural networks in this toy
example not as an representation of the function f(x)
itself, but as representing f(x)/(1 — x)”, with some pos-
itive power p. Then the final neural network predictions
for f(x) would also be constrained by Eq. (3), without
any further loss of generality (in practice it turns out that
the dependence of the results on the choice of power p
is small). Various methods of implementing theoreti-
cal constraints in the neural network fitting method are
discussed in Sect. 5.2.4 of [18].

i

4. Application to HERMES data

To extract the CFF H from asymmetries [21], mea-
sured by the HERMES collaboration in photon electro-
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Figure 3: Neural network extraction of Jm H(xg;, ) and 2e H (xgj, ) (ascending hatches, red) from HERMES data [21] compared
with model fits (descending hatches, green) for two different values of momentum transfer squared z.

production off unpolarized protons, we applied the de-
scribed neural network fitting method in [14]. We used
36 data points: 18 measurements of the first sine har-

monic A3" of the beam spin asymmetry, and 18 mea-

LU
surements of the first cosine harmonic ACCOs ¢ of the beam

charge asymmetry. As for the toy model from the pre-
vious section, we compare the results with the standard
least-squares model fit. Let us first shortly describe this
model fit of H. For the partonic decomposition of the
imaginary part JmH we used a model, presented in
[10]:

Jm H (xj, 1) = n[H"al(f, )+ %Hsea(g, &, t)} )

Here, H%(£,¢, 1) are GPDs along the cross-over trajec-
tory & = x, parameterized as:

H N nr 2x \ 011 — x\? 1
X, X, 1) = .
1+x\1+x 1+x (1_1—x;)l’

T+x M?

The parameters of H*** were fixed by separate fits [10]
to collider data, and some parameters of HY were
also fixed using information from DIS data and Regge
trajectories a(#). The real part Re H is expressed in
terms of the imaginary one via a dispersion integral
[22, 7, 23, 24] and the subtraction constant C, leaving

us finally with a model that possesses four parameters:
P pval MY and C. This model is fitted to experi-
mental data, resulting in parameter values, which can
be found in [14], and shapes of JmH and PRe H that
are plotted on Fig. 3 as (green) bands with descending
hatches.

The neural network fit was performed by creating 50
neural networks with two neurons in the input layer
(corresponding to kinematical variables xp and ), 13
neurons in the hidden middle layer, and two neurons in
the output layer (corresponding to JmH and PRe H),
cf. Fig. 1. These were trained on N,,,=50 Monte Carlo
replicas of HERMES data. We checked that the result-
ing CFF H does not depend significantly on the precise
number of neurons in the hidden layer. The results are
also presented on Fig. 3, where we show the neural net-
work representation of Jm H and PRe H as (red) bands
with ascending hatches.

Comparing the two approaches, one notices that in
the kinematic region of experimental data (roughly the
middle-xg parts of Fig. 3 panels) neural network and
model fit results coincide, i.e., error bands are of similar
width and they overlap consistently. However, outside
of this data region, we see that the predictions of the two
approaches can be different. There the uncertainty of the
model fit is in general smaller, and we observe a strong
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disagreement in the low xp region, reflecting the theo-
retical bias of the chosen model that possesses a x~*%)
Regge behavior. The lesson learned from the toy model
example is that, even if we believe in Regge behaviour
for small xg, we should still consider the uncertainty
from the neural network method as more realistic.

5. Conclusion

Utilizing both a simplified toy example and HER-
MES measurements of photon electroproduction asym-
metries, we demonstrated that neural networks and
Monte Carlo error propagation provide a powerful and
unbiased tool that extracts information from data. Com-
parisons with standard least-squares model fits reveal
that the uncertainties, obtained from neural network fits,
are reliable and realistic.

Relying on the hypothesis of H dominance, we found
the CFF H from a completely unconstrained neural net-
work fit. It is expected that the extraction of all four
leading twist-two CFFs (H, &, H and g or the cor-
responding GPDs) from presently or soon-to-be avail-
able data will still be an ill-defined optimization prob-
lem. Thus, it might be necessary to implement in neural
network fits some carefully chosen theoretically robust
constraints, such as dispersion relations, sum rules [24]
and lattice input.
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