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Abstract

A selection of results from the 2010 data taking period of the ATLAS and CMS experiments at the LHC at a proton-
proton centre-of-mass energy of

√
s = 7 TeV is presented. These results comprise differential jet cross sections

for varying jet multiplicities, the investigation of properties of large rapidity gaps spanned by a dijet system, the
production of heavy gauge bosons together with jets, and finally the investigations of properties of top quark pair
production.
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1. Introduction

The LHC is a wonderful QCD machine. The large
proton energy allows for probing predictions of QCD
at unprecedented energy scales in accelerator physics.
Due to the high luminosity of the machine, and large
QCD cross sections, especially for jet production, many
analyses are limited by systematic uncertainties right
from the start. This puts high demands on the under-
standing of the detectors, and also calls for high perfor-
mance jet algorithms to cope with the ever increasing
complications due to complex final states, and the oc-
currence of more than one proton-proton interaction per
bunch crossing (pileup) that potentially deteriorates the
jet energy resolution.

The results presented are all based on the LHC run-
ning at a proton-proton centre-of-mass energy of

√
s =

7 TeV. For many of the topics discussed, results from
the ATLAS and CMS experiments exist, however, due
to the limited space, for each topic only a single result
is shown, concentrating on published results, i.e. addi-
tional preliminary measurements are not included.

The paper is organised as follows: jet production for
increasing jet multiplicities is discussed in Section 2.

1Richard.Nisius@mpp.mpg.de

Adding a further hard scale, heavy gauge boson plus jet
production is detailed in Section 3. A number of issues
related to the production of top quarks are highlighted
in Section 4. Finally, the summary and conclusions are
given in Section 5.

2. Jet production

Due to the large proton energies, and the correspond-
ingly large phase space for jet production, very complex
final states, with large jet transverse momenta (pT) oc-
cur. An example of this, a six jet event observed in the
ATLAS detector, is shown in Figure 1. To properly re-
construct those final states, a high performance jet algo-
rithm is needed. The present choice of the LHC exper-
iments for this is the anti-kt algorithm [1, 2], which is
a sequential clustering algorithm that uses 1/p2

T as the
weighting factor for the scaled distance, and the R pa-
rameter to define the jet resolution. This algorithm ex-
hibits a number of good features [1], which, on top of
its infra-red safety, makes it superior to other possible
choices. These features are: round and rigid jet shapes
that lead to a clear and stable spatial definition of jets; an
almost pT independent jet area, ensuring an almost con-
stant pileup correction as a function of pT; and finally,
very small back reaction, i.e. re-assignments of parti-
cles from the hard interaction to jets for different pileup
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Figure 1: Event display of a six-jet event in the ATLAS detector [3]. Shown are: a view along, and a view parallel to the beam axis, and the angular
distribution of transverse energy in pseudo rapidity (η) and azimuthal angle (Φ). The measured jet transverse momenta range from pT = 84 GeV
to pT = 203 GeV.

contributions, which guarantees stable definitions of the
jets stemming from the hard QCD process. In search for
optimised uncertainties of observables the R parameter
is varied in the comparisons to the theoretical predic-
tions, with typical values in the range R = 0.4 − 0.7. In
this respect, jets with smaller R values are found to be
less dependent on pileup, and those with larger R values
to be less dependent on scale changes in the theoretical
predictions [3].

For the ATLAS and CMS analyses, the observed
jet distributions are corrected for detector effects, and
then, at the resulting stable particle level, compared to
the theoretical predictions which come in a large num-
ber of flavours. These comprise: leading-order (LO)
2 → 2 Matrix Elements (ME) plus subsequent Parton
Shower (PS) and underlying event (UE) implemented in
the programs P [4] and H [5] together with
J [6] (those will be referred to as LO 2 → 2 pre-
dictions); LO 2 → n MEs provided by the S [7],
MG [8, 9] and A [10] programs, with sub-
sequent internal (S) or external, i.e. by other pack-
ages provided, (MG, A) PS and UE (re-
ferred to as LO 2 → n predictions); NLO ME cal-
culations for n ≤ 3 outgoing partons featured by the

MCFM [11] and NLOJ++ [12] programs; NLO ME
calculations matched to PS that are either provided by
the MC@NLO [13, 14] together with the H soft-
ware packages, or by the P [15] generator inter-
faced to either the P or H programs; and fi-
nally, an all order resummed calculation for wide angle
emissions implemented in the HEJ [16, 17] program.
In addition, for the soft parts of the event simulation,
a number of different tunings of parameters that con-
trol those parts in the general purpose Monte Carlo pro-
grams are in use, see for example [18]. This makes up
for a very large variety of predictions for comparisons,
a number of them are shown below.

In Figure 2 the double differential inclusive jet cross
section [19] as a function of pT, for the range 18 GeV <
pT < 1100 GeV, and in bins of the absolute value of
the rapidity |y|, is shown. Already now, the reach in pT
scales that are probed by the LHC experiments extend
those probed by the Tevatron experiments from about
700 GeV to about 1100 GeV. The data are compared to
the NLO prediction from the NLOJ++ program, with
non-perturbative corrections estimated using the P
and H models.

For CMS, jets are reconstructed using the so-called
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Figure 1: Fully-corrected inclusive jet differential cross sections as a function of pT for six differ-
ent rapidity intervals, scaled by the factors shown in the legend for easier viewing. The next-
to-leading-order (NLO) theoretical predictions, corrected for non-perturbative (NP) effects via
multiplicative factors, are superimposed.

Figure 2: Inclusive jet production [19]. Shown is the double differen-
tial inclusive jet cross section as a function of pT, and in bins of the
absolute rapidity.

particle flow algorithm. This algorithm combines in-
formation from a list of objects: leptons, photons, and
charged and neutral hadrons, into jets. For each of these
objects, this information is obtained from various com-
ponents of the detector. As for most of the inclusive
jet cross section determinations, the experimental un-
certainty is dominated by the Jet Energy Scale (JES)
uncertainty. The description of the data by the NLO
prediction over a large range in pT is fair. However,
the prediction is systematically higher than the data, es-
pecially so at large values of |y|, see Figure 3. At the
highest pT the theoretical uncertainty (shown as solid
lines above and below unity) is dominated by the one
from the Parton Density Functions (PDFs) of the pro-
ton, parametrised as a function of the partons momen-
tum xk from the proton, and consequently, the data start
to constrain the PDFs, see Figure 3.

A similar conclusion holds for the double differential
inclusive dijet production cross section shown in Fig-
ure 4 as a function of MJJ , the invariant mass of the
two highest pT jets in the event, and for various bins
in |y|max, the maximum of the absolute rapidity of these
two jets. In this analysis, the dijet production cross sec-
tion probes the PDFs in the range 0.0008 < x1x2 < 0.25.
The observable MJJ can be reconstructed with a 7%
(3%) resolution at MJJ = 0.2 TeV (3 TeV). The low-
mass region is mainly sensitive to the UE, whereas the
high-mass region potentially constrains the high-x re-
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Figure 2: Ratios of the fully-corrected measured jet pT differential cross sections to the theoreti-
cal prediction as a function of pT. The error bars show the experimental statistical uncertainties.
The shaded band about the data points represent the total experimental systematic uncertainty.
The solid lines represent the total theoretical systematic uncertainty. The central predictions for
the CT10 (dashed line), MSTW2008NLO (dash-dotted line), and NNPDF2.0 (dotted line) PDF
sets are also shown.

Figure 3: Inclusive jet production [19]. Shown is the ratio of the
measured cross section and the NLO prediction as a function of pT,
and in bins of the absolute rapidity.
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Figure 1: Measured double-differential dijet production cross sections (points), scaled by the
factors shown in the figure, as a function of the dijet invariant mass, in bins of the variable
|y|max, compared to the theoretical predictions (curves). The horizontal error bars represent the
bin widths, while the vertical error bars represent the statistical uncertainties of the data.

Figure 4: Inclusive dijet production as a function of the dijet invariant
mass MJJ , and in bins of maximum of the absolute rapidity of the two
jets |y|max [20]. The horizontal bars indicate the bin width, the vertical
bars the statistical uncertainty.

gion of the PDFs, see Figure 5. At present, the compo-
nent of the cross section uncertainty caused by the JES
uncertainty amounts to 15% (60%) at MJJ = 0.2 TeV
(3 TeV). The cross section uncertainty due to the non-
perturbative corrections mentioned above is comparably
small, and amounts to 15% (2%) at the same invariant
masses. Finally, the present PDF uncertainty of the the-
oretical prediction is 5% (30%), again at the same in-
variant masses. Consequently, still some improvement
in the JES uncertainty is needed to get a precise con-
straint for the high-x region of the PDFs.

The next observable discussed is R32, the ratio of the
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Figure 2: Ratio of the measured double-differential dijet production cross section over the the-
oretical prediction in different rapidity bins. The solid band represents the experimental sys-
tematic uncertainty and is centered around the points. The error bars on the points represent
the statistical uncertainties. The theoretical uncertainties due to PDF and the strong coupling
constant αS(MZ) (solid blue), renormalization and factorization scales (dashed red), and non-
perturbative effects (dashed-dotted green) are shown as curves centered around unity.

Figure 5: Inclusive dijet production as a function of the dijet invariant
mass MJJ , and in bins of maximum of the absolute rapidity of the two
jets |y|max [20]. Shown is the ratio of the observed and predicted cross
sections. The data are displayed as in Figure 4. The uncertainties of
the prediction are shown as solid lines above and below unity.

3-jet to 2-jet cross sections. For this analysis jets within
|y| = 2.5 and for pT > 50 GeV are used. Being a ra-
tio, R32, shown in Figure 6 as a function of HT, the
scalar sum of the pT of all jets defined above, prof-
its from cancellations of many systematic uncertainties.
These are most notably the uncertainties from the im-
perfect knowledge of the jet energy scale and the one
from the jet selection efficiency. In this analysis the ef-
ficiency for 2-jet events is 100%, whereas the efficiency
for 3-jet events increases from 72% at HT = 0.2 TeV to
100% at HT = 0.4 TeV. The present resolution in pT
translates into a resolution in HT of about 6% (3.5%) at
HT = 0.05 TeV (1 TeV). The size of the correction to
the particle level is small and only amounts to about 4%
(2%) for the two regions HT < 0.5 TeV (> 0.5 TeV).

In this ratio, the total experimental uncertainty
amounts to (4-10)% and is mainly limited by the knowl-
edge of the pT dependence in the Monte Carlo predic-
tions entering the correction procedure. Consequently,
the R32 ratio is considerably more precise than the in-
clusive jet cross sections discussed above. The ratio
reaches a plateau of about 0.8, where the actual value
depends on the choice of jet algorithm and the jet selec-
tion criteria like the chosen rapidity range. The plateau

6 5 Extraction of R32 from the Data
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Figure 6: The ratio of the 3-jet to 2-jet cross sections, R32, as a func-
tion of the scalar transverse momentum sum HT [21]. The vertical
bars denote the statistical uncertainties, the shaded area indicates the
systematic uncertainty. The data are compared to a number of predic-
tions explained in the text. 7
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predictions of MADGRAPH agree with the data throughout the HT range of the measurement.
On the other hand, previous studies of event shapes and dijet angular decorrelations [11, 12]
indicate that MADGRAPH does not describe these distributions well. However, R32 is con-
structed from inclusive measurements and is mainly sensitive to the probability of emitting a
third parton in the final state, whereas the other two distributions depend mainly on the final
state of the event. In contrast, the predictions of ALPGEN, PYTHIA6, PYTHIA8, and HERWIG++
are in agreement with the measured R32 for HT > 0.5 TeV, although they overestimate it for
lower values of HT.

6 Summary
The ratio of the inclusive 3-jet to 2-jet cross sections, for jets with pT > 50 GeV and |y| < 2.5,
has been measured in the range 0.2 < HT < 2.5 TeV for proton-proton collisions at a centre-of-
mass energy of 7 TeV. The measured ratio rises with increasing HT, as the phase space opens
for the production of a third jet, reaching a plateau value of about 0.8 for HT � 1 TeV.

This study tests the prediction of the different MC generators considered at TeV scales. PYTHIA6
tune Z2, MADGRAPH, and HERWIG++ describe within 20% the shape of the HT distributions
in data.

The predictions of MADGRAPH, which generates tree-level helicity amplitudes, are in agree-
ment with the measured R32 throughout the range of this measurement. ALPGEN, which also
uses this method, describes well the data for HT > 0.5 TeV, but overestimates R32 for lower HT
values. The difference between the predictions of MADGRAPH and ALPGEN is an estimate of
the uncertainty of the theoretical predictions due to the different jet-parton matching parame-
ters used by the two MC programs. The current results combined with previous measurements
of event shapes and dijet angular decorrelations indicate that whilst MADGRAPH has difficul-

Figure 7: The ratio of the 3-jet to 2-jet cross sections as a function of
the scalar transverse momentum sum HT [21]. Shown is the ratio of
the predicted and observed R32. The shaded area indicates the total
experimental uncertainty.

region can be nicely described by a number of predic-
tions, see Figure 7. However, the steep rise for low val-
ues of HT, originating from the increasing phase space
for the emission of the third jet, is only adequately fol-
lowed by the MG prediction, i.e. all other predic-
tions are too steep.

Finally, the cross section for multijet production for
a minimum number of jets Njets with Njets ≥ 2, . . . 6 is
shown in Figure 8. Jets within |y| = 2.8 are used, where
in a pT ordered list the first jet is required to fulfill pT >
80 GeV, and all others to fulfill pT > 60 GeV. The
present JES uncertainty is asymmetric. It amounts to
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Figure 8: Inclusive multijet cross section as a function of the jet multi-
plicity [3]. The darker shaded band corresponds to the systematic un-
certainty excluding the contribution from the luminosity. The lighter
shaded band corresponds to the systematic uncertainty on the shape of
the measured distribution. The theoretical predictions are individually
normalised to the Njets ≥ 2 cross section.

5% (2.5%) at pT = 0.06 TeV (1 TeV) and is larger than
-3% everywhere.

Within uncertainties, the shape of the inclusive jet
multiplicity can be accounted for by all predictions [3],
which however do show a slightly steeper trend than the
data. There are very significant differences in the ab-
solute predictions that result in different overall scaling
factors, ranging from 0.65 up to 1.22, which are applied
to individually normalise the predictions to the Njets ≥ 2
bin, see Figure 8. The smallest scaling with only +6% is
needed for the LO S 2 → n prediction, the largest
with -35% for the LO P 2→ 2 prediction.

In addition to the multiplicity also the differential
cross sections for multijet production as a function of
HT, and for different jet multiplicities is investigated. In
this analysis, the systematic uncertainty is about (10-
20)% across pT, and increases to about 30% for the
fourth leading jet differential cross section. The results
for Njets ≥ 3 and Njets ≥ 4 are shown in Figure 9 and
Figure 10. Again, within uncertainties the data in both
multiplicity bins can be described by all shown predic-
tions. In these distributions the LO 2 → 2 prediction
from the P program is steeper than the LO 2 → n
predictions from either the A or the S pack-
age, a trend that can generally be observed when com-

Figure 9: Differential multijet cross section as a function of HT [3],
for Njets ≥ 3. The predictions are normalised as in Figure 8.

Figure 10: Differential multijet cross section as a function of HT [3].
Same as Figure 9, but for or Njets ≥ 4.

paring LO 2 → 2 to LO 2 → n predictions. The shape
differences in the two predictions based on the A
software, but using different programs and tunings for
the soft part of the simulation implemented in H
or P are very small, demonstrating a low sensitiv-
ity of the shape of these differential cross sections to soft
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Figure 11: The measured gap fraction as a function of ∆y for a bin
in pT [22]. The vertical bars represent the statistical uncertainty, the
band indicates the systematic uncertainty. The data are compared to a
number of predictions detailed in the text.

effects.
In addition to inclusive jet production, also more de-

tailed investigations in quest for identifying BFKL sig-
natures are performed [22]. In this analysis, starting
from a dijet system defining a rapidity gap, the proper-
ties of that gap are investigated. The selection require-
ments for jets obtained with R = 0.6 are: |y| < 4.4,
pT > 20 GeV, and an average transverse momentum of
the two jets of the dijet system of pT > 50 GeV. From
these jets, the dijet system is either formed from the two
highest pT jets (leading pT dijet selection), which typi-
cally have rather similar pT, or from the two jets with the
largest rapidity gap, for which typically their invariant
mass is much larger than their pT. The gap properties
investigated are either the gap fraction, i.e. the fraction
of events that do not contain any jet above a certain pT
threshold, chosen to be Q0 = 20 GeV, i.e. this scale sat-
isfies Q0 � Λ, or the average jet multiplicity of exactly
those additional jets. These observables probe wide an-
gle soft gluon radiation for Q0 � pT, BFKL dynamics
for large ∆y, and finally colour singlet exchange if both
conditions are fulfilled at the same time.

As an example, for the leading pT dijet selection the
corrected gap fraction is shown in Figure 11 as a func-
tion of the rapidity gap ∆y for a given bin in pT, and in
Figure 12 as a function of pT for a given bin in ∆y. The
corrections to the stable particle level amount to about
(2-4)%. The JES uncertainty is about (2-5)% for the

Figure 12: The measured gap fraction as a function of pT for a bin in
∆y [22]. See Figure 11 for details.

central region and 13% for the forward region, defined
as |y| > 3.2. The resulting uncertainty on the gap frac-
tion is about 3% (7%) for the same rapidity ranges. The
comparison to the theoretical predictions reveals that the
LO 2 → 2 predictions from P and H follow
the data, except for large values of ∆y. In contrast, the
A 2 → n model predicts too many jets, i.e. a too
small gap fraction, for both the pT and the ∆y depen-
dence, except for low scales.

In Figure 13 the ratio of the predicted and the ob-
served gap fractions for various higher order predic-
tions is displayed as a function of ∆y, and for a num-
ber of narrow ranges in pT. The NLO prediction from
the P model generally has too much jet activity,
with the P fragmentation being closer to the data
than the one from H. The partially large spread
between P +P and P +H indi-
cates regions of phase space with sizeable contributions
from soft effects to this observable. The difference of
the P model to the data increases for increasing
∆y. This can be attributed to the fact that the NLO plus
PS prediction is lacking the full QCD ME contributions
that become important as ∆y increases.

The prediction from the HEJ program are shown at
the parton level, i.e. they will in addition be subject to
soft effects that may be sizeable, see the P dis-
cussion above. This prediction, apart from the region of
low ∆y, has too few jets in the gap, especially so at large
values of ∆y, and at large pT/Q0 for all values of ∆y.
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Figure 13: The ratio of the predicted gap fraction to the one observed
in the data as a function of ∆y, and for various bins in pT [22]. The
data are displayed as in Figure 11. The band not centred around unity
represents the theoretical uncertainty in the HEJ calculation. For the
two P predictions only the central result is shown.

Again, this deviation from the data is expected, since
the theoretical QCD prediction implemented in the HEJ
program is only a valid approximation in the limit where
all jets have similar pT.

3. W/Z-Boson plus jet production

Jet production, together with an additional hard scale
provided by the mass of a heavy boson, is investigated in
the W boson plus 1-jet and Z boson plus 1-jet produc-
tion processes, using the leptonic decays of the heavy
bosons W → `ν` and Z → `+`− with ` = electron or
muon [23].

The driving idea in this analysis is to construct an
observable with very small experimental uncertainty to
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Figure 3: Results for Rjet in the electron channel (left) and in the muon channel (right) for their respective fiducial regions. The results
are compared to NLO predictions from MCFM (corrected to particle level using Pythia). Data are shown as black points at the lower
bin edge corresponding to the jet pT threshold with black error bars indicating the statistical uncertainties. The yellow band shows all
systematic uncertainties added in quadrature and the green band shows statistical and systematic uncertainties added in quadrature. The
theory uncertainty (dashed line) shown on the MCFM prediction includes uncertainties from PDF and renormalisation and factorisation
scales. Note that these threshold data and their associated uncertainties are correlated between bins.

jet pT Electron Fiducial Muon Fiducial Combined Boson Full Phase Space
Threshold |ηe| < 2.47 |ημ| < 2.4 |η�| < 2.5

( GeV) (excl. 1.37 < η < 1.52)
30 8.73 ± 0.3 ± 0.40 8.49 ± 0.23 ± 0.33 8.29 ± 0.18 ± 0.28 10.13 ± 0.22 ± 0.45
40 8.23 ± 0.35 ± 0.41 7.74 ± 0.26 ± 0.30 7.67 ± 0.20 ± 0.24 9.89 ± 0.26 ± 0.38
50 7.77 ± 0.42 ± 0.39 7.7 ± 0.37 ± 0.30 7.46 ± 0.27 ± 0.25 9.97 ± 0.36 ± 0.39
60 7.10 ± 0.47 ± 0.36 7.54 ± 0.46 ± 0.30 7.07 ± 0.32 ± 0.24 9.64 ± 0.43 ± 0.39
70 7.04 ± 0.55 ± 0.32 6.64 ± 0.49 ± 0.27 6.59 ± 0.35 ± 0.22 9.07 ± 0.49 ± 0.41
80 6.58 ± 0.6 ± 0.33 6.33 ± 0.53 ± 0.27 6.22 ± 0.38 ± 0.23 8.58 ± 0.53 ± 0.46
90 6.72 ± 0.77 ± 0.36 6.83 ± 0.74 ± 0.27 6.53 ± 0.51 ± 0.23 9.02 ± 0.71 ± 0.51
100 5.88 ± 0.75 ± 0.35 6.82 ± 0.87 ± 0.28 6.02 ± 0.54 ± 0.23 8.33 ± 0.75 ± 0.48
110 5.90 ± 0.87 ± 0.44 6.76 ± 1.05 ± 0.28 6.01 ± 0.64 ± 0.28 8.25 ± 0.88 ± 0.53
120 5.74 ± 0.95 ± 0.38 6.34 ± 1.20 ± 0.31 5.72 ± 0.71 ± 0.26 7.93 ± 0.98 ± 0.52
130 5.76 ± 1.12 ± 0.45 7.22 ± 1.72 ± 0.30 5.95 ± 0.89 ± 0.31 8.31 ± 1.25 ± 0.55
140 5.23 ± 1.1 ± 0.66 8.04 ± 2.17 ± 0.56 5.62 ± 0.93 ± 0.50 7.94 ± 1.31 ± 0.76
150 5.58 ± 1.4 ± 0.50 7.40 ± 2.37 ± 0.76 5.70 ± 1.13 ± 0.40 8.15 ± 1.62 ± 0.67
160 4.99 ± 1.35 ± 0.47 5.17 ± 1.72 ± 0.48 4.83 ± 1.01 ± 0.36 6.92 ± 1.44 ± 0.56
170 6.19 ± 2.02 ± 0.70 5.30 ± 2.09 ± 0.59 5.53 ± 1.39 ± 0.53 7.97 ± 2.00 ± 0.84
180 6.42 ± 2.17 ± 0.57 5.72 ± 2.54 ± 0.86 5.86 ± 1.57 ± 0.55 8.38 ± 2.24 ± 1.25
190 6.9 ± 2.5 ± 0.94 5.70 ± 2.65 ± 0.84 6.04 ± 1.72 ± 0.72 8.43 ± 2.40 ± 1.46

Table 3: Measured Rjet in the electron, muon and combined channels. The extrapolation to a common fiducial region for the combination
decreases the value of the ratio for both channels. Values are reported with statistical and systematic uncertainties, respectively.

8

Figure 14: The ratio of W boson plus 1-jet to Z boson plus 1-jet pro-
duction in the muon decay channel as a function of the jet pT thresh-
old [23]. The data are shown as points at the respective threshold,
together with their statistical uncertainty (vertical bars), their system-
atic uncertainty (inner band), and their total uncertainty (outer band).
The dashed lines indicate the theoretical uncertainty on the MCFM
prediction dominated by the PDF and scale uncertainties.

perform a precise QCD test. Therefore, firstly, not indi-
vidual cross sections, but the ratio of the W boson plus
1-jet and Z boson plus 1-jet production cross sections
is utilised, and secondly, this ratio is investigated as a
function of the pT threshold, and not in bins of pT.

In this analysis, jets have to fulfill pT > 30 GeV
and |η| < 2.8, and events with additional jets with
pT > 30 GeV are vetoed. The background contribu-
tion is small, below 5% in all channels, but for the QCD
multijet background in the W → eνe channel which is
19%. All background estimates are taken from Standard
Model Monte Carlo samples, except for the QCD mul-
tijet background. This is because this background can
at present not be reliably modelled in the Monte Carlo
programs, and is therefore, as for most analyses, taken
from sideband regions in the data.

The result in the muon decay channel, corrected to
the stable particle level with P, is shown in Fig-
ure 14. As expected, the ratio decreases with increasing
jet pT threshold, because the effective scale of the in-
teraction becomes large with respect to the difference
in the heavy boson masses. The systematic uncertainty
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Figure 4: Left: Combined electron and muon results for Rjet in a common fiducial region. The results are compared to predictions from
MCFM (corrected to particle level). Data are shown with black error bars indicating the statistical uncertainties. The yellow band shows all
systematic uncertainties added in quadrature and the green band shows statistical and systematic uncertainties added in quadrature. The
theory uncertainty (dashed line) includes contributions from PDF and renormalisation and factorisation scales. Right: Combined electron and
muon results for Rjet extrapolated to the total phase space. Note that these threshold data and their associated uncertainties are correlated
between bins.

fiducial phase space for electrons and muons. The ratio
was measured to be 8.73 ± 0.30 (stat) ± 0.40 (syst) in the
electron channel, and 8.49± 0.23 (stat)± 0.33 (syst) in the
muon channel at a jet pT threshold of 30 GeV (Table 3).
Results have also been extrapolated to |η| < 2.5 and com-
bined, yielding 8.29± 0.18 (stat)± 0.28 (syst), and extrap-
olated to the full phase of the boson and combined giving
10.13 ± 0.22 (stat) ± 0.45 (syst). The design of the mea-
surement allows a cancellation of many theoretical and
systematic uncertainties. These results are provided as a
function of jet pT threshold from 30 to 200 GeV, exploring
the transition region of electroweak scale breaking in the
perturbative jet production. This measurement builds the
foundations of a high precision test of the Standard Model,
and provides model-independent sensitivity to new physics
coupling to leptons and jets. Comparisons with LO and
NLO perturbative QCD predictions were made and found
to be in agreement with data over the jet pT threshold
range covered by this measurement.
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Figure 15: Same as Figure 14 but for both lepton decay channels com-
bined [23].

(inner band) on the ratio is about (5-10)%, and in itself
it has a large statistical component. The largest con-
tribution to the systematic uncertainty is due to imper-
fections in the heavy boson reconstruction, including ef-
fects from the lepton trigger, reconstruction and identifi-
cation efficiencies, and scale uncertainties for the lepton
and missing transverse energy measurements. For trans-
verse momenta larger than about 50 GeV, the total un-
certainty is dominated by the statistical uncertainty (ver-
tical bars). This uncertainty will soon decrease given the
large statistics of the completed 2011 LHC run, which
amounts to about 5/fb.

The measurements in both lepton decay channels are
consistent and the combined result, evaluated for a com-
mon phase space region for the leptons, and based on
data for an integrated luminosity of 33/pb, is shown in
Figure 15. The final value of the ratio, corrected to the
phase space of the leptons indicated, and for the lowest
pT threshold of 30 GeV, is 8.23 ± 0.18stat ± 0.28syst.

The data are compared to three predictions: a LO
2 → 2 prediction based on the P program; a LO
2→ n prediction from the A software; and finally,
an NLO ME calculation for 2→ W/Z + 2 partons based
on the MCFM program. All predictions fall within the
still large experimental uncertainty band, but clearly the
deviations between data and predictions partly exceed
the systematic uncertainty of the data. In particular, the

data are well described by the NLO MCFM prediction,
for which the uncertainty (shown as dashed lines) is
driven by the PDF uncertainty and the one due to scale
variations. The experimental systematic uncertainties
are smaller than those of these predictions, especially at
large pT thresholds such that, after including the 2011
data, the experimental precision will challenge the NLO
theoretical prediction.

4. Top-quark pair production

The LHC is a top quark factory. At the present
proton-proton centre-of-mass energy of

√
s = 7 TeV,

the theoretical value of the tt̄ production cross section,
obtained from a computation approximating the NNLO
prediction, and for an assumed input top quark mass
of mtop = 172.5 GeV is about 160 pb, with an uncer-
tainty of about 10% [24], see below for details. This
cross section is about 20 times larger than the corre-
sponding cross section at the Tevatron. The LHC ex-
periments have already analysed a wide spectrum of top
quark physics. The two observables discussed are the tt̄
production cross section [25, 26] and the top quark mass
mtop [27].

The two most important quantities to be precisely
evaluated for a cross section determination are: the se-
lection efficiency for signal events, and the amount of
background events present in the data. To achieve a
high precision estimate in the LHC analyses, not only
the overall normalisation of the background is used,
but the shape of its contribution as a function of one
or more variables discriminating signal and background
processes is utilised.

An example of such a variable, the mass distribu-
tion of identified secondary vertices, is shown in Fig-
ure 16 [26]. This figure shows that the mass distribu-
tions originating from either light-quark jets or b-quark
jets are significantly different. The mass distribution
from jets stemming from charm quarks falls in between
the two. Using this discriminant variable, a number of
statistically independent sub-sets of data with different
signal to background compositions are exploited.

Figure 17 shows this set of distributions used in the fit
for the tt̄ → lepton+jets decay in the e+jets and µ+jets
channels, for different jet multiplicities, and depending
on the number of b-tagged jets. The simulated signal
events accumulate at large vertex masses, and their frac-
tion grows with the numbers of observed jets and b-jets.

The use of the profile likelihood method allows sys-
tematic uncertainties, which are treated as nuisance pa-
rameters in the fit, to cancel each other within bounds.
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Figure 16: The tt̄ production cross section [26]. Shown is the ver-
tex mass obtained from the charged particles assigned to a secondary
vertex as predicted in simulation.

10 4 Cross Section Measurements

The resulting cross section is

σtt = 158± 14 (stat.)± 19 (syst.)± 6 (lumi.) pb. (7)

From the fit we obtain a result of 97± 6% for the b-tag scale factor and 103± 8% for the jet
energy calibration. The scale factors for the W+b jets and W+c jets components are 1.4 +0.8

−0.6
and 1.4 +0.4

−0.3, respectively. These are in agreement with the results from the muon channel. The
contributions to the systematic uncertainty are summarized in Table 3.

4.4 Simultaneous Muon and Electron Channel Analysis

Having established the consistency of the separate channel measurements, we now proceed to
perform a combined fit to both channels. To establish our best measurement, we repeat the
fit procedure and apply it simultaneously to the data in both the electron and muon channels.
We find that the resulting fitted event yields in each tag category are in good agreement with
those obtained from the separate channel fits (Tables 2 and 4). Figure 2 shows the comparison
of the corresponding observed and fitted vertex mass distributions. Figure 3 shows the data
for ≥ 3 jets and ≥ 1 b-tag, and the fit results for the total transverse energy of the event (HT),
the missing transverse energy (Emiss

T ), and the transverse mass of the W (MW
T ). We find good

agreement in all cases.

Figure 2: Results of the combined muon and electron channel fit. The muon channel is shown
on the left and the electron channel on the right. The plots on the top are for exactly 1 b tag
and those on the bottom are for ≥2 b tags. The histograms within the top panel correspond
to events with 1, 2, 3, 4 and ≥5 jets, respectively, while the bottom panel shows histograms
corresponding to events with 2, 3, 4 and ≥5jets.

The correlation matrix for the combined fit is listed in Table 5. All of the terms are as defined
in the text. The combined analysis cross section measurement is

Figure 17: The tt̄ production cross section [26]. Shown are the mass
distributions of identified secondary vertices for the two lepton decay
channels, and for different jet- and b-jet multiplicities. The data are
shown with their statistical uncertainty, together with the fitted contri-
butions of the predicted signal and background samples.

Therefore, this method in general leads to smaller un-
certainties than are achieved when individually varying
systematic effects to ascertain the corresponding uncer-
tainties. This method requires a very good modelling
of the correlation of the systematic uncertainties, since
otherwise fortuitous cancellations can happen.

The variations of the systematic uncertainties are in-
dividually constrained in the fit by Gaussian priors. The
different sources of systematic uncertainty are corre-
lated or anti-correlated in the fit by up to absolute 70%.

The determination of the cross section in the e+jets
and µ+jets channels leads to consistent results. The
measured cross section, obtained from simultaneously
fitting the distributions of both channels using data cor-
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Figure 13. tt̄ total cross sections, plotted as a function of αS(M2
Z), at NLO, for mt = 171.3 GeV.
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Figure 14. tt̄ total cross sections, plotted as a function of αS(M2
Z), at NNLO, for mt = 171.3 GeV.

exact analytic result [73] instead of the original numerical result [69], giving cross sections

around 0.03% larger (i.e. an insignificant amount) when both results are evaluated with

high integration precision.

We show the tt̄ total cross sections, plotted as a function of αS(M2
Z), in figures 13 and

14, with (a) 68% C.L. uncertainties on the left and (b) 90% C.L. uncertainties on the right.

More than 80% of the NLO tt̄ cross section comes from the gg channel for the LHC with√
s = 7 TeV, rising to almost 90% at

√
s = 14 TeV, compared to less than 15% at the

Tevatron (
√

s = 1.96 TeV). The significant difference in the initial parton composition for

tt̄ production is due partly to the lower Tevatron energy (pp collisions at
√

s = 1.96 TeV

would give around 50% of the tt̄ cross section from the gg channel), but mainly due to the

valence–valence nature of the qq̄ → tt̄ channel in pp̄ collisions. The partonic subprocess is

O(α2
S) at LO. There is therefore a strong dependence on both the gluon distribution (at

x ∼ 2mt/
√

s = 0.05) and αS . The approximate NNLO corrections seem to be reasonably

small, especially when taking different αS(M2
Z) values at different perturbative orders, but

there are currently many “NNLO” choices and only one possibility is shown in figure 14. A

more complete study of the theoretical uncertainties in the approximate NNLO calculation

– 22 –

Figure 18: The predicted tt̄ cross section at the LHC, obtained from
an NLO (open markers) and an approximate NNLO (closed markers)
calculation, as a function of the strong coupling constant. The val-
ues are given for

√
s = 7 TeV and for a number of PDF sets [28].

The markers are placed at the predicted cross section and the αs(M2
Z)

value of the respective PDF set. The horizontal bar span the αs(M2
Z)

uncertainty, and the vertical bars indicate the PDF uncertainty of the
cross section (inner bar), and the PDF and αs uncertainty (outer bar).
The lines indicate the cross section variation with the αs dependent
additional PDF sets.

responding to only 36/pb of luminosity, Figure 17, has
an uncertainty of about 20 pb and is already limited by
systematic effects. The measured cross section value is
σtt̄ = (154 ± 9stat ± 17syst) pb with an additional un-
certainty of 6 pb due to the uncertainty on the luminos-
ity [26].

This measured cross section can be used to further
constrain the PDFs. Since, at the LHC the tt̄ produc-
tion process is largely dominated by gluon-gluon pro-
cesses, in contrast to the Tevatron, where it is dominated
by quark-antiquark processes, this mostly concerns the
gluon distribution function. Figure 18 shows the present
theoretical knowledge of this cross section based on an
NLO and an approximate NNLO calculation, and for
various PDF sets [28]. The points are given at the re-
spective value of αs(M2

Z) of the corresponding PDF set.
The NNLO corrections are small. The smallest cross
section values are predicted when using the ABKM09
PDF set. This is correlated to the smallest predicted
gluon-gluon luminosity at the tt̄ production threshold
and above, as shown in Figure 19 [28]. The difference in
production cross section between the highest and lowest
prediction at NNLO is about 33 pb, i.e. about 1.5σ of
the above described measurement. With improved mea-
surements that are underway, and by combining the re-
sults from the ATLAS and CMS experiments, the gluon
PDF can be significantly constrained.
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Figure 4. Gluon–gluon luminosities as the ratio with respect to MSTW 2008 for (a) NLO at the

Tevatron, (b) NNLO at the Tevatron, (c) NLO at the LHC, and (d) NNLO at the LHC.

scaling violations of HERA data, ∂F2/∂ ln(Q2) ∼ αS g, therefore more gluon is required

at high x from the momentum sum rule. Both these effects, larger αS and more high-x

gluon, raise the Tevatron Higgs cross section and improve the quality of the description

of Tevatron jet data, as we will see in section 3. The NNLO trend between groups is

similar to at NLO [6]. There is reasonable agreement for the global fits, but more variation

for the other sets, particularly at large ŝ, where HERAPDF1.0 and ABKM09 have much

softer high-x gluon distributions, and this feature has a direct impact on the gg → H cross

sections, particularly at the Tevatron (see figure 2).

2.3 Dependence on strong coupling αS

The various PDF fitting groups take different approaches to the values of the strong cou-

pling αS and, for consistency, the same value as used in the fit should be used in subsequent

cross-section calculations. The values of αS(M2
Z), and the corresponding uncertainties, for

MSTW08, ABKM09 and GJR08/JR09 are obtained from a simultaneous fit with the PDF

parameters. Other groups choose a fixed value, generally close to the world average [31],

and for those groups we assume a 1-σ uncertainty of ±0.0012 [26], very similar to the

MSTW08 uncertainty. The central values and 1-σ uncertainties are depicted in figure 5 as

the larger symbols and error bars, while the smaller symbols indicate the PDF sets with

– 7 –

Figure 19: The NNLO gluon-gluon luminosity at the LHC for
√

s =
7 TeV as a function of the gluon-gluon invariant mass scaled to the
centre-of-mass energy, as predicted by a number of PDF sets [29]. The
distributions are all normalised to the NNLO prediction from MSTW
2008. The bands indicate the uncertainties obtained from the addi-
tional pdf sets.

The present average value of the top quark mass
of mtop = (173.18 ± 0.56stat ± 0.75syst) GeV is ob-
tained from direct measurements performed at the Teva-
tron [30], and has a total uncertainty of 0.6%. The
main methodology used to determine mtop at hadron
colliders consists of measuring the invariant mass of
the decay products of the top quark candidates and de-
ducing mtop using sophisticated analysis methods. The
most precise measurements of this type use the decay
tt̄→ lepton+jets with lepton = e, µ, where one W boson
decays into a lepton and a neutrino and the other into
a pair of quarks. These measurements rely on Monte
Carlo programs to simulate the tt̄ final state. The exper-
imental observables are constructed such that they are
unbiased estimators of the top quark mass used as an
input parameter in the Monte Carlo, denoted with mMC

top ,
which is verified using pseudo-experiments performed
on large scale Monte Carlo simulated event samples.
Consequently, the top quark mass determined this way
corresponds to mMC

top .
On the theoretical side, there are a number of defi-

nitions of the mass. The definition of the pole mass,
mpole

top , basically regards the quark as free and long lived.

In contrast, for the MS mass definition, mMS
top , the mass is

treated like a coupling. The masses expressed in the two
renormalisation schemes are related, and consequently
can be converted into one another. Their difference is
sizable compared to the experimental precision: mpole

top =

172 GeV leads to approximately mMS
top = 162 GeV, a
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Figure 20: Dependence of the tt̄ production cross section on the top
quark mass mtop for Tevatron conditions.

difference of about 6%, i.e. ten times the experimen-
tal uncertainty. Non of these definitions coincides with
mMC

top defined above, which leads to a problem in inter-
preting the experimental results. There are theoretical
arguments [31] suggesting that mpole

top is closer to mMC
top

than mMS
top , and that mpole

top is expected to be O(1 GeV)
larger than mMC

top , but no proof of this relation from first
principles exists.

Theoretically, the tt̄ pair production cross section
σtt̄(m

pole
top ) is known in a given renormalisation scheme.

The calculations are performed at NLO, NLO+(N)NLL
or approximate NNLO precision, and have a strong de-
pendence on the top quark mass. Consequently, it was
suggested that by utilising this dependence, and extract-
ing the top quark mass from the cross section, the prob-
lem explained above is absent, i.e. the resulting mtop cor-
responds to a mass in a theoretically well defined con-
cept. In addition, when the top quark mass is extracted
from a comparison of the measured production cross
section with its prediction as a function of the mass,
one could profit from the fact that the relative uncer-
tainty of the cross section translates into an about five
times smaller uncertainty on the top quark mass, when
neglecting the theoretical uncertainties.

This concept is only valid if the experimental deter-
mination of σtt̄ does not depend on the value of mtop
itself, which unfortunately is not the case. This is be-
cause also for the measurement of the tt̄ cross section,
mMC

top is needed, since the Monte Carlo models are indis-
pensable for evaluating the acceptance, efficiency and
the systematic uncertainties in the experimental deter-
mination of the cross section.
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Figure 21: Same as Figure 20, but simulating the LHC conditions at
√

s = 7 TeV.

Figure 20 shows the dependence of the measured pro-
duction cross section [32] and its experimental uncer-
tainty as a function of mpole

top for mMC
top = mpole

top (flattest
of the three bands), for the Tevatron conditions. The
measured cross section value is σtt̄ = (8.13 + 1.02

− 0.90) pb,
with a symmetrised uncertainty of about 12%. Since
the measured cross section depends on the value of
mMC

top , its relation to mpole
top is important as can be seen

from the second shifted band shown for the assumption
mMC

top = mpole
top − 10 GeV, which now means mMC

top approx-

imately coincides with mMS
top .

Experimentally, the top quark mass is essentially ex-
tracted from the overlap of the experimental band and
the theoretical band (the steepest band shown), which
in this figure is based on [33]. The result is indicated by
the vertical lines in the figure. For a given assumption
on mMC

top , this yields mtop with an uncertainty of about
3%, showing the aforementioned reduction in relative
uncertainty. However, the uncertainty of where to put
the experimental band leads to an additional uncertainty
on mtop. For the example of the two extreme assump-
tions made in Figure 20, the corresponding difference
in the extracted top quark mass is about 3 GeV.

A similar situation is shown in Figure 21, again using
the predictions from [33], but this time for LHC run-
ning conditions and assuming a somewhat steeper de-
pendence of the measured cross section on mMC

top . For
this situation, the difference in the extracted top quark
mass is correspondingly larger, and amounts to about
5 GeV.

This investigation shows that to mitigate this uncer-
tainty it is most important to find an mtop independent

selection, i.e. to select the signal events while depend-
ing as little as possible on absolute energy scales which
directly relate to the actual value of mtop. In addition,
to reach a precision on mtop of 0.6% as obtained in the
direct measurements, this indirect extraction needs to
achieve about a 3% precision on the measured cross sec-
tion, which is a big challenge.

5. Conclusions

The analyses of the data from the first year of LHC
running at a proton-proton centre-of-mass energy of
√

s = 7 TeV resulted in a large variety of physics re-
sults concerning QCD observables, only a small part of
which could be discussed here.

The investigation of jet production for a number of jet
multiplicities already proved a helpful tool to better con-
strain QCD predictions of various types implemented in
a large number of programs. The production of a heavy
gauge bosons in conjunction with jets constitutes a high
precision QCD test, the potential of which has just been
started to be explored.

The LHC is a top quark factory with a twenty times
larger production cross section for pair production of
top quarks than at the Tevatron. The first measurements
already give interesting hints on the size of the gluon
PDF at large values of x. The determination of the top
quark mass poses interesting challenges to the experi-
ments and also to the interpretation of the measured val-
ues.

All results presented were based on about 35/pb of
data from the 2010 LHC run. By now about 5/fb of
data each have been collected by the ATLAS and CMS
experiments in 2011. With this huge amount of data, the
statistically limited analyses from 2010 data, can now be
considerably expanded. For the analyses discussed in
this paper, this especially applies to the measurements
of the ratio of the heavy gauge bosons plus 1-jet cross
sections.

The constantly increasing specific luminosity leads
to more and more proton-proton interactions per bunch
crossing which pose an increasing challenge to the
proper treatment of the pileup. With an even better un-
derstanding of the detectors, a large number of interest-
ing and precise measurements are ahead of us. The LHC
experiments will constantly extend the highest scales at
which QCD has ever been probed at accelerators.
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[4] T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics
and manual, JHEP 05 (2006) 026.

[5] G. Corcella et al., HERWIG 6: An event generator for hadron
emission reactions with interfering gluons (including supersym-
metric processes), JHEP 01 (2001) 010.

[6] J.M Butterworth, J.R. Forshaw and M.H. Seymour, Multiparton
interactions in photoproduction at HERA, Z. Phys. C72 (2006)
637.

[7] T. Gleisberg et al., Event generation with SHERPA 1.1, JHEP
02 (2009) 007.

[8] T. Stelzer and W.F. Long, Automatic generation of tree level
helicity amplitudes, Nucl. Phys. Proc. Suppl. 37B (1994) 158.

[9] J. Alwall et al., MadGraph/MadEvent v4: The new web genera-
tion, JHEP 09 (2007) 028.

[10] M.L. Mangano et al., ALPGEN, a generator for hard multipar-
ton processes in hadronic collisions, JHEP 07 (2003) 001.

[11] J.M. Campbell, R.K. Ellis and D.L. Rainwater, Next-to-leading
order QCD predictions for W+2 jet and Z+2 jet production at
the CERN LHC, Phys. Rev. D68 (2003) 094021.

[12] Z. Nagy, Next-to-leading order calculation of three jet observ-
ables in hadron hadron collision, Phys. Rev. D68 (2003) 094002.

[13] S. Frixione and B.R. Webber, Matching NLO QCD computa-
tions and parton shower simulations, JHEP 06 (2002) 029.

[14] S. Frixione, P. Nason and B.R. Webber, Matching NLO QCD
and parton showers in heavy flavour production, JHEP 08 (2003)
007.

[15] S. Frixione, P. Nason and C. Oleari, Matching NLO QCD
computations with parton shower simulations: the POWHEG
method, JHEP 11 (2007) 070.

[16] J.R. Andersen and J.M. Smillie, High energy description of pro-
cesses with multiple hard jets, Nucl. Phys. Proc. Suppl. 205-206
(2010) 205.

[17] J.R. Andersen and J.M. Smillie, Multiple jets at the LHC with
high energy jets, JHEP 06 (2011) 010.

[18] P.Z. Skands, Tuning Monte Carlo generators: The Perugia tunes,
Phys. Rev. D82 (2010) 074018.

[19] The CMS Collaboration, Measurement of the inclusive jet cross
section in pp collisions at

√
s = 7 TeV, Phys. Rev. Lett. 107

(2011) 132001.
[20] The CMS Collaboration, Measurement of differential dijet pro-

duction cross section in proton-proton collisions at
√

s = 7 TeV,
Phys. Lett. B700 (2011) 187.

[21] The CMS Collaboration, Measurement of the ratio of the 3-jet to
2-jet cross sections in pp collisions at

√
s = 7 TeV, Phys. Lett.

B702 (2011) 336.
[22] The ATLAS Collaboration, Measurement of dijet production

with a veto on additional central jet activity in pp collisions at
√

s = 7 TeV using the ATLAS detector, JHEP 09 (2011) 053.
[23] The ATLAS Collaboration, A measurement of the ratio of the

W and Z cross sections with exactly one associated jet in pp
collisions at

√
s = 7 TeV with ATLAS, Submitted to Phys. Lett.

B (2011) arXiv:1108.4908.

[24] M. Aliev et al., HATHOR: HAdronic Top and Heavy quarks
crOss section calculatoR, Comput. Phys. Commun. 182 (2011)
1034.

[25] The ATLAS Collaboration, Measurement of the top quark-pair
production cross section with ATLAS in pp collisions at

√
s =

7 TeV, Eur. Phys. J. C71 (2011) 1577.
[26] The CMS Collaboration, Measurement of the tt̄ production cross

section in pp collisions at 7 TeV in lepton + jets events using b-
quark jet identification, Phys. Rev. D84 (2011) 092004.

[27] The CMS Collaboration, Measurement of the tt̄ production cross
section and the top quark mass in the dilepton channel in pp
collisions at

√
s = 7 TeV, JHEP 07 (2011) 049.

[28] G. Watt, Parton distribution function dependence of benchmark
Standard Model total cross sections at the 7 TeV LHC, JHEP 09
(2011) 069.

[29] R.S. Thorne and G. Watt, PDF dependence of Higgs cross sec-
tions at the Tevatron and LHC: Response to recent criticism,
JHEP 08 (2011) 100.

[30] The Tevatron Electroweak Working Group for the CDF and
D0 Collaborations, Combination of CDF and D0 results on
the mass of the top quark using up to 5.8 f b−1 of data (2011)
arXiv:1107.5255.

[31] A. Buckley et al., General-purpose event generators for LHC
physics, Phys. Rept. 504 (2011) 145.

[32] The D0 Collaboration V.M. Abazov et al., Determination of the
pole and MS masses of the top quark from the tt̄ cross section,
Phys. Lett. B703 (2011) 422.

[33] U. Langenfeld, S. Moch and P. Uwer, Measuring the running
top-quark mass, Phys. Rev. D80 (2009) 054009.


