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Recent measurements for F2(x, Q2) have been analyzed in terms of the ‘dynamical’ and ‘standard’ parton
model approach at NLO and NNLO of perturbative QCD. Having fixed the relevant NLO and NNLO parton
distributions, the implications and predictions for the longitudinal structure function FL(x,Q2) are presented. It
is shown that the previously noted extreme perturbative NNLO/NLO instability of FL(x, Q2) is an artifact of the
commonly utilized ‘standard’ gluon distributions. In particular it is demonstrated that using the appropriate –
dynamically generated – parton distributions at NLO and NNLO, FL(x,Q2) turns out to be perturbatively rather
stable already for Q2 ≥ O (2 − 3 GeV2).

1. Introduction

The parton distributions of the nucleon are de-
termined as a function of the Bjorken–x variable
at a specific low input scale Q = Q0 mainly by ex-
periment, only their evolution to any Q > Q0 be-
ing predicted by QCD. In the standard framework
(see, for example, [1,2]) Q0 is arbitrarily fixed at
some value Q0 > 1 GeV and the free parameters
of the input distributions are varied iteratively
without any constraint until the data and the pre-
dictions yield a minimal χ2. In this approach even
negative gluon distributions in the small–x region
have been obtained [2], leading to negative cross
sections like FL(x, Q2). Alternatively, within the
dynamical parton model [3–5], the distribution
functions at Q > 1 GeV are QCD radiatively gen-
erated from valence–like (positive) input distribu-
tions at an optimally determined Q0 ≡ µ < 1 GeV
(where ‘valence–like’ refers to af > 0 for all in-
put distributions xf(x, µ2) ∼ xaf (1−x)bf ). This
more restrictive ansatz, as compared to the stan-
dard approach, implies of course less uncertainties
[4,5] concerning the behavior of the parton distri-
butions in the small–x region at Q > µ, which is
entirely due to QCD dynamics at x <∼ 10−2.

Following reference [6] the perturbative stabil-
ity of the structure function FL(x, Q2) in the low
Q2 region, Q2 <∼ 5 GeV2, is studied within the

framework of the dynamical parton model. For
comparison the same analysis is repeated utilizing
a set of ‘standard’ parton distributions previously
determined in [7].

As pointed out in [2,8–10] the issue of the per-
turbative stability of FL(x, Q2) in the very small–
x region, x <∼ 10−3, at the perturbatively relevant
low values of Q2 >∼ O(2 − 3 GeV2), is important
because it represents a sensitive test of the relia-
bility of perturbative QCD. For the perturbative–
order independent rather flat toy model parton
distributions in [8], assumed to be relevant at
Q2 ' 2 GeV2, it was shown that next–to–next–
to–leading order (NNLO) effects are quite dra-
matic at x <∼ 10−3 (cf. Figure 4 of [8]). To
some extent such an enhancement is related to
the fact, as will be discussed in more detail in
Section 4, that the third–order α3

s contributions
to the longitudinal coefficient functions behave

like xc
(3)
L ∼ − ln x at small x, as compared to

the small and constant coefficient functions at
LO and NLO, respectively. It was furthermore
pointed out, however, that at higher values of Q2,
say Q2 ' 30 GeV2, where the parton distribu-
tions are expected to be steeper in the small–x
region (cf. eq. (13) of [8]), the NNLO effects are
reduced considerably. It is well known that dy-
namically generated parton distributions [3] are
quite steep in the very small–x region already at
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rather low Q2, and in fact steeper [4] than their
common ‘standard’ non–dynamical counterparts.
Within this latter standard approach, a full NLO
(2–loop) and NNLO (3–loop) analysis moreover
confirmed [2,9] the indications for a perturbative
fixed–order instability observed in [8] in the low
Q2 region. Even additional resummations have
been suggested [11] in order to remedy these in-
stabilities, although such additional ad hoc small–
x terms lack any quantitative theoretical basis
within QCD.

The plan of this contribution to the proceedings
is as follows. Section 2 is devoted to a description
of the formalism used for the NNLO and NLO
analyses of deep inelastic scattering data within
the framework of the dynamical parton model. In
Section 3 the resulting dynamical parton distribu-
tions of the nucleon and, in particular, their be-
havior in the small–x region are discussed in com-
parison with their ’standard’ counterparts. The
predictions for the longitudinal structure function
are presented in Section 4. Summary and conclu-
sions are given in Section 5.

2. Theoretical framework

The NNLO and NLO analyses presented here
are performed in the common modified minimal
subtraction (MS) factorization and renormaliza-
tion scheme. Heavy quarks (c, b, t) are not con-
sidered as massless partons within the nucleon,
i.e. the number of active flavors appearing in the
splitting functions and the corresponding Wilson
coefficients is taken to be nf = 3. This defines the
so-called ’fixed flavor number scheme’ (FFNS),
which is fully predictive in the heavy quark sector:
the heavy quark flavors are produced entirely per-
turbatively from the initial light (u, d, s) quarks
and gluons. It is nevertheless consistent and cor-
rect to utilize the standard variable nf scheme for
the β function [12].

In the MS factorization scheme the relevant
structure function F2 as extracted from the DIS
ep process can be, up to NNLO, written as [13–15]

F2(x, Q2) =

F+
2,NS(x, Q2) + F2,S(x, Q2) + F c

2 (x, Q2, m2
c) (1)

with the non–singlet contribution coming from

the three active (light) flavors being given by

1

x
F+

2,NS(x, Q2) =
[

C
(0)
2,q + aC

(1)
2,NS + a2C

(2)+
2,NS

]

⊗
[

1

18
q+
8 +

1

6
q+
3

]

(x, Q2) (2)

where ⊗ denotes the common convolution, a =

a(Q2) ≡ αs(Q
2)/4π, C

(0)
2,q (z) = δ(1 − z), C

(1)
2,NS

is the common NLO coefficient function (see, for
example, [16]) and a convenient expression for the

relevant NNLO 2-loop Wilson coefficient C
(2)+
2,NS

can be found in [13]. The NNLO Q2-evolution of
the flavor non-singlet combinations q+

3 = u + ū−
(d+d̄) = uv−dv and q+

8 = u+ū+d+d̄−2(s+s̄) =
uv + dv + 4q̄ − 4s̄, where q̄ ≡ ū = d̄ and s = s̄, is

related to the 3-loop splitting function [17] P
(2)+
NS ,

besides the usual LO (1-loop) and NLO (2-loop)

ones, P
(0)
NS and P

(1)+
NS , respectively [13,18]. Notice

that we do not consider sea breaking effects (ū 6=
d̄, s 6= s̄) since the HERA data used, and thus
our analysis, are not sensitive to such corrections.
The flavor singlet contribution in (1) reads

1

x
F2,S(x, Q2) =

2

9

{[

C
(0)
2,q + aC

(1)
2,q + a2C

(2)
2,q

]

⊗ Σ

+
[

aC
(1)
2,g + a2C

(2)
2,g

]

⊗ g
}

(x, Q2) (3)

with Σ(x, Q2) ≡ Σq=u,d,s(q+q̄) = uv+dv+4q̄+2s̄,

C
(1)
2,q = C

(1)
2,NS and the additional common NLO

gluonic coefficient function C
(1)
2,g can be again

found in [16], for example. Convenient expres-

sions for the NNLO C
(2)
2,q and C

(2)
2,g have been given

in [14] and the relevant 3-loop splitting functions

P
(2)
ij , required for the evolution of Σ(x, Q2) and

g(x, Q2), have been derived in [19]. We have
performed all Q2-evolutions in Mellin n-moment
space and used the QCD-PEGASUS program [20]
for the NNLO evolutions, appropriately modified
to account for the fixed nf = 3 flavor number
scheme with a running αs(Q

2). In NNLO the
strong coupling evolves according to

da

d ln Q2
= −Σ2

`=0 β` a`+2 , (4)

where β0 = 11−2f/3, β1 = 102−38f/3 and β2 =
2857/2 − 5033f/18 + 325f 2/54 and the running



Dynamical parton distribution functions 3

a(Q2) is appropriately matched at Q = mc and
Q = mb. The values mc = 1.3 GeV and mb = 4.2
GeV have been used, as implied by optimal fits
[4] to recent deep inelastic c– and b–production
HERA data.

The heavy flavor (dominantly charm) contribu-
tion F c

2 in (1) is taken as in [7,21] as given by the
fixed-order NLO perturbation theory [22,23]. The
small bottom contribution turns out to be neg-
ligible. These contributions are gluon g(x, µ2

F )
dominated where the factorization scale should
preferably be chosen [24] to be µ2

F = 4m2
h. It has

been shown [4] that the resulting predictions are
in perfect agreement with all available DIS data
on heavy quark production and are furthermore
perturbatively stable [24]. Even choosing a very
large scale like µ2

F = 4(Q2 +4m2
c) leaves the NLO

results essentially unchanged [25,26], in particu-
lar in the small–x region. This stability renders
attempts to resum supposedly ’large logarithms’
(ln Q2/m2

h) in heavy quark production cross sec-
tions superfluous. Since a NNLO calculation of
heavy quark production is not yet available, we
have again used the same NLO O(α2

s) result. This
is also common in the literature [27–29] and the
error in the resulting parton distributions due to
NNLO corrections to heavy quark production is
expected [27] to be less than their experimental
errors.

3. Quantitative results

For the present analysis the valence–like in-
put distributions at Q0 ≡ µ < 1 GeV are
parametrized according to [6,7,21]

xqv(x, Q2
0) = Nqv

xaqv (1 − x)bqv (1 + cqv

√
x

+dqv
x + eqv

x1.5) ,

xw(x, Q2
0) = Nwxaw(1 − x)bw (1 + cw

√
x + dwx) ,

(5)

for the valence qv = uv, dv and sea w = q̄, g
densities. Since the data sets utilized are insen-
sitive to the specific choice of the strange quark
distributions, we generate the strange densities
entirely radiatively [3], starting from s(x, Q2

0) =
s̄(x, Q2

0) = 0, where Q0 < 1 GeV. The normal-

izations Nuv
and Ndv

are fixed by
∫ 1

0
uvdx = 2

and
∫ 1

0
dvdx = 1, respectively, and Ng is fixed

via
∫ 1

0 x(Σ + g)dx = 1. The following data sets
have been used: the small-x [30] and large-x
[31] H1 F p

2 data; the fixed target BCDMS data
[32] for F p

2 and F n
2 using Q2 ≥ 20 GeV2 and

W 2 = Q2( 1
x
− 1) + m2

p ≥ 10 GeV2 cuts, and the
proton and deuteron NMC data [33] for Q2 ≥ 4
GeV2 and W 2 ≥ 10 GeV2. This amounts to a to-
tal of 740 data points. The required overall nor-
malization factors of the data turned out to be
0.98 for H1 and BCDMS, and 1.0 for NMC. We
use here solely deep inelastic scattering data since
we are mainly interested in the small–x behavior
of structure functions. The resulting parameters
of the NLO and NNLO fits are summarized in
Table 1. The corresponding dynamical gluon and
sea distributions, evolved to some specific values
of Q2 > Q2

0, are very similar to the ones in [4,5]
which were obtained from a global analysis in-
cluding Tevatron Drell–Yan dimuon production
and, at the NLO level, high–ET inclusive jet data
as well. Furthermore, it should be mentioned that
the NLO αs(M

2
Z) in Table 1 turns out be some-

what smaller in fits based solely on deep inelas-
tic structure function data [7,18,27,34,35] as com-
pared to those which take into account additional
hard scattering data [1,2,4,36] (for a recent sum-
mary, see [37]). At NNLO the resulting αs(M

2
Z) is

generally slightly smaller [37] (c.f. Table 1) which
is due to the fact that the higher the perturbative
order the faster αs(Q

2) increases as Q2 decreases.
For comparison the results of a ’standard’ fit to

the same data [4] are presented in Table 2, where
the gluon and sea input distributions in (5) do
not vanish as x → 0 (ag,q̄

<∼ 0) at Q2
0 = 1.5 GeV2.

Without loss of generality the strange sea at the
input scale is taken to be s(x, Q2

0) = s̄(x, Q2
0) =

0.5 q̄(x, Q2
0). The overall normalization factors

of the data are 0.98 for BCDMS and 1.0 for
H1 and NMC, while slightly different values of
the charm and bottom masses have been used,
namely mc = 1.4 GeV and mb = 4.5 GeV. The
standard NNLO and NLO fits are very similar
to each other, corresponding to χ2/dof = 0.989
and 0.993, respectively, with the NNLO predic-
tions for F2 falling slightly below the NLO ones at
smaller values of Q2 [7]. It should be emphasized
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Table 1
Parameter values of the dynamical NNLO and NLO QCD fits with the parameters of the input distribu-
tions referring to (5) at a common input scale Q2

0 = µ2 = 0.5 GeV2 optimal at both perturbative orders.
Here χ2 was evaluated by adding in quadrature the statistical and systematic errors.

NNLO NLO
uv dv q̄ g uv dv q̄ g

N 0.6210 0.1911 0.4393 20.281 0.5312 0.3055 0.4810 20.649
a 0.3326 0.8678 0.0741 0.9737 0.3161 0.8688 0.0506 1.3942
b 2.7254 4.7864 12.624 6.5186 2.8205 4.6906 14.580 11.884
c -9.0590 65.356 2.2121 — -8.6815 44.828 -2.2622 15.879
d 53.547 1.6215 7.7450 — 54.994 -5.3645 21.650 —
e -36.979 -41.117 — — -40.088 -21.839 — —
χ2/dof 1.037 1.073
αs(M

2
Z) 0.112 0.113

Table 2
As Table 1 but for the standard NNLO and NLO QCD fits with the parameters of the input distributions
referring to (5) at a common input scale Q2

0 = 1.5 GeV2.

NNLO NLO
uv dv q̄ g uv dv q̄ g

N 0.2503 3.6204 0.1196 2.1961 0.4302 0.3959 0.0546 2.3780
a 0.2518 0.9249 -0.1490 -0.0121 0.2859 0.5375 -0.2178 -0.0121
b 3.6287 6.7111 3.7281 6.5144 3.5503 5.7967 3.3107 5.6392
c 4.7636 6.7231 0.6210 2.0917 1.1120 22.495 5.3095 0.8792
d 24.180 -24.238 -1.1350 -3.0894 15.611 -52.702 -5.9049 -1.7714
e 9.0492 30.106 — — 4.2409 69.763 — —
χ2/dof 0.989 0.993
αs(M

2
Z) 0.112 0.114

that the perturbatively stable QCD predictions,
both in the dynamical and standard approaches,
are in perfect agreement with all recent high-
statistics measurements of the Q2-dependence of
F2(x, Q2) in the (very) small-x region. Therefore
additional model assumptions concerning further
resummations of subleading small-x logarithms
(see, for example, [38]) are not required [17,19].

The sea and gluon distributions resulting from
both fits are shown in Figures 1 and 2 respec-
tively. The dynamical NLO sea distribution has
a rather similar small–x dependence as the stan-
dard one [4,7]; this is caused by the fact that
the valence–like sea input in (5) vanishes very
slowly as x → 0 (corresponding to a small value
of aq̄ , aq̄ ' 0.05, according to Table 1) and thus
is similarly increasing with decreasing x down to
x ' 0.01 as the sea input obtained by a standard

fit. On the other hand, the dynamically gener-
ated NLO gluon is steeper as x → 0 than the
gluon distributions obtained from the standard
fits. Similar remarks hold when comparing dy-
namical and standard distributions at NNLO. At
NNLO the sea distribution xq̄ is larger (steeper)
than the NLO one, whereas the NNLO gluon dis-
tribution xg is flatter as x decreases and, in gen-
eral, falls below the NLO one in the small–x re-
gion. It is evident from Figure 2 that the NNLO
gluon remains valencelike even at Q2 = 2 − 4
GeV2, i.e. decreases as x decreases; this is mainly
caused by the dominant NNLO gluon-gluon split-

ting function P
(2)
gg which is negative and more

singular as x → 0 than the LO and NLO ones,

P
(2)
gg (x) ∼ 1

x
ln 1

x
[5].
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Figure 1. The sea distributions xq̄(x, Q2), where
q̄ ≡ ū = d̄, in the dynamical (dyn) and standard
(std) parton model for two representative low val-
ues of Q2.

4. The longitudinal structure function

FL(x, Q2)

In this section we turn to the perturbative pre-
dictions for FL(x, Q2). Similarly to (1) one can
write for FL in the MS scheme,

x−1FL = CL,NS ⊗ qNS

+
2

9
(CL,q ⊗ qS + CL,g ⊗ g) + x−1F c

L

(6)

where again ⊗ in the nf = 3 light quark fla-
vor sector denotes the convolution, qNS stands
for the usual flavor non–singlet combination and
qS =

∑

q=u,d,s(q + q̄) is the corresponding flavor–
singlet quark distribution. We use the NLO ex-
pression [22,23] for F c

L also in NNLO due to our
ignorance of the O(α3

s) NNLO heavy quark cor-
rections. (Notice that F c

L is a genuinely subdomi-
nant NLO contribution to the total FL, being less
than 10% even at Q2 = 2 GeV2 and x = 10−5
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Figure 2. As in Figure 1, but for the gluon dis-
tribution xg(x, Q2).

and further decreases for increasing x. Further-
more, the NNLO 3–loop corrections to F c

L have
been calculated recently [39] for Q2 � m2

c , but
this asymptotic result is neither applicable for our
present investigation nor relevant for the major-
ity of presently available data at lower values of
Q2.) The perturbative expansion of the coeffi-
cient functions can be written as

CL,i(αs, x) =
∑

n=1

(

αs(Q
2)

4π

)n

c
(n)
L,i(x) . (7)

In LO, c
(1)
L,ns = 16

3 x, c
(1)
L,ps = 0, c

(1)
L,g = 24x(1 − x)

and the singlet–quark coefficient function is de-
composed into the non–singlet and a ‘pure singlet’

contribution, c
(n)
L,q = c

(n)
L,ns + c

(n)
L,ps. Sufficiently

accurate simplified expressions for the exact [40–

42] NLO and [43] NNLO coefficient functions c
(2)
L,i

and c
(3)
L,i, respectively, have been given in [8]. It

has been furthermore noted in [8] that especially
for CL,g both the NLO and NNLO contributions
are rather large over almost the entire x–range.
Most striking, however, is the behavior of both
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Figure 3. The individual light (u, d, s) quark con-
tribution F q

L to the total FL in (6) in the dynam-
ical (dyn) and standard (std) parton approach at
NNLO and NLO for two representative low val-
ues of Q2. The standard NLO results in the lower
panel are similar for the CTEQ6 (anti)quark dis-
tributions [1]. Notice that, according to (6),
F q

L + F g
L = FL − F c

L.

CL,q and CL,g at very small values [8,44] of x:

the vanishingly small LO parts (xc
(1)
L,i ∼ x2) are

negligible as compared to the (negative) constant
NLO 2–loop terms, which in turn are completely
overwhelmed by the positive NNLO 3-loop singu-

lar corrections xc
(3)
L,i ∼ − ln x. This latter singular

contribution might be indicative for the perturba-
tive instability at NNLO [8], as discussed at the
beginning, but it should be kept in mind that a
small–x information alone is insufficient for re-
liable estimates of the convolutions occurring in
(6) when evaluating physical observables.

We display the predictions for the convolutions
of the individual light u, d, s quark (F q

L) and gluon
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Figure 4. As in Figure 3 but for the gluonic con-
tribution F g

L to FL in (6) with F g
L = 2

9x CL,g ⊗ g.

(F g
L) contributions in (6) in Figures 3 and 4, re-

spectively, at two characteristic low values of Q2.
(Note that F q

L + F g
L = FL −F c

L according to (6)).
Although the perturbative instability of the sub-
dominant quark contribution in Figure 3 as ob-
tained in a standard fit does not improve for the
dynamical (sea) quark distributions, the instabil-
ity disappears almost entirely for the dominant
dynamical gluon contribution already at Q2 ' 2
GeV2 as shown in Figure 4. This implies that
the dynamical predictions for the total FL(x, Q2)
become perturbatively stable already at the rel-
evant low values of Q2 >∼ O(2 − 3 GeV2) as ev-
ident from Figure 5, in contrast to the standard
results in Figure 6. In the latter case the stabil-
ity has not been fully reached even at Q2 = 5
GeV2 where the NNLO result at x = 10−5 is
more than 20% larger than the NLO one. A simi-
lar discrepancy prevails for the dynamical predic-
tions in Figure 5 at Q2 = 2 GeV2. This is, how-
ever, not too surprising since Q2 = 2 GeV2 rep-
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Figure 5. Dynamical parton model NNLO and
NLO predictions for FL(x, Q2) in (6).

resents somehow a borderline value for the lead-
ing twist–2 contribution to become dominant at
small x values. This is further corroborated by
the observation that the dynamical NLO twist–2
fit slightly undershoots the HERA data for F2 at
Q2 ' 2 GeV2 in the small–x region (cf. Figure 1 of
[4]), which indicates that nonperturbative (higher
twist) contributions to F2 become relevant for Q2

<∼ 2 GeV2 [3,4]. The NLO/NNLO instabilities im-
plied by the standard fit results obtained in [2,9]
at Q2 <∼ 5 GeV2 are even more violent than the
ones shown in Figure 6. This is mainly due to
the negative longitudinal cross section (negative
FL(x, Q2)) encountered in [2,9]. The perturbative
stability in any scenario becomes in general bet-
ter the larger Q2, typically beyond 5 GeV2 [8,2,9],
as shown in Figures 5 and 6. This is due to the
fact that the Q2–evolutions eventually force any
parton distribution to become sufficiently steep
in x.
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Figure 6. As in Figure 5 but for the common
standard parton distributions.

For completeness we finally compare in Fig-
ure 7 our dynamical (leading twist) NNLO and
NLO predictions for FL(x, Q2) with a represen-
tative selection of (partly preliminary) HERA–
H1 data [30,31,45,46]. Our results for FL, being
gluon dominated in the small–x region, are in full
agreement with present measurements which is
in contrast to expectations [2,9] based on nega-
tive parton distributions and structure functions
at small values of x. To illustrate the manifest
positive definiteness of our dynamically generated
structure functions at Q2 ≥ µ2 = 0.5 GeV2 we
show FL(x, Q2) in Figure 7 down to small values
of Q2 although leading twist–2 predictions need
not necessarily be confronted with data below,
say, 2 GeV2. As pointed out in [5], where also
a study on the ±1σ uncertainty bands of FL has
been performed, future precision measurements
of FL could even distinguish between NLO results
and NNLO effects in the very small–x region.
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Figure 7. Our dynamical NNLO and NLO predic-
tions for FL at a fixed value of W = 276 GeV. The
(partly preliminary) H1 data [30,31,45,46] are at
fixed W ' 276 GeV.

5. Summary and conclusions

To summarize, recent deep inelastic data for
the structure function F p,n

2 , without the inclu-
sion of any FL data, have been analyzed in the
dynamical and standard parton model approach
at NLO and NNLO of perturbative QCD. In both
approaches, perturbative QCD evolutions of par-
ton distributions in the (very) small-x region are
fully compatible with all high-statistics measure-
ments of the Q2-dependence of F2(x, Q2) in that
region. The results turned out to be perturba-
tively stable, therefore additional model assump-
tions concerning further resummations of sub-
leading small-x logarithms are not required.

Furthermore, the extracted parton distribu-
tions have been used to predict FL. It
has been shown that the extreme perturbative
NNLO/NLO instability of FL at low Q2, noted
in [2,9,10], is an artifact of the commonly uti-
lized ‘standard’ gluon distributions rather than
an indication of a genuine problem of perturba-
tive QCD. In fact it has been demonstrated that
these extreme instabilities are reduced consider-
ably already at Q2 = 2 − 3 GeV2 when utilizing

the appropriate, dynamically generated, parton
distributions at NLO and NNLO. It is interesting
to notice, once again, the advantage of the dy-
namical parton model approach to perturbative
QCD.
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