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Recent results on leading baryon production in ep scattering from the ZEUS and H1 collaborations are presented

and compared with different production models.

1. Introduction

A significant fraction of the HERA ep events
have been found to contain a leading baryon (LB)
carrying a large fraction xL of the incoming pro-
ton energy (xL > 0.2) but a small transverse mo-
mentum (pT

<
∼

0.7 GeV) [1–3]. The production
mechanism is not completely understood. Al-
though a fraction of these LBs may result from
the hadronization of the proton remnant, the t-
channel exchange of colour singlet virtual parti-
cles is expected to contribute significantly. In this
picture, the target proton fluctuates into a virtual
meson-baryon state. The meson scatters with the
projectile lepton, leaving a fast forward baryon in
the final state.
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Figure 1. Leading neutron production via the
pion exchange process.

In virtual exchange models, leading neutron
(LN) production occurs through the exchange of
isovector states, and π+ exchange is expected to

dominate (see figure 1). For leading proton (LP)
production, isoscalar exchanges also contribute,
including diffractive Pomeron mediated interac-
tions.
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Figure 2. LN cross-section in DIS as function of
p2

T in bins of xL, normalized to the inclusive deep
inelastic cross section. Lines are the results of fits
to an exponential function.
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In the simple exchange picture, the cross sec-
tion is factorized and LB production is largely
independent of the variables describing the pho-
ton vertex (vertex factorization). For example,
if pion exchange dominates LN production, the
cross section reads

dσγ∗p→nX = fπ/p(xL, t) × dσγ∗π→X .

Here fπ/p is the flux of virtual pions in the pro-
ton, a universal factor constrained from low ener-
gy hadronic data, and σγ∗π→X is the γ∗π cross
section. Such a reaction can thus be used to probe
the structure function F π

2 of the exchanged pion.
In the following, the results of two recent pub-

lications [4,5] of the ZEUS collaboration based on
HERA-I measurements are presented, where the
energy and the pT distributions of LBs, shown
both for photoproduction (Q2 < 0.02 GeV2) and
deep inelastic scattering (DIS, Q2>

∼
2 GeV2), are

compared among themselves and to different pro-
duction models. In addition, preliminary mea-
surements of LN production in DIS by the H1
collaboration [6], based on the large statistics of
the HERA-II data, are also shown; these mea-
surements are used for the extraction of the pion
structure function F π

2 .

2. Leading baryon production

Figure 2 shows the cross-section for LN pro-
duction in DIS as a function of p2

T in bins of xL,
normalized to the inclusive DIS cross section. In
each xL bin the data are well described by an
exponential distribution a(xL) exp[−b(xL)p2

T ].
The LN xL distribution, the intercepts a and

slopes b are compared in figure 3 to several Monte
Carlo (MC) models [7,8]. None of the models
incorporating only standard fragmentation pre-
dicts the observed LN yield, while Lepto with
soft color interactions (SCI) [9] fails to describe
the observed slopes. The Rapgap model, mixing
standard fragmentation and π-exchange, gives a
better description of the shape of the xL distri-
bution, and also predicts the rise of b with xL,
although with too high values.

A similar failure to describe the data is ob-
served for LP production in DIS. Figure 4 (left)
shows a comparison of the LP xL distribution and
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Figure 3. Normalized LN cross section, intercept
a and exponential slope b of in DIS as function of
xL, compared to several Monte Carlo models.

the p2
T exponential slope b to the predictions of

Monte Carlo models. None of them can reproduce
either the flat dependence of the cross section ver-
sus xL below the diffractive peak at xL = 1 or the
magnitude and dependence of b on xL.

The same data are compared in figure 4 (right)
to a Regge-based model [10] incorporating both
isovector and isoscalar exchanges, including the
Pomeron for diffraction. A good description of
the xL distribution and the slopes is obtained
by adding a substantial contribution of isoscalar
Reggeon exchanges, which turn out to be the
dominant processes below the diffractive peak.

In the pure pion exchange model for LN pro-
duction, the factorization relation discussed in
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Figure 4. Normalized LP cross section and ex-
ponential slope b of LPs in DIS as function of
xL, compared to Monte Carlo models (left) and
a Regge-based model [10] (right).

the introduction implies that, if σγ∗π is assumed
to be independent of t, the p2

T distribution solely
depends on the pion flux factor fπ/p. The va-
lidity of the pure pion model can be tested by
comparing the slopes b with various parametriza-
tions of the pion flux. The results are shown in
figure 5, where only the models that most resem-
ble the data [11,12] have been retained for this
comparison. All these models give values for the
slopes larger than the data, suggesting that pion
exchange alone is unable to describe the observed
p2

T distributions.

3. Factorization breaking and absorption

A refinement of the simple factorization picture
is provided by baryon absorption, which can oc-
cur through rescattering [13–15]. In a geometrical
picture [14], if the size of the meson-baryon sys-
tem is small compared to the size of the photon,
the baryon may also scatter on the photon and
migrate to lower xL or higher pT , thus escaping
detection. This results in a relative depletion of
observed forward baryons.

Since the size of the photon is inversely related
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Figure 5. The measured exponential slopes b
of LN production in DIS, compared to the pre-
dictions of models of one-pion exchange alone
[11,12].

to the photon virtuality Q2, more absorption is
expected in photoproduction (Q2

' 0) than in
DIS, leading to a breaking of the vertex factor-
ization.

Also, since the size of the meson-baryon system
is inversely proportional to the baryon pT , rescat-
tering results in a depletion of high pT baryons in
photoproduction relative to DIS, again a violation
of vertex factorization.

To investigate the Q2 dependence of LN pro-
duction, the xL distributions for photoproduction
and for DIS in three bins of increasing Q2 are
shown in figure 6. The yield of LNs decreases
monotonically with decreasing Q2, a clear viola-
tion of vertex factorization. This is in qualitative
agreement with the expectations of an increase
of absorption as Q2 decreases. A similar Q2 de-
pendence of the yield, not shown here, is also ob-
served in the LP data [4].

The Q2 dependence of the p2
T distributions can

be best examined by looking at the difference
∆b = b(Q2 < 0, 02GeV2) − b(Q2 > 2GeV2) be-
tween the slopes of the exponential fits, described
in the previous section, to the photoproduction
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Figure 6. Normalized LN cross section as function
of xL for photoproduction and for three bins of
Q2 in DIS.

and to the DIS p2
T distributions. This quantity is

less sensitive to systematic effects than each indi-
vidual slope and is shown in figure 7 for LN pro-
duction as a function of xL. The p2

T distributions
are steeper (larger slope) in photoproduction than
in DIS. This is consistent with the violation of
vertex factorization discussed above, i.e. the ab-
sorption of large pT neutrons in photoproduction
leads to a larger slope than in DIS.

A calculation of LN production through pion
exchange with neutron absorption, based on
multi-pomeron exchanges, has become available
[15]. It includes, in addition to the rescattering
implemented in the earlier model [13], a small
contribution from rescattering on the interme-
diate partons in the central rapidity region. It
also accounts for the migration of the neutrons
in xL and pT after rescattering and has been ex-
tended to include secondary exchanges of ρ and
a2 mesons.

The prediction of this model for the xL neutron
distribution in photoproduction, where rescatter-
ing is most important, is shown in figure 8, for
pion exchange only, with a dashed curve. A fair
description of both the shape and the magnitude
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Figure 7. The differences between the exponential
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xL.
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of the distribution is observed. However, as with
the pure pion exchange discussed in the previ-
ous section, the model with pion exchange only
predicts too high a value of the slope b, see fig-
ure 9(a). Extending the model to include also
secondary exchanges (the solid curves in figures 8
and 9), a better description of the observed slopes
is obtained still while maintaining a fair descrip-
tion of the xL distribution. A reasonable descrip-
tion of the difference of the slopes ∆b in photo-
production and DIS is also achieved, see figure
9(b).
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Figure 9. (a) Exponential slopes b for DIS and
(b) difference of slopes b for photoproduction and
DIS. The curves represent the predictions of a
model with neutron absorption and migration [15]
for pion exchange only (dashed curve) and includ-
ing ρ and a2 exchanges (solid curve).

Note that within this model, the present data
can be used to constrain the gap-survival proba-
bility, one of the important inputs to calculations
of diffractive interactions at the LHC [16].

4. The leading baryon and the pion struc-

ture functions

Analogous to the inclusive proton structure
function F2(x, Q2), the semi-inclusive LB struc-

ture function F
LB(3)
2 (x, Q2) is defined which also

includes dependence on xL.

Figure 10 shows the ratios F
LN(3)
2 /F2 in bins

of x and xL as a function of Q2, where F LN
2 val-

ues are measured from LN production in DIS, and
F2 is obtained from the H1-2000 parametrisations
[17]. At fixed xL, ratios are almost flat in all
(x,Q2) bins, suggesting the validity of factoriza-
tion, i.e. independence of the photon and proton
vertices.
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Similar behaviour is observed for LP pro-
duction in DIS. The LP structure function
F

LP (2)
2 (x, Q2), integrated over an xL range which

excludes the diffractive region, is presented in fi-
gure 11. The data are compared to the inclusive
F2 obtained from the NLO ZEUS-S parametri-
sations [18] scaled by the average measured LP
yield. A very good description of F LP

2 is ob-
served, suggesting a fraction of DIS events con-
taining LPs independent of x and Q2, as expected
by factorization.
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Assuming that the pion exchange mechanism
dominates the LN production at large xL, F LN

2

can be factorized into a product of a pion flux fac-
tor fπ/p(xL, t) times the pion structure function
F π

2 (β, Q2), where β = x/(1−xL) is the fraction of
the pion momentum carried by the struck parton.

The pion parton distributions have been previ-
ously constrained from Drell-Yan processes and

direct photon production in pion-nucleon colli-
sions, and are limited to high β (β >

∼
0.1) values.

Using the measurement of F
LN(3)
2 for 0.68 <

xL < 0.77 and the integral over t of the pion flux
factor [11] at the center of this xL range, Γπ =∫

fπ/pdt = 0.131, the pion structure function can
be extracted as F π

2 = F LN
2 /Γπ.

F
LN(3)
2       (xL= 0.73)/Γπ , Γπ = 0.131
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The result is shown in figure 12 as a function of
β for fixed values of Q2. The data are compared
to the predictions of parametrisations of the pion
structure function [19] as well as to the H1-2000
parametrisation of the proton structure function
multiplied by the factor 2/3, according to the
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naive expectation based on the number of valence
quarks in the pion and the proton respectively.
The measured data show a steep rise with de-
creasing β, in accordance with two F π

2 parametri-
sations, but are slightly below the expectations,
suggesting that additional phenomena, like ab-
sorption, may play a role. Also, the theoretical
uncertainties on the pion flux factor need to be
carefully considered before any conclusion can be
drawn. These results are also consistent with a
previous ZEUS measurement [1].
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