New Horizons in DIS Spin Physics

E.C. Aschenauer

DESY-ZEUTHEN

Polarized Deep Inelastic Scattering

Important Variables:

 $\frac{d^2\sigma}{d\Omega dE^2} = \frac{\alpha^2 E'}{\Omega^2 E} L_{\mu\nu} W^{\mu\nu}$

Q^2	$\stackrel{lab}{=}$	$4EE'\sin^2(\frac{\theta}{2})$	u	$\stackrel{lab}{=}$	E-E'
x	$\stackrel{lab}{=}$	$rac{Q^2}{2m u}$	y	$\stackrel{lab}{=}$	$\frac{\nu}{E} = \frac{p \cdot q}{p \cdot k}$
z	$\stackrel{lab}{=}$	$\frac{E_h}{ u}$			

Cross Section:

 $L_{\mu\nu} = 2[k_{\mu}k'_{\nu} + k_{\nu}k'_{\mu} - (k \cdot k' - m_e^2)g_{\mu\nu} + im_e\epsilon_{\mu\nu\alpha\beta}S^{\alpha}(k - k')^{\beta}]$ Where: $S^{\alpha} = \frac{1}{2}\overline{u}(k,s)\gamma^{\alpha}\gamma_5 u(k,s)$

$$W^{\mu\nu} = -g^{\mu\nu}F_1(x,Q^2) + \frac{p^{\mu}p^{\nu}}{\nu}F_2(x,Q^2) + \frac{i}{\nu}\epsilon^{\mu\nu\lambda\sigma}q_{\lambda}S_{\sigma}g_1(x,Q^2) + \frac{i}{\nu^2}\epsilon^{\mu\nu\lambda\sigma}q_{\lambda}(p \cdot qS_{\sigma} - S \cdot qp_{\sigma})g_2(x,Q^2)$$

(for spin 1) + quadropole terms (b_1, b_2, b_3, b_4)

$F_1, F_2 \mid g_1, g_2 \Longrightarrow$ Unpolarized / Folarized Structure Functions

Virtual Photon Asymmetry

can only probe quarks with spin opposite to its own

 $\vec{S_{\gamma}} + \vec{S_N} = 3/2$ $\sigma_{3/2} \sim q^-(x)$

$$\sigma_{1/2} \sim q^+(x)$$

unpolarized target + beampolarized target + beamflipping target spinflipping target spinQuark Distributions:Quark Spin Distributions:

$$q(x) := q_f^+(x) + q_f^-(x)$$

DESY

($f = u, d, s, \overline{u}, \overline{d}, \overline{s}$)

 $\Delta q_f(x) := q_f^+(x) - q_f^-(x)$

$$F_{1}(x) = \frac{1}{2} \sum_{i} e_{i}^{2} (q_{i}^{+}(x) + q_{i}^{-}(x)) = \frac{1}{2} \sum_{i} e^{2} q_{i}(x)$$

$$2xF_{1} \text{ measures the momentum distribution of quarks}$$

$$g_{1}(x) = \frac{1}{2} \sum_{i} e_{i}^{2} (q_{i}^{+}(x) - q_{i}^{-}(x)) = \frac{1}{2} \sum_{i} e^{2} \Delta q_{i}(x)$$

$$g_{1} \text{ measures the spin distribution of quarks}$$

With: $D, d, R, \epsilon, \gamma$ being kinematic factors

World data on g1(x) and g2(x)

NLO pQCD Fits to g1(x,Q)²

NLO QCD ($\overline{M}\overline{S}$) fit at Q² = 4 GeV² fully propagated stat. uncertainties (yellow bands BB 2002)

 $\Delta s(\bar{q}) = -0.07 \pm 0.02$ (stat.) $\Delta G = 1.03 \pm 0.55$ (stat.) SU(3)_f symmetry breaking?

BB: Blümlein Böttcher hep/ph 0203155 LSS: Leader et al. hep/ph 0111267 GRSV: Glück et al. hep/ph 0011215 AAC: Goto et al. hep/ph 0001046

more direct probes for Δ G and Δ s needed

Semi-inclusive DIS

Inclusive DIS: $\Delta \Sigma = (\Delta u + \Delta \bar{u} + \Delta d + \Delta \bar{d} + \Delta s + \Delta \bar{s})$ Semi-inclusive DIS: $\Delta u, \Delta \bar{u}, \Delta d, \Delta \bar{d}, \Delta s, \Delta \bar{s}$

In LO-QCD:

$$A_{1}^{h}(x,Q^{2}) = \frac{\sigma_{1/2}^{h} - \sigma_{3/2}^{h}}{\sigma_{1/2}^{h} + \sigma_{3/2}^{h}} = \frac{1 + R(x,Q^{2})}{1 + \gamma^{2}} \cdot \frac{\sum_{f} e_{f}^{2} \Delta q_{f}(x,Q^{2}) \int dz D_{f}^{h}(z,Q^{2})}{\sum_{f} e_{f}^{2} q_{f}(x,Q^{2}) \int dz D_{f}^{h}(z,Q^{2})}$$

 $(\Delta q_f), q_f$ (Polarized) quark distributions $D_f^{\rm h}(z)$ fragmentation functions giving the probability that a (struck) quark of flavor *f* fragments into a hadron of type h.

Hadron Asymmetries on the Deuteron

HERMES selects hadrons with the following cuts:

• $0.2 \le z = E_h/\nu \le 0.8$ and $x_F \ge 0.1$ and $W^2 \ge 10 GeV^2$ • HERMES-Deuterium π^{\pm} and \mathbf{K}^{\pm} data identified by RICH

Δq -Extraction

Rewrite Photon-Nucleon Asymmetry

$$\mathbf{A}_{1}^{\mathrm{h}}(\mathbf{x}) \stackrel{\mathbf{g_{2}=0}}{\simeq} \mathbf{C} \cdot \sum_{\mathbf{q}} \underbrace{\frac{e_{q}^{2}q(x)\int dz D_{q}^{\mathrm{h}}(z)}{\sum_{q'} e_{q'}^{2}q'(x)\int dz D_{q'}^{\mathrm{h}}(z)}}_{P_{q}^{h}(x,z)} \stackrel{\mathbf{\Delta}\mathbf{q}(\mathbf{x})}{\underbrace{\mathbf{\Delta}\mathbf{q}(\mathbf{x})}}$$

• $P_q^h(x,z)$ Purity, the prob. a hadron h originates from an event with struck quark f Effective Purities accounting for detector effect may be computed via Monte Carlo based on the JetSet model for fragmentation

• Solve linear system for $ec{Q}$ with

$$\vec{\mathbf{A}} = (\mathbf{A}_{\mathbf{1},\mathbf{p}}(\mathbf{x}), \mathbf{A}_{\mathbf{1},\mathbf{d}}(\mathbf{x}), \mathbf{A}_{\mathbf{1},\mathbf{p}}^{\pi^{\pm}}(\mathbf{x}), \mathbf{A}_{\mathbf{1},\mathbf{d}}^{\pi^{\pm}}(\mathbf{x}), \mathbf{A}_{\mathbf{1},\mathbf{d}}^{\mathbf{K}^{\pm}}(\mathbf{x}))$$

$$\vec{\mathcal{A}} = \mathcal{P}\vec{\mathcal{Q}}$$

 $ec{\mathbf{Q}} = (rac{\Delta \mathbf{u}}{\mathbf{u}}, rac{\Delta \mathbf{d}}{\mathbf{d}}, rac{\Delta \overline{\mathbf{u}}}{\overline{\mathbf{u}}}, rac{\Delta \overline{\mathbf{d}}}{\overline{\mathbf{d}}}, rac{\Delta \mathbf{s} + \Delta \overline{\mathbf{s}}}{\mathbf{s} + \overline{\mathbf{s}}})$

Purities for charged Hadrons

shaded bands indicate the systematic uncertainties
An adequate degree of orthogonality is provided

u versus d from h+
valence versus sea from hadron charged
ū versus d from h

Kaons have about 10% sensitivity of the strange sea (not shown)

Polarized Quark Densities at LO

strange sea polarization $\Delta s \ge 0$

The Hermes data are consistent with SU(3)_f symmetry Data disfavor χ QSM of Dressler et al

Future of Polarized Quark Densities

HERMES

additional 4 Million DIS with polarized $\bar{\mathbf{H}}$ and the RICI

COMPASS

will extend to lower x expected luminosity: 2 fb⁻¹ /

Direct Measurements of ΔG

Isolate the photon-gluon fusion process (PGF)

OPEN CHARM

reconstruct D^* , D^0

$$A_{||} = \frac{N_{c\bar{c}}^{\vec{\leftarrow}} - N_{c\bar{c}}^{\vec{\Rightarrow}}}{N_{c\bar{c}}^{\vec{\leftarrow}} + N_{c\bar{c}}^{\vec{\Rightarrow}}}$$
$$A^{\gamma p \to c\bar{c}} \sim \Delta G/G$$

HIGH- P_T

pairs of high- P_T hadro

$$A_{||} = \frac{N_{h\pm}^{\overleftarrow{\leftarrow}} - N_{h\pm}^{\overrightarrow{\rightarrow}}}{N_{h\pm}^{\overleftarrow{\leftarrow}} + N_{h\pm}^{\overrightarrow{\rightarrow}}}$$
$$A^{\gamma p \to h^+ h^-} \sim \Delta G/G$$

additionally: use identified hadrons pairs of high- P_T Pions pairs of high- P_T Kaons

Can be measured by HERMES and COMPASS

Pairs of high- P_T Hadrons within LO pQCD and PYTHIA5 MC model

 $\Delta G/G = 0.41 \pm 0.18 \text{ (stat.)} \pm 0.03 \text{ (exp.syst.)}$ at $\langle x_G \rangle = 0.17$ and $\langle \hat{p}_T^2 \rangle = 2.1 \text{ GeV}^2$

A. Airapetian et al, Phys. Rev. Lett. 84 (2000) 2584 Target: Hydrogen Extraction strongly Model dependent

Deuterium Results

Statistics: ~ 3 x hydrogen statistics

$\Delta G/G$ Extraction still under way

$\Delta { m G}/{ m G}$ in 2010

GPDs Introduction

GPDs introduction II

quantum numbers of final state \rightarrow select different GPDs

DVCS: \tilde{H}, \tilde{E} H, Evector mesons:H, Epseudo-scalar mesons: \tilde{H}, \tilde{E}

quadratic combination of GPDs appear in unpolarized cross section \rightarrow polarization provides new observables

HERMES kinematics: BH process larger than DVCS

[Korotkov, Nowak, hep-ph/0108077]

DVCS ep

 $d\sigma \propto |\mathcal{T}_{BH}|^2 + |\mathcal{T}_{DVCS}|^2 + (\mathcal{T}^*_{BH}\mathcal{T}_{DVCS} + \mathcal{T}^*_{DVCS}\mathcal{T}_{BH})$

HERMES, JLAB: DVCS-BH interference:

use BH as a vehicle to study DVCS

H1, ZEUS:

measure DVCS cross section directly

DVCS azimuthal asymmetries

isolate BH-DVCS interference term:

- imaginary part \propto beam helicity asymmetry:
 - $\begin{array}{ccc} d\sigma_{\stackrel{\leftarrow}{e^+}} d\sigma_{\stackrel{\rightarrow}{e^+}} & \propto & \operatorname{Im}\left(\mathcal{T}_{BH}\mathcal{T}_{DVCS}\right) \\ & \propto & \sin\phi \end{array}$
- \Rightarrow asymmetry measured by HERMES and JLAB
 - real part \propto beam charge asymmetry: $d\sigma_{e^+} - d\sigma_{e^-} \propto \operatorname{Re} \left(\mathcal{T}_{BH} \mathcal{T}_{DVCS} \right)$ $\propto \cos \phi$

\Rightarrow asymmetry measured by HERMES

 ϕ : azimuthal angle between lepton scattering plane and the $\gamma^*\gamma$ - plane

DVCS beam charge asymmetry (**BCA**)

0.4

 $A_{C}(\phi) = \frac{N_{e^{+}}(\phi) - N_{e^{-}}(\phi)}{N_{e^{+}}(\phi) + N_{e^{-}}(\phi)}$

exclusive region: -1.5 < M $_{\rm x}$ < 1.7 GeV

$$A_C^{\cos\phi} = \frac{1}{N^{e+}} \sum_{i=1}^{N^{e+}} \cos(\phi_i) - \frac{1}{N^{e-}} \sum_{i=1}^{N^{e-}} \cos(\phi_i)$$

DVCS single beam-spin asymmetry (SSA)

HERMES

96/97: [PRL87 (2001), 182001] $A_{LU}^{\sin \phi}(\phi) = -0.18 \pm 0.03 \pm 0.03$

DESY Theory Workshop 2002 - QCI

-

DVCS on Nuclear Targets

Is there an EMC like effect for quarks?

The 3rd Twist-2 Structure function

 $f_1^{q} = \bullet$

Unpolarized quarks and nucleons

vector charge: $< PS |\bar{\psi}\gamma^{\mu}\psi|PS > =$ $\int_{0}^{1} dxq(x) - \bar{q}(x)$

q(x): spin averaged

Longitudinally polarized quarks and nucleons

axial charge: $< PS | \bar{\psi} \gamma^{\mu} \gamma_5 \psi | PS > =$ $\int_0^1 dx \Delta q(x) + \Delta \bar{q}(x)$

 $\Delta q(x)$: helicity difference

Transversely polarize quarks and nucleons

 $h_1^{\mathbf{q}} =$

tensor charge : $< PS | \bar{\psi} \sigma^{\mu\nu} \gamma_5 \psi | PS > =$ $\int_0^1 dx \delta q(x) - \delta \bar{q}(x)$

δq(x): helicity flip

Characteristics of Transversity

- Non-relativistic quarks: $\Delta q(x) = \delta q(x)$ $\Rightarrow \delta q$ probes relativistic nature of quarks
- Angular momentum conservation
 - ⇒ Transversity has no gluon component
 - \Rightarrow different Q^2 evolution than $\Delta q(x)$
- q and \bar{q} contribute with opposite sign to $\delta q(x)$
 - \Rightarrow predominantly sensitive to valence quark polarization

Bounds:

- $\Rightarrow |\delta q(x)| \le q(x)$
- \Rightarrow Soffer bound: $|\delta q(x)| \leq \frac{1}{2}[q(x) + \Delta q(x)]$

Transversity distribution CHIRAL ODD

 \Rightarrow No Access In Inclusive DIS

How can one measure Transversity?

Need another chiral-odd object!

 $\delta q(x)$ accessible in semi-inclusive DIS

Study SSA with a transversely polarized target at HERMES and COMPASS

2. $ep^{\uparrow} \longrightarrow e' \Lambda^{\uparrow} X$ Baldracchini,82, Jaffe,96 **3.** $ep^{\uparrow} \longrightarrow e' \pi \pi X$ Jaffe et al,97

1. $ep^{\uparrow} \longrightarrow e' \pi X \quad \Leftarrow$ Favorite Process

Collins,93, Kotzinian,95, Mulders et al,96

Single Spin Asymmetries

$$ep^{\uparrow} \longrightarrow e' \pi X$$

 S_{T} S_{L} P_{L} P_{L} ϕ ϕ k q

study azimuthal distribution of π 's:

 $A^{\sin\Phi} \propto \frac{\sum_{i=1}^{N^+} \sin\Phi_i - \sum_{i=1}^{N^-} \sin\Phi_i}{\frac{1}{2}(N^+ + N^-)}$

Transversely polarized target:

 $A_T^{\sin\Phi} \propto rac{\sum_q e_q^2 \delta q(x) H_1^{\perp,q}(z)}{\sum_q e_q^2 q(x) D_1^q(z)}$

 $\Phi = \phi + \phi_s^l \text{ Collins angle} \\ \phi_s^l \dots \text{ angle between target spin} \\ \text{vector and scattering plane}$

 $H_1^{\perp}(z)$ Collins fragmentation function

First glimpse on Transversity ?!

HERMES longitudinal polarized hydrogen target

$$A_{UL}(\phi) = \frac{1}{\langle P \rangle} \cdot \frac{N^+(\phi) - N^-(\phi)}{N^+(\phi) + N^-(\phi)}$$

S_T transverse component of target spin w.r.t. virtual photon:

$$S_T \propto \sin \Theta_{\gamma} \simeq \frac{2Mx}{Q} \sqrt{1-y} \sim 0.15$$

 π^0 : hep-ex/0104005, π^{\pm} : hep-ex/9910062

She transverse polarized hydrogen target

Attempt of Interpretation

- observe non-vanishing $\langle \sin \phi \rangle$ -moments
- $\langle \sin 2\phi \rangle$ -moment small (consistent with zero)

Attribute asymmetry to Collins fragmentation and Transversity:

 $\langle \sin \phi \rangle_{UL} \sim \frac{1}{Q} \sum_{q} e_{q}^{2} (h_{L}^{q}(x) H_{1}^{\perp(1),q}(z) - \frac{1}{z} h_{1L}^{\perp(1),q}(x) \tilde{H}(z))$ $\langle \sin \phi \rangle_{UT} \sim \sum_{q} e_{q}^{2} x h_{1}^{q}(x) H_{1}^{\perp(1),q}(z) \quad \text{but } S_{T} \sim \frac{1}{Q} \text{ like twist-3}$ $\langle \sin 2\phi \rangle_{UL} \sim \sum_{q} e_{q}^{2} x h_{1L}^{\perp(1),q}(x) H_{1}^{\perp(1),q}(z)$

Deuteron Results

h₁ from χQSM (Efremov et al. Eur.Phys.J. C24 (2002) 407)
assume reduced twist-3 — h̃_L = 0
H₁[⊥] : Collins function parametrisation to fit HERMES proton data optimistic" result from DELPHI e⁺e⁻ → 2jets: (H₁^{⊥(1)})/(⟨D₁)) = (12.5 ± 1.4)%

Challenges in Interpretation

Attribute asymmetry to Sivers effect:

Final state interactions (Brodsky et al.)

Sivers function (Sivers, Mulders et al) $\langle \sin \phi \rangle_{\rm UL} \sim f_{\rm 1T}^{\perp(1)} D_1$

longitudinally polarized target \Rightarrow Sivers and Collins effect indistinguishable

COMPASS and **HERMES**: Transversely polarized target

- $\langle \sin \phi \rangle_{UT}$ becomes dominant
- Sivers and Collins distinguishable

 $\langle \sin(\phi_{\mathbf{h}}^{\mathbf{l}} - \phi_{\mathbf{s}}^{\mathbf{l}}) \rangle$ moment $\langle \sin(\phi_{\mathbf{h}}^{\mathbf{l}} + \phi_{\mathbf{s}}^{\mathbf{l}}) \rangle$ moment

Summary

• g1(x)/(g2(x)) mature good agreement with NLO-fits to inclusive data give more information $\longrightarrow \Delta s(\bar{s})$ and $\Delta \bar{u} - \Delta \bar{d}$ • ΔG • wait till 2010 • $L_q + L_g$ exclusive reactions exclusively established results coming soon

