Probing Dense QCD Matter in A+A Part 1. Bulk QCD Thermodynamics: P(T,m) and collective flow 2. Strong field QCD: saturation $a_s(Q_s) \times G_{\Delta}(X,Q_s) \sim (Q_s R_{\Delta})^2$ **Part II** 3. pQCD Multiple Scattering: Jet quenching and broadening 4. New phenomena: **Baryon dynamics, CP domains**

Bulk QCD Equation of State

High Temperature QCD Perturbation Theory

Lattice QCD

F.Karsch et al, PLB 478 (00) 477 16³X4 improved gauge and staggered q M_{u.d}~T/4 ,M_s~T

pQCD Jets are Independent Only in Dilute Limit

$$\mathbf{A}_{\perp}(\mathbf{glue}) = \frac{\mathbf{dN}_{\mathbf{glue}}}{\mathbf{dy}} \frac{\mathbf{c} \, \alpha_{\mathbf{s}}(\mathbf{Q})}{\mathbf{Q}^2} < \pi \mathbf{R}^2$$

Packing Fraction

 $\kappa = A_{\perp}(glue)/\pi R^2$

 $\kappa_{\rm crit}(\mathbf{X}, \mathbf{Q}^2) = \mathbf{1}$

Practical Problem at RHIC:

$$0.01 < x < 0.1$$
 , $Q_s^2 \sim 2 \, GeV^2$

McLerran-Venugopalan
Color Glass
$$h(1/x)$$
 $\kappa = 1$
 0.01 $\kappa = 1$
 $k < 1$
 2 GeV^2 $\kappa < 1$
 2 GeV^2 Q^2
HIJING, Pythia

Au¹⁹⁷+ Au¹⁹⁷--> ~5000 π^{\pm} E_{cm}~200 AGeV

Initial <u>spatial</u> anisotropy

Final momentum anisotropy

M.Gyulassy,

Ulrich Heinz

Hydrodynamics:
$$\P_m \{ (e + p)u^m u^n - g^m p \} = 0$$

P. Huovinen, P Kolb, D. Teany, ...

Elliptic flow at RHIC

Collective longitudinal and transverse velocity field u(x)

strong elliptic flow v_2 , $v_2(p_{\perp} \leq 2 \text{ GeV})$ exhausts hydrodynamic prediction

STAR Coll., PRL 86 (2001) 402; 87 (2001) 182301; PHENIX Coll., nucl-ex/020400512 and QM 2001

Elliptic flow of colored glass in high energy heavy ion collisions

Alex Krasnitz,¹ Yasushi Nara,² and Raju Venugopalan^{3,2}

describe collective elliptic flow

 L_{s0} ~2 GeV, R~7fm RHIC

Extremely opaque QCD matter is required to explain saturation and magnitude v2 above 2 GeV

Summary Part 1:

- 1. Elliptic collective flow is strongest evidence that
 - Local equilibrium may have been achieved
 - Hadron flavor dependence favors P(T,m=0) ~ P_{QCD}
- 2. Saturation for $p_T > 2$ GeV at $v_2 \sim 0.15$ requires
 - very short mean free paths MPC
 - or strong radiative energy loss GLVW
- 3. Unsolved problem: HBT pion interferometry
 - decoupling space-time geometry disagrees with predictions of both hydro and transport

Part II: The Jet Quenching Pattern at RHIC

M.Gyu

Non-abelian Radiative Energy Loss

– x) E

хE

k.c

[⊗]**đ**₅,a₅

QCD Bethe-Heitler

QGP Multiple Collision

$$\Delta \mathbf{E} = \alpha \sqrt{\omega_{c} \mathbf{E}} : \mathbf{10 GeV} \left(\frac{\mathsf{L}}{5 \, \mathsf{fm}}\right)$$
$$\mathbf{E} < \omega_{c} = \left\langle \frac{\mathsf{q}^{2}}{\lambda} \right\rangle \frac{\mathsf{L}^{2}}{2} \approx \mathbf{60 GeV}$$

"Thin" Plasma Limit

 L/λ_g Opacity Expansion

 $M_{5,1,10}$

[⊗]**द**]₃,a₃

[⊗]**₫**₄,a₄

- G. Bertsch, F. Gunion, Phys. Rev. **D25** 746 (1982)
- M. Gyulassy, X.-N. Wang, Nucl. Phys. **B420** 583-614 (1994); Phys. Rev. **D51** 3436-3446 (1995)
- R. Baier, Yu. Dokshitzer, A. Mueller, S. Peigne, D. Schiff, Nucl. Phys. **B483** 291-320 (1997); Phys. Rev. **C58** 1706-1713 (1998)
- B. Zakharov, JETP Lett. **65** 615-620 1997, JETP Lett. **73** 49-52 (2001)
- M. Gyulassy, P. Levai, **Ivan Vitev NPB 595** 371-419 (2001); Phys. Rev. Lett. **85** 5535-5538 (2000)
- U. Wiedemann, Nucl. Phys. **B588** 303-344 (2000), Nucl. Phys. **B582** 409-450 (2000)

1+1D expansion

$$\Delta \mathsf{E^{(1)}}: \, \mathsf{C_{2}}\alpha_{s}^{3} \frac{9\pi}{4} \left(\frac{1}{\pi \mathsf{R}^{2}} \frac{\mathsf{dN}_{g}}{\mathsf{dy}} \right) \left\{ \mathsf{Log} \frac{\mathsf{p}_{\mathsf{T}}}{\mu^{2}\mathsf{R}} \right\} \mathsf{R(\phi)}$$

Gluon Double Differential Distributions to All Orders in Opacity

1. Add up all Direct and Virtual FSI at order
$$\left(\frac{L}{\lambda_g}\right)^n$$

2. Use GLV Reaction Operator Formalism to solve recursion relations algebraically
 $x \frac{dN^{(n)}}{dx dk^2} = \frac{C_R \alpha_s}{\pi} \frac{1}{n!} \left(\frac{L}{\lambda_g}\right)^n \prod_{i=1}^n \int d\mathbf{q}_i \left\{\frac{\mu_i^2}{\pi} (\mathbf{q}_i^2 + \mu_i^2)^{-2} - \delta^2(\mathbf{q}_i)\right\}$
 $\begin{bmatrix} -2 \mathbf{C}_{(1,\dots,n)} \cdot \sum_{j=1}^n \mathbf{B}_{(j+1,\dots,n)(j,\dots,n)} \\ \Delta \mathbf{z}_k = \mathbf{z}_k - \mathbf{z}_{k-1} \sim \frac{\mathbf{L}}{n+1} \end{bmatrix}$
LPM effect $\left(\cos\left(\sum_{k=2}^j \omega_{(k,\dots,n)} \Delta z_k\right) - \cos\left(\sum_{k=1}^j \omega_{(k,\dots,n)} \Delta z_k\right)\right) \end{bmatrix}$

where

$$\omega_{(j,\dots,n)} = \frac{(\mathbf{k} - \mathbf{q_j} - \dots - \mathbf{q_n})^2}{2xE}$$
 Inverse Formation Times

< n

$$\mathbf{C}_{(j,\cdots,n)} = \frac{\mathbf{k} - \mathbf{q}_{\mathbf{j}} - \cdots - \mathbf{q}_{\mathbf{n}}}{(\mathbf{k} - \mathbf{q}_{\mathbf{j}} - \cdots - \mathbf{q}_{\mathbf{n}})^2}$$

Scatt amplitudes

$$\mathbf{B}_{(j+1,\cdots,n)(j,\cdots,n)} = \mathbf{C}_{(j+1,\cdots,n)} - \mathbf{C}_{(j,\cdots,n)}$$

Rapid Convergence of

Alternating Opacity Series

GLV:

< N⁰, >

Gluon jets

 $< N_{1+2}^{q} >$

< N⁰1+2+3 >

Quenched Single Hadron Spectrum

$$\frac{1}{G} \left\{ \frac{d\sigma^{dA}}{dyd^2 \mathbf{p}_T} \atop \frac{dN^{AA}(b)}{dyd^2 \mathbf{p}_T} \right\} = K \sum_{abcd} \int dx_a dx_b \int d^2 \mathbf{k}_a d^2 \mathbf{k}_b \, g(\mathbf{k}_a) g(\mathbf{k}_b) \\ \times S_A(x_a, Q_a^2) S_B(x_b, Q_b^2) \\ \times f_{a/A}(x_a, Q_a^2) f_{b/B}(x_b, Q_b^2) \, \frac{d\sigma}{d\hat{t}}^{ab \to cd} \\ \times \int_0^1 d\epsilon \, P(\epsilon) \frac{z_c^*}{z_c} \frac{D_{h/c}(z_c^*, Q_c^2)}{\pi z_c} \,. \tag{2}$$

In Eq.(2) x_a, x_b are the initial momentum fractions carried by the hard-scattered partons with probabilities sampled from the parton distribution functions (PDFs) $f_{\alpha/A}(x_{\alpha}, Q_{\alpha}^2)$. The momentum fraction carried away by the leading hadron $z_c = p_h/p_c$ is sampled from the fragmentation functions (FFs) $D_{h/c}(z_c, Q_c^2)$. We use

$$z = p_h/p_c \rightarrow z^* = z/(1-\epsilon).$$

to include medium induced energy loss

geometry
$$G = \begin{cases} 2A & \text{for } d\sigma^h \text{ in } d+A \\ T_{AA}(b) & \text{for } dN^h \text{ in } A+A \end{cases}$$

M.Gyulassy, DESY 9/27/02

Intrinsic kT + Nuclear Cronin $\left|\left\langle k_{A}^{2}\right\rangle_{pA}\right| = \left\langle k_{A}^{2}\right\rangle_{pA} + L \frac{\mathbf{n}}{\mathbf{l}}\log(1 + \mathbf{l})$ EKS98 shadow/EMC S_A GRV98 pdf **BKK** ff P(e) from GLV GVW: PRL86(01)2537 **10**⁴ HIJING, no shadow., no quench. 10³ Soft+GLV guench., dN⁹/dy=200 $\begin{bmatrix} 10^{2} & 10^{2} \\ 10^{2} & 10^{2} \\ 10^{2} & 10^{2} \\ 10^{-1} & 10^{-1} \\ 10^{-2} & 10^{-3} \\ 10^{-3} & 10^{-4} \\ 10^{-4}$ Soft+GLV quench., dN⁹/dy=500 Soft+GLV guench., dN^g/dy=1000 Hard Soft∼e^{-4p}⊺ $(K=2, Q^2=p_{-}^2/2)$ Central Au+Au 130 AGeV **10**⁻⁵ 2 3 5 0 1 4 6 p_T [GeV]

Tuning K to Nucleon-Nucleon

Single Hadron Tomography from SPS, RHIC, LHC

I. Vitev, MG, hep-ph/0209161

- 1. Dominance of Cronin at 20 AGeV
- 2. Cronin+Quench+Shadow conspire to give flat suppression out to highest pT at RHIC with R~N_{part}/N_{bin}
- 3. Predicts below N_{part} quench, positive pT slope of R at LHC and $R_{LHC}(40) \sim R_{RHIC}(40)$

Correlated Two particle or Di-Jet Tomography

e⁺e⁻ ->**gg**Tomography

Summary

- Global dN/dy(s,N_{part}) consistent with gluon showers 200<dN_g/dy<1000 at RHIC
- 2. Strong Final State Collectivity v₂(p_T) Observed

is strongest constraint yet on QCD equation of state

- Factor ~3 Suppression of p_T>2GeV pions Tomography via Jet Quench --> dN_q/dy~500-1000)
- 1. First RHIC dijet systematics reported at QM02 will provide a new 10 dim probe of AA dynamics soon

Puzzles

- 1. Gluon shadowing? Cronin? (need d+A 2003)
- 2. Is there Q_{sat}~1 GeV gluon saturation at RHIC?
- 3. Pion Interferometry puzzling R_{out}<R_{side}?