

RADION STABILIZATION

M. QUIROS DESY 2003

Outline

- SCHERK-SCHWARZ SUPERSYMMETRY BREAKING
- FIXING THE SCHERK-SCHWARZ ORDER PARAMETER

RADION STABILIZATION

- Massless bulk fields
- Massive (quasi-localized) fields
- CONCLUSION

Based on works done in collaboration with:

G. Gersdorff, L. Pilo, D. Rayner, A. Riotto

SCHERK-SCHWARZ SUPERSYMMETRY

BREAKING

• Scherk-Schwarz (SS) supersymmetry breaking of a five-dimensional (5D) theory compactified on S^1/\mathbb{Z}_2 can be interpreted as spontaneous breaking of 5D local supersymmetry ^a by the Hosotani mechanism

• To interpret SS supersymmetry breaking as a Hosotani mechanism one has to go to the off-shell version of 5D N=1 SUGRA where $SU(2)_R$ is gauged by auxiliary fields \vec{V}_M

• Off-shell 5D SUGRA has recently been formulated ^b. Two multiplets are necessary: the minimal supergravity multiplet $(40_B + 40_F)$ and the tensor multiplet $(8_B + 8_F)$. Their parities are given in tables 1 and 2, respectively

^aG. Gersdorff and M. Quiros, hep-th/0110132

^bM. Zucker, hep-th/9907082, hep-th/9909144, hep-th/0009083; T. Kugo and K. Ohashi, hep-ph/0006231, hep-ph/0010288, hepth/0203276; +T. Fujita, hep-th/0106051

Table 1: Minimal supergravity multiplet			
Field		$\mathbb{Z}_2 = +1$	$\mathbb{Z}_2 = -1$
e^A_M	graviton	e^a_μ , e^5_5	e^5_μ , e^a_5
ψ_M	gravitino	$\psi^1_{\mu L}$, ψ^2_{5L}	$\psi^2_{\mu L}$, ψ^1_{5L}
B_M	graviphoton	B_5	B_{μ}
$ec{V}_M$	$SU(2)_R$ -gauge	V^3_μ , $V^{1,2}_5$	V_5^3 , $V_\mu^{1,2}$
v^{MN}	antisymmetric	$v^{\mu 5}$	$v^{\mu u}$
\vec{t}	$SU(2)_R$ -triplet	$t^{1,2}$	t^3
C	real scalar	C	
ζ	$SU(2)_R$ -doublet	ζ^1_L	ζ_L^2

Table 2: Tensor multiplet				
Fi	eld	$\mathbb{Z}_2 = +1$	$\mathbb{Z}_2 = -1$	
	$ec{Y}$	$Y^{1,2}$	Y^3	
B_{N}	INP	$B_{\mu u ho}$	$B_{\mu u5}$	
	N	N		
	ρ	$ ho_L^1$	$ ho_L^2$	

• Fields in the upper panel of table 1 are physical fields while those in the lower panel are auxiliary fields. Fields in table 2 are all of them auxiliary fields

• The auxiliary fields that are relevant for supersymmetry breaking are: $V_5^{1,2}$, that constitute the *F*-term of the radion superfield ^a,

$$\mathbb{T} = \left[T \equiv e_5^5 + iB_5, \psi_{5L}^2, V_5^1 + iV_5^2 \right]$$

^aZ. Chacko and M.A. Luty, hep-ph/ 0008103; D. Marti and A. Pomarol, hep-th/0106256; D.E. Kaplan and N. Weiner, hep-ph/0108001

• In the background of V_5^2 the Goldstino is identified with the fifth component of the gravitino: ψ_5 . This is obvious from the local supersymmetry transformation,

$$\delta_{\xi}\psi_5 = \mathcal{D}_5\xi + \cdots = i\sigma^2 V_5^2\xi + \cdots$$

• The 5D kinetic term for the gravitino can be decomposed in four-dimensional and extra-dimensional components

• The redefinition

$$\psi_\mu = \psi'_\mu + \mathcal{D}_\mu (\mathcal{D}_5)^{-1} \psi_5$$

can be seen as a local supersymmetry transformation with parameter $(\mathcal{D}_5)^{-1}\psi_5 \equiv \xi$, gauging ψ_5 away and giving a mass to the gravitino

• This defines a "super-unitary" gauge where ψ_5 has been "eaten" by the four dimensional gravitino ψ_μ

• Using the coupling of V_5^2 to the gravitino field through the covariant derivative \mathcal{D}_5 in \mathcal{L}_{grav} one obtains the gravitino mass eigenvalues for the Kaluza-Klein modes

 $m_{3/2}^{(0)} \propto \langle V_5^2 \rangle$

• If we define the 5D background metric as

$$ds^{2} = G_{MN} dx^{M} dx^{N} =$$

$$\phi^{-1/3} g_{\mu\nu} dx^{\mu} dx^{\nu} + \phi^{2/3} (dy)^{2}$$

the radion field is

$$T + \bar{T} = \phi^{1/3}$$

and the physical size of the fifth dimension is

$$R = L\phi^{1/3}$$

where L is an unphysical (arbitrary) length scale

• The gravitino zero mode acquires a mass given by

$$m_{3/2} = \frac{V_5^2}{\phi^{1/2}}$$

• In the <u>absence</u> of an external source of supersymmetry breaking $\langle V_5^2 \rangle$ is <u>undetermined</u> at tree level but can be determined in the 5D theory at <u>one-loop</u> (Hosotani breaking). In that case the field equations of V_5^2 will provide a functional relation of the form $V_5^2 = V_5^2(\phi)$

• In the presence of an external source of supersymmetry breaking $\langle V_5^2 \rangle$ will be determined in the 5D theory at tree-level

In both cases we will use the Casimir energy to fix the VEV $\langle \phi \rangle$

FIXING THE SS ORDER PARAMETER

• The relevant terms in \mathcal{L}_{grav} involving V_M^2 and B_{MNP} are

$$V_M^2 J^M - \frac{1}{12} \epsilon^{MNPQR} \partial_M V_N^2 B_{PQR} + W_A W^A$$

with

$$W^M = \frac{1}{12} \epsilon^{MNPQR} \partial_N B_{PQR} - J^M$$

• The field equations for the auxiliary fields yield

$$W_M = 0, \qquad dV^2 = 0$$

which means that the form V^2 is closed, not necessarily exact. A simple solution is

$$V_{\mu}^2 = 0, \quad V_5^2 = \omega/L$$

• The resulting on-shell Lagrangian is

$$V_5^2 J^5$$

corresponds to the previously shown gravitino mass

 \bullet The closed form V^2 has a physical effect parametrized by the Wilson line

$$\oint dx^M V_M^2 = 2\pi\omega$$

where ω is an arbitrary (undetermined at tree-level) constant field configuration. It should be determined from the (one-loop) Casimir energy and should be provided by

$$\omega = \omega(\phi)$$

• The function $\omega(\phi)$ will be determined along with $\langle \phi \rangle$ from the Casimir energy

Non-renormalization theorems are of course respected since:

- $V_0(\omega) \equiv 0$
- $V_1(\omega=0)=0$

• If there are independent

sources of supersymmetry breaking

attached on the branes at $y=0,\pi L$ the VEV $\langle V_5^2
angle$ can be fixed at tree-level.

One can introduce the brane Lagrangian ^a

$$W^{5}[2\pi\omega_{0}\delta(y) + 2\pi\omega_{\pi}\delta(y - \pi L)]$$

and consider W_M as independent variables by means of a Lagrange multiplier: $\partial_M X(W^M + J^M)$

• The field equations lead to

$$V_5^2 = \partial_5 X + [2\pi\omega_0\delta(y) + 2\pi\omega_\pi\delta(y - \pi L)]$$

• The Wilson flux amounts to fixing ω

$$\omega = \omega_0 + \omega_\pi$$

^aJ.A. Bagger, F. Feruglio and F. Zwirner, hep-th/0108010; R. Rattazzi,

C. Scrucca and A. Strumia, hep-th/0305184

RADION STABILIZATION^a

^aG.v. Gersdorff, A. Riotto and M. Quiros, in preparation

• We will consider the Casimir energy $V_1 \oplus$ possible counterterms V_{ct} corresponding to a bulk cosmological constant and (common) brane tensions

$$\alpha \int d^5x \sqrt{G} + \frac{\beta}{2} \int d^5x \sqrt{\tilde{G}} [\delta(y) + \delta(y - \pi L)]$$

MASSLESS BULK FIELDS

• Consider N_V vector multiplets and N_h hypermultiplets ^a in the bulk. The Casimir energy is

$$V_1 \propto (2 + N_V - N_h) \frac{1}{\phi^2}$$

• For $2 + N_V - N_h > 0$ it gives rise to a <u>repulsive</u> force. It can be stabilized by counterterms $\alpha > 0, \beta < 0$ (dS) that are not consistent with 5D supersymmetry

• For $2 + N_V - N_h < 0$ it gives rise to an <u>attractive</u> force. It can not be stabilized

^aG.v. Gersdorff, A. Riotto and M. Quiros, hep-th/0204041

MASSIVE (QUASI-LOCALIZED) FIELDS

• In the presence of N_H hypermultiplets with a common odd-mass M the Casimir energy can be cast as ^a

$$V_1 \propto rac{1}{x^6} f(\omega,x)$$

where

$$f = 3 \left[Li_5(e^{2i\pi\omega}) - \zeta(5) + h.c. \right] + 4 \,\delta F(x)$$

with

$$\delta = \frac{N_H}{2 + N_V - N_h}, \quad F \simeq e^{-2x} (3 + 6x + 6x^2 + 4x^3)$$

and the variable x encodes the radion dependence

$$x = M L \pi \phi^{1/3}$$

• We are assuming $2 + N_V - N_h > 0$ and the approximation where x > 1

^aG.v. Gersdorff, L. Pilo, M. Quiros, D. Rayner, A. Riotto, hepph/0305218 • In the absence of supersymmetry breaking brane effects extremizing V_1 gives the field equation

$$\omega = \begin{cases} 1/2, \ x \ge x_1, & 9\,\zeta(3) = 4\delta F(x_1) \\ w(x), \ x_0 < x < x_1 \\ 0, \ x \le x_0, & 3\,\zeta(3) = \delta F(x_0) \end{cases}$$

where the function $\omega(x)$ is given (for $\delta = 3$) by

• In the presence of supersymmetry breaking brane effects $\omega = \omega_0$ is fixed and the Casimir energy should be minimized only with respect to the radion field

- In the absence of supersymmetry breaking brane effects the Casimir energy has a non-trivial minimum at $x > x_1$
- For instance, for $\delta=3$

• Including counterterms consistent with <u>5D supersymmetry</u>, $\alpha < 0$ and $\beta > 0$ (AdS) shifts the minimum towards larger values of x

$$\Downarrow$$
 $\omega(\langle x
angle) = 1/2$

• In the presence of supersymmetry breaking brane effects the Casimir energy has a non-trivial minimum at $x(\omega_0)$ for the fixed value of ω_0

• For instance, for $\omega_0=1/2,1/4$

• Including counterterms consistent with 5D supersymmetry, $\alpha < 0$ and $\beta > 0$ (AdS) shifts the minimum towards larger values of x In the presence of counterterms the effective potential becomes proportional to

$$V_{eff} = V_1 + (ax + b)/x^2$$

where the dimensionless parameters a and b are related to the 5D cosmological term and branes tension by

$$a = \frac{128\pi^2}{2 + N_V - N_h} \frac{\alpha}{M^5}, \quad b = \frac{64\pi^2}{2 + N_V - N_h} \frac{\beta}{M^4}$$

- The counterterm b is fine-tuned to make a zero 4D cosmological constant $\langle V_{eff}
 angle = 0$
- The condition for 5D supersymmetry ^a translates into

$$\frac{1}{8\pi} \frac{M}{M_5} \le \left[\frac{-3a}{2 \left(2 + N_V - N_h \right) \pi b^2} \right]^{1/3}$$

^aJ. Bagger and D. Belyaev, hep-th/0206024

• The effective potential for $\omega=1/2$, a=0.001, 0.01 and for $\omega=1/4, a=0.01$

CONCLUSIONS

- Scherk-Schwarz supersymmetry breaking is a spontaneous breaking of local supersymmetry when the auxiliary field $\langle V_5^2 \rangle \neq 0$ and ψ_5 is the <u>Goldstino</u>
- $\langle V_5^2 \rangle$ should be fixed by the 5D theory. If there is a brane source for supersymmetry breaking, $\langle V_5^2 \rangle$ is fixed at tree-level
- Otherwise matching of 5D and 4D theories is done at one-loop
- If only (massless) <u>bulk fields</u> are present, the Casimir energy <u>can not stabilize</u> the radion consistently with 5D supergravity

 In the presence of massive (quasi-localized) bulk fields the Casimir energy stabilizes the radion VEV consistently with 5D supergravity

• The scale problem

$$M_{Pl}^2 = M_5^3 R$$

with $R \sim 1/\text{TeV}$ requires a <u>cutoff</u> much below M_5 . This can appear for instance in "little string theory" at the TeV

$$M_5^3 \simeq \frac{M_s^3}{g_s^2}$$

with M_s (the string scale) in the <u>multi-TeV</u> range and the string coupling $g_s \ll 1$. In a class of string theories ^a the gauge coupling has a geometrical origin and it is thus unrelated to the string coupling

- The bulk cosmological constant is then negligible in M_5 units (but consistent with 5D supergravity) and prevent the <u>tunneling</u> from the <u>Minkowski</u> vacuum to the <u>AdS</u> vacuum
- In that case also the <u>backreaction</u> on the metric is negligible

^aI. Antoniadis, S. Dimopoulos and A. Giveon, hep-th/010333