Supersymmetry breaking

Fabio Zwirner

University of Rome 'La Sapienza' and INFN, Sezione di Roma

> pedagogical introduction effective theory approach

apologies to the experts references only at the end

models and stringy viewpoint in plenary and parallel talks

DESY 23 September 2003

Why supersymmetry?

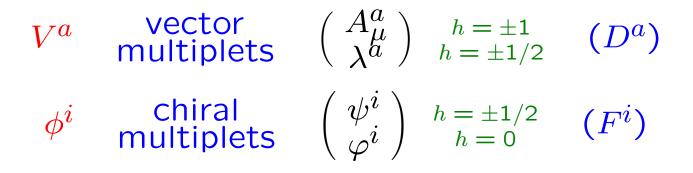
- a possibility within LRQFT
- fits with superstrings/M-theory
- hierarchy problem: $\frac{M_{weak}}{M_P} \sim 10^{-15}$
- vacuum energy: $\frac{\Lambda_{cosm}}{M_P} \sim 10^{-30}$
- unification of coupling constants
- nice fit to EW precision tests

but:

- no SUSY particle found (yet)
- no light Higgs found (yet)
- flavour problems: *B*, *L*, FCNC, CP
- hierarchy only partially solved
- no insight on vacuum energy

SUSY BREAKING crucial open problem to clarify the puzzle (theoretically/experimentally)

N = 1, 4D global SUSY



The MSSM

gauge group $SU(3) \times SU(2) \times U(1)$ gauginos $(\tilde{g}, \tilde{W}, \tilde{B})$

3 families, 2 Higgs doublets

squarks (\widetilde{q}) , sleptons (\widetilde{l}) , higgsinos $(\widetilde{H}_{1,2})$

R-parity conserving superpotential $w = Qh^{U}U^{c}H_{2} + Qh^{D}D^{c}H_{1}$ $+Lh^{E}E^{c}H_{1} + \mu H_{1}H_{2}$

Explicit soft SUSY breaking

 $-\mathcal{L}_{soft} = \varphi^{\dagger} m^{2} \varphi + \left(\frac{1}{2} M_{A} \lambda_{A} \lambda_{A} + m_{3}^{2} H_{1} H_{2} + \tilde{q} A^{U} \widetilde{u^{c}} H_{2} + \tilde{q} A^{D} \widetilde{d^{c}} H_{1} + \tilde{l} A^{E} \widetilde{e^{c}} H_{1} + h.c.\right)$

MSSM vs. Standard Model

ameliorates hierarchy ($M_{weak} \sim \Delta m_{SUSY}$) but: why $\frac{\Delta m_{SUSY}}{M_P} \sim 10^{-15}$ and $\mu \sim \Delta m_{SUSY}$?

irrelevant improvement on vacuum energy typically $\Lambda_{cosm} \sim \sqrt{\Delta m_{SUSY} M_P}$ (< M_P)

B, L problem solved by R-parity but
 new severe flavour problem (FCNC,CP)
 need universality or equivalent conditions

move to spontaneous SUSY

Plan of the lecture:

- 1. N = 1 4D global
- 2. N = 1 4D local
- 3. extra dimensions

1. Global N = 1 4D SUSY

 $Q_{\alpha}|0\rangle \neq 0 \quad \Leftrightarrow \quad \langle \delta_{\eta}\chi \rangle \neq 0 \quad (\chi = \psi^{i}, \lambda^{a})$ $\delta_{\eta}\psi^{i} = \dots + \sqrt{2}\eta F^{i} \quad \delta_{\eta}\lambda^{a} = \dots + \eta D^{a}$ $SUSY \quad \Leftrightarrow \quad \langle F^{i} \rangle \neq 0 \text{ and/or } \langle D^{a} \rangle \neq 0$

(2-derivative) effective Lagrangian $\mathcal{L} = \left[W(\phi) + \frac{1}{4} f_{ab}(\phi) \mathcal{W}^a \mathcal{W}^b \right]_F + h.c. + \left[K(\phi^{\dagger}, e^V \phi) + \xi_a V^a \right]_D$

Renormalizable case:

 $f_{ab}(\phi) = \frac{\delta_{ab}}{g_a^2} \quad K(\phi^{\dagger}, \phi) = \phi^{\dagger}\phi$ $W(\phi) = \text{degree-3 polynomial}$

Generic case:

dim > 4 interactions with scale $\Lambda < M_P$ (gravitation consistently neglected) Auxiliary fields: $F^{i} = -K^{i\overline{j}}\overline{W}_{\overline{j}}$ $+\frac{1}{2}K^{i\overline{j}}K_{\overline{j}lm}\psi^{l}\psi^{m} + \frac{1}{4}K^{i\overline{j}}\overline{f}_{ab\overline{j}}\overline{\lambda}^{a}\overline{\lambda}^{b}$ $D^{a} = -Ref^{ab}[\xi_{b} + K_{i}(T_{b}\varphi)^{i}]$ $-[\frac{i}{2\sqrt{2}}Ref^{ab}f_{bci}\psi^{i}\lambda^{c} + h.c.]$

Scalar potential: $V_{global} = ||F||^2 + ||D||^2 \ge 0$

SUSY-breaking scale: $\Lambda_{SUSY}^4 = \langle ||F||^2 + ||D||^2 \rangle$

Goldstino: $\widetilde{G} \propto \langle F_i \rangle \psi^i + \langle D_a \rangle \lambda^a$

Classical mass formulae:

 $Str\mathcal{M}^{2} = -2\overline{F}^{\overline{J}}(R_{\overline{J}i} + S_{\overline{J}i})F^{i} + Dterms$ $R_{\overline{J}i} = \partial_{\overline{J}}\partial_{i}\log\det(K_{\overline{m}n})$ $S_{\overline{J}i} = \partial_{\overline{J}}\partial_{i}\log\det(Ref_{ab})$

Realistic models ?

no reliable model with MSSM fields only an interesting failure: $W \ni \Lambda_{SUSY}^2 \sqrt{H_1 H_2}$ (requires $\Lambda \sim \Lambda_{SUSY} \sim M_{weak}$)

need at least a 'goldstino' multiplet simplest choice: $T \equiv (z, \chi, F^z)$ gauge singlet chiral multiplet

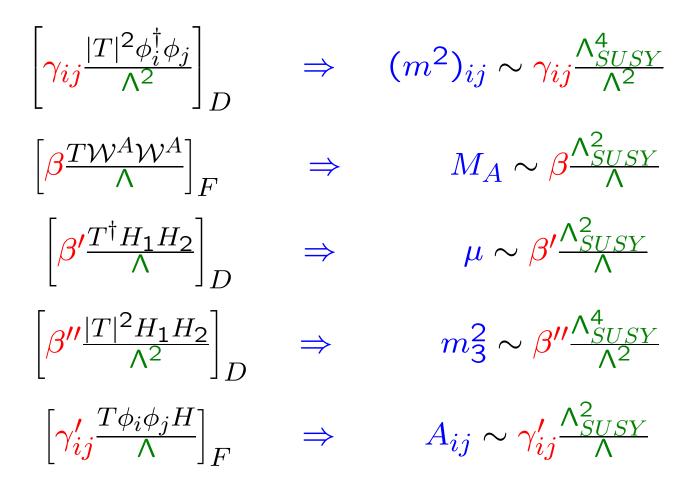
SUSY mass splittings:

$$(\Delta m_{SUSY}^2)_{IJ} \sim \gamma_{IJ} \cdot \frac{\Lambda_{SUSY}^4}{\Lambda^2}$$

 $\gamma_{IJ} = \mathcal{O}(1)$ effective T-I-J coupling

no viable model with $dim \leq 4$ couplings only dim > 4 couplings between goldstino and MSSM multiplets to obtain a realistic spectrum (classical or quantum origin)

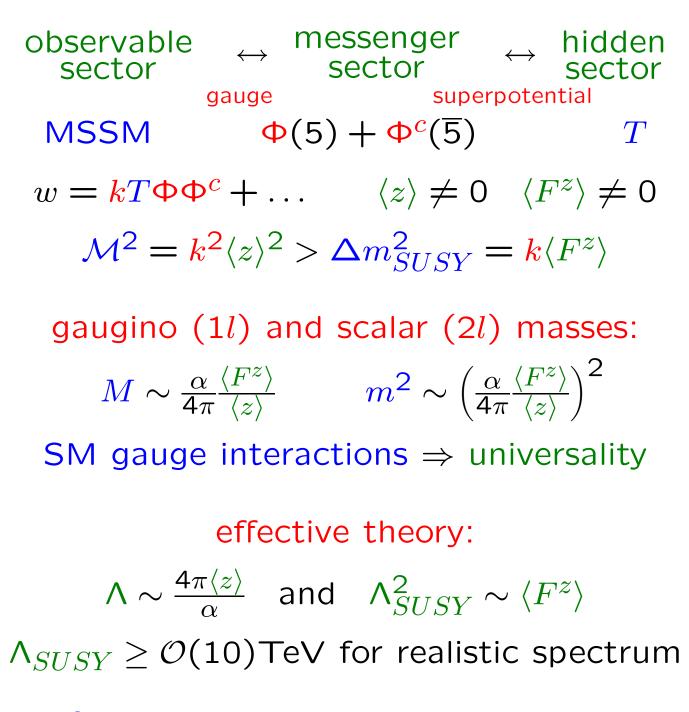
Examples of SUSY masses



how can the special $\gamma_{ij}, \gamma'_{ij}$ needed to avoid the SUSY flavor problem arise?

must know more about the symmetries of the underlying microscopic theory SUSY breaking dynamics not essential transmission mechanism may be enough

Gauge mediation



 μ, m_3^2 not generated by gauge interactions require rather contrived modifications

Dynamical SUSY breaking

global N = 1 4D interesting laboratory for non-perturbative SUSY breaking

controllable models of DSB do exist

simplest example: the 3-2 model

gauge group $G = SU(3) \times SU(2)$ $Q(3,2) \quad \overline{U}(\overline{3},1) \quad \overline{D}(\overline{3},1) \quad L(1,2)$

 $w = w_{cl} + w_{np}$

 $w_{cl} = \lambda Q \overline{U}L$ no TL flat directions non-anomalous $U(1) \times U(1)_R$ symmetry

 $w_{np} = \frac{\Lambda_3^7}{(Q\overline{U})(Q\overline{D})} \qquad (\Lambda_3 \gg \Lambda_2)$

spontaneously broken SUSY!

generic (Λ_3, Λ_2) can also be studied supersymmetry is always broken

... but we should not forget gravity ...

2. Local N = 1 4D SUGRA

consistent + realistic breaking \Rightarrow local supersymmetry \equiv supergravity

The minimal framework:

A crucial difference with global SUSY: $V_{sugra} = ||F||^2 + ||D||^2 - ||H||^2$ matter + gauge - gravitational

$$\begin{split} \wedge_{SUSY}^4 &= \langle ||F||^2 + ||D||^2 \rangle > M_{weak}^4 \\ \wedge_{cosm} &= \langle V_{sugra} \rangle^{1/4} < M_{weak}^2 / M_P \\ \text{dictated by phenomenology} \\ &\downarrow \\ \text{gravitational effects crucial} \\ \text{for vacuum selection} \end{split}$$

The superHiggs effect (flat space) $\psi_{\mu}(\pm 3/2) \oplus \tilde{G}(\pm 1/2)$ massive gravitino

one-to-one correspondence $m_{3/2}^2 \leftrightarrow \Lambda_{SUSY}$

Two flat $(M_P \rightarrow \infty)$ limits:

1. $m_{3/2}$ fixed, $\Lambda_{SUSY} \rightarrow \infty$

explicitly broken SUSY with $\mathcal{O}(m_{3/2})$ soft terms and decoupled goldstino

2. Λ_{SUSY} fixed, $m_{3/2} \rightarrow 0$

spontaneously broken SUSY interacting goldstino multiplet with effective couplings $\lambda_G \sim \Delta m_{SUSY}^2 / \Lambda_{SUSY}^2$

Gravitino mass vs. phenomenology

 $m_{3/2}$ (Λ_{SUSY}) model-dependent parameter even after choosing $\Delta m_{SUSY} \sim M_{weak}$

heavy gravitino phenomenology MSSM + soft terms with cutoff $\Lambda \sim M_P$ \odot MSSM LSP stable (dark matter) \odot fits nicely with grand unification

light gravitino phenomenology $MSSM + goldstino multiplet with \Lambda \ll M_P$ $\odot MSSM LSP \rightarrow particle + (goldstino)$ $very light gravitino (\Lambda \sim M_{weak}):$ \odot unsuppressed (s)goldstino interactions \odot avoid Higgs bound $m_h < 130$ GeV

Basic formalism of 4D SUGRA (neglecting gauge superfields for simplicity) defining (dimensionless) function: $G(\phi^{\dagger},\phi) = \frac{K(\phi^{\dagger},\phi)}{M_{D}^{2}} + \log \left| \frac{w(\phi)}{M_{D}^{3}} \right|^{2}$ natural SUGRA units: $M_P \equiv 1$ classical scalar potential: $V_{suara} = V_F + V_D + V_H$ V_D = similar to global case $V_F + V_H = e^G (G_i G^{i\overline{j}} G_{\overline{i}} - 3)$ 4D Minkowski $\Leftrightarrow \langle V_{suara} \rangle = 0$ auxiliary fields (SUSY breaking): $F_i \propto G_i \propto w_i + wK_i$ $D_a = \text{similar to global case}$ field-dependent gravitino mass:

 $m_{3/2}^2 = e^G = |w|^2 e^K$

coupling to gauge superfields can also be included will be omitted to keep the discussion simple

Generic problems of 4D SUGRA

hierarchy: why $m_{3/2} \ll M_P$? Vacuum energy: why $\langle ||F||^2 + ||D||^2 \rangle \simeq \langle ||H||^2 \rangle$? cannot be addressed in global SUSY simplest example: Polonyi model $K = |T|^2$ $w = m^2(T + \beta)$ fine-tune $\beta = (2 - \sqrt{3})M_P \Rightarrow \Lambda_{cosm} = 0$ set $m^2 \sim M_{weak}M_P \Rightarrow m_{3/2} \sim M_{weak}$

flavour:

effective goldstino couplings to MSSM as in any effective theory approach

\Downarrow

generic N = 1 4D SUGRA unsatisfactory too flexible an effective theory

more insight from symmetries/dynamics? look first at some special supergravities

No-scale supergravities

simplest no-scale model:

 $K = -3\log(T + \overline{T})$

SU(1,1)/U(1) Kähler invariance (T-duality)

 $T \rightarrow \frac{aT - ib}{icT + d}$ (ad - bc = 1)if $w(T) \rightarrow (icT + d)^3 w[(aT - ib)/(ict + d)]$

compatible with vector of N > 1 SUGRA e.g. N = 2 prepotential $F = (X^1)^3/X^0$

 $w = k \neq 0$ (T-independent)

admissible N > 1 (N = 2) gauging $w = m_0 (-im_1T) + 3n^1T^2 (+in^0T^3)$

Notes:

• K, w may depend on $\phi \neq T$, above formulae when ϕ at their (SUSY) VEVs

• w can have non-perturbative origin (gaugino condensation and/or other)

• equivalences by field redefinitions

special properties of the model:

 $V \equiv 0 \quad \text{classical flat potential}$ $F^{z} \neq 0 \quad (\forall z) \qquad \text{broken SUSY}$ $m_{3/2}^{2} = \frac{|k|^{2}}{(z+\overline{z})^{3}} \qquad \text{sliding } \Lambda_{SUSY}$

when coupled to MSSM fields:

• may allow for universal SUSY masses $\Delta K = (T + \overline{T})^{-n} |C|^2 \Rightarrow \widetilde{m}_C^2 = (n - 1) m_{3/2}^2$

• may allow for dynamical hierarchy gauge vs. Yukawa renorm. effects \Rightarrow effective infrared fixed point of $V_{eff}[m_{3/2}(T), H]$ if $V_eff \sim \mathcal{O}(m_{3/2}^4 \log ...)$ [not $\mathcal{O}(m_{3/2}^2 M_P^2)$]

problems at this 4D level:

 \odot unexplained origin of K and w

(chirality \Rightarrow no realistic N > 1 4D model)

• no control over UV quantum corrections

help from extra dimensions?

3. Extra dimensions

present activity on SUSY breaking mostly theories with extra dimensions:

• effective D > 4 supergravities

- $\odot D = 10$ superstrings with branes
- $\cdot D = 11$ supergravity from M-theory

D > 4 SUSY-breaking models later in plenary and parallel talks

for simplicity, discuss here a toy model: minimal 5D supergravity on S^1/Z_2 (as effective non-renormalizable theory)

 O learn some qualitative lessons: Scherk-Schwarz mechanism and its 'non-local' character, effective theory ambiguities, equivalence with 'gaugino condensation', no-scale models from extra dimensions

• comments: extensions to more complicated/realistic models, open problems

Preamble: free massless 5D scalar

 $\mathcal{L} = (\partial^{M} \phi^{\dagger})(\partial_{M} \phi) \qquad x^{M} \equiv (x^{\mu}, y) \quad \text{(flat)}$ symmetry: $\phi' = e^{-i\beta} \phi \quad \beta \in \mathbb{R} \text{ (constant)}$ circle compactification: $y \equiv y + 2\pi R \quad (\forall y)$

Strict periodicity conditions:

$$\phi(x, y + 2\pi R) = \phi(x, y)$$

$$\phi(x, y) \propto \sum_{n} \varphi_{n}(x) e^{\frac{iny}{R}}$$

$$(\partial^{y} \phi^{\dagger})(\partial_{y} \phi) \Rightarrow 4D \text{ masses}$$

$$m_{n}^{2} = \frac{n^{2}}{R^{2}} \quad (n \in \mathbb{Z})$$
standard Kaluza-Klein spectrum
Twisted periodicity conditions:
$$\phi(x, y + 2\pi R) = e^{-i\beta}\phi(x, y) \quad (\beta = \text{twist})$$

$$\phi(x, y) \propto e^{\frac{-i\beta y}{2\pi R}} \sum_{n} \varphi_{n}(x) e^{\frac{iny}{R}}$$

$$m_{n}^{2} = \left(\frac{n}{R} - \frac{\beta}{2\pi R}\right)^{2} \quad (n \in \mathbb{Z})$$
shifted Kaluza-Klein spectrum

DESY03

19

A useful case study

structure of induced mass terms in 5D theory on S^1/Z_2 ($S^1 \equiv R/T$)

 $x^M \equiv (x^\mu, y)$ $-2\pi R$ $-\pi R$ 0 πR $2\pi R$ *T*: $y \equiv y + 2\pi R$ $+\pi R$ 0 $-\pi R$ Z_2 : $y \equiv -y$ $----- \bullet \pi R$ 0

Work on covering space S^1 . . .

20

(interacting) 5D massless spinor $\Psi(x^{\mu}, y)$ $\Psi = \begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix} \quad \Psi(-y) = Z\Psi(y) \quad Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ two 4D Weyl spinors, ψ_1 =even and ψ_2 =odd

 $\mathcal{L} = \mathcal{L}_0 + \mathcal{L}_{int}$ $\mathcal{L}_0 = i\overline{\Psi}^T \overline{\sigma}^\mu \partial_\mu \Psi - \frac{1}{2} \left(i\Psi^T \widehat{\sigma}^2 \partial_y \Psi + \text{h.c.} \right)$ invariant under Z_2 and a global SU(2): $\Psi'(y) = U\Psi(y) \quad U \in SU(2)$

> twist $(U_{\beta}ZU_{\beta} = Z)$: $\Psi(y + 2\pi R) = U_{\beta}\Psi(y)$ not restrictive to take: $U_{\beta} = \exp(i\beta\hat{\sigma}^2)$ $(0 < \beta < \pi)$ physics fully determined by: lagrangian $\mathcal{L}(\Psi, \partial \Psi) + \text{twist }\beta$ e.g.: $m_n = \frac{n}{R} - \frac{\beta}{2\pi R}$ $(n \in \mathbb{Z})$ universal shift in the spectrum

DESY03

21

move to a basis of periodic fields by a local field redefinition: $\Psi(y) = V(y) \widetilde{\Psi}(y) \qquad \widetilde{\Psi}(y + 2\pi R) = \widetilde{\Psi}(y)$ $V(y+2\pi R) = U_{\beta}V(y)$ twist condition $V(y) \in SU(2)$ to preserve can. kin. terms $V_{11,22}$ even, $V_{12,21}$ odd to preserve Z_2 parities important: no unique solution for V(y)equivalent 5D theory with periodic fields: $\mathcal{L}(\Psi, \partial \Psi) =$ $\mathcal{L}(\widetilde{\Psi},\partial\widetilde{\Psi}) + \{-\frac{i}{2}[m_1(y) + im_2(y)]\widetilde{\psi}_1\widetilde{\psi}_1 + -\frac{i}{2}[m_1(y) + im_2(y)]\widetilde{\psi}_1\widetilde{\psi}_1 + -\frac{i}{2}[m_1(y) + im_2(y)]\widetilde{\psi}_1\widetilde{\psi}_1 + -\frac{i}{2}[m_1(y) + im_2(y)]\widetilde{\psi}_1\widetilde{\psi}_1 + -\frac{i}{2}[m_1(y) + im_2(y)]\widetilde{\psi}_1\widetilde{\psi}_1\widetilde{\psi}_1 + -\frac{i}{2}[m_1(y) + im_2(y)]\widetilde{\psi}_1\widetilde{\psi}_1\widetilde{\psi}_1$ $\frac{i}{2}[m_1(y) - im_2(y)]\widetilde{\psi}_2\widetilde{\psi}_2 + im_3(y)\widetilde{\psi}_1\widetilde{\psi}_2 + h.c.\}$

 $m(y) \equiv m_a(y) \hat{\sigma}^a = -iV^{\dagger}(y) \partial_y V(y)$ (Maurer-Cartan)

conditions on $V(y) \Rightarrow$ conditions on m(y)

 $m(y + 2\pi R) = m(y)$ $m_a(y) \in \mathbf{R}$ $m_{1,2}(-y) = m_{1,2}(y)$ $m_3(-y) = -m_3(y)$

where is the information on the twist β ?

$$\cos\beta = \frac{1}{2} tr P \left\{ \exp\left[i \int_{y}^{y+2\pi R} dy' m(y')\right] \right\}$$

Comments:

 mass terms of 3 kinds, however not the most general ones allowed by 4D Lorentz (3 real vs. 3 complex parameters)

twisted fields and no mass terms equivalence valid also with interactions (some additional terms for derivative interactions)

- to exploit the equivalence the other way: $V(y) = V(0)P\{\exp[i\int_0^y dy'm(y')]\}$
 - mass profiles m(y') for periodic fields have no absolute physical meaning what matters is just the twist β

 \Downarrow

 $m_{1,2}(y)$ can be localized at fixed points

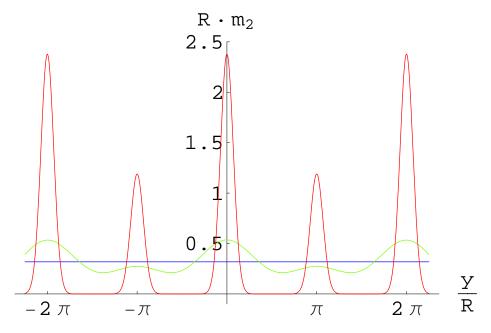
Example:

'ordinary' field redefinition:

$$V^{O}(y) = \exp\left(i\beta\hat{\sigma}^{2}\frac{y}{2\pi R}\right)$$
$$m_{1}^{O}(y) = m_{3}^{O}(y) = 0 \qquad m_{2}^{O}(y) = \frac{\beta}{2\pi R}$$
familiar constant mass profile
but 'generalized' choices are possible, e.g

$$m_1^G(y) = m_3^G(y) = 0$$
 $m_2^G(y) \neq 0$

as long as $\int_{y}^{y+2\pi R} \frac{dy' m_2^G(y')}{dy' m_2^G(y')} = \int_{y}^{y+2\pi R} \frac{dy' m_2^O(y')}{dy' m_2^O(y')} = \beta$



Two representative and equivalent choices for $m_2^G(y)$ with the equivalent constant profile $m_2^O(y) = 1/(\pi R)$

A 'special' choice is the 'singular' limit [to be handled with some care (regularization)]

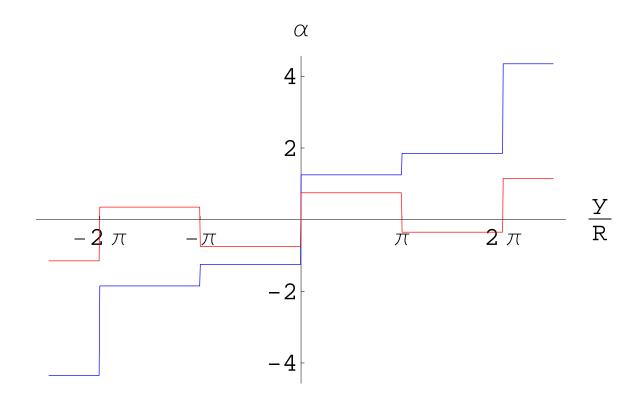
$$m_2^S(y) = [\delta_0 \delta(y) + \delta_\pi \delta(y - \pi R)]_{per}$$

$$\delta_0 + \delta_\pi = \beta \quad V^S(y) = \exp\left[i\alpha(y)\hat{\sigma}^2\right]$$

$$\alpha(y) = \frac{\delta_0 - \delta_\pi}{4}\epsilon(y) + \frac{\delta_0 + \delta_\pi}{4}\eta(y)$$

 $\epsilon(y) =$ periodic sign

 $\eta(y) =$ 'staircase'



The function $\alpha(y)$ for two representative parameter choices: $\delta_0 = 2.5, \ \delta_\pi = 0.6$ and $\delta_0 = 1.5, \ \delta_\pi = -1.1$

Another instructive example:

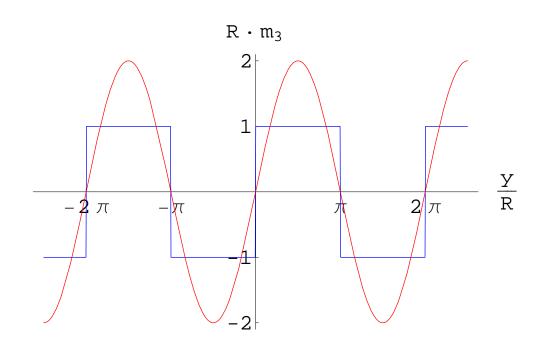
$$m_1(y) = m_2(y) = 0$$
 $m_3(y) \neq 0$

real odd periodic function of y

$$\int_{y}^{y+2\pi R} dy' m_{3}(y') = 0 \quad \Rightarrow \quad \beta = 0$$

Such mass profile can be completely removed by a suitable field redefinition

NO TWIST



Two representative and equivalent choices for $m_3(y)$: $m_3(y) = (2 \sin y)/R$ and $m_3(y) = \epsilon(y)/R$.

The super-Higgs effect (flat case)

of minimal 5D supergravity all we need for our discussion is: (e_M^A, Ψ_M, B_M) (SUGRA multiplet) $\kappa \mathcal{L} = i \epsilon^{MNOPQ} \overline{\Psi}_M \Sigma_{NO} D_P \Psi_Q + \dots$ $\delta \Psi_M = \frac{2}{\kappa} D_M \eta + \dots$ $\eta =$ local 5D SUSY parameter $D_M \Psi = \left(\partial_M + \frac{1}{2}\omega_{MAB}\Sigma^{AB}\right)\Psi$ flat background $\langle G_{MN} \rangle = \eta_{MN} \quad \langle \Psi_M \rangle = \langle B_M \rangle = 0$ solution of the 5D equations of motion

 S^1/Z_2 compactification (no twist): $\Psi_M = \begin{pmatrix} \psi_{1M} \\ \psi_{2M} \end{pmatrix}$ $(M = \mu, 5)$ 5D gravitino $Z = \hat{\sigma}^3$ for Ψ_{μ} $Z = -\hat{\sigma}^3$ for Ψ_5 even: $E^{\alpha}_{\mu}, E^{\hat{5}}_{5}, B_{5}$ odd: $E^{5}_{\mu}, E^{\alpha}_{5}, B_{\mu}$ 11 dilaton and axion zero modes often ignored in phenomenological studies Effective no-scale theory of zero modes: $T = E_5^5 + i\sqrt{\frac{2}{3}}B_5$ The spectrum: $M_{(0)} = 0$ $(E^{\alpha}_{\mu}, \psi^{1}_{\mu}; \psi^{2}_{5}, E^{5}_{5}, B_{5})$

 $M_{(n)} = \frac{n}{R} (n \neq 0) (2, 3/2, 3/2, 1)$

effective N = 1 4D no-scale SUGRA from minimal 5D SUGRA on S^1/Z_2

$$\begin{split} E_M^A &= \begin{pmatrix} \phi^{-1/2} \hat{e}^a_\mu & \phi A_\mu \\ 0 & \phi \end{pmatrix} \quad B_M = \begin{pmatrix} B_\mu \\ B \end{pmatrix} \\ \Psi_M &\longrightarrow \psi^1_\mu, \psi^2_\mu, \psi^1_5, \psi^2_5 \end{split}$$

odd fields $(A_{\mu}, B_{\mu}, \psi_{\mu}^2, \psi_5^1) \Rightarrow$ no zero mode

even fields recombine into $(\hat{e}^a_\mu, \psi_\mu)$ and (z, χ) , where $\chi \propto \psi_5^2$ and $z \equiv \phi + i\sqrt{\frac{2}{3}}B$

Twisted S^{1}/Z_{2} compactifications:

can be discussed as the case study

 $\Psi_M(y + 2\pi R) = U_\beta \Psi_M(y)$ $\Psi_M(y) = V(y) \widetilde{\Psi}_M(y), \dots$

can look at derivative terms only in 5D lagrangian and transformation laws

can redefine also local SUSY parameter $\eta = \begin{pmatrix} \eta_1 \\ \eta_2 \end{pmatrix}$ $\eta(y) = V(y) \tilde{\eta}(y)$

show that SUSY breaking is spontaneous $\beta \neq 0 \Rightarrow$ unitary gauge where $\widetilde{\Psi}_5$ disappears

can have localized gravitino masses 'brane-induced' SUSY breaking and interpret $\delta_{0,\pi}$ as remnants of some non-perturbative localized dynamics

non-locality of SUSY order parameter improves the ultraviolet behaviour of symmetry-breaking quantities e.g. finite $\mathcal{O}(\frac{1}{R^4})$ 1-loop vacuum energy missed by dimensional reduction

(non-decoupling of heavy KK modes)

An intriguing analogy: gaugino condensation in M-theory

- localized gravitino mass terms (P_0, P_π)
 - vanishing classical vacuum energy

 - non-local order parameter $P_0 + P_\pi$ (unbroken SUSY for $P_0 = -P_\pi \neq 0$)
- \odot goldstinos = y-components of gravitinos
 - effective 4D theory of no-scale type

In M-theory:

 $\langle G_{11abc} \rangle \Rightarrow m_2(y)$ localized at $y = 0, \pi R$

however, also some differences: warped background, additional moduli

strong hints for an equivalence further work needed to prove it

Final comments

there are many D > 4 SUGRA and string models generalizing our toy example

some advanced topics of interest:

Output of the content of the content

• problem of radion stabilization (more generally, of moduli stabilization)

- spontaneous breaking in warped spaces, e.g. RS: $ds^2 = e^{a(y)}\eta_{\mu\nu}dx^{\mu}dx^{\nu} + dy^2$
 - \odot spontaneously broken SUGRA in dS_4

 \odot cosmological solutions in D > 4

we'll hear a lot on this at the Workshop!

References

In a spirit of an introductory lecture, I refer here only to some review papers, where references to the original literature can be found, or to papers that were used in preparing this presentation

Effective 4D N = 1 global SUSY

- J. Wess and J. Bagger, *Supersymmetry And Super*gravity
- A. Brignole, F. Feruglio and F. Zwirner, Nucl. Phys. B 501 (1997) 332 [hep-ph/9703286]

Gauge mediation and DSB

 G.F. Giudice and R. Rattazzi, Phys. Rept. 322 (1999) 419 [hep-ph/9801271]

Standard 4D SUGRA

• H.P. Nilles, Phys. Rept. **110** (1984) 1

4D no-scale

 S.Ferrara, C.Kounnas and F.Zwirner, Nucl. Phys. B 429 (1994) 589 [hep-th/9405188]

5D SUGRA mechanisms

• M. Quiros, hep-ph/0302189

string/M-theory mechanisms

- I. Antoniadis and A. Sagnotti, Class. Quant. Grav. 17 (2000) 939 [hep-th/9911205]
- H. P. Nilles, Nucl. Phys. Proc. Suppl. 101 (2001) 237 [hep-ph/0106063]