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Why supersymmetry?

• a possibility within LRQFT

• fits with superstrings/M-theory

• hierarchy problem:
Mweak
MP

∼ 10−15

• vacuum energy: Λcosm
MP

∼ 10−30

• unification of coupling constants

• nice fit to EW precision tests

but:

• no SUSY particle found (yet)

• no light Higgs found (yet)

• flavour problems: B, L, FCNC, CP

• hierarchy only partially solved

• no insight on vacuum energy

SUSY BREAKING crucial

open problem to clarify the puzzle

(theoretically/experimentally)
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N = 1, 4D global SUSY

V a vector
multiplets

(
Aaµ
λa

)
h = ±1
h = ±1/2

(Da)

φi chiral
multiplets

(
ψi

ϕi

)
h = ±1/2
h = 0

(F i)

The MSSM

gauge group SU(3) × SU(2) × U(1)

gauginos (g̃, W̃ , B̃)

3 families, 2 Higgs doublets

squarks (q̃), sleptons (l̃), higgsinos (H̃1,2)

R-parity conserving superpotential

w = QhUUcH2 +QhDDcH1

+LhEEcH1 + µH1H2

Explicit soft SUSY breaking

−Lsoft = ϕ†m2ϕ+ (12MAλAλA +m2
3H1H2

+q̃AU ũcH2 + q̃ADd̃cH1 + l̃AEẽcH1 + h.c.)
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MSSM vs. Standard Model

ameliorates hierarchy (Mweak ∼ ∆mSUSY )

but:

why ∆mSUSY
MP

∼ 10−15 and µ ∼ ∆mSUSY ?

irrelevant improvement on vacuum energy

typically Λcosm ∼ √
∆mSUSYMP (< MP )

B,L problem solved by R-parity but

new severe flavour problem (FCNC,CP)

need universality or equivalent conditions

move to spontaneous SUSY

Plan of the lecture:

1. N = 1 4D global

2. N = 1 4D local

3. extra dimensions
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1. Global N = 1 4D SUSY

Qα|0〉 6= 0 ⇔ 〈δηχ〉 6= 0 (χ = ψi, λa)

δηψi = . . .+
√

2ηF i δηλa = . . .+ ηDa

SUSY ⇔ 〈F i〉 6= 0 and/or 〈Da〉 6= 0

(2-derivative) effective Lagrangian

L =
[
W (φ) + 1

4fab(φ)WaWb
]
F

+ h.c.

+
[
K(φ†, eV φ) + ξaV a

]
D

Renormalizable case:

fab(φ) = δab
g2a

K(φ†, φ) = φ†φ

W (φ) = degree-3 polynomial

Generic case:

dim > 4 interactions with scale Λ < MP

(gravitation consistently neglected)
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Auxiliary fields:

F i = −KiW 

+1
2K

iKlmψ
lψm + 1

4K
ifabλ

aλb

Da = −Refab[ξb +Ki(Tbϕ)
i]

−[ i
2
√

2
Refabfbciψ

iλc + h.c.]

Scalar potential:

Vglobal = ||F ||2 + ||D||2≥ 0

SUSY-breaking scale:

Λ4
SUSY = 〈||F ||2 + ||D||2〉

Goldstino:

G̃ ∝ 〈Fi〉ψi + 〈Da〉λa

Classical mass formulae:

StrM2 = −2F (Ri + Si)F
i

+ Dterms

Ri = ∂∂i log det(Kmn)

Si = ∂∂i log det(Refab)
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Realistic models ?

no reliable model with MSSM fields only

an interesting failure: W 3 Λ2
SUSY

√
H1H2

(requires Λ ∼ ΛSUSY ∼Mweak)

need at least a ‘goldstino’ multiplet

simplest choice: T ≡ (z, χ, F z)

gauge singlet chiral multiplet

SUSY mass splittings:

(∆m2
SUSY )IJ ∼ γIJ · Λ4

SUSY
Λ2

γIJ = O(1) effective T-I-J coupling

no viable model with dim ≤ 4 couplings

only dim > 4 couplings between

goldstino and MSSM multiplets

to obtain a realistic spectrum

(classical or quantum origin)
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Examples of SUSY masses


γij

|T |2φ†iφj
Λ2



D

⇒ (m2)ij ∼ γij
Λ4
SUSY
Λ2

[
βTW

AWA

Λ

]

F
⇒ MA ∼ β

Λ2
SUSY
Λ

[
β′T

†H1H2
Λ

]

D
⇒ µ ∼ β′Λ

2
SUSY
Λ

[
β′′|T |

2H1H2
Λ2

]

D
⇒ m2

3 ∼ β′′Λ
4
SUSY
Λ2

[
γ′ij

TφiφjH
Λ

]

F
⇒ Aij ∼ γ′ij

Λ2
SUSY
Λ

how can the special γij, γ
′
ij needed to

avoid the SUSY flavor problem arise?

must know more about the symmetries

of the underlying microscopic theory

SUSY breaking dynamics not essential

transmission mechanism may be enough
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Gauge mediation

observable
sector

↔ messenger
sector ↔ hidden

sector
gauge superpotential

MSSM Φ(5) + Φc(5) T

w = kTΦΦc + . . . 〈z〉 6= 0 〈F z〉 6= 0

M2 = k2〈z〉2 > ∆m2
SUSY = k〈F z〉

gaugino (1l) and scalar (2l) masses:

M ∼ α
4π

〈F z〉
〈z〉 m2 ∼

(
α
4π

〈F z〉
〈z〉

)2

SM gauge interactions ⇒ universality

effective theory:

Λ ∼ 4π〈z〉
α and Λ2

SUSY ∼ 〈F z〉
ΛSUSY ≥ O(10)TeV for realistic spectrum

µ,m2
3 not generated by gauge interactions

require rather contrived modifications
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Dynamical SUSY breaking

global N = 1 4D interesting laboratory

for non-perturbative SUSY breaking

controllable models of DSB do exist

simplest example: the 3-2 model

gauge group G = SU(3) × SU(2)

Q(3,2) U(3,1) D(3,1) L(1,2)

w = wcl + wnp

wcl = λQUL no TL flat directions

non-anomalous U(1) × U(1)R symmetry

wnp =
Λ7

3
(QU)(QD)

(Λ3 � Λ2)

spontaneously broken SUSY!

generic (Λ3,Λ2) can also be studied

supersymmetry is always broken

. . . but we should not forget gravity . . .
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2. Local N = 1 4D SUGRA

consistent + realistic breaking ⇒
local supersymmetry ≡ supergravity

The minimal framework:

MSSM
multiplets (V a, φi) + goldstino

multiplet
(T )

+ gravitational
multiplet

(
eαµ
ψµ

)
h = ±2
h = ±3/2

gravitino = gauge fermion of SUGRA

A crucial difference with global SUSY:

Vsugra = ||F ||2 + ||D||2 − ||H||2
matter + gauge − gravitational

Λ4
SUSY = 〈||F ||2 + ||D||2〉 > M4

weak

Λcosm = 〈Vsugra〉1/4 < M2
weak/MP

dictated by phenomenology

⇓
gravitational effects crucial

for vacuum selection
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The superHiggs effect (flat space)

ψµ(±3/2) ⊕ G̃(±1/2) massive gravitino

Λcosm = 〈V 〉1/4 ' 0 & ||H||2 = 3m2
3/2M

2
P

⇓
Λ4
SUSY = 3m2

3/2M
2
P

one-to-one correspondence m2
3/2 ↔ ΛSUSY

Two flat (MP → ∞) limits:

1. m3/2 fixed, ΛSUSY→ ∞
explicitly broken SUSY

with O(m3/2) soft terms

and decoupled goldstino

2. ΛSUSY fixed, m3/2→ 0

spontaneously broken SUSY

interacting goldstino multiplet

with effective couplings

λG ∼ ∆m2
SUSY /Λ

2
SUSY
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Gravitino mass vs. phenomenology

m3/2 (ΛSUSY ) model-dependent parameter

even after choosing ∆mSUSY ∼Mweak

heavy light very light

O(Mweak) � m3/2 � O(M2
weak/MP )

O(Mweak/MP ) � λG � O(1)

O(
√
MweakMP ) � ΛSUSY � O(Mweak)

O(MP ) � Λ � O(Mweak)

heavy gravitino phenomenology

MSSM + soft terms with cutoff Λ ∼MP
� MSSM LSP stable (dark matter)

� fits nicely with grand unification

light gravitino phenomenology

MSSM + goldstino multiplet with Λ �MP
� MSSM LSP → particle + (goldstino)

very light gravitino (Λ ∼Mweak):

� unsuppressed (s)goldstino interactions

� avoid Higgs bound mh < 130 GeV
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Basic formalism of 4D SUGRA

(neglecting gauge superfields for simplicity)

defining (dimensionless) function:

G(φ†, φ) = K(φ†,φ)
M2
P

+ log

∣∣∣∣∣
w(φ)
M3
P

∣∣∣∣∣

2

natural SUGRA units: MP ≡ 1

classical scalar potential:

Vsugra = VF + VD + VH

VD = similar to global case

VF + VH = eG(GiG
iG − 3)

4D Minkowski ⇔ 〈Vsugra〉 = 0

auxiliary fields (SUSY breaking):

Fi ∝ Gi ∝ wi + wKi

Da = similar to global case

field-dependent gravitino mass:

m2
3/2 = eG = |w|2eK

coupling to gauge superfields can also be included

will be omitted to keep the discussion simple
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Generic problems of 4D SUGRA

hierarchy:

why m3/2 �MP?

vacuum energy:

why 〈||F ||2 + ||D||2〉 ' 〈||H||2〉 ?

cannot be addressed in global SUSY

simplest example: Polonyi model

K = |T |2 w = m2(T + β)

fine-tune β = (2−
√

3)MP ⇒ Λcosm = 0

set m2 ∼MweakMP ⇒ m3/2 ∼Mweak

flavour:

effective goldstino couplings to MSSM

as in any effective theory approach

⇓
generic N = 1 4D SUGRA unsatisfactory

too flexible an effective theory

more insight from symmetries/dynamics?

look first at some special supergravities
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No-scale supergravities

simplest no-scale model:

K = −3 log(T + T )

SU(1,1)/U(1) Kähler invariance (T-duality)

T → aT−ib
icT+d (ad− bc = 1)

if w(T ) → (icT + d)3w[(aT − ib)/(ict+ d)]

compatible with vector of N > 1 SUGRA

e.g. N = 2 prepotential F = (X1)3/X0

w = k 6= 0 (T-independent)

admissible N > 1 (N = 2) gauging

w = m0 (−im1T ) +3n1T2 (+in0T3)

Notes:

� K,w may depend on φ 6= T , above

formulae when φ at their (SUSY) VEVs

� w can have non-perturbative origin

(gaugino condensation and/or other)

� equivalences by field redefinitions
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special properties of the model:

V ≡ 0 classical flat potential

F z 6= 0 (∀z) broken SUSY

m2
3/2 =

|k|2
(z+z)3

sliding ΛSUSY

when coupled to MSSM fields:

� may allow for universal SUSY masses

∆K = (T + T )−n|C|2 ⇒ m̃2
C = (n− 1)m2

3/2

� may allow for dynamical hierarchy

gauge vs. Yukawa renorm. effects

⇒ effective infrared fixed point of

Veff [m3/2(T ), H]

if Veff ∼ O(m4
3/2 log . . .) [not O(m2

3/2M
2
P )]

problems at this 4D level:

� unexplained origin of K and w

(chirality ⇒ no realistic N > 1 4D model)

� no control over UV quantum corrections

help from extra dimensions?
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3. Extra dimensions

present activity on SUSY breaking

mostly theories with extra dimensions:

� effective D > 4 supergravities

� D = 10 superstrings with branes

� D = 11 supergravity from M-theory

D > 4 SUSY-breaking models

later in plenary and parallel talks

for simplicity, discuss here a toy model:

minimal 5D supergravity on S1/Z2

(as effective non-renormalizable theory)

� learn some qualitative lessons: Scherk-

Schwarz mechanism and its ‘non-local’

character, effective theory ambiguities,

equivalence with ‘gaugino condensation’,

no-scale models from extra dimensions

� comments: extensions to more com-

plicated/realistic models, open problems
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Preamble: free massless 5D scalar

L = (∂Mφ†)(∂Mφ) xM ≡ (xµ, y) (flat)

symmetry: φ′ = e−iβφ β ∈ R (constant)

circle compactification: y ≡ y+ 2πR (∀y)

Strict periodicity conditions:

φ(x, y+ 2πR) = φ(x, y)

φ(x, y) ∝ ∑
nϕn(x)e

iny
R

(∂yφ†)(∂yφ) ⇒ 4D masses

m2
n = n2

R2 (n ∈ Z)

standard Kaluza-Klein spectrum

Twisted periodicity conditions:

φ(x, y+ 2πR) = e−iβφ(x, y) (β = twist)

φ(x, y) ∝ e
−iβy
2πR

∑
nϕn(x)e

iny
R

m2
n =

(
n
R − β

2πR

)2
(n ∈ Z)

shifted Kaluza-Klein spectrum

DESY03 19



A useful case study

structure of induced mass terms in

5D theory on S1/Z2 (S1 ≡ R/T )

xM ≡ (xµ , y)

−2πR −πR 0 πR 2πR

T : y ≡ y+ 2πR

+πR

−πR 0

Z2: y ≡ −y

0 πR

Work on covering space S1 . . .
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(interacting) 5D massless spinor Ψ(xµ, y)

Ψ=
(
ψ1
ψ2

)
Ψ(−y) = ZΨ(y) Z=

(
1 0
0 −1

)

two 4D Weyl spinors, ψ1=even and ψ2=odd

L = L0 + Lint
L0 = iΨTσµ∂µΨ −1

2

(
iΨT σ̂2∂yΨ + h.c.

)

invariant under Z2 and a global SU(2):

Ψ′(y) = UΨ(y) U ∈ SU(2)

twist (UβZUβ = Z):

Ψ(y+ 2πR) = UβΨ(y)

not restrictive to take:

Uβ = exp(iβσ̂2) (0 < β < π)

physics fully determined by:

lagrangian L(Ψ, ∂Ψ) + twist β

e.g.: mn = n
R − β

2πR (n ∈ Z)

universal shift in the spectrum
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move to a basis of periodic fields

by a local field redefinition:

Ψ(y) = V (y) Ψ̃(y) Ψ̃(y+ 2πR) = Ψ̃(y)

V (y+ 2πR) = UβV (y) twist condition

V (y) ∈ SU(2) to preserve can. kin. terms

V11,22 even, V12,21 odd to preserve Z2 parities

important: no unique solution for V(y)

equivalent 5D theory with periodic fields:

L(Ψ, ∂Ψ) =

L(Ψ̃, ∂Ψ̃)+{−i2[m1(y)+im2(y)]ψ̃1ψ̃1+

i
2[m1(y)−im2(y)]ψ̃2ψ̃2+im3(y)ψ̃1ψ̃2+h.c.}

m(y)≡ma(y)σ̂a=−iV †(y)∂yV (y) (Maurer-Cartan)

conditions on V (y) ⇒ conditions on m(y)

m(y+ 2πR) = m(y) ma(y) ∈ R

m1,2(−y) = m1,2(y) m3(−y) = −m3(y)

where is the information on the twist β ?
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cos β =
1

2
tr P

{
exp

[
i
∫ y+2πR

y
dy′m(y′)

]}

Comments:

� mass terms of 3 kinds, however not the

most general ones allowed by 4D Lorentz

(3 real vs. 3 complex parameters)

� equivalent theories via field redefinitions

periodic fields with mass terms

m
twisted fields and no mass terms

equivalence valid also with interactions

(some additional terms for derivative interactions)

� to exploit the equivalence the other way:

V (y) = V (0)P{exp[i
∫ y
0 dy

′m(y′)]}
� mass profiles m(y′) for periodic fields

have no absolute physical meaning

what matters is just the twist β

⇓
m1,2(y) can be localized at fixed points
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Example:

‘ordinary’ field redefinition:

V O(y) = exp

(
iβσ̂2 y

2πR

)

mO
1 (y) = mO

3 (y) = 0 mO
2 (y) =

β

2πR
familiar constant mass profile

but ‘generalized’ choices are possible, e.g.:

mG
1 (y) = mG

3 (y) = 0 mG
2 (y) 6= 0

as long as∫ y+2πR

y
dy′mG

2 (y′) =
∫ y+2πR

y
dy′mO

2 (y′) = β

-2 Π -Π Π 2 Π

y
����
R

0.5

1

1.5

2

2.5
R × m2

Two representative and equivalent choices for mG
2 (y)

with the equivalent constant profile mO
2 (y) = 1/(πR)
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A ‘special’ choice is the ‘singular’ limit

[to be handled with some care (regularization)]

mS
2(y) = [δ0δ(y) + δπδ(y − πR)]per

δ0 + δπ = β V S(y) = exp
[
iα(y)σ̂2

]

α(y) =
δ0 − δπ

4
ε(y) +

δ0 + δπ

4
η(y)

ε(y) = periodic sign η(y) = ‘staircase’

-2 Π -Π Π 2 Π

y
����
R

-4

-2

2

4

Α

The function α(y) for two representative parameter choices:

δ0 = 2.5, δπ = 0.6 and δ0 = 1.5, δπ = −1.1
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Another instructive example:

m1(y) = m2(y) = 0 m3(y) 6= 0

real odd periodic function of y

∫ y+2πR

y
dy′m3(y

′) = 0 ⇒ β = 0

Such mass profile can be completely

removed by a suitable field redefinition

NO TWIST

-2 Π -Π Π 2 Π

y
����
R

-2

-1

1

2

R × m3

Two representative and equivalent choices for m3(y):

m3(y) = (2 sin y)/R and m3(y) = ε(y)/R.
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The super-Higgs effect (flat case)

of minimal 5D supergravity

all we need for our discussion is:

(e A
M , ΨM , BM) (SUGRA multiplet)

κL = iεMNOPQΨMΣNODPΨQ + . . .

δΨM =
2

κ
DMη+ . . .

η = local 5D SUSY parameter

DMΨ =

(
∂M +

1

2
ωMABΣAB

)
Ψ

flat background

〈GMN〉 = ηMN 〈ΨM〉 = 〈BM〉 = 0

solution of the 5D equations of motion
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S1/Z2 compactification (no twist):

ΨM=
(
ψ1M
ψ2M

)
(M = µ,5) 5D gravitino

Z = σ̂3 for Ψµ Z = −σ̂3 for Ψ5

even: Eαµ , E
5̂
5, B5 odd: E5

µ, E
α
5 , Bµ

⇓
dilaton and axion zero modes

often ignored in phenomenological studies

Effective no-scale theory of zero modes:

T = E5
5 + i

√
2
3B5

The spectrum:

M(0) = 0 (Eαµ , ψ
1
µ;ψ

2
5, E

5̂
5, B5)

M(n) =
n

R
(n 6= 0) (2,3/2,3/2,1)
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effective N = 1 4D no-scale SUGRA

from minimal 5D SUGRA on S1/Z2

EAM =

(
φ−1/2êaµ φAµ

0 φ

)
BM =

(
Bµ
B

)

ΨM −→ ψ1
µ, ψ

2
µ, ψ

1
5, ψ

2
5

odd fields (Aµ, Bµ, ψ2
µ, ψ

1
5) ⇒ no zero mode

even fields recombine into (êaµ, ψµ)

and (z, χ), where χ ∝ ψ2
5 and

z ≡ φ+ i
√

2
3B

ê−1
4 L = −1

2R(ê) − 3
4φ

−2ĝµν(∂µφ)(∂νφ)

−1
2φ

−2ĝµν(∂µB)(∂νB) + . . .

⇓
KTT ĝ

µν(∂µz)(∂νz)

⇓
K = −3 log(T + T ) + . . .
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Twisted S1/Z2 compactifications:

can be discussed as the case study

ΨM(y+ 2πR) = UβΨM(y)

ΨM(y) = V (y) Ψ̃M(y), . . .

can look at derivative terms only

in 5D lagrangian and transformation laws

can redefine also local SUSY parameter

η=
( η1η2

)
η(y) = V (y) η̃(y)

show that SUSY breaking is spontaneous

β 6= 0 ⇒ unitary gauge where Ψ̃5 disappears

can have localized gravitino masses

‘brane-induced’ SUSY breaking

and interpret δ0,π as remnants of some

non-perturbative localized dynamics

non-locality of SUSY order parameter

improves the ultraviolet behaviour

of symmetry-breaking quantities

e.g. finite O( 1
R4) 1-loop vacuum energy

missed by dimensional reduction

(non-decoupling of heavy KK modes)
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An intriguing analogy:

gaugino condensation in M-theory

� localized gravitino mass terms (P0, Pπ)

� vanishing classical vacuum energy

� radius R = classical flat direction

� non-local order parameter P0 + Pπ
(unbroken SUSY for P0 = −Pπ 6= 0)

� goldstinos = y-components of gravitinos

� effective 4D theory of no-scale type

In M-theory:

〈G11abc〉 ⇒ m2(y) localized at y = 0, πR

however, also some differences:

warped background, additional moduli

strong hints for an equivalence

further work needed to prove it
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Final comments

there are many D > 4 SUGRA and string

models generalizing our toy example

some advanced topics of interest:

� couplings of broken D > 4 SUGRA

to bulk and localized multiplets:

transmission mechanisms in D > 4

at classical and/or quantum level

� problem of radion stabilization

(more generally, of moduli stabilization)

� spontaneous breaking in warped spaces,

e.g. RS: ds2 = ea(y)ηµνdxµdxν + dy2

� spontaneously broken SUGRA in dS4

� cosmological solutions in D > 4

we’ll hear a lot on this at the Workshop!
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