DESY Theory Workshop

Sept, 28th – Oct, 1st 2004

Cosmic Rays and Fundamental Physics

LUIS ANCHORDOQUI

Department of Physics

Northeastern University

Boston

TESTBED OF NEW PHYSICS

OUTLINE

- •Neutrino interactions as probes of TeV-scale gravity
- •Neutrinos as messengers of high energy astrophysical processes
- •Neutron \u03b3-decay as a test of local Lorentz invariance
- Probing SUSY with cosmic rays
 - » observing neutralinos from space-based detectors
 - » gluino air showers as a signal of split SUSY

Hypothesis: Universe has D = 4 + n dimensions

- •SM lives in 4 dimensions
- •Gravity spills into internal dimensions

SPACETIME'S UNSEEN DIMENSIONS

Gravitational Strength: $8\pi M_D^{2+n} r_c^n \approx (10^{19} \text{ GeV})^2$

Gravity is weak because:

•D = 4 and
$$M_D \approx 10^{19} \text{ GeV}$$

•D > 4 and $M_D \approx 10^3$ GeV but r_c large in Planck units

Arkani Hamed-Dimopoulos-Dvali PLB429 (1998) 263

•Nearly horizontal showers are especially interesting

•Baryonic background

largely filtered by atmosphere

Feng-Shapere PRL 88 (2002) 021303

For Quasi-Horizontal neutrinos

- $\sigma_{\rm BH} \Rightarrow$ increases event rates
- $\Phi > \Phi_{cosmogenic} \Rightarrow$ increases event rates

$N_{ m QH} \propto \phi^{ u} (\sigma^{ u}_{ m CC} + \sigma_{ m BH})$ $N_{ m ES} \propto \phi^{ u} rac{\sigma^{ u^2}_{ m CC}}{(\sigma^{ u}_{ m CC} + \sigma_{ m BH})^2}$

PAO 5 years

QH showers dashed

ES dotted

For Earth-skimmers

- $\Phi > \Phi_{\rm cosmogenic} \Rightarrow$ increases event rates
- $\sigma_{\rm BH} \Rightarrow$ rate suppressed

LAA-Feng-Goldberg-Shapere PRD 65 (2002)124027

NON OBSERVATION OF DEEPLY PENETRATING SHOWERS

ASSUMPTION ON NEUTRINO FLUX

BOUNDS ON NEUTRINO- NUCLEON CROSS SECTION

UHECR interactions with CMB

cosmogenic neutrinos

LAA-Fodor-Katz-Ringwald-Tu (work in progress)

LIMITS ON EXTRA DIMENSIONS

$$\sigma_{
m BH} \sim M^{-2}_{
m D}$$

Hannestad-Raffelt PRL 88 (2002) 071301

LAA-Feng-Goldberg-Shapere PRD 68 (2003) 104025

D0 Collaboration PRL 86 (2001) 1156

$$p\gamma \to \Delta^+ \to \pi^0 p$$
 $\searrow 2\gamma$

Sept, 28th - Oct, 1st 2004 NEUTRINO PRODUCTION IN ASTROPHYSICAL SOURCES

Isotopically neutral mix of pions create on decay

neutrino population in the ratio

$$N_{
u_\mu}=N_{\overline{
u}_\mu}=2N_{
u_e}=2N_{\overline{
u}_e}$$

Neutrino oscillations

Maximal $\nu_{\mu} \leftrightarrow \nu_{\tau}$ mixing

$$|\langle \nu_a | \nu_b \rangle|^2 \ll 1$$

$$u_3 \simeq (
u_\mu +
u_ au)/\sqrt{2}$$

$$N^{
m Earth}_{\overline{
u}_a}=rac{1}{6}\;N^{
m total}_{
u+\overline{
u}}$$

Photopion production isotopically asymetric process

$$N_{
u_{\mu}}=N_{\overline{
u}_{\mu}}=N_{
u_e}\gg N_{\overline{
u}_e}$$

Neutrino oscillations

$$N_{\overline{
u}_e}^{
m Earth} = N_{\overline{
u}_\mu} \, P(\overline{
u}_\mu o \overline{
u}_e) = rac{1}{3} \sin^2\! heta_\odot \, \cos^2\! heta_\odot \, N_{
u+\overline{
u}}^{
m total}$$

SNO
$$\theta_{\odot} \simeq 32.5^{\circ}$$

$$N^{
m Earth}_{\overline{
u}_e} = rac{1}{15} \, N^{
m total}_{
u+\overline{
u}}$$

THE GLASHOW SIGNAL

Resonant scattering

$$\overline{
u}_e e^- o W^- o$$
 anything

COSMIC RAY ANISOTROPY

Deviation of event density in equatorial coordinates as seen by AGASA

AGASA Collaboration, ICRC2001

AGASA

Largest deviation observed at coordinates $\alpha \approx 313^{\circ} \ \sigma \approx 32^{\circ}$

 4σ deviation 4 % of total flux

Fly's Eye [astro-ph/9806096]

Galactic Plane enhancement \Rightarrow 3.2 σ same E region SUGAR [astro-ph/0009039]

Galactic Center anisotropy $\Rightarrow 3\sigma$ same E region

THE CYGNUS ACCELERATOR

http://antwrp.gsfc.nasa.gov/apod/ap 970424.html

- Probe of Local Lorentz Invariance
 - Shape of lower cutoff in observed anisotropy (if taken as neutrons) ⇒
 - validity of time dilation formula up to $\gamma \sim 10^9$
 - ullet $ar{
 u}$ —flux "smoking ice" of n—hypothesis

DESY Theory Workshop Sept, 28th – Oct, 1st 2004

THE CYGNUS SIGNAL

LAA- Goldberg- Halzen- Weiler PLB 593 (2004) 42

SUSY

SM particles have partners with $\Delta J = \frac{1}{2}$

broken symmetry $\rightarrow \Lambda_{\text{SUSY}}$

MSSM

R – parity stable dark matter candidate

the neutralino

SUSY IN THE SKY

with rising energy

2003) 132

LAA-Goldberg-Nath PRD 70 (2004) 025014

TRHOUGH THE LOOKING GLASS THE COSMOLOGICAL CONSTANT PROBLEM

INTO THE LANDSCAPE

DIVINE INTERVENTION

STATISTICS

SPLIT SUSY

MSSM

The mass of the higgs is natural Unified running

SPLIT SUSY

The mass of the higgs is fine tuned

Unification works (better)

Arkani Hamed – Dimopoulos hep-th/0405159 Giudice- Romanino hep-ph/0406088

PROBING SPLIT SUSY WITH COSMIC RAYS

♦ Because of the large mass of the sfermions → metastable gluinos

$$au_{ar{g}} \propto m_{ar{q}}^4$$

Very strong limits on heavy isotope abundance

Upper limit on Λ_{SUSY}

Observation of cosmological gluinos

Lower limit on Λ SUSY

 $10^{11} \text{ GeV} < \Lambda_{\text{SUSY}} < 10^{13} \text{ GeV}$

SUMMARY

- Future Cosmic Ray data will not only provide clues to cosmic ray origin, but could enhance our understanding of fundamental particle physics
- The puzzle of ultrahigh energy cosmic rays may even have something to say about issues as fundamental as local Lorentz inavariance
- Contrasting the observed quasi-horizontal neutrino flux with the expected neutrino flux can help to improve existing limits on the fundamental Planck scale
- An optimist might even imagine the discovery of microscopic black holes, the telltale signature of the universe's unseen dimensions
- ◆ We are entering this new High Energy Physics era with PAO + Ice Cube

THANKS

QUESTIONS

