DESY2004@Hamburg 30th September 2004

Cosmic star formation history and supernova relic neutrinos

Shin'ichiro Ando Dept. Phys. Univ. Tokyo

S. Ando, Astrophys. J. 607 (2004) 20

<u>"Supernova Relic Neutrinos (SRN)"</u>

Motivations

- Is it really detectable?
 - Precise rate and background estimates are essential.
 - Kaplinghat, Steigman & Walker (2000); Ando, Sato & Totani (2003)
- Galaxy evolution and cosmic star formation rate
 - Totani, Sato & Yoshii (1996); Malaney (1997); Hartmann & Woosley (1997); Fukugita & Kawasaki (2003); Strigari et al. (2004); Ando (2004)
- Physics of supernova neutrinos
- Neutrino properties as an elementary particle
 - Neutrino oscillation
 - Ando & Sato (2003)
 - Neutrino decay (coupling with e.g. Majoron)
 - Ando (2003); Fogli et al. (2004)

Motivations

- Is it really detectable?
 - Precise rate and background estimates are essential.
 - Kaplinghat, Steigman & Walker (2000); Ando, Sato & Totani (2003)
- Galaxy evolution and cosmic star formation rate
 - Totani, Sato & Yoshii (1996); Malaney (1997); Hartmann & Woosley (1997); Fukugita & Kawasaki (2003); Strigari et al. (2004); Ando (2004)
- Physics of supernova neutrinos
- Neutrino properties as an elementary particle
 - Neutrino oscillation
 - Ando & Sato (2003)
 - Neutrino decay (coupling with e.g. Majoron)
 - Ando (2003); Fogli et al. (2004)

Cosmic star formation rate

Cosmic star formation rate Cosmic SFR is star-formation rate measurements Lilly et al 1995 inferred from UV, $H\alpha$, 😦 Hommer et pl 1997 Rowon-Robinson et al 1997 → Hogg et al 1998 Cowie et ol 1999 submm/FIR rh Flores et al 1999 ★ Mobasher et al 1999 ⊥ Hoorsmo et el 2000 luminosity density. a Jones and Bland-Howthorn 2001 (solar m Lanzetta et al 2002 combined Ha

-1.0

0.0

D.2

0.4

0.6

redshift z

Hogg, astro-ph/0105280

0.5

1.0

og_{ie} comoving SFR density

- Although there seems to be a general trend at low-z, these estimates are quite uncertain!
- We deserve other independent methods.

SRN as an SFR indicator

UV luminosity density

- Advantages
 - Easier observation
 - Spectral features such as line/edge → enables redshift measurement
- Disadvantages
 - <u>Dust extinction</u>

SN relic neutrinos

- Advantages
 - <u>Completely free</u> <u>from dust</u>
 - Directly connected with the death of massive stars → good SFR tracer
- Disadvantages
 <u>Difficult</u>!!
 - No spectral feature

But, the detection is within reach in the near future!!

Contents

- 1. Introduction
- 2. Formulation & Models
- 3. Results of Numerical Calculation
- 4. Future Detector Performance
- 5. Conclusions

Contents

- 1. Introduction
- 2. Formulation & Models
- 3. Results of Numerical Calculation
- 4. Future Detector Performance
- 5. Conclusions

Formulation

Physics involved:

- 1. Neutrino spectrum from each supernova
 - Simulation by Lawrence Livermore (LL) group
- 2. Neutrino oscillation during propagation in SN envelope
 - Quite well understood by experiments
- 3. Supernova rate evolution

Supernova rate history

• Supernova rate is inferred from SFR via

 $R_{\rm SN}(z) = \psi_*(z) \frac{\int_{8M_{\odot}}^{125M_{\odot}} dm \,\phi(m)}{\int_0^{125M_{\odot}} dm \,m\phi(m)}$

- Behavior at high redshift contains substantial uncertainties.
- But, high redshift behavior is found irrelevant.

The uncertainty around here is not important so much.

Contents

- 1. Introduction
- 2. Formulation & Models
- **3. Results of Numerical Calculation**
- 4. Future Detector Performance
- 5. Conclusions

SRN flux and backgrounds

Ando, Sato & Totani (2003)

- Flux will be ~ 2 cm⁻² s⁻² above 10 MeV.
- Event rate is estimated to be ~ 2 yr⁻¹ at Super-K (E_e > 10 MeV).
- Backgrounds are solar, atmospheric, reactor neutrinos etc.
- In the near future, the energy range 10—30 MeV will be background free (Beacom & Vagins 2004).

Contents

- 1. Introduction
- 2. Formulation & Models
- 3. Results of Numerical Calculation
- 4. Future Detector Performance
- 5. Conclusions

Upcouning detectors

Monte Carlo simulation Procedure

- 1. Simulate the SRN signal at 10—30 MeV
- 2. Analyze the simulated data with simple parameterization
- 3. Repeat the procedures 1. & 2., 1000 times
- Obtain distribution of best fit values for adopted parameters

Simulated SRN data

- Data are generated by MC simulation using the LL model.
- We analyze the data with two free parameters related to SN rate as, $R_{\rm SN}(z) = R_{\rm SN}^0 (1+z)^{\alpha}$
- We assume that the supernova neutrino spectrum is quite well known.
 - Galactic SN will give us rich information.

Comparison of model/obtained SN rate

Redshift z

 SRN observation well reproduces assumed SN rate history.

Model SN rate 22.5 kton 5 yr 440 kton 5 yr

Distribution of best fit parameters (2)

- Distribution of (α, R_{SN}^{0}) without parameter fixing.
- Even with Hyper-K or UNO, it is difficult to obtain the both values without prior knowledge.

 $\alpha = 3.5 + / -1.3$ $R_{SN}^{0} = 0.88 + / -0.48$

High-z SFR by SRN

- To probe high-z SFR, lower threshold is needed.
- If E_{th} can go down from 10 MeV, high-z (z > 1) SFR will be probed by the SRN observation.
- Three toy models are statistically well separated from one another.

Contents

- 1. Introduction
- 2. Formulation & Models
- 3. Results of Numerical Calculation
- 4. Future Detector Performance
- 5. Conclusions

Conclusions

- SRN flux and event rate is investigated as an SFR indicator.
- The advantages of this method are:
 - 1. Neutrinos are completely free of dust extinction.
 - 2. It is expected to trace SFR quite well.
- In the near future, 10—30 MeV will be available as an energy window.
- SFR evolution at low-z could be inferred with accuracy of ~30% (8%) by using the detector of 22.5 kton 5 yr (440 kton 5 yr).

Original neutrino spectrum

LL model of 20 $\rm M_{\odot}$

- Neutrino spectra calculated numerically by three independent groups are adopted.
- Average energies (MeV)

Model	\overline{v}_{e}	v _x	Ratio
LL	15.4	21.6	1.4
TBP	11.4	14.1	1.2
KRJ	15.4	15.7	1.0

LL: Totani, Sato, Dalhed & Wilson (1998) TBP: Thompson, Burrows & Pinto (2003) KRJ: Keil, Janka & Raffelt (2003)

Spectrum after oscillation

- Here, we only consider the case of normal mass hierarchy without magnetic moment.
 - In the case of large mixing, flavor conversion occurs efficiently (~30% mixing).
 - The difference in average energies is essential.

Flux & event rate

 Integrated flux (cm⁻² s⁻¹)

Model	E _v > 11.3 MeV	E _v > 19.3 MeV	
LL	2.3	0.46	
TBP	1.3	0.14	
KRJ	2.0	0.28	

Flux & event rate

 Integrated flux (cm⁻² s⁻¹)

Model	E _v > 11.3 MeV	E _v > 19.3 MeV
LL	2.3	0.46
TBP	1.3	0.14
KRJ	2.0	0.28

• Event rate at SK (yr⁻¹)

Model	E _e > 10 MeV	E _e > 18 MeV
LL	2.3	1.0
TBP	0.97	0.25
KRJ	1.7	0.53

 At high energy region, high-z contribution is much less significant compared with local (z < 1) one.

Recent observational result from Sk

Backgroundevents 107 SRN ${\rm MeV^{-1}}_{10^{5} \ 10^{6}}$ $SK \begin{bmatrix} yr^{-1} & MeV^{-1} \\ 10^{-1} & 1 \end{bmatrix}$ ⁸B Solar ν_e invisible μ hep Solar $\nu_{\rm e}$ atmospheric $\overline{\nu}_{e}$ reactor $\overline{\nu}_{e}$ 10^{4} s^{-1} Flux $\left[cm^{-2} \right]$ 1 10¹ 10² 10 SRN (LMA) Event Rate at 10⁻² Number 10⁻³ 10⁻³ 10⁻¹ SRN no osci) 10⁴ 10 10 10 20 30 40 50 60 70 80 Neutrino Energy [MeV] 10 20 30 40 Positron Kinetic Energy [MeV] 10 90 100 50 Atmospheric $v_{\mu} \rightarrow invisible \mu \rightarrow decay e$ There is no "energy window."

GADZOOKS!

GADZOOKS! Antineutrino Spectroscopy with Large Water Čerenkov Detectors

John F. Beacom¹ and Mark R. Vagins²

¹NASA/Fermilab Astrophysics Center, Fermi National Accelerator Laboratory, Batavia, Illinois 60510-0500 ²Department of Physics and Astronomy, 4129 Reines Hall, University of California, Irvine, CA 92697 (Dated: 25 September 2003)

We propose modifying large water Čerenkov detectors by the addition of 0.2% gadolinium trichloride, which is highly soluble, newly inexpensive, and transparent in solution. Since Gd has an enormous cross section for radiative neutron capture, with $\sum E_{\gamma} = 8$ MeV, this would make neutrons visible for the first time in such detectors, allowing antineutrino tagging by the coincidence detection reaction $\bar{\nu}_e + p \rightarrow e^+ + n$ (similarly for $\bar{\nu}_{\mu}$). Taking Super-Kamiokande as a working example, dramatic consequences for reactor neutrino measurements, first observation of the diffuse supernova neutrino background, Galactic supernova detection, and other topics are discussed.

PACS numbers: 95.55.Vj, 95.85.Ry, 14.60.Pq

FERMILAB-Pub-03/249-A

GADZOOKS!

A Quick Recap

Gadolinium Antineutrino Detector Zealously Outperforming Old Kamiokande, Super!, or GADZOOKS!, is a Super–K upgrade being proposed by John Beacom and myself.

The basic idea is to use water-soluble gadolinium (tri)chloride, $GdCl_3$, to enable the detection of neutrons from the reaction

$\overline{\nu}_e$ + p $\rightarrow e^+$ + n

Among other things, this new capability will *greatly* enhance Super–K–III's response to supernova neutrinos (both relic and galactic), reactor \overline{v}_e 's, and \overline{v}_e 's from the Sun.

In order to collect >90% of these neutrons on gadolinium we'll only need to put *100 tons* of GdCl₃ in Super-K!

M. Vagins@NOON2004

- Delayed coincidence signal of neutrons tagged by Gd.
- It enables to distinguish \overline{v}_e from other flavors or μ -induced events.
- It opens up energy window at 10—30 MeV for the SRN detection.

Energywindow 107 SRN10<mark>1</mark> MeV^{-1} invisible μ 10^{5} nep boiur Mindow Sundow atmospheric $\overline{\nu}_{e}$ 10^{4} Energy Window s^{-1} reactor $\overline{\nu}_{e}$ $[\rm cm^{-2}_{10^{2}}]$ SK SRN (LMA) Flux [-ªt Rate 10-Number 10⁻⁴10⁻³10⁻²10⁻¹ Event 10-3 no osci) 10¹ 10 20 30 40 Positron Kinetic Energy [MeV] 20 30 40 50 60 70 80 Neutrino Energy [MeV] 20 80 90 100 50 10 Atmospheric v_{μ} > invisible μ > decay e • Solar v_e or invisible μ events become reducible!!

SummaryofMC simulation

Detector	Effective Volume (22.5 kton yr)	Fixed Parameter	α	δα/(α) (%)	R ⁰ _{SN} (10 ⁻⁴ yr ⁻¹ Mpc ⁻³)	$\delta R_{SN}^0 / \langle R_{SN}^0 \rangle$ (%)
SK	5	R0	2.7±0.8	30.0	1.2 (fixed)	
	5	R ⁰ _{SN}	2.9 (fixed)		1.2 ± 0.4	28.3
HK or UNO	97.8	R_{SN}^0	2.5 ± 0.2	7.8	1.2 (fixed)	
	97.8	a	2.9 (fixed)		1.0 ± 0.1	7.7
	97.8		3.5 ± 1.3	36.7	0.88 ± 0.48	54.8

