Cosmology with time-varying constants

Florian Bauer Technische Universität München

> DESY Theory Workshop 30.09.2004

Introduction

- Time-dependence of the cosmological constant Λ and Newton's constant G.
- General relativity with classical matter: Λ and G are true constants.
- Quantum fields on curved background

 \rightsquigarrow Infinite contributions to the effective stress tensor $\langle T_{\mu\nu} \rangle$ (vev of $T_{\mu\nu}$), divergences are proportional to the metric tensor $g_{\mu\nu}$ and the Einstein tensor $G_{\mu\nu}$.

- Regularisation and renormalisation of infinite terms \rightsquigarrow finite renormalised Λ and G, which now depend on a renormalisation scale μ . The dependence on the scale is described by the RGEs.
- "Usual" meaning of μ: External momentum.
 For Λ and G there is no external momentum given. Several proposals for μ in the literature: Hubble constant H, temperature of the background radiation, square root of the Ricci scalar, ...
- In this work, we take the Gibbons-Hawking temperature T of the cosmological event horizon as renormalisation scale μ . $T = (2\pi R)^{-1}$ is given by inverse of the horizon radius R.
- Why this choice?

The universe is currently accelerating. Simplest reason: $\Lambda > 0 \rightsquigarrow$ final state of universe will be deSitter-like. deSitter space-time has a cosmological event horizon \rightsquigarrow only one scale: R

Renormalisation group equations with renormalisation scale $\mu = T_{GH} = (2\pi R)^{-1}$

• RGE for Λ :

$$\Lambda(R) = \Lambda_0 \left(1 + q_1 \ln \frac{R}{R_0} \right), \quad \Lambda_0 := \Lambda(R_0).$$

Quantity q_1 depends on the masses of the quantum fields:

$$q_1 := \frac{1}{\Lambda_0 32\pi^2} \left[m_{\mathsf{B}}^4 - m_{\mathsf{F}}^4 \right]$$

- m_{B,F}: field mass of one boson/fermion d.o.f.
- q₁ > 0: CC Λ increasing with the radius R of the event horizon. q₁ < 0: decreasing.
 RGE for G:

$$G(R) = \frac{G_0}{1 + q_2 \ln \frac{R}{R_0}}, \quad G_0 := G(R_0),$$
$$q_2 := \frac{G_0}{\pi} \left[\left(\frac{1}{6} - \xi \right) m_{\mathsf{B}}^2 + \frac{1}{12} m_{\mathsf{F}}^2 \right].$$

 ξ : coupling constant in the coupling between the Ricci scalar and the boson field: $\xi R \phi^2$.

• $q_2 \sim G_0 m^2 = \frac{m^2}{M_{\text{Planck}}^2} \ll 1 \rightsquigarrow$ effect of fields with high masses m small \rightsquigarrow very weak running of Newton's constant G, compatible with the strong bounds on the time-variation of G.

Conservation equations

• FRW space-time with line element:

$$ds^{2} = dt^{2} - a^{2}(t) \left(\frac{dr^{2}}{1 - kr^{2}} + r^{2}d\Omega^{2}\right).$$

• The radius of the event horizon depends only on the cosmological time t:

$$R(t) = a(t) \int_t^\infty \frac{dt'}{a(t')}.$$

- $\rightsquigarrow \Lambda$, G depend on time.
- Energy/matter content: perfect fluid with energy density ρ and pressure $p = \omega \rho$, equation of state parameter ω .
- Einstein's equations:

$$G^{\mu\nu}=8\pi G(\Lambda g^{\mu\nu}+T^{\mu\nu}) \ \, {\rm with} \ \ \Lambda=\Lambda(R), \ G=G(R)$$

• Time-dependence \rightsquigarrow modified conservation equations. Bianchi identities:

$$G^{\mu\nu}_{\ ;\nu} = 0 \ \rightarrow \ \dot{G}(\Lambda + \rho) + G(\dot{\Lambda} + \dot{\rho} + 3\frac{a}{a}\rho(1+\omega)) = 0.$$

• Energy transfer between Λ and matter content \rightsquigarrow "old" scaling behaviour $\rho \propto a^{-3(1+\omega)}$ no longer valid.

Cosmological evolution

• Equations for the scale factor a(t):

- No scaling rule for $\rho \rightsquigarrow$ eliminate it:

$$F(t) := \frac{\ddot{a}}{a} + Q\left[\left(\frac{\dot{a}}{a}\right)^2 + \frac{k}{a^2}\right] = \frac{8\pi}{3}G\Lambda(1+Q).$$

- Insert RGEs for $\Lambda,$ G:

$$K_0 F = \frac{1 + q_1 \ln \frac{R}{R_0}}{1 + q_2 \ln \frac{R}{R_0}}, \quad K_0 := \frac{3}{8\pi G_0 \Lambda_0 (Q+1)} = \frac{1}{H_0^2 \Omega_{\Lambda 0} (Q+1)}.$$

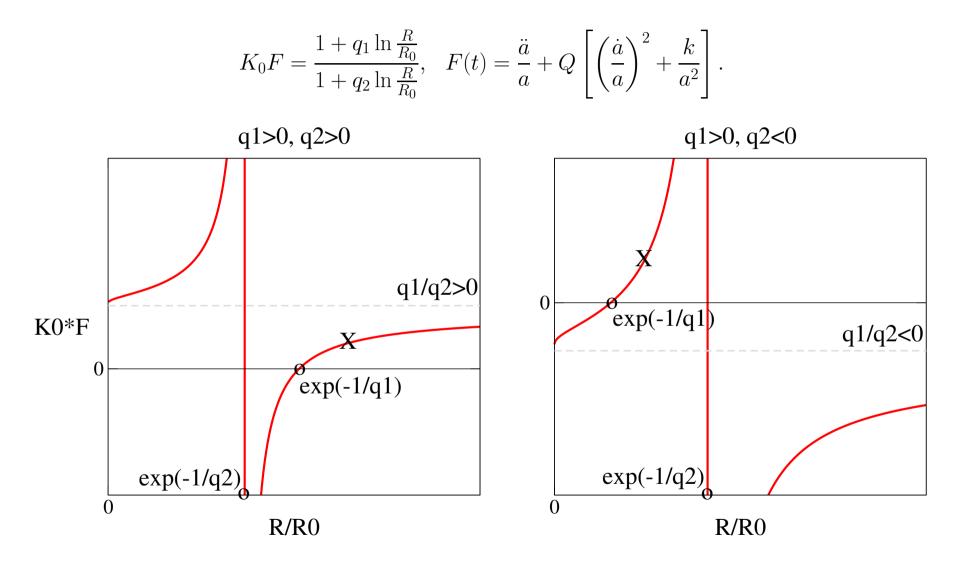
• Solve for R:

$$\frac{R(t)}{R_0} = \exp\left[\frac{K_0 F(t) - 1}{q_1 - q_2 K_0 F(t)}\right].$$

- R(t) involves an integral over the scale factor a(t).
- \bullet For a numerical treatment we differentiate w.r.t. t
 - \rightsquigarrow ordinary differential equation for the scale factor a(t):

$$\left[\frac{\dot{a}}{a} + \frac{(q_2 - q_1)K_0\dot{F}}{(q_1 - q_2K_0F)^2}\right] \cdot \exp\left[\frac{K_0F - 1}{q_1 - q_2K_0F}\right] - \frac{1}{R_0} = 0.$$

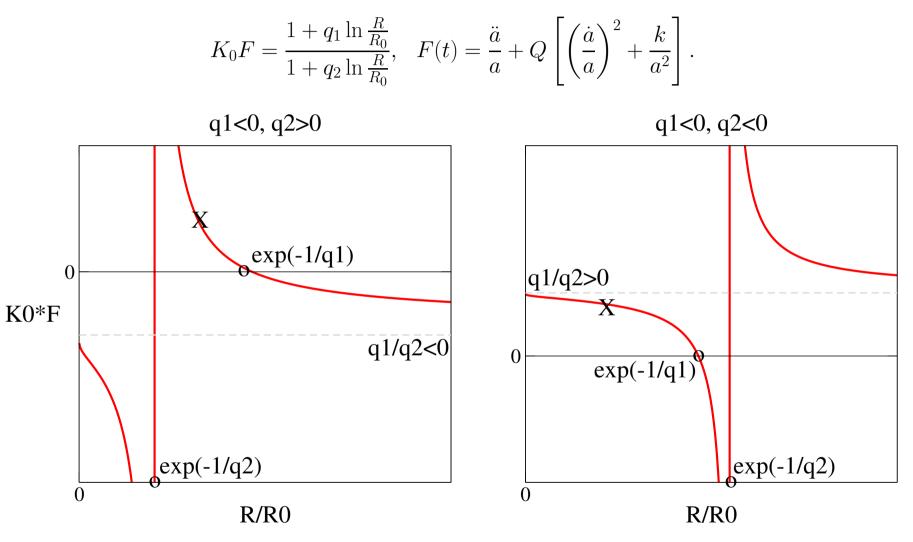
$q_1 > 0$: Increasing Λ with R



Numerical solutions for $q_1 > 0$

- $q_2 > 0$: For $t \to \infty$: $R \to \infty$, but $K_0 F \to \frac{q_1}{q_2} = \text{const.}$ $\rightsquigarrow \text{deSitter behaviour } a(t) \propto \exp(b \cdot t)$ with $K_0 F = b^2 / H_0^2 = \frac{q_1}{q_2}$. deSitter space-time has a finite horizon radius $R = b^{-1}$ in contrast to $R \to \infty \rightsquigarrow$ no solution.
- $q_2 < 0$: For $t \to \infty$: $K_0 F \to \infty$, $R \to \text{const.}$, not compatible, too.

$q_1 < 0$: Λ decreases with R



Numerical solutions for $q_1 < 0$

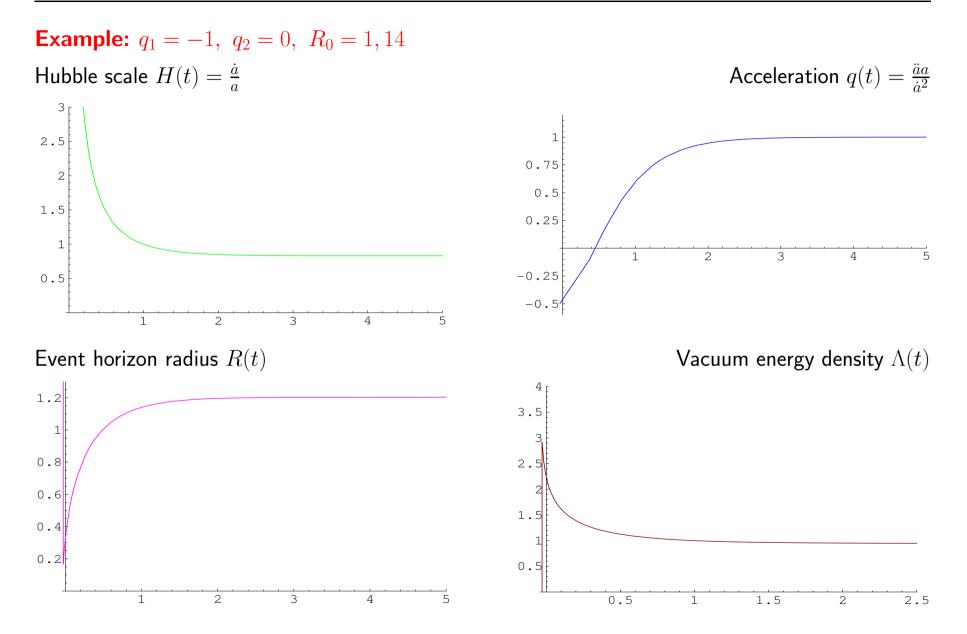
- Λ decreases with time until it reaches a stable point, where K_0F and R are finite, positive and constant. This is a final deSitter state.
- Acceptable values for q_1 :

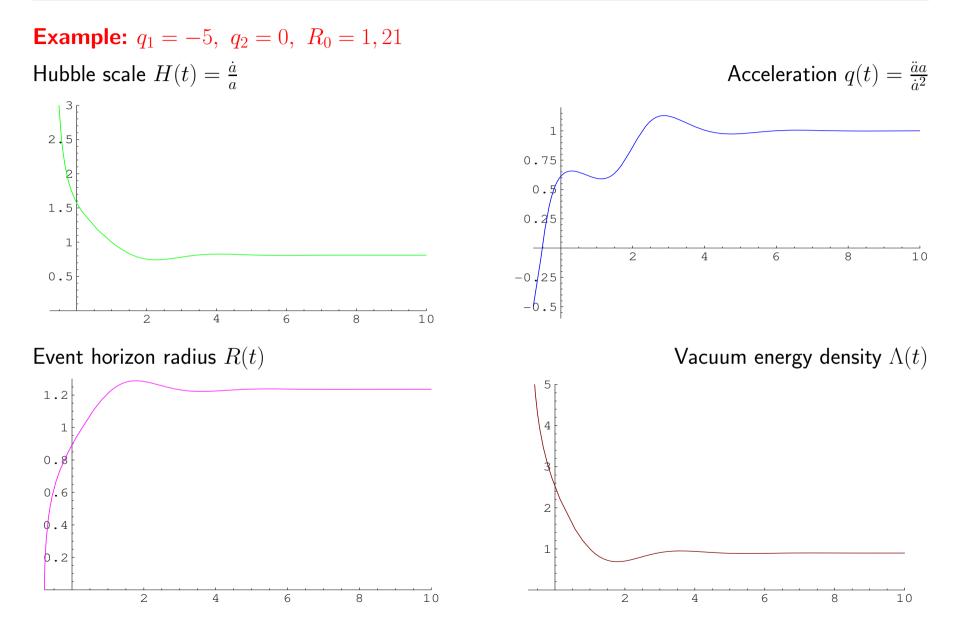
For $q_1 < 0$ we also observed an increased age of the universe. To be compatible with the observed age $t_0 \approx 13,7$ Gyr, we need $q_1 < 0$ and $|q_1| \leq \mathcal{O}(1)$, light fermions \rightsquigarrow Possible candidates: neutrinos $m_{\nu} \sim 1$ eV.

• Problem:

$$q_1 = \frac{1}{\Lambda_0 32\pi^2} \left[m_\mathsf{B}^4 - m_\mathsf{F}^4 \right].$$

The fields with the highest mass dominate. We have to assume some decoupling or suppression mechanism for the high-mass fields. The simple form of the RGEs in our model cannot account for this.





Conclusions

- Infinite contributions of quantum fields lead to a scale dependence of Λ and G.
- We used the radius R of the cosmological event horizon as renormalisation scale.
- We found no stable solutions for $q_1 > 0$.
- To be compatible with observations, we need $q_1 < 0$ and $|q_1| \lesssim \mathcal{O}(1)$. Known candidates: neutrinos.
- A more negative q_1 increases the age of the universe.
- An unknown decoupling or suppression mechanism is active for higher mass fields.
- The bounds for the running of G are satisfied even for fields with high masses.