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Abstract

A classical model of gravitation is studied in which a self interacting scalar field is

coupled to gravity with the metric undergoing a continuous signature transition. We

obtain dual signature changing classical solutions for the Einstein field equations. These

dual classical solutions correspond to the same quantum cosmology. Based on this cor-

respondence, it is hoped to look for a scenario for quantum creation of the Lorentzian

universe.
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1 Introduction

The initial idea of signature change is due to Hartle and Hawking [1] which makes it possible
to have both Euclidean and Lorentzian regions in quantum gravity. It was then shown that
signature change may happen even in classical general relativity . From a classical point of
view, the signature change may prevent the occurrence of singularities in general relativity,
such as the big-bang, which may be replaced by a compact Euclidean domain prior to the
birth of time in the Lorentzian domain, the so-called no-boundary proposal. Alternatively, the
classical signature change scenario may be an effective classical description of the quantum
tunneling approach for the creation of the Lorentzian universe.

2 Dual classical solutions

Consider the Einstein-Hilbert action

I =
∫

√

|g|
[

1

16πG
R+ LM

]

d4x, (1)

where LM = 1

2
∂0φ∂

0φ−U(φ) is the real scalar field Lagrangian and φ is assumed to be a homo-
geneous field which depends merely on the time parameter. We take the chart {β, x1, x2, x3}
and parametrize the metric as [2]

g = −βdβ ⊗ dβ +
R2(β)

[1 + k
4
r2]2

∑

i

dxi ⊗ dxi, (2)

where β is the lapse function with the hypersurface of signature change at β = 0. By the
transformations [2]

X = R3/2 cosh(αφ), (3)

Y = R3/2 sinh(αφ), (4)

where −∞ < φ < +∞, 0 ≤ R < ∞ and α2 = 3

8
, the corresponding effective Lagrangian is

obtained

L =
1

2
α−2

{

−Ẋ2 + Ẏ 2 +
9k

4
(X2 − Y 2)1/3 − 2α2(X2 − Y 2)U(φ(X,Y ))

}

, (5)

Concentrating on cosmologies with k = 0, we obtain

L =
1

2
α−2

{

−Ẋ2 + Ẏ 2)− (X2 − Y 2)U(φ(X,Y ))
}

, (6)

H =
1

2
α−2

{

−Ẋ2 + Ẏ 2) + (X2 − Y 2)U(φ(X,Y ))
}

. (7)

Now, we take the potential as

U(φ) = λ+
1

2α2
m2 sinh2(αφ) +

1

2α2
b sinh(2αφ), (8)
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where λ, m2 and b are the bare cosmological constant, positive mass square and coupling
constant respectively. Variation of the action with respect to the dynamical variables X and
Y gives the dynamical equations

ξ̈ = Mξ, (9)

where ξ =

(

X

Y

)

. These equations are subjected to the zero energy condition

ξ̇TJξ̇ = ξTJMξ, (10)

where J =

(

1 0
0 −1

)

, and M is the matrix of potential’s parameters. One may then define

the normal modes ξ = Sα where α =

(

u

v

)

and

S =

(

−m2−
√
m4−4b2

2b
−m2+

√
m4−4b2

2b

1 1

)

.

(11)

The zero energy condition then reads as

α̇TJα = αTIα, (12)

where J = STJS and I = SJMS. Evaluating this condition at t = 0, choosing α̇(0) = 0,
leads to

αT (0)Iα(0) = 0. (13)

The normal mode solutions are then obtained [2]

u±(t) = 2A± cosh(
√

λ+t),

v(t) = 2 cosh(
√

λ−t),

where A± are the roots of the zero energy condition. The normal modes (
u

v
), with zero

energy condition, for λ+, λ− < 0 lead to the following classical loci[3]

v = 2 cos
[

1

r
cos−1

(

ε
ru

2

)]

, |u| ≤
2

r
(14)

v = 2 cosh
[

1

r
cosh−1

(

ε
ru

2

)]

, |u| >
2

r

where r =
√

λ+

λ
−

, 0 < r < 1, ε = ±1 indicates two ways of satisfying the constraint H = 0, and

λ± are the eigenvalues of the matrix M .
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An interesting feature of this model is that one can find a class of transformations on the
space of potential’s parameters leaving the eigenvalues λ± of the matrix M invariant. These
transformations can be written as

λ→ λ̃ ≡
1

4α4
λ−1,

m2 → m̃2 ≡ m2 −
4α4λ2 − 1

α2λ
, (15)

b2 → b̃2 ≡ b2 +m2[(2α2λ)−1 − 2α2λ] + [(2α2λ)−1 − 2α2λ]2. (16)

It is seen that although the classical loci (14) do not change under (16), the corresponding
solutions R(β) and φ(β) change, since X(β) and Y (β) are related to u(β) and v(β) by the
decoupling matrix which changes under (16). Therefore, if we define (16) as duality transfor-
mations, then we have two sets of solutions for R(β) and φ(β) corresponding to dual sets of
physical parameters. We interpret the new parameters as dual bare cosmological constant,
dual mass square and dual coupling constant, respectively.

In the case of small parameters λ, m2 and b, the dual transformations map these small
values to very large values of the corresponding dual parameters. It then follows that two
different classical cosmologies, one with very small bare cosmological and coupling constants
and the other with large ones, exhibit the same signature dynamics on the configuration space
(u, v).

We have shown that it is possible to find dual classical cosmologies on the (R, φ) configu-
ration space corresponding to the same classical cosmology defined on the (u, v) configuration
space. On the other hand it is shown that [3] the corresponding Wheeler-Dewitt equation in
terms of variables (u, v) has analytic solutions and that the absolute value of these solutions
have maxima in the vicinity of classical loci (11) on the (u, v) configuration space which can
exhibit a signature transition. It then turns out that for any distinct quantum cosmology in
terms of the variables (u, v), we may correspond dual classical solutions (R, φ) and (R̃, φ̃), ad-
mitting signature transition from Euclidean to Lorentzian space-time. It would be interesting
if one could associate the solutions (R, φ) and (R̃, φ̃) to the Lorentzian and Euclidean regions,
respectively. Then, the solutions (R̃, φ̃) would jump to (R, φ) in passing from Euclidean to
Lorentzian region. We suggest that these possible jumps may be interpreted as quantum effects
describing the quantum creation of the Lorentzian universe.
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