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On ‘sufficienty’ small scales the universe is 
inhomogeneous

• There are we
• the solar system...



• galaxies...

M100



• clusters of galaxies...

Coma cluster



Galaxies are arranged in  sheets and filaments with 
voids in between

A slice of the SLOAN
galaxy catalog



CMB anisotropies

COBE (1992)

WMAP (2003)



The CMB has small fluctuations, 
∆ T/T ∼ a few × 10-5. 

As we shall see they reflect  roughly the amplitude of the 
gravitational potential. 
=> CMB anisotropies can be treated with linear perturbation theory. 
The basic idea is, that structure grew out of small initial 
fluctuations by gravitational instability. 
=> At least the beginning of their evolution can be treated with linear 

perturbation theory. 

As we shall see, the gravitational potential does not grow within 
linear perturbation theory. Hence initial fluctuations with an 
amplitude of ∼ a few × 10-5 are needed. In N. Kaloper’s talk you will 
hear about the main ideas how such fluctuations could emerge during 
an inflationary era of the universe. 



Linear cosmological perturbation theory
• metric perturbations

•Decomposition into scalar, vector and tensor components



Perturbations of the energy momentum 
tensor

Density and velocity

stress tensor



Gauge invariance
Linear perturbations change under linearized coordinate transformations,
but physical effects are independent of them. It is thus useful to 
express the equations in terms of gauge-invariant combinations. These 
usually also have a simple physical meaning.

Gauge invariant metric fluctuations (the Bardeen potentials)

Ψ is the analog of the Newtonian potential. In simple cases Φ=-Ψ.

In longitudinal gauge, the metric perturbations are given by



Gauge invariant variables for perturbations of the
energy momentum tensor

The anisotropic stress potential Π 

The entropy perturbation

w=p/ρ
c2

s=p’/ρ’

Velocity and density perturbations



constraints
•Einstein equations

dynamical

• Conservation equations



Simple solutions and consequences

matter

• The D1-mode is singular, the D2-mode is the adiabatic mode 
• In a mixed matter/radiation model there is a second regular 

mode, the isocurvature mode
• On super horizon scales, x<1, Ψ is constant
• On sub horizon scales, Dg and V oscillate while Ψ oscillates and 

decays like 1/x2 in a radiation universe.

radiation

x=cskη



lightlike geodesics
From the surface of last scattering into our antennas the 
CMB photons travel along geodesics. By integrating the 
geodesic equation, we obtain the change of energy in a 
given direction n:
Ef/Ei = (n.u)f/(n.u)i = [Tf/Ti](1+ ∆Tf /Tf -∆Ti /Ti)
This corresponds to a temperature variation. In first 
order perturbation theory one finds for scalar 
perturbations

acoustic oscillations

Doppler term

gravitat. potentiel
(Sachs Wolfe)

integrated Sachs Wolfe
ISW



Polarisation
• Thomson scattering depends on polarisation: a 

quadrupole anisotropy of the incoming wave 
generates linear polarisation of the outgoing wave.



Polarisation can be described by the Stokes 
parameters, but they depend on the choice of 
the coordinate system. A better way is to split 
the polarisation field into a gradient- and a 
rotational part: 

E-polarisation
(generated by scalar and tensor modes)

B-polarisation
(generated only by the tensor mode)

Due to their parity, T and B are not  
correlated while T and E are



An additional effect on CMB fluctuations is Silk damping: 
on small scales, of the order of the size of the mean free 
path of CMB photons, fluctuations are damped due to free 
streaming: photons stream out of over-densities into 
under-densities. To compute the effects of Silk damping 
and polarisation we have to solve the Boltzmann equation
for the Stokes parameters of the CMB radiation. This is 
usually done with a standard, publicly available code like 
CMBfast, CAMBcode or CMBeasy.



Reionization
The absence of the so called Gunn-Peterson trough in quasar
spectra tells us that the universe is reionised since, at least, 
z∼ 6.
Reionisation leads to a certain degree of re-scattering of 
CMB photons. This induces additional damping of anisotropies
and additional polarisation on large scales (up to the horizon
scale at reionisation). It enters the CMB spectrum mainly
through one parameter, the optical depth τ to the last
scattering surface or the redshift of reionisation zre .



Matter power spectra

The perturbations are random variables. We can only measure one 
realization of them, our observable Universe. However, for a 
given model of the Universe we can only reliably calculate 
expectation values, like         P(k),   hD(k)D*(k’)i = δ(k-k’)P(k)
where D(k) is the dark matter density fluctuation. Or 

Pv(k) = h V(k)V*(k’) i = δ(k-k’)Pv(k)
We then assume that these power spectra are independent of 

direction (isotropic random process), so that we can compare 
them with the Fourier transformed data averaged over 
directions in k-space.

If the random process describing the perturbations is Gaussian, 
these 2-point functions contain all the statistical information. 
Within linear perturbation theory these power spectra are 
related via the conservation equation,

PV(k) ' Ω0.6(H/k)2P(k)



The dark matter power spectrum as inferred 

from SLOAN . 

There is an additional 
problem when 
comparing the 
calculated dark
matter with the 
galaxy distribution:
How are they related?
The question of

bias.



The power spectrum of CMB fluctuations
∆T(n)  is a function on the sphere,  we can  expand it
in spherical harmonics

observed mean

consequence of
statistical isotropy

cosmic variance
(if the alm ’s are
Gaussian)



The physics of CMB fluctuations

θ > 1o

l<100

• Large scales : The gravitational potential  
on the  surface of last scattering, time     

dependence of the gravitational potential
Ψ ~ 10-5 .

6’< θ < 1o

100<l<800
• Intermediate scales : Acoustic oscillations of 

the baryon/photon fluid before 
recombination.

θ < 6’
800 > l 

• Small scales : Damping of fluctuations due to 
the imperfect coupling of photons and 
electrons during recombination 
(Silk damping).



Power spectra of scalar fluctuations

l



WMAP data
Temperature (TT = Cl) Polarisation (ET)

Spergel et al (2003)



Newer data I

CBI

From Readhead et al. 2004



Newer data II

Knowledge of the 
EE spectrum
at present.

From Readhead et al. 2004



Observed spectrum  of anisotropies
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Acoustic oscillations
Determine the angular distance to the last scattering surface, z1



Dependance on cosmological parameters

more 
baryons

Most cosmological parameters 
have complicated  effects on 
the CMB spectrum

larger Λ



Geometrical degeneracy
degeneracy lines: 

Degeneracy:

shift

Flat Universe:

Flat Universe (ligne of 
constant curvature ΩK=0 )



Primordial parameters 
Scalar spectum: scalar spectral index nS and 

amplitude A

nS = 1 : scale invariant spectrum
(Harrison-Zel’dovich)

blue, nS > 1

red, nS < 1

Tensor spectum:
(gravity waves) 

nT > 0

nT > 0

The ‘smoking gun’ of 
inflation, has not yet been  
detected: B modes of the 
polarisation (QUEST, 
2005).



Mesured cosmological parameters
(With CMB + flatness or  CMB + Hubble)

Attention: FLATNESS imposed!!!

zreion ~ 17
unexpectedly early reionisation

ΩΛ =0.73±0.11

a rigid constraint which is in slight 
tension with nucleosynthesis?
ωbar = 0.02 + 0.002

On the other hand: Ωtot = 1.02 +/- 0.02 with the HST prior on h...



Galaxy distribution (LSS)

Tegmark et al. 2003



Parameters from SDSS (Sloan Digital Sky Survey)



Cmbgg OmOlCMB
CMB data

CMB data
+ fν = 0,

w = -1

Tegmark et al. 03

L
+ Ωk=At=α=0

L
+ PS data

LSS+



Forecast1: WMAP 2 year data
(Rocha et al. 2003)

ωb = Ωbh2

ωm = Ωmh2

ωΛ = ΩΛh2

ns spectral index
Q  quad. amplit.
R  angular diam.
τ optical depth



Forecast2: Planck 2 year data

Forecast2: Planck 2 year data
(Rocha et al. 2003)



Forecast3: Cosmic variance 
limited data (Rocha et al. 2003)



Evidence for a cosmological constant
CMB + SN + HST + 2dF

Bridle & Lewis, 2002
Lensing statistics 

(CLASS)

Chae et al., 2002w=p/ρ 
(For Λ, w = -1)

WMAP + SN + HST

Spergel et al, 2003

Tegmark et 
al., 2003



• We know the  cosmological parameters with impressive  
precision  which will still improve considerably during the next
years.

• We don’t understand at all the bizarre ‘mix’ of cosmic  
components: Ωbh2 ~ 0.02, Ωmh2 ~ 0.16, ΩΛ~ 0.7

• The simplest model of inflation (scale invariant spectrum of 
scalar perturbations, vanishing curvature) is a good fit to the 
data.

• What is dark matter?

• What is dark energy?

• What is the inflaton?! W
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