Continuum gamma rays from Kaluza-Klein dark matter

Martin Eriksson, Stockholm University

with L. Bergström, T. Bringmann and M. Gustafsson

DESY Theory Workshop Astroparticle Physics

28 sep - 1 okt 2004

Universal Extra Dimensions

Appelquist et al., Phys. Rev. D 64, 035002 (2001), hep-ph/0012100.

- All Standard Model fields propagate in the bulk \rightarrow In effective 4D theory, each field has a Kaluza-Klein (KK) tower of massive states
- Ex: Scalar field in 5D with y compactified on circle S^1 of length $L = 2\pi R$

 $\phi(x^{\mu}, y) = \sum \phi_n(x^{\mu}) e^{i\frac{2\pi n}{L}y} = \sum \phi_n(x^{\mu}) e^{i\frac{n}{R}y}, \quad p_n = \frac{n}{R}$

- No branes → Translational invariance → Momentum conservation in the ED ⇔ KK number conservation in 4D
- Unwanted degrees of freedom at zero level \rightarrow Orbifold compactification: For S^1/Z_2 , $y \leftrightarrow -y$
- KK parity (−1)ⁿ conservation → Lightest KK Particle (LKP) is stable → Possible WIMP candidate

KK dark matter

- First KK mode tree-level mass $m^{(1)} = \sqrt{\frac{1}{R^2} + m_{EW}^2}$
- Radiative corrections typically are larger than electroweak mass shifts → LKP identification becomes non-trivial
- One-loop calculation $\rightarrow \text{LKP} \sim B^{(1)}$ (Cheng *et al.*, 2002)
- $\Omega_{CDM}h^2 \sim 0.10 \pm 0.02$ (Tegmark *et al.* 2003) \rightarrow Relic density \rightarrow 500 GeV $\leq m_{B^{(1)}} \leq 1$ TeV (Servant & Tait, 2003)

• Current collider constraints $R^{-1} \gtrsim 300$ GeV (Appelquist *et al.*, 2001), LHC to probe $R^{-1} \sim 1.5$ TeV (Cheng *et al.*, 2002)

Primary gamma rays 1

- Detection properties studied in some detail (Cheng et al. 2002, Hooper & Kribs 2003, 2004, Servant & Tait 2002, Bertone et al. 2003) → Striking positron signal for low masses but direct detection and neutrinos from sun need next generation's detectors
- Secondary gamma rays so far: $B^{(1)}B^{(1)} \to q \bar{q} \to \gamma$ and synchrotron radiation
- \rightarrow Primary gamma rays from bremsstrahlung of charged final states.
 - Branching ratios: $\ell^+\ell^-$ 59%, $q\bar{q}$ 35%, $\nu\bar{\nu}$ 4%, Higgs 2%. Including electroweak symmetry breaking effects $\rightarrow W^+W^- \leq 1\%$
 - Long life-time implicit → Focus on charged leptons final states

Primary gamma rays 2 / Secondary gamma rays

- $\frac{d\sigma(B^{(1)}B^{(1)} \to \ell^+ \ell^- \gamma)/dx}{\sigma(B^{(1)}B^{(1)} \to \ell^+ \ell^-)} \sim 0.1, \qquad x = E_{\gamma}/m_{B^{(1)}}$
- Electromagnetic coupling and difference between two and threebody final states \rightarrow Expect $\sim \frac{\alpha}{\pi}$, i.e. an enhancement of ~ 50
- Simulations of differential photon multiplicity with PYTHIA Monte Carlo code from Fornengo *et al.* 2004 \rightarrow

$$\frac{\sigma(B^{(1)}B^{(1)} \to q\bar{q} \to \gamma)}{\sigma(B^{(1)}B^{(1)} \to q\bar{q})} = \sum_{q,\tau} \kappa_i \frac{dN^i_{\gamma}}{dx}$$

Expected gamma flux

$$\begin{split} \Phi_{\gamma}(\Delta\psi) &\simeq 0.94 \cdot 10^{-15} \left(\frac{\sigma v}{10^{-29} \text{ cm}^3 \text{ s}^{-1}} \right) \left(\frac{1 \text{ TeV}}{m_{B^{(1)}}} \right)^2 \langle J(\psi) \rangle_{\Delta\psi} \Delta\psi \text{ cm}^{-2} \text{ s}^{-1} \\ \langle J(\psi) \rangle_{\Delta\psi} \Delta\psi &= 100 \text{ (Moore profile, } \Delta\Omega = 10^{-5} \text{)} \end{split}$$

F.A. Aharonian et al. astro-ph/0408145 (Preliminary result)

Conclusions

- Added primary gamma rays and tau lepton decays to continuous spectrum from KK dark matter annihilating in the galactic center
- Striking spectral feature for high $B^{(1)}$ masses possibly within reach of present experiments
- Might distinguish the LKP from the LSP (work in progress)