# A Renormaliazable Standard Model with a composite Higgs?

# Jörg Jäckel

**DESY Workshop** September 2004

Holger Gies and Christof Wetterich

Phys.Rev.D69:105008,2004 (hep-ph/0312034) Universität Heidelberg 1. Introduction

#### The Standard Model

Tested to very high precision

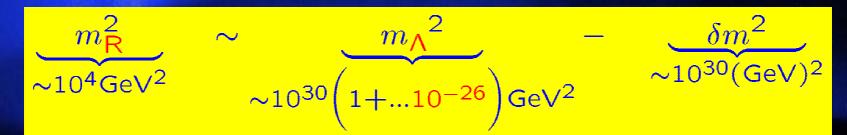
Large number of parameters
 The hierarchy problem
 The triviality Problem
 Unknown origin of flavor physics
 Unknown origin of neutrino physics

#### The Hierarchy Problem

We have a huge hierarchy in the standard model:

$$M_{GUT} \sim \Lambda_{UV} \gg \Lambda_{EW} \sim 10^{-13} \Lambda_{UV}$$

The Higgs mass renormalizes quadratically



Incredible Finetuning:

 $1:10^{26}$ 

#### The Hierarchy Problem: caveat

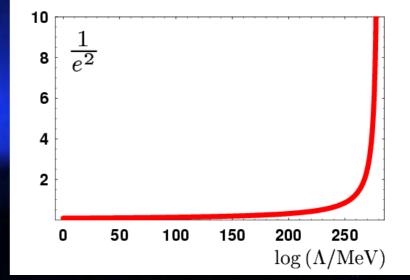
- However: It is a problem of naturalness or finetuning!
- It is not a "fundamental" problem.

#### The Triviality Problem

- The triviality problem appears in the U(1) and the Higgs sector of the SM
- E.g., in QED we have the well known Landau pole → breakdown of perturbation theory:

$$\frac{1}{e_{\rm R}^2} - \frac{1}{e_{\rm A}^2} = \beta \log \left(\frac{\Lambda}{m_{\rm R}}\right),$$
$$\beta = \frac{N_{\rm f}}{6\pi^2}$$

andau 1955

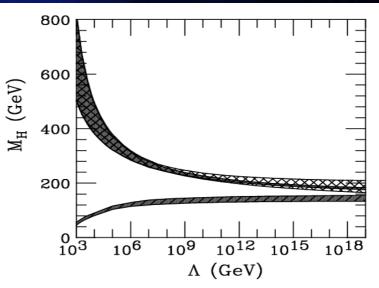


#### The Triviality Problem

- It is a fundamental problem.
- A trivial theory must be an effective field theory with a finite UV cutoff!
- More important in the Higgs sector

bound on the Higgs mass





# 2. Renormalization Group Flow

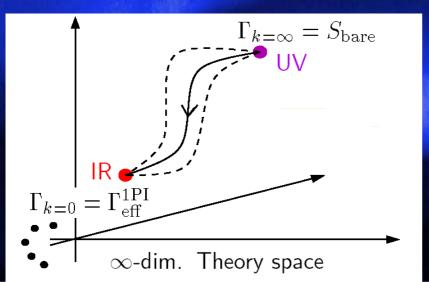
### A Flow Equation for the Effective Action

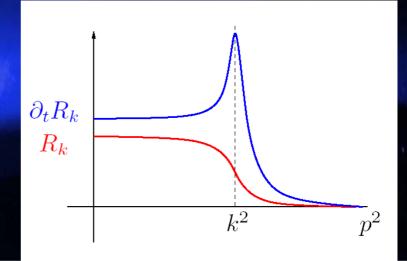
IR: 
$$k \to 0$$
  
 $\partial_t \Gamma_k = \frac{1}{2} \operatorname{STr} \partial_t R_k (\Gamma_k^{(2)} + R_k)^{-1} =$ 

Wetterich, 1993

#### RG trajectory:

Cutoff function  $R_k$ 



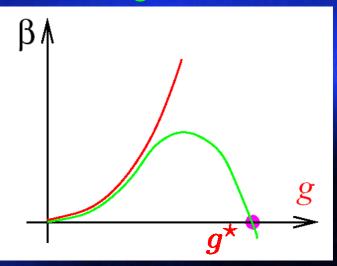


#### Non-perturbative Renormalizability

 Asymptotic safety: (non-gaussian) fixed point:

 $\beta_i(g_1^\star, g_2^\star, \ldots) = \mathbf{0}, \ \forall i$ 

Weinberg, 1976



Linearized flow near the FP

$$(g_i - g_i^{\star}) = \sum_I C^I V_i^I \left(\frac{k_0}{k}\right)^{\Theta_I}$$

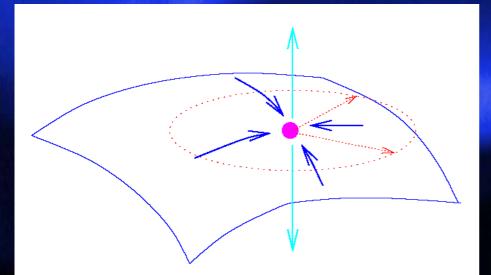
#### Non-perturbative Renormalizability



- All relevant trajectories together form the critical surface
- Starting on the critical surface we end in  $g^{\star} \mathrm{for}\,\Lambda \to \infty$

#### Non-perturbative Renormalizability

The other way around: all other starting points have no finite UV-limit
 not allowed (C<sup>I</sup><sub>irrelevant</sub> = 0)
 Finite dimensional critical surface
 finite number of parameters





The Hierarchy Problem Revisited

Hierarchy problem

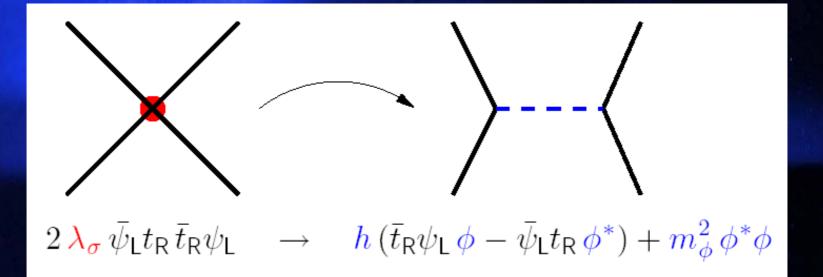
• E.g., in the standard model (gaussian FP):  $\partial_t \frac{m_H^2}{k^2 h^2} = -2 \frac{m_H^2}{k^2 h^2} + \frac{1}{8\pi^2}$   $\longrightarrow \Theta_I = 2 \gg 0$  3. Our Model

## A Composite Higgs ?

- Hierarchy and triviality caused by scalar particle
  - make it a composite

 $\bar{\psi}\psi 
ightarrow \phi$ 

Nambu, Miransky, Tabanashi, Yamawaki, 1989





Not perturbatively renormalizable

$$[\lambda_{\sigma}] = -2$$

- Simplest models ruled out ?
- In bosonic formulation, still a hierarchy problem

#### **Towards the Standard Model**

 Toy model with U(1)×5U(N<sub>c</sub>) gauge and SU(N<sub>f</sub>)×SU(N<sub>f</sub>) chiral symmetry

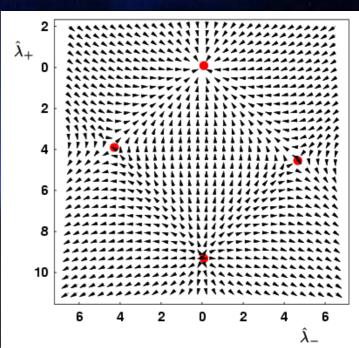
$$\Gamma_{k} = \int \bar{\psi} \left( i Z_{\psi} \partial \!\!\!/ + Z_{1} \bar{g} A \!\!\!/ + Z_{1}^{\mathsf{B}} \bar{e} B \!\!\!/ \right) \psi + \frac{Z_{\mathsf{F}}}{4} F_{z}^{\mu\nu} F_{\mu\nu}^{z} + \frac{Z_{\mathsf{B}}}{4} B^{\mu\nu} B_{\mu\nu} + \frac{1}{2} \Big[ \bar{\lambda}_{-} (\mathsf{V}-\mathsf{A}) + \bar{\lambda}_{+} (\mathsf{V}+\mathsf{A}) + \bar{\lambda}_{\sigma} (\mathsf{S}-\mathsf{P}) + \bar{\lambda}_{\mathsf{V}\mathsf{A}} \left[ 2(\mathsf{V}-\mathsf{A})^{\mathsf{adj}} + (1/N_{\mathsf{c}})(\mathsf{V}-\mathsf{A}) \right] \Big]$$

#### where

# Fermionic Sector • Flow equations (for $g^2, e^2 = 0$ ) $\partial_t \lambda_i = 2\lambda_i + \lambda_i A_i^{jk} \lambda_k$

• 2 fixed points per  $\lambda \implies 16$  FP

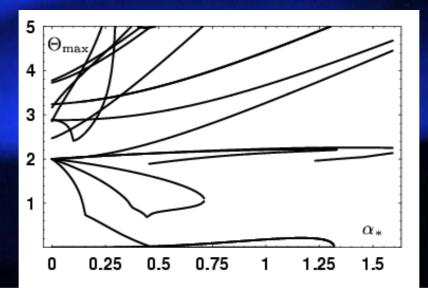
(<sup>4</sup><sub>j</sub>) FP with j relevant directions
All FP solve triviality problem



### Hierarchy Problem?

- For vanishing gauge couplings...
- At least one eigenvalue  $\Theta^{\max} \geq 2$
- BUT: non-vanishing gauge couplings may cure this problem

$$\partial_t \lambda_i = (\mathbf{2} + O(e^2, g^2))\lambda_i + \lambda_j A_i^{jk}\lambda_k + O(e^4, e^2g^2, g^4)$$



# Gauge Coupling Flow

Naively: 
$$\longrightarrow \partial_t g^2 = \eta_F g^2 + C_i \lambda_i g^2$$

Ward identity

$$\partial_t g^2 = \eta_{\rm F} g^2 + \frac{C_i \partial_t \lambda_i}{C_k \lambda_k} g^2$$

Gies, Wetterich, JJ, 2003

no contributrion at FP does not induce FP 4. Conclusions

#### Conclusions

- Many fixed points 

   toy model may be asymptotically safe
- Hierarchy problem still severe without gauge couplings  $\implies$  need  $g^2, e^2 \neq 0$
- Fermion interactions cannot induce fixed point in gauge couplings
- # of physical parameters may be less than in the SM

### Outlook

- + SU(2)<sub>L</sub> ?
- Strongly coupled gauge sector
- Non-standard fermionic action no quadratic term?

