Dynamical CP violation in the Early Universe

Balaji Katlai (McGill University)

DESY workshop, 2004
Outline

1. Motivation
2. Early Universe CP violation
3. CP violation in the scalar sector
4. Transfer of CP violation to the fermions
5. Generation of baryon/lepton number asymmetry
6. Conclusions
Introduction

★ The observed baryon asymmetry (BA) requires CP violation as one of the three Sakharov conditions

★ The standard model of electroweak physics generates a CP asymmetry in the quark sector via the CKM phase

★ The conventional CKM phase generated CP asymmetry is far too small to explain the observed baryon asymmetry in the Universe $\sim 10^{-19}$ (Shaposhnikov’s talk)

★ A CP asymmetric phase generated in the scalar fields in the early Universe could lead to large enough asymmetry to explain the BA

★ The CP phase can be generated when the scalars are excited and inflation provides a large coherent effect

★ The CP asymmetry is dynamical and is determined by the scalar field dynamics
In the simplest scenario consider two scalar fields, ϕ_{\pm}.

The Lagrangian which describes the interaction can is given as

$$L = -m^2_i \phi_i^\dagger \phi_i + g\phi_-^\dagger \phi_- \phi_+ + h.c.$$}

We take the coupling g to be real \rightarrow the interaction is CP conserving.

The fields ϕ_{\pm} can excite complex phase difference, say α.

It is very natural for $\alpha \neq 0$ when the fields are in a hot early Universe.

The induced phase difference can give rise to large CP asymmetry (DOLGOV).
Asymmetric initial conditions

★ In the hot early Universe, the excited fields can create a quanta of field via fluctuations

★ In general the field fluctuations
\[\phi'_- = \phi_- - c_- ; \quad \phi'_+ = \phi_+ - c_+ e^{i\alpha} \] (Kalopers talk)

★ Generically, the initial conditions are asymmetric since \(\alpha \neq 0 \) and \(c_+ \neq c_- \)

★ A new cubic interaction is induced
\[V_3 = g(c_+ e^{i\alpha} \phi_- \dagger \phi_- \phi_- + c_- \phi_- \dagger \phi_- \phi_- \phi_+ + 2c_- \phi_- \dagger \phi_- \phi_- \phi_+) \]

★ \(V_3 \) can contribute to a two-body CP violating decay

★ The CP asymmetry in the scalar sector can lead to an asymmetry in the number density of the \(\phi_i \) particles

★ The dynamical nature is determined by the dynamics of the field values \(c_\pm \)
The CP violating two-body decay is via the process

\[\phi^+ \rightarrow 2\phi^- \]

The tree level graph \(\sim g c_+ e^{i\alpha} \) while the loop level graph \(\sim (2g c_-)^2 e^{-i\alpha} \)

The net CP phase difference due to tree and loop interference is \(\sin 2\alpha \)

The decay \(\phi^+ \rightarrow 2\phi^- \) leads to an asymmetry in the number density \(\delta N = N(\phi^-) \neq N(\phi^+) \sim \sin 2\alpha \)

We require \(m_+ \geq 2m_- \) for (i) kinematics and (ii) absorptive contributions
Some additional remarks

★ The background field values $[c_-, c_+]$ in general are non-zero and hence support a CP asymmetry
★ The asymmetry is expected to occur after inflation to avoid any dilution
★ The requirement $\sin 2\alpha \neq 0$ is extended coherently over a large Hubble patch due to inflation and hence is not washed out due any conceivable averaging of the CP phase
★ The time dependence of the asymmetry is determined by the time evolution of the backround values c_\pm
★ In the slow-roll approximation

$$\dot{c}_\pm \approx -\frac{1}{3H} \frac{dV}{d\phi_\pm} \bigg|_{\phi_\pm = c_\pm}$$
Transfer of the asymmetry to fermions

- The scalar asymmetry δN can be transferred to fermions
- A fermion asymmetry can be achieved via the Yukawa interaction
 $$Y = \bar{\psi}_L \phi_\sigma \psi_R + \text{h.c.}$$
- The interaction leads to the decays:
 $$\phi_\sigma \rightarrow \bar{\psi}_R \psi_L \text{ and } \phi_\sigma^\dagger \rightarrow \bar{\psi}_L \psi_R$$
- The decay leads to an asymmetry in the left-handed fermion number density
- The asymmetry: $\delta N_f = N(\bar{\psi}_L) - N(\psi_L) \sim \delta N \cdot \Gamma$
- The asymmetry is possible only if fermions are Dirac!
The left-handed fermion asymmetry can be transferred to a Dirac leptogenesis (Lindner et al.,)

The decay of ϕ_- to fermions leads to a lepton asymmetry

$$Y_l \sim \sin 2\alpha \Gamma = y_l \sin 2\alpha \frac{y_l^2 c}{8\pi}$$

The chances that the fermion asymmetry does not equilibrate are only if $y_l \ll 1$

The condition is easily satisfied if we choose ϕ_- to decay into Dirac neutrinos

The Dirac neutrino asymmetry is then converted to a baryon number asymmetry via sphaleron processes giving rise to:

$$Y_B \propto Y_l$$ where the proportionality is determined by the particle spectrum in a given model
Conclusions

- Early Universe can induce a large enough CP violation via initial conditions which are generic.
- Inflation redshifts this asymmetric initial conditions starting from a tiny region to a large Hubble patch.
- To generate a lepton asymmetry, it is preferable to have Dirac neutrinos since their small Yukawa couplings will ensure no wash-out of the generated asymmetry.
- The baryon asymmetry is generated via Dirac leptogenesis \(\leftrightarrow \) asymmetric scalar density.
- Other alternatives are viable for generating a baryon asymmetry using asymmetric initial conditions.
- The dynamical nature of the asymmetry depends on the background evolution of the fields and hence on the values \(c_\pm \).