The Type Ia Supernova Hubble Diagram

Bruno Leibundgut European Southern Observatory

The original Hubble Diagram (Galaxies)

A modern Hubble Diagram

The expansion of the universe

Luminosity distance in an isotropic, homogeneous universe as a Taylor expansion

$$D_{L} = \frac{cz}{H_{0}} \left\{ 1 + \frac{1}{2} (1 - q_{0})z - \frac{1}{6} \left[1 - q_{0} - 3q_{0}^{2} + j_{0} \pm \frac{c^{2}}{H_{0}^{2}R^{2}} \right] z^{2} + O(z^{3}) \right\}$$

$$\dot{a} \qquad \dot{a} \qquad \ddot{a} \qquad 2 \qquad \ddot{a} \qquad 2 \qquad \ddot{a} \qquad 2 \qquad \dot{a} \qquad \dot{a} \qquad 2 \qquad \dot{a} \qquad \dot$$

 $H_0 = \frac{\pi}{a} \qquad q_0 = -\frac{\pi}{a} H_0^{-2} \qquad j_0 = -\frac{\pi}{a} H_0^{-3}$

Supernovae

The nearby SN Ia sample

The nearby SN Ia Hubble diagram

H₀ from the nickel mass

$$H_{0} = \frac{cz}{D} = cz \sqrt{\frac{4pF}{L}} = cz \sqrt{\frac{4pF}{E_{Ni}}} \propto cz \sqrt{\frac{4pF}{M_{Ni}}}$$

Hubblellaminosity distancett's rule Ni-Co decay and rise time

Need bolometric flux at maximum F and the redshift *z* as observables

Comparison with models

Adding jerk ...

Friedmann cosmology

Assumption: homogeneous and isotropic universe

Null geodesic in a Friedmann-Robertson-Walker metric:

$$D_{L} = \frac{(1+z)c}{H_{0}\sqrt{|\Omega_{k}|}} S\left\{ \sqrt{|\Omega_{k}|} \int_{0}^{z} \left[\Omega_{k}(1+z')^{2} + \Omega_{M}(1+z')^{3} + \Omega_{\Lambda} \right]^{-\frac{1}{2}} dz' \right\}$$

The equation of state parameter w

General luminosity distance

$$D_{L} = \frac{(1+z)c}{H_{0}\sqrt{|\Omega_{k}|}} S\left\{ \sqrt{|\Omega_{k}|} \int_{0}^{z} \left[\Omega_{k}(1+z')^{2} + \sum_{i} \Omega_{i}(1+z')^{3(1+w_{i})} \right]^{-\frac{1}{2}} dz' \right\}$$

• with $k = 1 - \sum_{i} \Omega_{i}$ and $w_{i} = \frac{p_{i}}{r_{i}c^{2}}$
 $w_{M} = 0$ (matter)

 $\mathbf{w}_{\mathbf{R}}$ =? (radiation)

w_L= -1 (cosmological constant)

And on to a variable ?

Ansatz:

 $?(z) = ?_{0} + ?'z$

Four redshift regimes

z<0.05

- Define the characteristics of Type Ia Supernova
- Understand the explosion and radiation physics
- Determination of H₀
- z<0.3
 - Explore the systematics of SNe Ia
 - Establish distance indicator

Four redshift regimes (cont.)

0.2<z<0.8

- Measure the strength of the cosmic acceleration (dark energy)
- z>0.8
 - break the degeneracy
 - measure matter density

All redshifts

• Measure details of dark energy

The SN Ia Hubble diagram

- powerful tool to
 - measure the absolute scale of the universe H₀
 - measure the expansion history (q_0)
 - determine the amount of dark energy
 - measure the equation of state parameter of dark energy

Caveats

Warning to the theorists:

Claims for a measurement of a change of the equation of state parameter w are exaggerated. Current accuracy is inadequate for too many free parameters in the analysis.

Type Ia supernovae appear currently the most promising route to provide a possible answer to what the Dark Energy is.

All redshifts need to be covered

- distant SNe Ia alone are useless
- nearby SNe Ia are the source of our understanding of the distance indicator