Experimental Astroparticle Physics in DESY Baikal Amanda IceCube

The Future

Christian Spiering, DESY Theory Workshop, September 2004

NT-200 Lake Baikal

- 1981 first site explorations
- 1984 first stationary string
- 1993 first neutrino detector NT-36
- 1994 first atm. neutrino separated
- 1998 NT-200 finished

~ 2x Super-K for 1 TeV muons

Gold-plated neutrino event from 4-string stage (1996)

96 pairs \rightarrow 192 PMTs

AMANDA South Pole

first site studies at South Pole shallow detector in bubbly ice

10 strings (Amanda-B10)

19 strings (Amanda-II)

~ 1990 1993/4

1997

2000

Gold-plated neutrino event, Amanda-B10

The km3 scale at South Pole IceCube

- 80 Strings
- 4800 PMTs
- Instrumented
 Volume: 1 km³
- Installation: 2005-2010

Revised baseline since April 2004 (70 strings) string 71-80 in contingency

IceCube strings	lceTop tanks		
up to 4	up to 8	Jan 2005	
16	32	Jan 2006	
32	64 100	Jan 2007 Jan 2008	
50			
68	136	Jan 2009	
70+n	140+n	Jan 2010	
DESY: • 1300 O	 part of electronics 		

- software/data processing
- analysis

Chemical Composition of charged CR

Chemical Composition

Atmospheric Neutrinos

AMANDA II

- up-going muon
- 61 modules hit

AMANDA Event Signatures: Muons

CC muon neutrino interaction → track

No external geometry file is opened. Detector: ananda-b-10, 10atrings, 302 modules Data file: /home/itaboada/anim_eventa/strict19.f2k File contains 19 events. Diaplaying data event 1197960 from run 0 Recorded yoldy: 1997/285 18132.0091381 accords past roidright. Before cuts: 44 hits, 44 OMs After cuts: 44 hits, 44 OMs Antraoun

 $\nu_{\mu} + N \rightarrow \mu + X$

AMANDA-II 2000 data

First spectrum > 3 TeV:

- up to 100 TeV
- matches
 lower-energy
 Frejus data

AMANDA average flux limit for two assumed spectral indices α , compared to the average gamma flux of **Markarian 501** as observed in 1997 by HEGRA.

AMANDA-II has reached the sensitivity needed to search from neutrino fluxes from TeV gamma sources of similar strength to the instrinsic gamma flux.

Search for a Diffuse

Extraterrestrial Flux

Muon neutrinos, energy < 1 PeV

Cascades inside detector

Sensitive to all 3 flavors

- CC electron and tau neutrino interaction:
- $v_{(e,\tau,)}$ + N \rightarrow (e, τ) + X
- NC neutrino interaction: $v_x + N \rightarrow v_x + X$

•			
· · ·			
·			
1			
	· .		
	• •	· · ·	
		· .	
 • • • • • • 		· · · ·	
	- ,	· · ·	
1 A. A.			
1.1.1			
1.1			
	1 A.		
1.		· : :	
- 11			
		·	
	1.1		
- 11 T		1.1.1	
		1.1	
1.111.111			
• • •	-	. • 1	
	•		
	•		
	•	•	
· .	•	•	
	•		
		•	
	-	-	
	. *		
	1		

The highest energy cascade-like event (~ 200 TeV)

 $E^2 \Phi_{all-v} < 0.6 \cdot 10^{-6} \text{ GeV}^{-1} \text{ cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1}$

4 times better sensitivity !

 $E^2 \Phi_{\text{all}-v} < 1.02 \cdot 10^{-6} \text{ GeV}^{-1} \text{ cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1}$

Experimental Limits

Models and bounds are shown for ν_{μ} , and without taking into account oscillations

Taking into account oscillations (v_e : v_{μ} : v_{τ} = 1:1:1) and referring to **all 3 flavors**, we multiply by factor **1.5**:

 $v_{e}:v_{\mu}:v_{\tau}=1:2:0$

On the following slide, exp.limits which have been obtained for v_{μ} alone, are multiplied by a factor 3.

assuming
$$\Phi_{all} = 1/3 \cdot \Phi_{v_e} + 1/3 \cdot \Phi_{v_{\mu}} + 1/3 \cdot \Phi_{v_{\tau}}$$

... in contrast to limits, which have been obtained in analyses sensitive to all flavors

shown in blue

Lines for integral limits extend over the energy range which includes 90% of the events of a hypothetical E^{-2} flux (5% below and 5% above)

Indirect Search for WIMPs

Amanda

At South Pole the Sun sinks maximally 23° below horizon. Therefore only Amanda-II with its dramatically improved reconstruction capabilities for horizontial tracks (compared to Amanda-B10) can be used for solar WIMP search.

Present upper limits and expected IceCube sensitivity on muon flux from neutralino annihilations in center of Sun

Perspectives

High Energy Photon Sky: Source Count vs. Year

(modified from M. De Naurois, astro-ph/0409361)

High Energy Photon Sky: Source Count vs. Year

(modified from M. De Naurois, astro-ph/0409361)

