Was $\alpha = e^2/\hbar c$ different at high redshift?

DESY 2004

John Webb, School of Physics, University of New South Wales, Sydney, Australia

Why our particular values of the constants?

History: Milne, Dirac : 1937. The first to ask "Do the constants of Nature vary?"

Fine tuning": Our existence owes itself to the "fortuitous" values of the fundamental parameters of physics and cosmology; $\alpha = 1/137$, $m_n - m_p = 1.3$ MeV, expansion rate, $\Lambda = ...$

Anthropic principle: But, we *are* here, so we should not be surprised that physics appears to be "fine-tuned" for our existence

Recent motivation: Theories of unification of gravity and other interactions, higher dimensional theories, etc. Lengthy review by Uzan '02.

Quasars: physics laboratories in the early universe

Parameters describing ONE absorption line

Cloud parameters describing TWO (or more) absorption lines from the same species (eg. MgII 2796 + MgII 2803 A)

Cloud parameters describing TWO absorption lines from <u>different</u> species (eg. MgII 2796 + Fell 2383 A)

$$\mathbf{b}_{\text{observed}}^2 = \mathbf{b}_{\text{thermal}}^2 + \mathbf{b}_{\text{bulk}}^2 = \frac{2\mathbf{kT}}{\mathbf{m}} + \mathbf{cons} \tan \mathbf{t}$$

T is the cloud temperature, m is the atomic mass

So we understand the relation between (eg.) b(MgII) and b(FeII). The extremes are:

A: totally thermal broadening, bulk motions negligible, $b(MgII) = \sqrt{\frac{m(Fe)}{m(Mg)}}(b(FeII)) = Kb(FeII)$

B: thermal broadening negligible compared to bulk motions, b(MgII) = b(FeII)

We can therefore reduce the number of cloud parameters describing TWO absorption lines from *different* species:

How reasonable is the previous assumption?

The reduction in the number of free parameters introduces no bias in the results

The "Many-Multiplet method" (Webb et al. PRL, 82, 884, 1999; Dzuba et al. PRL, 82, 888, 1999) - use different multiplets simultaneously - order of magnitude improvement

Advantages of the Many Multiplet method

- 1. Includes the total relativistic shift of frequencies (e.g. for s-electron) i.e. it
- includes relativistic shift in the ground state

- (Spin-orbit method: splitting in excited state relativistic correction is smaller, since excited electron is far from the nucleus)
- 2. Can include many lines in many multiplets

- (Spin-orbit method: comparison of 2-3 lines of 1 multiplet due to selection rule for E1 $|J_i - J_f| \le 1$ transitions - cannot explore the full multiplet splitting)
- 3. Very large statistics all ions and atoms, different frequencies, different redshifts (epochs/distances)
- 4. Opposite signs of relativistic shifts helps to cancel some systematics.

Parameterisation:

wavenumber

Wavelength precision and q values

Ion	λ_0	ω_0	Ground	Upper	ID	IP	f	q_1	q_2
	Å	$\overline{\mathrm{cm}^{-1}}$	state	state		$\overline{\mathrm{eV}}$		$\overline{\mathrm{cm}^{-1}}$	$\overline{\mathrm{cm}^{-1}}$
Mgı	2852.96310(8)	$35051.277(1)^{b}$	$3s^{2}$ ¹ S ₀	$3s3p \ ^{1}P_{1}$	а	_	1.810^{f}	106	-10
Мg II	2796.3543(2)	$35760.848(2)^{b}$	$3s {}^{2}S_{1/2}$	$3p^{\bar{2}}P_{3/2}$	b	7.7	0.6295^{g}	211	0
0	2803.5315(2)	$35669.298(2)^{b}$	-/-	$3p {}^{2}P_{1/2}$	с		0.3083^{g}	120	0
Al II	1670.7887(1)	$59851.972(4)^{c}$	$3s^{2-1}\mathrm{S}_0$	$3s3p \ {}^{1}P_{1}$	d	6.0	1.88^{f}	270	0
Al III	1854.71841(3)	$53916.540(1)^c$	$3s \ ^2S_{1/2}$	$3p {}^{\bar{2}}\mathrm{P}_{3/2}$	e	18.9	0.268^{f}	464	0
	1862.79126(7)	$53682.880(2)^c$,	$3p {}^{2}P_{1/2}$	f		0.539^{f}	216	0
Si 11	1526.70709(2)	$65500.4492(7)^c$	$3s^2 3p \ ^2 P^o_{1/2}$	$3s^24s\ ^2{ m S}_{1/2}$	g	8.2	0.116^{h}	24	22
	1808.01301(1)	$55309.3365(4)^c$	-/	$3s3p^{2-2}D_{3/2}$	\mathbf{h}		0.00218^{f}	525	3
Cr 11	2056.25693(8)	$48632.055(2)^{d}$	$3d^{5}$ $^{6}S_{5/2}$	$3d^44p \ {}^6P_{7/2}$	i	6.8	0.105^i	-1030	-13
	2062.23610(8)	$48491.053(2)^d$	•, =	$3d^44p \ {}^6P_{5/2}$	j		0.078^i	-1168	-16
	2066.16403(8)	$48398.868(2)^d$		$3d^44p \ {}^6P_{3/2}$	k	\frown	0.0515^i	-1267	-9
Fe 11	1608.45085(8)	$62171.625(3)^e$	$3d^{6}4s \ z^{6}D_{9/2}$	$3d^{6}4p \ y^{6}P_{7/2}$	1	7.9	0.0619^{j}	1002	141
	1611.20034(8)	$62065.528(3)^e$	- /	$3d^{6}4p \ y^{4}F_{7/2}$	m		0.00102^{j}	1110	48
	2344.2130(1)	$42658.2404(2)^e$		$3d^{6}4p \ z^{6}P_{7/2}$	n		0.110^{j}	1325	47
	2374.4603(1)	$42114.8329(2)^e$		$3d^{6}4p \ z^{4}\mathrm{F}_{9/2}$	0		0.0326^j	1730	26
	2382.7642(1)	$41968.0642(2)^e$		$3d^{6}4p \ z^{6} \mathrm{F}_{11/2}$	р		0.300^{j}	1580	29
	2586.6496(1)	$38660.0494(2)^e$		$3d^{6}4p \ z^{6}D^{o}_{7/2}$	q		0.0684^{j}	1687	-36
	2600.1725(1)	$38458.9871(2)^e$		$3d^{6}4p \ {}^{4}D_{9/2}$	r		0.213^j	1449	2
Ni 11	1709.6042(1)	$58493.071(4)^{d}$	$3d^{9} {}^{2}D_{5/2}$	$3d^84p \ z^2 F_{5/2}$	s	7.6	0.0348^{k}	800	0
	1741.5531(1)	$57420.013(4)^d$	-, -	$3d^84p \ z^2 D_{5/2}$	\mathbf{t}		0.0419^{k}	-700	0
	1751.9157(1)	$57080.373(4)^d$		$3d^84p \ z^2 F_{7/2}$	u		0.0264^{k}	-300	0
Zn 11	2026.13709(8)	$49355.002(2)^d$	$3d^{10}4s \ ^2S_{1/2}$	$3d^{10}4p \ ^{2}P_{3/2}$	v	9.4	0.489^{i}	229 1	94
	2062.66045(9)	$48481.077(2)^d$	-/	$3d^{10}4p\ ^2\mathrm{P}_{3/2}$	w		0.256^i	1445	66

Highly exaggerated illustration of how transitions shift in different directions by different amounts – unique pattern

Numerical procedure:

- Use minimum no. of free parameters to fit the data
- Unconstrained optimisation (Gauss-Newton) nonlinear least-squares method (modified version of VPFIT, $\Delta \alpha / \alpha$ explicitly included as a free parameter);

• Uses 1st and 2nd derivates of χ^2 with respect to each free parameter (\rightarrow natural weighting for estimating $\Delta \alpha / \alpha$);

• All parameter errors (including those for $\Delta \alpha / \alpha$ derived from diagonal terms of covariance matrix (assumes uncorrelated variables but Monte Carlo verifies this works well)

High-*z* damped Lyman- α systems:

Transition	Frequency of occurrence						
	low- z samples			hig	h-z sa	Total	
	1	3	Tot.	2	3	Tot.	
Mg i $\lambda 2852$	6	21	27	1	0	1	28
Mg II $\lambda 2796$	25	36	61	2	0	2	63
Mg II $\lambda 2803$	26	37	63	3	1	4	67
Al II $\lambda 1670$	0	5	5	11	30	41	46
Al III $\lambda 1854$	0	6	6	6	11	17	23
Al III $\lambda 1862$	0	6	6	4	9	13	19
Si 11 $\lambda1526$	0	3	3	19	26	45	48
Si 11 $\lambda 1808$	0	3	3	15	8	23	26
Cr II $\lambda 2056$	0	2	2	9	7	16	18
Cr II $\lambda 2062$	0	1	1	10	7	17	18
Cr II $\lambda 2066$	0	0	0	8	7	15	15
Fe II $\lambda 1608$	0	4	4	19	28	47	51
Fe II $\lambda 1611$	0	1	1	9	6	15	16
Fe II $\lambda 2344$	21	26	47	5	7	12	59
Fe II $\lambda 2374$	10	20	30	3	2	5	35
Fe II $\lambda 2382$	22	34	56	3	5	8	64
Fe II $\lambda 2587$	20	34	54	3	3	6	60
Fe II $\lambda 2600$	25	36	61	3	3	6	67

Transition	Frequency of occurrence							
	low- z samples			hig	h-z s	Total		
	1	3	Tot.	2	3	Tot.		
Ni II $\lambda 1709$	0	0	0	7	7	14	14	
Ni II $\lambda 1741$	0	1	1	12	6	18	19	
Ni 11 $\lambda 1751$	0	1	1	12	8	20	21	
Zn II $\lambda 2026$	0	1	1	7	6	13	14	
Zn II $\lambda 2062$	0	1	1	7	6	13	14	

High and low redshift samples are more or less independent

Potential systematic effects (Murphy et al. MNRAS, 2003)

- © Laboratory wavelength errors: New mutually consistent laboratory spectra from Imperial College, Lund University and NIST
- **②** Data quality variations: Can only produce systematic shifts if combined with laboratory wavelength errors
- © Heliocentric velocity variation: Smearing in velocity space is degenerate with fitted redshift parameters
- **③** Hyperfine structure shifts: same as for isotopic shifts
- Solution State State
- © Wavelength miscalibration: mis-identification of ThAr lines or poor polynomial fits could lead to systematic miscalibration of wavelength scale
- © Pressure/temperature changes during observations: Refractive index changes between ThAr and QSO exposures random error
- \odot Line blending: Are there ionic species in the clouds with transitions close to those we used to find $\Delta \alpha / \alpha$?
- © Instrumental profile variations: Intrinsic IP variations along spectral direction of CCD?
- ③ "Isotope-saturation effect" (for low mass species)
- **Sotopic ratio shifts:** Effect possible at low z if evolution of isotopic ratios allowed
- Solution \otimes Atmospheric dispersion effects: Different angles through optics for blue and red light can only produce positive $\Delta \alpha / \alpha$ at low redshift

Variation in isotopic abundances rather than variation of $\alpha_{\text{EM}}?$

Simulations – vary $\Gamma = ({}^{25}Mg + {}^{26}Mg)/{}^{24}Mg$ and refit all the data:

Results:

If $\Gamma_z < \Gamma_T$ (consistent with Galactic chemical evolution, Timmes et al '95), $\Delta \alpha / \alpha$ would be more –ve. However, $\Gamma_z > \Gamma_T \underline{can}$ emulate $\Delta \alpha / \alpha < 0$ (explained by an enhanced AGB star population, see Ashentfelter et al '04 for a detailed treatment). This remains a possible explanation (for the low redshift end only).

Consistency checks:

- Line removal test: remove each transition and fit for Δα/α again. Compare the Δα/α's before and after line removal. We have done this for all species and see no inconsistencies. Tests for: Lab wavelength errors, isotopic ratio and hyperfine structure variation.
- "Shifter test": For a given Δα/α, a species can shift (a) very little (an anchor), (b) to lower wavelengths (a negative-shifter), (c) to higher wavelengths (a positive-shifter).
- > Procedure: remove each *type* of line collectively and recalculate $\Delta \alpha / \alpha$.

HE0001-2340/2.187

Example Monte Carlo simulations at z=1.0

- •10,000 absorption systems
- •Multiple species fitted
- •S/N per pixel =100
- •Single and complex velocity structures explored
- •Voigt profile generator for simulated spectra is independent of that used for analysis

Example Monte Carlo simulations at z=2.5

Two conclusions:

- Correct Δα/α is recovered in all cases
 - Error estimates from inverting Hessian at solution are very good (ie. observed scatter and mean error agree).

Summary

- 1. We find significant non-zero result in 3 Keck samples. Varying α or isotopic changes? Need independent check on AGB populations at high z.
- 2. Chand et al disagree. Very small scatter hard to understand. Different redshift range? Spatial variations? Just systematics?
- 3. Isotopic abundance evolution may explain results at lower redshift, but not high redshift.
- 4. If $\Delta \alpha / \alpha = 0$, we may get sensitive constraints on high z isotopic ratios and hence stellar population. Also, future tighter null result means no violation of EEP hence $\Lambda = \text{const}$ may be preferred, providing tight constraint on equation of state. Note precision on "consistency of physics" is comparable to CMB.
- Prospects for better constraints are excellent Subaru, Gemini, other large telescopes. More Keck and VLT data.
 21cm+optical. Future 30m telescopes.