Yvonne Y. Y. Wong

DESY Hamburg

in collaboration with Andreas Ringwald, arXiv:hep-ph/0408241

DESY Theory Workshop 2004

Cosmic neutrino background ($C\nu B$)

- $C\nu B$: neutrino decoupling at $t \sim 1 \text{ s}$ [cf. CMB, $t \sim 10^5 \text{ yr}$]
- Properties today:

$$T_{C\nu B,0} = \left(\frac{4}{11}\right)^{1/3} T_{CMB,0} \sim 2 \text{ K} \sim 10^{-4} \text{ eV}, \quad \text{rel. FermiDirac} \quad (1)$$

$$\bar{n}_{C\nu B,0} = \frac{3}{22} n_{CMB,0} \simeq 56 \text{ cm}^{-3} \quad \text{per helicity per flavour} \quad (2)$$

$$\Omega_{C\nu B,0} = \frac{2 \sum_{i=1}^{3} m_{\nu_i} \bar{n}_{C\nu B,0}}{\rho_c} = \frac{1 \times 10^{-2}}{h^2} \sum_{i=1}^{3} \frac{m_{\nu_i}}{\text{eV}} \quad (3)$$

- Consistent with BBN and CMB/LSS data
- Never been directly detected via scattering type experiments

Neutrino mass and clustering

- ν oscillation experiments $\Rightarrow m_{\nu,3} \gtrsim \sqrt{\Delta m_{\rm atm}^2} \sim 0.04 \ {\rm eV}$
- Kinematic effects of m_{ν} on LSS $\Rightarrow \Omega_{\nu} \lesssim 5 \%$ in $\Lambda \text{CDM} \Rightarrow m_{\nu,i} \lesssim 0.6 \text{ eV}$
- Late time, small scale ($\lesssim\!10~{\rm Mpc}$) ν clustering:

$$\bar{v}_{C\nu B} \simeq 1.6 \times 10^2 \ (1+z) \left(\frac{\text{eV}}{m_{\nu}}\right) \ \text{km s}^{-1}$$

- cf. velocity dispersion of galaxy, $2\times10^2~{\rm km~s^{-1}}$; galaxy cluster, $10^3~{\rm km~s^{-1}}$ clustering at $z\!\lesssim\!2$
- Local "hot spots"
 - clustering in Milky Way \Leftrightarrow fully earthbound C ν B direct searches
 - − clustering in galaxy clusters ⇔ searches using cosmic rays

Gravitational clustering of relic neutrinos

• Nonrelativistic Vlasov (4) and Poisson (5) equations,

$$\frac{Df_i}{D\tau} \equiv \frac{\partial f_i}{\partial \tau} + \dot{\boldsymbol{x}} \cdot \frac{\partial f_i}{\partial \boldsymbol{x}} - am_i \nabla \phi \cdot \frac{\partial f_i}{\partial \boldsymbol{p}} = 0$$
(4)

$$\nabla^2 \phi = 4\pi G a^2 \sum_{i} \left[\underbrace{\frac{m_i}{a^3} \int d^3 p \ f_i(\boldsymbol{x}, \boldsymbol{p}, \tau)}_{\rho_i(\boldsymbol{x}, \tau)} - \overline{\rho}_i(\tau) \right]$$
(5)

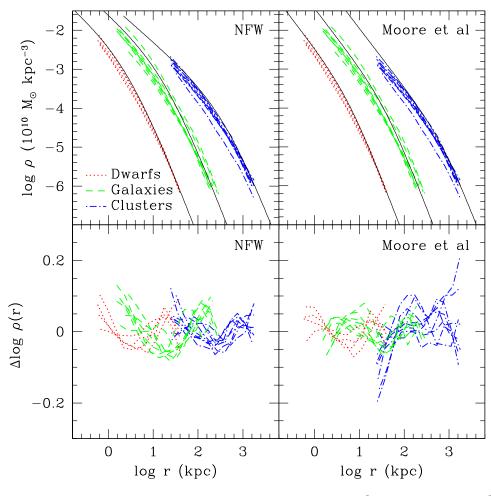
 $m_i = \text{mass of the } i \text{th component, e.g., CDM, neutrino, etc.}$

 $f_i(oldsymbol{x},oldsymbol{p}, au)=$ phase space density

 $\rho_i(\boldsymbol{x}, \tau) = \text{physical (mass) density}$

 $\phi(oldsymbol{x}, au)=$ total peculiar potential

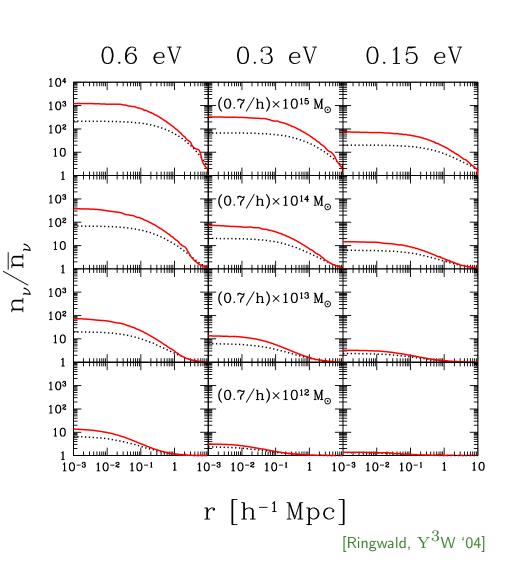
 $a(\tau) = \text{scale factor}$


 $oldsymbol{x},oldsymbol{p}, au=$ comoving phase space coordinates and conformal time

Solution	N-body simulation	Linear approximation	N-one-body simulation
method	[CHDM: Kofman et al. '96]	[e.g., Singh, Ma '03]	[Ringwald, Y^3 W '04]
Description	Particle-based:	Fourier methods:	Particle-based,
	$rac{dm{x}}{d au} = rac{m{p}}{am_i} \ rac{dm{p}}{d au} = -am_i abla \phi$	$f(oldsymbol{x}) ightarrow \hat{f}(oldsymbol{k})$	cf. N -body simulation
Assumptions			1. Only $ ho_{ m cdm}$ contrib. to ϕ
	"None"	$f(oldsymbol{x},oldsymbol{p}, au){\sim}f_0(p)$,	$ig[\Omega_{ u}/\Omega_{ m cdm} < 0.2$ in Λ CDM;
	[$f_0 = unperturbed$	free-streaming $\Rightarrow \frac{\rho_{\nu}}{\rho_{cdm}} < \frac{\Omega_{\nu}}{\Omega_{cdm}}$]
		phase space density,	2. $\rho_{\rm cdm}$ is known, e.g., halo
		limited validity	density profiles from
		ř	pure ΛCDM simulations
Resources	Supercomputer	Semi-analytical	My laptop (in principle!!)
Resolution	Limited	Unlimited	Excellent
	$\sim 100~{ m kpc}$, incl. $ u$		$\sim 1 \; { m kpc}$

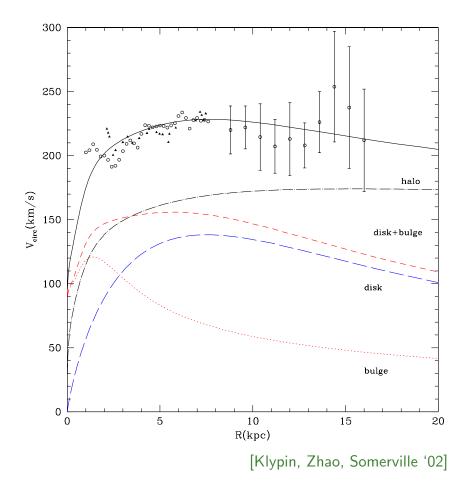
- Parameteric CDM halo density profiles based on simulations:
 - Navarro Frenk White profile:

$$\rho_{\rm cdm}(r) = rac{
ho_s}{(r/r_s)(1 + r/r_s)^2}$$


- Moore 99 profile: $\rho_{\rm cdm}(r) = \frac{\rho_0}{(r/r_0)^{1.5}(1+r/r_0)^{1.5}}$
- Applicable for
- dwarfs, $\sim 10^{11} M_{\odot}$
- galaxies, $\sim 10^{12} M_{\odot}$
- galaxy clusters, $\gtrsim 10^{14} M_{\odot}$

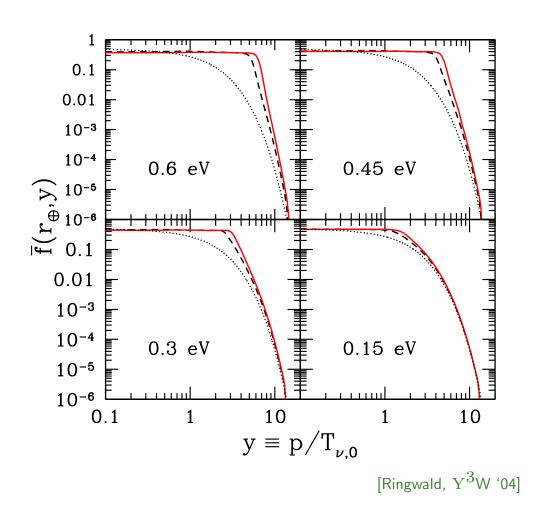
[[]Navarro et al. '04]

Clustering in NFW halos


- { $\Omega_{\Lambda}, \Omega_{m}, h$ } = {0.7, 0.3, 0.7}
- Neutrino free-streaming
 - $\Rightarrow n_{\nu}/\bar{n}_{\nu} \text{ flattens at small } r \\\Rightarrow \rho_{\nu}/\rho_{\text{cdm}} < \bar{\rho}_{\nu}/\bar{\rho}_{\text{cdm}}$
- Overdensity [—] $\propto M_{\text{halo}}$ for fixed r, m_{ν} $\propto m_{\nu}^{(1\div3)}$ for fixed r, M_{halo}
- Linear theory $[\cdots]$ underestimates n_{ν}/\bar{n}_{ν}

Clustering in the Milky Way

- $r_{\rm earth} \approx 8 \; \rm kpc$ from Galactic Centre
- Baryons dominate central 10 kpc [disk+bulge+bar(?)]
 - use mass distribution inferred from observations; MW mass models
- ν overdensity at r_{earth} :


	$n_ u/ar{n}_ u$
$m_{\nu} = 0.6 \text{ eV}$	20
$m_{\nu} = 0.45 \text{ eV}$	10
$m_{\nu} = 0.3 \text{ eV}$	4.4
$m_{\nu} = 0.15 \text{ eV}$	1.6

• Momentum distribution at r_{earth} almost isotropic:

 $\langle p_r \rangle \simeq 0, \quad 2 \langle p_r^2 \rangle \simeq \langle p_T^2 \rangle$

- Semi-degenerate \bar{f} [--] at low momenta; turning point at $p_{\rm esc} \equiv m_{\nu} v_{\rm esc} = m_{\nu} \sqrt{2|\phi(r_{\rm earth})|}$
- Matches Fermi–Dirac [···] at high momenta
- Tremaine–Gunn bound: $\bar{f} \leq \max(f_{\text{initial}}) = 1/2 \text{ (FD)}$
 - \Rightarrow highest overdensity possible given m_{ν}

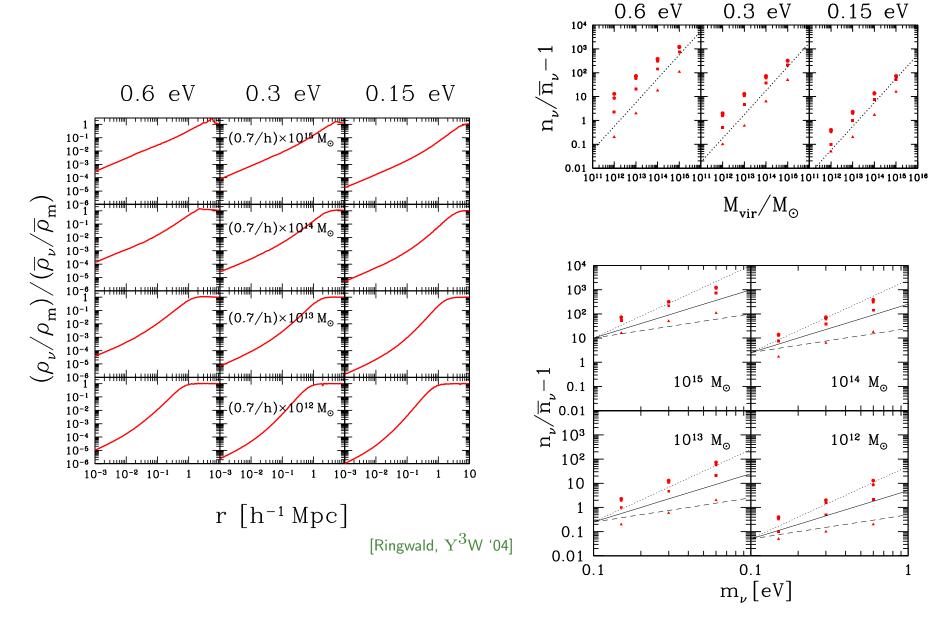
Implications for direct detection: fully earthbound

• Flux detection: de Broglie $\lambda_{\nu} \sim 0.1 \text{ cm} \Rightarrow$ coherent scattering over $V \sim \lambda_{\nu}^3$ ⇒ mechanical force [e.g., Shvartsman *et al.* '82, Smith, Lewin '83]

acceleration,
$$a_t \simeq \frac{\overbrace{N_{AV}}^{\text{coherent}}}{A} \rho_t V \sum_{\nu, \bar{\nu}} \underbrace{n_{\nu} v_{\nu}}_{\text{flux}} N_{AV} A \underbrace{\mathcal{G}_F^2 m_{\nu}^2 / \pi}_{\text{mom.transfer}} \underbrace{m_{\nu} v_{\nu}}_{\text{mom.transfer}}$$

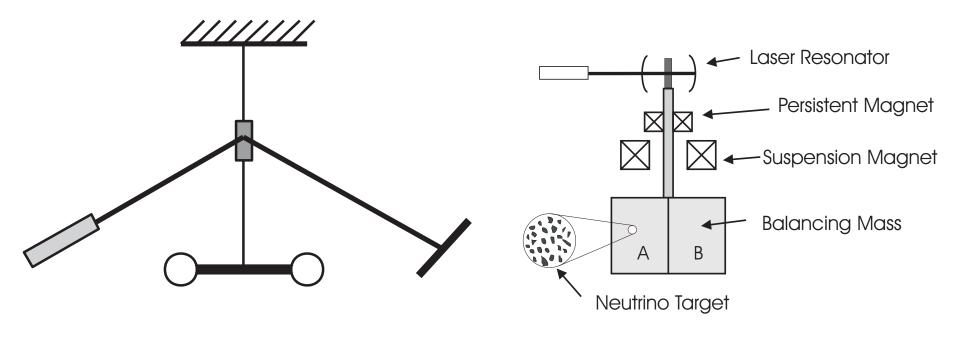
- most optimistic $[m_{\nu} \simeq 0.6 \text{ eV}, n_{\nu}/\bar{n}_{\nu} \simeq 20], a_t \sim 10^{-26} \text{ cm s}^{-2}$ [measurable now: $\geq 10^{-13}$ cm s⁻²; next decade (?): $\geq 10^{-23}$ cm s⁻²] [Hagmann '99]
- outlook: 30 to 40 years [P.F.Smith '03]
- Fine print
 - Dirac vs Majorana, extra factor $v_{
 u}/c \sim 10^{-3}$ for u_M
 - solar ν , $a_t \sim 10^{-27} \ {\rm cm \ s^{-2}}$; directionality?
 - WIMPs, $\sigma_{\chi N} \lesssim 10^{-45} \ {
 m cm}^2$ [Duda, Gelmini, Nussinov '01]

Implications for direct detection: with cosmic rays

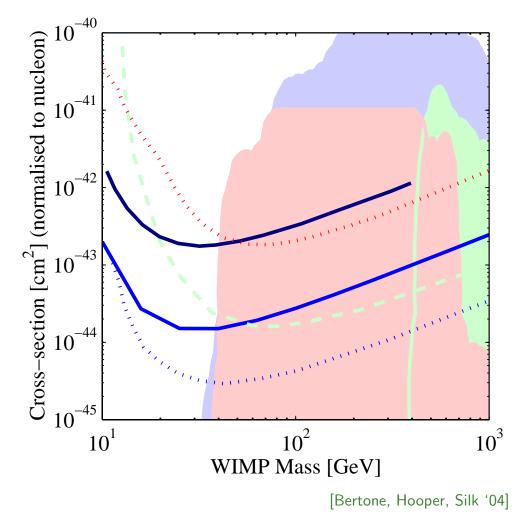

• Resonant annihilation of Extremely Energetic ($\geq 10^{21} \text{ eV}$) Cosmic ν on C ν B:

 $\nu_{\rm EEC\nu} + \bar{\nu}_{\rm C\nu B} \to Z^0 \to \rm hadrons$

- 1. absorption dips in EEC ν flux \Rightarrow B. Eberle's talk [V.7, 16:30, Rm 3a]
- 2. emission features, Z decay products [cf. "Z-burst" for UHECR]
- Emission spectroscopy
 - galaxy clusters in local universe ($\leq 50 \text{ Mpc}$) \Rightarrow directional dependence in $E \gtrsim E_{\text{GZK}} \sim 4 \times 10^{19} \text{ eV}$ events
 - e.g., Virgo cluster, distance ~ 15 Mpc, mass ~ $10^{15} M_{\odot}$: * $m_{\nu} = 0.6 \text{ eV}, n_{\nu}/\bar{n}_{\nu} \sim 1000 \Rightarrow \sim 55 \text{ times the unclustered rate}$ * $m_{\nu} = 0.15 \text{ eV}, n_{\nu}/\bar{n}_{\nu} \sim 60 \Rightarrow \sim 8 \text{ times the unclustered rate}$
 - Auger, EUSO, OWL??

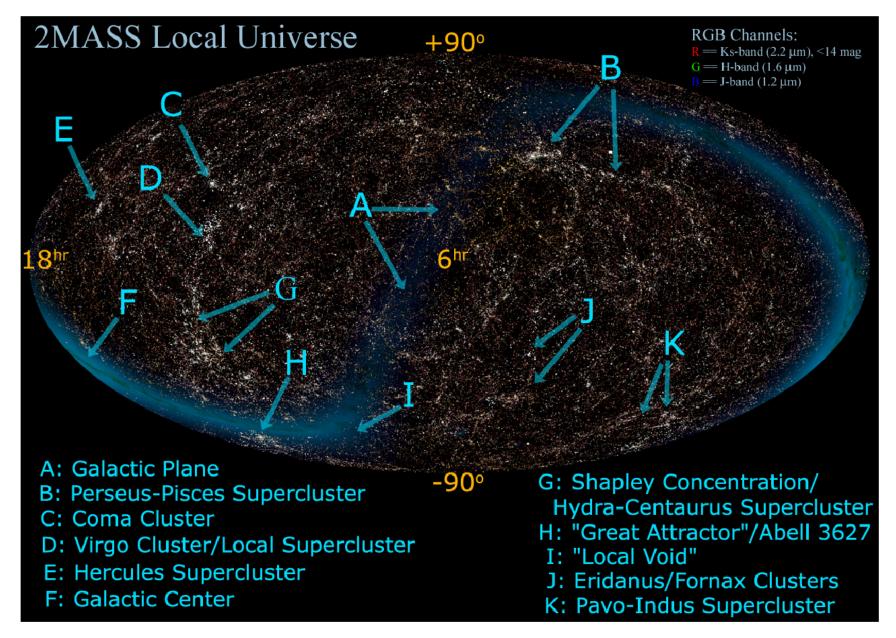

Summary

- Neutrino mass \Rightarrow gravitational clustering on existing structures
- Direct detection of $C\nu B$: not for another 30 to 40 years
- Detection with cosmic rays
 - absorption spectroscopy: possibly next decade, if conditions are right
 - emission spectroscopy: ??



DESY Theory Workshop 2004

1



[Hagmann '99]

Future DM direct searches

- GENIUS
- ··· CRESST-II
- CDMS-Soudan
- -- Edelweiss-II
- ··· ZEPLIN-MAX

