Electroweak-scale inflation, inflaton-Higgs mixing and the scalar spectral index

Bartjan van Tent DAMTP, University of Cambridge

Collab.: Jan Smit, Anders Tranberg ITFA, University of Amsterdam

Based on: JCAP07(2004)003 (hep-ph/0404128)

Outline:

- Motivation and general issues low-scale inflation
- Model, constraints and predictions
- Conclusions

Motivation and general issues

Motivation: minimalist approach to cosmology:

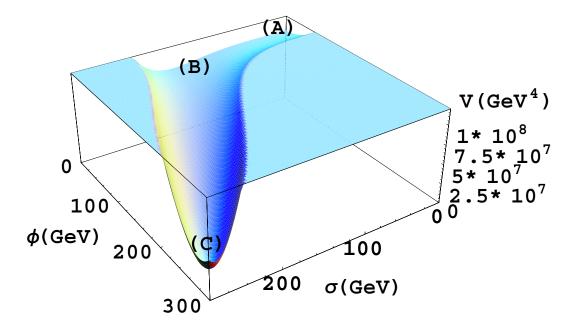
- Inflation with <u>minimal extension</u> Standard Model of particle physics: <u>add one scalar field</u> to SM
- Electroweak baryogenesis:
 needs only SM + low-scale inflation

Baryogenesis conditions satisfied in SM [Rubakov, Shaposhnikov], but beffects too small in standard transition.

Possible solution: tachyonic electroweak preheating after low-scale inflation [Krauss, Trodden, Garcia-Bellido, Grigoriev, Kusenko, Shaposhnikov, . . .] \Rightarrow strongly non-equilibrium and larger CP violation [J.Smit hep-ph/0407161]

Constraints from WMAP + SM physics + Baryogenesis

Some possible conflicts:


- Large inflaton-Higgs Small coupling (small coupling (fast transition \leftrightarrow quantum corrections \rightarrow non-equilibrium) \rightarrow flat inflaton pot.) \Rightarrow (+SM constraints) p = 5 highest power inflaton potential
- Low-scale inflation \leftrightarrow Spectral index $\tilde{n} = -0.03 \pm 0.03$ $\tilde{n} \approx -\frac{2}{N_k} \frac{p-1}{p-2}$. Standard infl.: $N_k \sim$ 60; EW-scale: $N_k =$ 22

Model

Inflaton σ and SM Higgs ϕ with effective potential: (based on earlier work by [Copeland, Lyth, Rajantie, Trodden])

$$V(\sigma,\phi) = V_0 - \frac{1}{2}\alpha_2\sigma^2 + \frac{1}{4}\alpha_4\sigma^4 - \frac{1}{5}\alpha_5\sigma^5 + \frac{1}{6}\alpha_6\sigma^6 - \frac{1}{2}\lambda_{\sigma\phi}\sigma^2\phi^2 + \frac{1}{2}\mu^2\phi^2 + \frac{1}{4}\lambda_{\phi}\phi^4$$

Electroweak-scale inflation: $V_0 = (100 \text{ GeV})^4$

- (A) Slow-roll inflation ($\phi = 0$, first line potential)
- (B) EW phase transition $(\sigma \gtrsim \mu/\sqrt{\lambda_{\sigma\phi}} \rightarrow \phi \text{ tachyonic})$
- (C) Absolute minimum $(\sigma, \phi) = (v_{\sigma}, v_{\phi})$

Constraints and predictions

(A) **WMAP**: amplitude $|\delta_{\mathbf{k}}|^2$ and spectral index \tilde{n}

$$|\delta_{\mathbf{k}}|^{2} = \frac{\alpha_{4}}{225\pi^{2}} \left(\frac{R}{x}\right)^{3} \left(R\tilde{\sigma}_{H} - 3\tilde{\sigma}_{H}^{3} + \tilde{\sigma}_{H}^{4}\right)^{-2}, \qquad (x \equiv \frac{M_{P}^{2}\alpha_{2}}{8\pi V_{0}})$$

$$\tilde{\mathbf{n}} = -\frac{2x}{R} \left(R - 9\tilde{\sigma}_{H}^{2} + 4\tilde{\sigma}_{H}^{3}\right). \qquad (\tilde{\sigma}_{H} = \tilde{\sigma}_{H}(R, x), \quad R \equiv \frac{27\alpha_{2}\alpha_{5}^{2}}{\alpha_{4}^{3}})$$

$$\Rightarrow \tilde{n} = \tilde{n}(R,x) \Rightarrow \text{given } \alpha_2: \tilde{n} \to \alpha_5, |\delta_{\mathbf{k}}|^2 \to \alpha_4$$

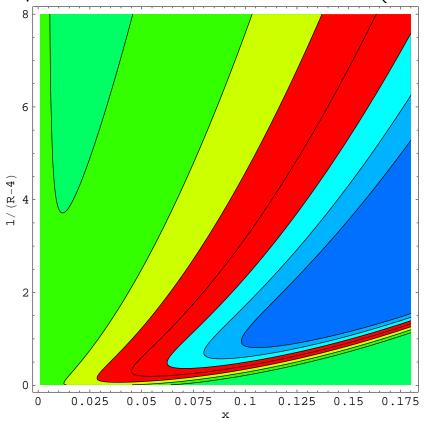
(C) <u>Standard Model</u>: accelerator results v_{ϕ} , μ^2 , m_{ϕ}^2

$$\frac{\partial V}{\partial \sigma}(v_{\sigma}, v_{\phi}) = 0, \qquad \frac{\partial^{2} V}{\partial \phi^{2}}(v_{\sigma}, v_{\phi}) = m_{\phi}^{2}
\frac{\partial V}{\partial \phi}(v_{\sigma}, v_{\phi}) = 0, \qquad V(v_{\sigma}, v_{\phi}) = 0$$

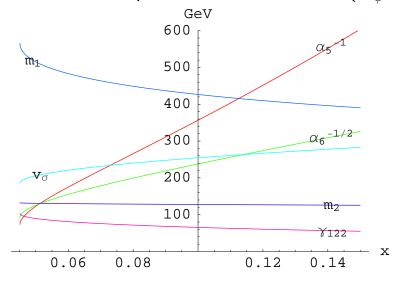
$$\Rightarrow \alpha_{6}, \lambda_{\sigma\phi}, \lambda_{\phi}, v_{\sigma}$$

(B) Baryogenesis: fast enough EW transition

$$\left. \frac{1}{\mu^3} \frac{\mathsf{d}(\mu^2 - \lambda_{\sigma\phi}\sigma^2)}{\mathsf{d}t} \right|_{\sigma = \mu/\sqrt{\lambda_{\sigma\phi}}} \gtrsim 0.1 \qquad \Rightarrow \qquad \lambda_{\sigma\phi} > 0.01$$


Quantum corrections under control: $\lambda_{\sigma\phi} < 1$

For
$$V = V_0 - \frac{1}{p}\alpha_p\sigma^p + \frac{1}{q}\alpha_q\sigma^q - \frac{1}{2}\lambda_{\sigma\phi}\sigma^2\phi^2 + \frac{1}{2}\mu^2\phi^2 + \frac{1}{4}\lambda_\phi\phi^4$$
:


Prediction: Two scalar particles with mass $\mathcal{O}(100 \text{ GeV})$, couplings to SM equal to SM Higgs (up to mixing angle)

$$\begin{pmatrix} V_{,\sigma\sigma} & V_{,\sigma\phi} \\ V_{,\phi\sigma} & V_{,\phi\phi} \end{pmatrix} \Big|_{(v_{\sigma},v_{\phi})} \xrightarrow{\text{eigen-}} \phi_{1} = \sigma \cos \xi - \phi \sin \xi, \ \phi_{2} = \sigma \sin \xi + \phi \cos \xi$$

Contourplot for \tilde{n} as function of x and $(R-4)^{-1}$:

Change dimensionful parameters with x ($m_{\phi} = 200$ GeV):

Finetuning?

Yes:	but:
$\sqrt{lpha_2}\sim 10^{-15}{ m GeV}$	$\sim \sqrt{V_0}/M_P ightarrow ext{Price for EW-scale}$
$lpha_{ extsf{4}} \sim 10^{-12}$	Same as "normal" inflation
$0<\sigma_0\lesssim10^{-10}{ m GeV}$	$\sim \sqrt{V_0}/M_P \rightarrow \text{Price for EW-scale}$ Same as "normal" inflation Quantum tunnelling from $\sigma < 0$? All others have "natural" values
	All others have "natural" values

Good reward: working minimalist model EW inflation!

Loop corrections

- Do they disrupt inflation?
- Break-down scale (non-renormalizable) model?

$$V^{(1)} = \varepsilon(m_1^2) + \varepsilon(m_2^2) + \text{counter-terms} \qquad (m_1^2, m_2^2 \text{ eigenvalues})$$
$$\varepsilon(m^2) = \frac{1}{2} \int_{|\mathbf{p}| < \Lambda} \frac{\mathrm{d}^3 \mathbf{p}}{(2\pi)^3} \sqrt{m^2 + |\mathbf{p}|^2} \qquad \sigma\text{-}\phi \text{ mass}$$
$$\mathrm{matrix})$$

Renormalization conditions:

- 1. Potential up to σ^5 unchanged during inflation;
- 2. VEVs and masses in absolute minimum unchanged.

 \Rightarrow Only **small changes** in coupling parameters; flatness inflaton potential **not disrupted** by corrections σ^6 term.

Break-down < TeV; can model be imbedded in MSSM?

Summary and conclusions

- Presented explicit <u>electroweak-scale inflation model</u>, motivated by minimalist viewpoint:
 Inflation + Baryogenesis as <u>minimal extension</u> SM.
- Constraints from WMAP + SM + Baryogenesis
 non-trivial, but possible to satisfy.
- General consequences of constraints:
 - $-\sigma^5$ present as highest power inflaton potential;
 - WMAP spectral index difficult to satisfy: need also σ^2 , σ^4 terms.
- Our model predicts two Higgs-like particles
 ⇒ can be falsified.
- Loop corrections do not disrupt inflation.

JCAP07(2004)003 (hep-ph/0404128)