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Formulation. of the Probiem.

Of all the space-time-dependent operators in local quantum field theory,
current densities seem to be the most 'physical’, Certain matrix-elements
of such operators (form factors) are directly measurable in electromagnetic
and weak interactions., Attempts have been made to formulate relativistic
dynamics directly in terms of current operators, Cl] The main theoretical
problem is the question whether the khowledge of the current operators+)
{i.e. all their vacuum expectation values) completely determines a theory.
How, for example, do we compute scattering processes involving charged

or baryonic particles if the local operators to be used do not create a charged

or baryonic one particle state from the vacuum,

As another application we mention that ;Ln answetr to this sort of problem
would be a prerequisite for a better understanding of quantum electrodynamics
within the framework of general quantum field theory. It is well known that
there exists no covariant gauge in which the Killén-I.ehmann (_2] spectral
function of the spinors is positive definite; the indefinite metric of the

A (o) (x) field creeps into the spinor - two point function in higher orders
c/fuperturbation theory. Therefore in order to obtain a physical (positive
definite) Hilbert space one has to consider the vacuum=-expectation values

of the currents j (x) (resp. the closely related electromagnetic field strength
Foy (x) ) only, tlence one runs into the physical completeness problem

r&ntioned before.

It seemed to us worthwhile before trying to understand this problem in the
interacting case, to get a complete solution for the free field current. In
this paper we show that the free field bilocal operators CP*IX) L (y) can
be obtained fxm the free field current operator j (x) by a certain large
distance limiting procedure. This technique is i'n a way opposite to the
short distance limiting technique defining the current in terms of the free

field . [3} We discuss this in the case of the charged scalar and charged

+}' Here the currents for all space time points (not only for equal times)

are needed,



spinor fields (section 3), In the next section we explain the basic idea of
the method in the simpler case of an even~odd~superselection rule as de-
fined by the second power of a neutral scalar free field before going over
to the slightly more complicated charge superselection rule where in
addition to new algebraic complication caused by the presence of indices,
one is forced to make use of a charge testing operator to separate two of

the terms appearing in the limit,

The Limiting Process for the Neutral Scalar Field,

In order to obtain a preliminary connection between the bilocal algebras
Ré& '8, (A) (defined in Appendix 1 ) for the fzree Bose field A and the
local algebras R 4 (j) of the "current’ j=1: A":, we will use a limiting
procedure in which certain points are moved to @0 in a lightlike direction
while remaining timelike separated from another fixed cluster of points,
For notational convenience, we introduce certain definitions, If é@ is

a bounded region in Minkowski space, then V, (&) will designate the
union of the forward light cones Vy (p ) for all p whose backward cones

contain é‘f- (fig 1),

In this language, the first result, which we will show how to sharpen later,

can be expressed as follows:

Po‘ﬁ;,ﬂ (A) &= /R%1U£2u ,}(j) [%g_\[}(éﬁ:uggﬂ (2.4)

The proofs will always consist in showing the inverse inclusion for the
commutants; one proceeds by taking p a member of R, - (Y
0‘6‘-. Uﬁau J

i, e,

Pj(f)&=3j (£)P

f f)c o d sh that P R, / . Th
or supp ( f ) = .;f@“_, -zuéan shows tha R£—1’£2(A)' e

connection between A and j which is needed for such a manceuvre comes
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from the structure of the commutator,
)i (] = 4 Ay a6 A 6

If this distribution is smeared with f£{x)g(y) with ¢ %> géc@(g,),
then the left hand side becomes [ j (-f) y (g )J which commutes with P

according to {2.2). The result is then

0= Alx-y)A (x-y ) (¥, PA AGIAR)AL) D) -
(Aly A AMAG) Fe P (2.3)

for P Pe ﬂ,QPhere one always has in mind smearing with £(x)g{y)f’ (x’)g’ (")

where { C’:‘o@{'ggq) s f’(—:p@(é—g. y g,g & o@( } , In this formula,
one takes <2, Y2 to have the special form B &) = A(fl)' ) 'A(fn).Q_. where
fi‘-‘i-C which is @ space-time region spacelike to as well as

0‘@,1 and £ » (fig. 1). The states obtained this way will be dense in the

+)

obtained may be extended to all vectors in the polynomial domain of £ on

space “ﬁr ; and because of the continuity of distributions the results
which the field operators have the same closures as on the basic domain
This restriction on the form of the states will be useful in the proofs of

appendix 2,

The problem in {2.3) is the occurence of the /3 functions whose zeros be-
come more closely spaced in lightlike directions and cannot be sidestepped
with the support of g as it moves up the cylinder 3/ . In the scalar case it
is possible to show that the /\ functions may simply be cancelled so that
(2.3) is true without these factors as long as y-x and vy’ -x’ are timelike,
However, it will not be possible to factor them so simply in the case of
the charged fields, so we shall use a somewhat more complicated method

that will work in all cases.

Recalling the explicit form of the A function and the asymptotic behavior

of the Bessel function ( (51 page 526) we have with z =‘Jl§q
1

Q(%_)zil-(r—mn'i)' = 2 3(cos(mz—i')+0(zn

7 (mz)

))

+) Even though it is not explicit in the Wightman axioms, both terms i;ﬁ.‘tzn. 3)
are tempered distributions since A(xl). . .A(xn)ﬂ is a vector valued di-
stributions cf, [4).




.
and with Zcoszg = 1 + cos20, the expression
3 2 ] -1
m(mz) 8 (§)7 = 1 + sin (2mz) + O(z ')

Thus the multiplication of (2,3} by Tr2m6 (‘J (x—-y)zmzﬁﬂx {x-y)

xA(x’-y’} gives symbolically

0=(1+ sian"J(x-y)z) {1+ sian'\,(x’ -y’ )2) 2 .
“ 2o (u, [P AmAMAG)AG ]T) ¢ .. (2.4)
3 ] -1
where the terms not mentioned contain factors which are 0f (x( )-y( ))2 ).

It is fairly easy to see that if the distribution in (2.4) is smeared with
RegMRI'S g’ with gh' (y) = g(y-na) (a being a light-like vector parallel

to the elements ofé },» the unmentioned terms drop out fordv+ oo |

This is proved in appendix 2 as a by-product of the more difficult consider -

ations needed for the discussions following,

The term in (2.4) containing no sines is the one desired since after smearing,

it becomes

(T, [P aaEMA )a™)] T)> TP a0 ]3) CAl)Al’ ) |

With g = g’, the last factor is the norm of A(g)4lwhich is not zero thus im-

plying that
(% ’[P'A(f)A(f’ )] @) =0

i.e, P&S A= R A)" which in turn establishes (2. 1),
ACRE W (2.1)

™y

The convergence above is proved by rewriting a typical term in the commut -
ator
(P" (AL PR (AJA(DA(gM AL )A(g' A ) .) =
= (P (A, PP (A)A(DA(L Wi pay(elale)a) +
FopT (AL AU AR DICTAIE ) Alg™)]D>

o

where f2(A) and 9’ (A) are polynomials in the field A taken from the region
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I 3 ’
andi? (A) = W(A) P /?(A) As A —— s oo, the sec o nd term approach-

es 0 because of the two-point function, and the first approaches

(K@, P (WA@A( )Proj ) Ale)ale’) (L)

which can be rewritten as

(@ ., paar) €@ ) Lalpae) 7 -

The mirror-image process is performed on the other term, and after factor-
ization of the two-point function, one is left with the limit written above. We
will prove in appendix 2 that the oscillating factors give no contribution in

the limit,

One would be able to go a step further and remove the cylinder } from the
result for a certain class of regions if the duality theorem (in a weak form)

were proved for the field j (in its cyclicity subspace) and.arrive at!

Rpy(a) =R g ()

for any diamondﬂ. A proof follows, For terminological convenience, one

denotes by colr the space~time region obtained from‘ﬁby taking the interior

of og” its causal complement.
With (2.) and locality of j, one has

Roﬂ’o‘g,(A )’ = Rég,ug(‘])':; RC(&@UB/)(J)

for all %C.V (&B). As a consequence
.l
:J\/R = R sl 2,5)
Fg ™) oy = Nelguzn® (
where the join and union are extended over all CV (,Sg ). One may be
easily convinced by figure 2 that L__Jc (;,ng ) c,%. since if x & mt,ﬁ.
one may always find a cylinder 3~—V (%) such that xe-:.mtg This done,

one has

we (e B2 o (e 37) = in(EaG) = intlud) = ¢ o3
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which completes the proof of the assertion, This assertion, applied to the

last term in (2.5} gives the further result

AV R -(j 2.6
B )= R ) (2.6)
to which a weak version of the duality principle may be applied. According

to a result of Araki [6] for the free field, one would expect

¢ —
ﬁ ~{1)= R i
@)= R3)
for an open diamond [; here f{j_designates the intersection of all algebras R{,

with fan open set containing cl{"

If clz‘fs} fand clfi-’ﬁ:hen the definition immediately implies
A

R %R, R,¥R..,
cf S 4 £ I
Taking commutants in the second of these statemenis and connecting the re-

sults with the duality assumption gives

R 2R :_Rg’ R, ’
cf e =
and with (2.6)

]E}:z(A)'Q RCJ,Z(})TZ’RS.(J')’ :

if cld('f;,{:“ Passage again to commutants gives

=\, R
R.(A) dijj AMRG)

where the first equality is proved in appendix 1. Since j is obtained from A
as a limit of bilocal expressions, the inverse inclusion is trivial and conse-
gquently

R (A} =R_(j

- AA) = R.(3)

for any diamond L.

Charged Fields,

In this section we discuss the charged scalar field

¥ 0= g, | B+ o P oeNan )

with the local current
}u(x) = 1:P(x)Q P (x):
and the spinor fieldq';l(x) with current

i x) = ¥y g x):
/ /!




and show that similar connections exist between the bilocal rings of the
field and the local rings of the respecitve current density, We thus need a
method of recovering the bilocal quantities (%) F (y) and ';Da(x) "Pﬁ(y)

from their currents in a bilocal fashion, For the spinor case, the current

commutator has the expression

Si(vS Geoyhy, )T 0P G Wty 1 (v, Seeyy )T P ) WG (321
/M v Y /‘

in which S(&) = { 8’\!{{ -m) A (g), and for the scalar case, the form

P+ F (5 T60):) 10 Oy Dbeey) +
bR R G MBI T Aley) - (5.2)
C P PP (P )i DDy -
Ll G ) e 13D A )

/Ll

in which the devivatives LE, = Z\V(F of the field appear in such a way as to
make the various rates of convergence of the terms difficult to compare,
Bearing in mind the Riemann-Lebesgue type of trick, we multiply by A(x-v)
and after smearing with a function [~ (x,y), perform as many partial inte-

grations as are needed to bare the field operators, The result is that the

smeared commutator

4

JF Gay) A\ (=y) [;jo(X), jO(Y)j a*xaty

can be written as

NP )4 ) (F o) A G A xy) + Glxy)
4 4
daxdy (3.3)

h
where G(x,y) = A (x-v) j[_;(x -y) ("' - __' A(x y){‘( Q— F(x,vy)

Oxe 0]’ o 0j
To argdeavay the function G(x,y) as well as to be able to decide asymptotic
behaviors of terms appearing later, we compute the relevant derivatives of

the A function and their asymptotic behaviors. Since A E is a function only

of z = &'_‘: , a may be replaqed by 5' L ;Z and a by

/.1 zZ
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i‘ + L "(i" ’ With the £ 1
3 é’/gy . ds . ith the formula

A(é)= J1 (mz (fé. V.;.)

maz

1 J
and the fact that '; ;i_“dz_ ll;,éﬁ)_ = - —%E) , one obtains

'éftﬂﬁﬁl

o, g g

N |

S

DA

¢
230()

so that with the asymptotic formulas on p, 526 of (_5) one finds

2 F 2 }
A(x-y)(’)o A (x-y) = - 'n'zrn “z‘lg“)s— {cos(mz-%)cos(mz—%;) + O(z 1)3’

provided that go = O(ZZ), and for the other terms,

A(X'Y) ad A (x-y) —E""Z' E%—{Cos(mz-%)cos(mz-%ﬁ) + O(znl) ?I)

Tm z
2 2 1 2 3 -1
A (x-v) il =3 { cos (mz- 2 ) + Oz )}

It is thus clearly desirable to choose

2
Feoy) = fhxgly) 50 “{X"‘j’)a

so that what will turn out to be the leading term in (3, 3) is
% %
s Y (g): 1 PP ()

The oscillating factor will go to 0 in norm when applied to the vacuum, and
it will be sufficient to prove that G{x,y-) a) approaches 0 as \ —> 0 .
We note that if g = x-y + Aa, then both 5{ and fz are asymptotically
linear in A since a2 = 0 so that both f¢ /24 and 1/z3 approach 0, and the
rest of the proof consists simply in verifying that zs/zoz and its first two

time derivatives do not increase as rapidly as A, A /{3/2' respectively,

-9 .



Having proved that the smearing functions go to 0 in L1 norm, we rely on
the proof in appendix 2 that this insures the vanishing of the smeared di-
stributions in spite of whatever oscillations the smearing functions may

manifest,

A feature which the last expression displays for the scalar case is imme-
diately visible in the spinor casey the bilocal quantities always occur in
hermitian combinations that cannot be separated by algebraic manipulations;
For this separation, we use the charge testing operator Qh= jo(h) o

7 «{jo (< xo) d3 X which approximately tests the amount of charge in the
vo}(nne V of space at time X e In view of the fact that the distribution jo(x)
cannot be restricted to a spacelike surface, we will use the four dimensional
test function+) (fig 3)

-

h = h 8h i.e, hi{x) = hs(x) hT(XO)

with hsél @( Ryand hT 6@(”@ chosen so that

4 o
hT(t) = 1 supp (h) <= j
— e
h(x) = hT(xo) unless x is spacelike to g/a
The last requirement can be insured by setting hs(ﬂ =1 when % belongs

to a certain region V of space and keeping the suppoxt of hT sufficiently

small as the figure makes clear.

We confine the supports of the functions g, g’ to the diamond g so that

[ o, ‘F(g)] [Q, ) =¢ (2
[0, ¢ ©] Fle) -

+) This construction is similar to one used by Kastler, Robinson [7],and
Swieca in a proof of the Goldstone theorem, but we do not envisage passage
to a limit in which swells to cover all space-~time; the local affiliation
of Q}, is essential to our purpose since it should asymptotically commute
with ¥(x). We use here only the infinitessimal operator instead of its ex-
ponential to avoid the difficult question of the convergence of the Taylor

expansion of the latter,
: -10 -
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Thus commuting Q with (P*(x)CP(y) + @y)cp(x) gives
F)® () - Eore )+ o, &) 1) + ) o )

and averaging with the original expression produces
F(x)P(y)

plus some terms containing commutators lQh, (PF (x)} But we will shift
the region (g up the tube simultaneously with the supports of the g functions
and so these commutators will approach 0, Since on.e has chosen supp (11)5_33 s
the extra factors of Qh will not destroy commutativity of the operator P

with the expression obtaned above,

With these preparations one may now apply the techniques of §2 to the

charged fields as well, With the scalar fields, one obtains
o= (B[R © ) Pe @ @) ),

which leads immediately to the analog of (2.1) upon cancellation of the factor
on the extreme right which can be again made nonzero by choosing g = g’
With the spinor fields, the result of the limiting process is the commutativity

of P with

9 M F o0l @P ge) ot iyl ™-

= PO ) J (ol - 3y, (D ,m)}u\.(\,.%\,ﬂ,)ﬂ“’ AP y-y s (57

By various tric ks such as setting g’ = Cj& g etc, one can separate the

y-matrices in the middle term to get

0= (B[P w0 )| @) (3.4

where C is any matrix representable as : Ly a.) Fyﬂ,(} a) YV' with
e Y or ['=1, It is further ossible o show L/”at in spite of the singular
p g

. 2 2 .
behaviour of (y ' a) --= {y =+ a) =a’= 0 -~ linear combinations of such matrices are

- 11 -
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capable of producing all products of y-matrices with fewer than 5 factors,
With linear combinations of these, however, one can construct any 4 x 4

H
v L] 1] U‘a - 0‘
matrix -~ in particular C &

H
A 62, which when inserted into (3.4)

gives

(B2 P 0P, B)

to complete the proof,

Concluding remarks.

The ring-theoretical construction of the bilocal algebras makes use of free
field properties and cannot be carried over to the interacting case. From
the point of view of applications, the most useful thing seems to be the con-

struction of particle states over the current algebras, i. e, the construction
of expectation values

GRR- IR IR

Using considerations recently proposed by Araki and Haag [_8] cne can show

that all scattering information can be obtained from these expectation values
(scattering probabilities for {inding a certain number of outgoing charges in
a given incoming state), In analogy with the free field treatment in the pre-
vious sections, one would expect that one can approximate states

in 1n

in X :
l £ R f o BIA e gnr\ where the wave packets g, are shifted time-

like to the f by a large A , by using products of commutators

PRSI I+ {le s ol 2,

2
and letting X and Ve approach ¢% suchthat A = (x-y)2~—> e, Unfortunate-

ly, we have not yet found a rigorous argument for the interacting case,

-12 -
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Appendix 1, Definition of Bilocal Algebras and some Mathematical Results,

In analogy with the local algebra R db)-(A) associated to an open region

of space time and a neutral scalar field A, one defines bilocal algebras
b4

R o ,-C'(A) = Sé@""z(A) where S og,JC(A) is tl'.ze set of all bounded

operators P such that
(P, PA(NA(R)P) = (AlR)AWD ¢, PP)

for all f e

the charged scalar field $P(x) and spinor field 7,[)(x) one uses the om rators

gec,awand all @’\I’é '9 the basic domain of the field A.‘For

Prexo @y and J"{x 3 "Pa(y) which are invariant under the gauge trans-
formations @ — P P @%yp - Symmetric operators may be forne d as

follows:

Clt @g) = 5 (ADA() + AlR)A(D), DIE®g) =3 1 (A)A(R)-A(2)A()).

Since A(f)A(g) = f@g - iD(f ®g) and the functions f §J)g span a@(gxw,
a result obtained in a previous paper [_3] insures that Sé‘f J:(A) is the set of
all P such that

PC(h) & () P PD() < D)™

; and, if C(h) are essentially self adjoint on 9 , the

for all hC‘O@

(&xs)
condition reduces to

C(h D(h

[P,EA’()] = 0= [P,E.()]

for he @g, aand A e R, This last characterization implies that Sgl.{:_(A)
is an algebra and that S£.L (A) = 05_ J{A} ; this fact enables one to prove

that if ch L_}o‘ﬁ A L_J A . then RKL(A V V Rﬁ ra

e el
A result which is used in the text 15 that if o«Lg L o(g and the family {cﬁ} -T
ve
forms a chain (totally ordered set), then
A) = v R; (A
Rz @) = Yr Rigd®)
This is most conveniently proved in its dual form
!
s, (A)=R A)’ /\R (a) = 1S, ., (A)
ﬁ,&f( ) ﬂ,ﬂ( T wr %8,

-15 -
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Clearly the left side is included in each term on the right and therefore in

their intersection. Conversely, let P & S;j 8. (A) for each ¢ = I and let
tgy « Since supp(f)cug% there is a fmlte subcollection of {é@}kel

covering the compact set supp {f). But because this collection is totally

ordered, there will be a largest set cﬁ , and consequently supp(f) =

Y sice, }t_@(&{ ) . Thus

Lu

CIE&D1) _P._ PEC) s
and since this result is valid for any £ & (sry * Ore has P & Sa‘f P (A).

To complete this discussion, it is onk necessary to point out that for the free
field A, the operators C(f GZig), D(f&=Dg) are given in the Fock represent-
ation by bounded operators connecting the n-particle space to the n=-2, n,;
n+2 particle spaces and that the norms of these bounded operators do not
grow faster than n(?a This sityation has as a consequence that the cperators

C and D are essentially self adjoint on any domain 7 CEE‘@, such
that 'LQ M u@/(n) is dense in L@((n) , the n-particle space. This in-

sures that the S&i[ (A) are algebras and justifies the above computations.

2
For the same reason, the operators j(f) = : ATi(f) are essentially self adjoint

on their domains and Sy (i) = Rgﬁ (i)’ is an algebra,

- 16 -
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Appendix 2

The terms whose vanishing we must demonstrate can all be put into the form
/ A
J (£ (@) [P P 0 PO P P () }&L ) X

_ {a.1)
X f(x)elx-y)gMy)e’ * (v ) (v’ =" ) (x")a* (ex’ yy?)

where ¢ 7 (¢ ) is either sin2mz, 0 (znl) , or constant, Here we are per-
mitted to use Wick products for simplicity because the bilinear terms appear
in a commutator and the subtraction of scalars does not change the expression,
The product of Wick products may be rewritten as a sum of totally Wick or-

dered products and the scalar term dropped.

We consider each term of the commutator by itself. The polynomial §( ©)
may be commuted past the field operators and, along with P, taken to the

other side of the scalar product., Designating (P ¥’ (P} )* '@/( o) by X

one may rewrite (a,1) as
X ( Fe) P PP )+ PP () PPl
+ L) P PR P ) :)9)

smeared with the same functions that occur in {a,1). By Schwartz’s inequality,
it will suffice to show that the vectors on the right approach 0 in norm after

smearing,

Neglecting symmetrization, the{norm will be the integral of the square of the
Fourier transform of the test functions over the appropriate mass shells,
The first term splits naturally into a product of two factors each of which

may be written

fei (e + qY)f(X)C(x-V)g" (y)d4xd4y=

3 "\ a
=g " 4® J el(px * qy)f(x)c(x-y+ A a)g(y)d4xd4y

¢ (a.2)

We will treat first the more complicated case of c(f) = stn2mz and after-
wards indicate the simple modifications of the proof which enable the treat-

ment of terms which are O{'Z-1), We want to adapt the usual proof of the

-17 -
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Riemann-Lebesgue lemma to the present situation, in particular, integrate

by parts to get a negative power of A s0 we write

sindmsz = Z d
ng o d%‘ o

cosZmz

To avoid contributions from the boundary which do not fall off suff1c1ent1y,
we must cut off this function at the zeros of the cosine. Thus for each §-
and A an interval I (g,;\ ) is chosen for which cos2m 'mz =0
when f is one of the endpoints, such that supp(f) - supplg) + Aa< UI(E A)
and fmally such the lengths of 1 (é’ A ) are bounded above by a number inde-
pendent of g and 1 . We collect the additional factor of Efn_'f;. into

f &5 g by defining

@ C Jeeyraa®
2 ay) = Zmlx_-y FA ) (x) g(y)

and have by Fourier's theorem after the promised partial integration,

foo sin 2m {ix- Aoy = @y fdn e y"j “”“;";—} cos 2mY (ErAar dés =
TLEN)

EY)
. PN -Yo )
qa(x’)l)':[::'?‘ e 'f Tc] 1T°§:’ cos )_W'L'\./(é-r la ) Clg" (‘d.‘}")
I(g)

Fotd
In this eqguation 'f =X - ¥ and 50 is simply an integration variable,

To show that the function in (a.) converges to 0 in norm in Lz(dﬂ(+)(p)d£
2(+)(q) ) it is sufficient to show that after multiplication by lpo-i—qo‘
it can be majorized one the mass shells by a number MA which is independent

of p and ¢ and approaches 0 as A—> oo . Multiplying (a.2) by \po+qo\n and

substituting {a.3) gives an expression bounded above by (r" = o by definition)
Jdrﬂlru“f’c*({u \[ 1[(eru iy~ r)}’l jelv cL‘\SQA‘“\/(é- ,-Aa_) Clé
.I(f,, )

- 18 -
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For the (future) convergence of the T integral, we multiply and divide by
A g3 :

1+ lrol . Since p_ Zo &£ q s one has frof 4 ma,x{ ’po + rO[

lqo - ro’} and since p_+q_ = (pO + ro) -!-(go - ro) , one only has

to worry about terms of the form

JA pantfigele | feilipmn-anrly o y)f &g 2 yTE AT A4,
RSN ")

o 3 s .
The powers (po + ro) and (qo - ro) multiplying the Fourier transform can

cXe FATe

be replaced by derivatives (‘Z. )“ and (& )ﬁ acting on ¥, since the
last integral is independent of x and Vo The absolute value bars can be

brought inside eliminating the exponentials and giving

[.[;i::oi*]qu d* ’(ﬂxJ (j)P‘P (x/)] fd?

TiE)

—>
Using the fact that the last integral is the length of I (£ A) which is bounded
>

above by a constant independent of f and A , we are led to investigate

~, [>4 ;——-—"_'—z
( _f’> {( &+ Aa)
cé & A

Because it multiplies a function in %('x ¥ it will be enough to show that it
?

the behaviour of

approaches 0 for any value of . One may show by induction on ¢ that
p ¥ ¥y

this quantity is expressible as

o,
- . o bk C
2 (g TR

(k
where [<, is a series of (possibly negative) powers of ( L+A)  with
exponents not exceeding k-1, It is clearly true for a = 0 and the passage
froma toa + 1 can be checked by differentiating the series above and re-

2 . )
grouping terms. Finally since ( 5? +Aa) = & 2'-l~(2 & a)A , each term
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My - .
is asymptotically proportional to A ho-K Cowith k2 0,

In the case where C{z) is 0(z~"1.) it is not necessary to perform the first
integration by parts, and ﬁ (x,y) will simply be £(x)g(y). The last integral

in{a.4 )} can be arranged to be

“[J& g lotH] < M SEP I ( &4 aad)
LI

where, since one need not be so meticulous in the choice of the interval,

the supremum may be taken in a suitable cell containing supp(f} - supp(g).

Next we show how the terms involving one contraction. may be reduced to

quantities for which the prece :ding method is used.

As a function of p and p’ the {unsymmetrized) wave function of the vector:

jf x> (P*{y)f Q‘gtj)cfjﬁn fexo <'q>"(x)q,(x:)> {exn ¢ '}J’-x") g"y'a qux’j 'y)

can be written

[ 1 o f") . . y -x’ ' rl iat
J.e fi*J f'J g(jj C(X‘j)',((A) ‘relst)( x)d&}x&(‘)cl)rfx'ﬁci“',‘y’) g(‘j.)dfrxyxjj-:

- Jd&)f”ap P> ot

with
<I>c-lp,¢!) = Ier(‘pg+7><) S‘:j)c‘(ﬂ"‘) fcx) d¥% OHJ

The negative sign of q can be compensated by making the change of variables

x'—x -x' where x, is chosen in the middle of supp(f).
For this expression one may use the preceding method.
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