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Abstract.

In this paper we give a rigorous formulation of Gell-Mann's
equal time commutation relations in the framework of general
guantum field theory. We show that this can be achieved
despite the nonexistence of charge operators for non-conserved
currents. ©Starting from the properly formulated edual time
commutation relations of "generalized charges", we Jjustify
the application of the Gauss-Theorem and we discuss the limits
for large times of time dependant %"generalized charges". The
JoSteLehmann—Dyson representation is usedin order to show that
the equal time commutation relations always lead to exactly
one frame indépendent sum rule. We discuss the connection
between properties of the Jost-Lehmann-Dyson spectral function

and the convergence of Adler-Weisberger type sum rules.



1. Introductory remarks

The most convincing success of the equal time commutation

relations between vector and axial vector currents originally
proposed by GellmMann[ﬁjis the derivation of sum rules of %he
Adler-Veisberger type[é],t?]a In the original presentation of
Adler and Veisberger this derivation was very involved and the
independence on the frame of reference was not shown. Fubini

and Furlan[4] proposed subsequently a simpler and aesthetically
more appealing covariant method based on the oommutationarelationS(f
"generalized charges"; however, the weak point of their derivation
was the discussion of the boundary terms for large timesand the
ambiguity due to the bad large distance behaviour of the retarded
matrix-element. Furthermore, it was not realised, that retardation
il.¢.the multiplication with the step functione(ﬁo)does not
introduce any ambiguous subtraction constant. This follows from a
more careful formulation of the commutation relations which takes
into account the distribution theoretical aspects. The use of
Gauss's theorem for field operators and a careful computation of
time limits will resolve the ambiguities for low energies (i.e.

the intermediate one particle ambiguity).

By starting from the stronger and more questionable assumptions of
equal time commutation relations for current densities and un-—
subtracted dispersion relations for different amplitudes, Fubini
by-passed this low energy ambiguity in a recent paper [5}.

As regards the problems of high energy behaviour and covariance

of sum rules, we show that for a certain class of Jost-Lehmann-Dyson
spectral functions‘(hhgthe covariant sum rules are identical with
the Adler-Weisberger type sum rules. Ve discuss prelimbary results
on the general connection between the behaviour of ?’“ﬁs)for
large S and the form of the sum rule.



We will discuss the mentioned statements in the framework of
general guantum field theory ng. However, the mathematical
rigour of our presentation is modest and more on the level of
the LSZ formulation than present day axiomatic field theory.
Some of the results of the next chapter, especially the first
two statements are implicit in the work of Kastler, Robinson
and Swieca [10]. We avoid however the algebraic framework used

by these authors.

2. Definition of charges

The first problem we investigate is the question in what sense
a "charge" operator Q can be connected with a conserved current

J/.;_ (X)=

(V 5/4()0 = 0 (1)

We observe first, that irrespective of the conservation law (1)

the matrix element

CAACAIEL .

is a smooth and fast decreasing function in'§i whenever l >
and | ¢> are quasilocal states, il.e. states of the form

I ¢> - Z J‘jm(f‘”—“-xm) Hq (}4) - HM(XM) l 0>

(3)

where the A's are from the basic set of local fields (resp.
currents) in terms of which the theory is defined, and ne Bre
fast decreasing smooth functions. Here we assumed <:£Fuo>z==(3
and the restricted spectrum condition, i.e. the non-occurrence

of zero resi-mass states.

(1) Por a short exposition of general quantum field theory see [6].
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The smoothness property of (2) comes (due to translational
invariance of the vacuum expectation values) directly from
the smoothness of the g's,whereas the fall-off property for
large ¥ uses in addition locality and is a special case of
the so-called linked cluster property [7],[§],[9]. Hence the
spatial integral

S8 <o Ly W
always exists and defines a bilinear form.

In the conserved case we expect, however, to be able to define
an operator Q called "charge", and we try for the connection
with the charge density the following formula

0 = Lo JoGudo >

i.e.we ask in what sense the sequence of unbounded operators

34 (fR,fT) has an operator limit,

In choosing our space and time smearing functionsfg,fT we
followed the suggestion of Kastler, Robinson and Swieua[}d]:

fr20, 2 fr c [FTT] ch- S ) =1 (62)

A X< R
) = > —
')[-R (%) = f; (iF1) 6 (¥l >R+L (6D)
Hopefully as we expect from analogy to the ¢.assical case, the

limit (5) turns out to be independent of T, so that T —» &

is superfluous.

We first want to show that (5) cannot exist in the sense of

strong convergence:



_5__

Statement T

.<?” jo C}R:iﬁT) jo L§R,J1J)IO:7 itjao c PR

with C #¢ unless jriﬂzad,'

Proof. For a conserved current we have the following
K#llén - Lehmann 11], [12] representation:

‘ . Wy @
oo jotid, = J (.- T ) e

hence

Golrdn) Jolin g = |8 lp i@l 9y @

with 2 A
():’-j- Alf(x) U 2+1,'2.
We have 9 P lﬂJJ xﬂ‘%zw)‘}r f XJ)
Pl = 27 Jaor (5 fg0) 2pr
‘P
| (9)
— Ar
= 5 MR e de
where Jl(f) is the derivative of (6b) for R = 0.
By change of variable:
T A7 ‘ .
¢ JC'R (p) = ip jjf (£) e p (24T (r¢R) drs (10)

Inserting (1o) into (8),using the addition theorem for sin and
cos and taking only the leading term in R we obtain:

{lolr ) S, (4,40, =80 R* Jol,o 3(p G{ftkplﬂ 13[;' ]*) (11)

with

/‘-“

Jpw = 05 4s (12)



-6 -

The coefficient of the leading term vanishes if and only (2)

if Px*) =86 . According to a well known theorem [13],[14];
o . 4

this is equivalent 1o J (v) =0,

It is easy to see that with our choice of an infinitely smooth

test function in time, the leading term is approached faster

than any inverse power in R.

Next we want to show that the limit (5) exists in the weak
sense on a dense set of states. First we show for this purpose

that the vacuum is annihilated weakly.

Statement I1.

/E‘”:”w <¥l 5'0 H'R,é‘"r) |(3> =0 (13)

R —>
for states @ of the form | = AﬁL(?)“(’?)B[D}where
B is quasilocal, i.e.of the form (3). U(X) is the translation
operator and h(?) is a smooth function which decreases for

large r such that

/{zw:,. T‘LL (f)%‘(’} (14)

This statement is the transcription of a Lemma by Kastler,

Robinson and BSwieca ljojfrom their algebraic framework to the

field theoretical framework.

Proof, As in the paper of Kastler, Robinson and Swieca, we
"divide® l Qj’ by the energy operator. Here we use the fact that

if 36> is a quasilocal state of the form (3) with <o|B{0D =0
then va;:f%Bhbis again guasilocal, This is so since the smearing
function & (p  ...p ) in (3), which according to the finite rest-
mass spectrum condition can be chosen such that

3,,”(‘2,--(),,,);0 for 2_;1 Pio < 7

(M = smallest rest-mass),

allow division by ;prgo and yield again smooth and fast
decreasing test functions, and hence [fj; is again quasilocal,

(2) This theorem, which is nowadays called the Federbush-Johnson
Theorem, was rediscovered by P.G.Federbush, K.A.Johnson [15],



Therefore we have:

S5 LH Jo G 4001 [0 (14)
= ja*x L) <yl Ww) JeUr g0 16>

: . -
where Iy = component along the radius vector X.

Now we consider the left hand state as the sum of two states

Rz
jo\"x ey Uy [y> = Jom Loy Wy | e
° o Jaxhouwiey U2
R,

Phe first state is effectively localized in the sphere with
radius R/2 and the second one behaves in norm as

I T L (2 U YD &3]
Rl . oa % (16)
- {f«”* Jd:"g h@hig) <yl utgw‘?)lb} ~ O(R*)

R Rl .
This estimate holds because of Ruelle's result Lﬁj

AN
(%2»:;31 X9 <Y UF-DIY> =0
~4) >0

for all N5 @®, and the assumed fall-off properties of h(x).

The contribution to (14) from the effectively localized first
state is

R+L

Jox [0 @4 ) <ol WE-R) (0 403 | 6> .

and hence because the matrix element vanishes again faster than
any inverse power of (?4§)2, the integration (17) leads to a
function of R which vanishes rapidly for R-—e. For the second
state in (15) we use the Schwarz inequality and obtain
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\J Bxh @y utd 5, (g r)l®>’

Bl (18)

_ | j Sy b w2 vl ], s fe)lo>)

If we use for fy space-smearing functions of type (6b) with

L = constant, we obtain for the second norm

/%m I je Uz g0 o>l < CR

However, by using instead of (6b) a sequence of “"stretched

Lo ) = ()

where f(r) is a smooth function which is one inside a certain
fixed radius and vanishes outside a larger radius, we obtain

functions

for the derivative

() ¢ 7 ~d

and hence for the norm

jo\} 433 )LR X)’}'Rl\a) <[JT(X 41 )Jf(‘éi’.)rl')“b
< C R (19)

Together with (16) we obtain a vanishing right hand side in (18)
for R —2 oo,

R ~300

We would like to mention that our estimates are optimal in any
conserved current theory. This can easily be seen by taking s

state {(E> = Jd’ix L(®) jﬂ("ft 3(17=)[O> with f : 71}'.("!?) =+ 0
Such a state is still normalizable; however, a consideration which

is similar to the statement I shows that

L (@) = /%o':oo <£§ l\)‘o (-S‘R‘ :F,_) [0 vanishes if and only if

Jf\ = 0.,
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Hence we have learned that in any theory the formula

Q= wi g, (s 4r) - (20)

breaks down if one of the states in which the weak limit is
taken has a "long range". The linear from L(g) vanishes(and
therefore is bounded) on the dense set of quasilocal states
fulfilling eq.{(14), andhence the operator Q (if it exists) must
annihi.ate the vacuum.

If the connection between the j, (fRiT) and a charge operator
{20) makes any sense, both operators should have a dense domain,
which are independent of R. The "natural" domain of j, (§0§9

arethe quasilocal states and hence one would expect that Q

has to have the vacuum in its domain. But then we can show that
a nonconserved current cannoit give rise to an operator Q. This
was first conjectured and made plausible by Coleman. [36]

(see also [17] ).

Statement III (Coleman) For a nonconserved currentgﬁEP(UEF"U*o

L(§) = Lo <l o Undr)jo> (21

is unbounded in , @i) .

Herel¥h>runs through the same set of quasilocal states as in the
previous statement. It should be stressedthat L(f) is wunbounded in
both the conserved and nonconserved case, Only on the subset of
guasilocal states do we have boundedness (since it vanishes) in the

conserved case.
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Proof, Again dividing the state}é} by the energy operator

one obtains:
L) = (giﬁ <@l o lfx e 10>
+ Aot IR s, 410>

(22)

with

> = L1 7>

The first term vanlsheb according to the previous consideration.
We want to show that the second term is unbounded in |4 .
For this purpose we choose asequence of guasilocal states

4> = DB g1l A6 16> (23)
The norm behaves for large F 1like
1A (e, 30167l
= { [ [43y £ 0 £, 50 <A Q(g,:ﬁr»} (24)
, N )
—_— { I-i-‘-r JJGF/I")[P(F)I J‘lx ‘J\_—duf]gl_f:?— })(T(JF -Hné‘)‘ }
32.

— (C ¢ with C =0 <& Hx=0

f--")cx:

Therefore

fm— <ol AU dole> =2 7 ’%Lw Ja3o 1. ' @

< Jdx zfsijij? | L (oDl = ¢ " s ”J“["’ =2 | [’
Y%

which can be made arbitrarily large by choice of I§j£>

Since I @S’ = H I >

and hence

13,5 = 27 Jda o2 | J160] < oo
L’ (?E) is unbounded in |§> .
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Let us now come back to the formula (20) in the conserved case.
Ve consider the action of jo (fR"fT) on the dense set of states
B ]6> as in formular (3), but with compact support test
functions gm(x,...xm) 3

Jo G g Blo> = Liolrd BT J6> «B Js Gr A0S

According to locality the first term is independent of R for

large R and again has the form (%) with compact support test
functions. The last term converges weakly to zero as R «%o0 .
Hence the formula (25) defines an operator Q which hagégts domain
all states (3) with compact support test functions and furthermore
the operator Q can be applied repeatedly on this domain. It is
just slightly more complicated to see that also quasilocal states;
i.e. states with concompact (but decreasing) test function and
multiparticle in- (out) states with non-overlapping wave functions
belong to the domsain of Q.

Mnally it is worthwhile to mention that all our considerations

go through if the current has other tensorial indices in addition
to the index in which the conservative law holds i.e. for currents

)
K
\.)/“!}"4, “‘/“n( )
In this case the decomposition of the two point function into
standard covariants is more involved; however, due to the
requirement that all relations hold for arbitraryfh,..ﬂn we obfain
the analog result.

3. Pormulation of equal time commutation relgtions

The main point of this section is to show that despite the
impossibility of defining a charge operator in the nonconserved
case, the commutation relations of "generalized charges" can be
given meaning since in the commutator the infinities of the norm
cancel each other. Let.ffff) be any symmetric time smearing
function with compact support in [;fr}7#]¢
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Statement IV (26)

T g, Jo Gro g 1§50

between TCP invariant states.

Proof, If 6 is the TCP operator we have

<T1663 Boudn) [ fadr) 06 1F> = I 4. Gude) 1208 $145

= <(f’jaK(’er§'T7 5 G dl9>

because of the choice of symmetric test functions fR and frp.
Hence we have (26), Here the index i,k designates any vector

or axial vector current. If the state [@) is the vacuum we can
omit the smearing in space due to the fact that [6> is

rotational invariant.

In the literature one finds very often the statement that the
vacuum expectation value of the equal time commutator vanishes.
This is wrong because there is no equal time meaning to this
quantity. Even for free field currents the two-point function,
although perfectly well defined as a VWightmann distribution, can
hardly be given meaning for equal times. However, our symmetric
time smearing process takes care of this problem, 1.e. it
truncates the matrix element automatically.

In order to avoid & lengthy discussion due to generalities we
take as a model the axial vector commutation relations of Adler
and Weisberger. The currents j/& (x) lead after smearing in time

to one particle truncated expectation values
; .\(‘V)S__) ) =) —_— -

<Pl Jo R0 5 (T $>

=~ <YIE> < jo Rdn [T @0,

] . . —E . '
which are infinitely smooth functions in x and ¥ and decrease in

(27)

these variables faster than any inverse power. This statement is

a direct consequence of Ruelle's results' [87 since the one particle
(wave packet) states are quasilocal. Hence the integration with

fx (%) iy (¥) and the 1limit R —ee causes no difficulties. (3)
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In our nonconserved current case the result will, however,
depend on the time smearing function fT(t). Let fT be a sequence
of symmetric compact support test functions which forT»sapproaches
the § -function. The statement of equal time commutation
relation in the case of our special expectation value is now the

assertion that

L. o <@ e dn), 57 G 50) 1 85 = 2<HT1 > (e

T=>0

where 13 is the 3rd compohent of the isospin operator. Such an
assertion does not run into any obvious difficulties with the
principles of quantum field theory. However, an explicit
perturbation-theoretical check in some renormalizable models would
certainly add a lot to the credibility of relation (28).

We will discuss this problem in a future paper.

Symbolically we could write

Lo Ao [3.760 35 57 G 300 = 2T, (20

T—=o0 R=>00

if we only consider the left hand side between states which lead
to fall off properties in';'and-§ and hence to the existence of
R—> o0 . All so-called quasilocal states certainly belong %o the
set of admissable states, but a more detailed investigation shows
that (29a)can also be taken between multiparticle in- {or out)
states with nonoverlapping wave packets.

(3) Here and in the following a smearing in space is superfluous
since the spatial integrals converge in the ordinary sense. Ve
will, however, keep the fR's because they serve as a convenient
reminder that the spatial integration in general cannot be
interchanged with other limits.
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In this section we have studied the commutation relaition between

space integrals. Often one also formulates commutation relations

between densities, for example

/é‘ - (S (~
Too D" (¥, 3D o (U §0)] = ZJO o (@) (29b)

or equivalently

[ '(m f),ji)s(n t)] = ZJQ (x D{(F-3)

The valldlty of such commutation relatlons is doubtful, even if
the current is conserved. The derivation of sum rules is,

however, much less complicated for that case.

4. Derivation of sum rules

Consider now ( omitting the index 5)

V(8 t

Jo (”f’R 1)=" 4'*- )9 (ff;e {T )dT + Jo (}Rl}T) (30a)

and

[od

3o = | B g o

9

(f? } (30b)
where 3 (%)

@ J, (r 3 U T = J‘D( )(’5?.’11*:) ] j(“;{f) = :)('T (t-2)

Lemma 1.

t o :

J gt o <o [ 0 Un 40, fo 3 g )]

0o .t (313-)

~ [2Un$7)0 2 G fr 13187
.,_jdt/qm; <(fl [ ﬁo(ﬂ(}’R; {T) dT jo( )('JL’R, 5?) _ ?&)Hﬂ':}:);]l ¢>

¢ )

j be b UL & 327 Un 0 =D n £7), 5. G 457195

= (J {(%1Db)
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Here I_@j7 and | Y> are quasilocal states und

v (£

(+
D o = ()/MJ/M (%)

s (

fo 3 s D) =50 55 i g

in order to prove (31a) we have %o show that:

{fﬁ“[jww ('JL’}’?l J(T,E)l ?H(&’Rl ?F::,) ] I @ >¢;
<D 55, 5 e, 40T T,
* UL 400 e Gn 45901132 = o

Proof, Since

(32)

where tr (trunoation) indicates subtraction of the vacuum
expectation values (4)u

We prove that every singleterm in (32) goes to zero, Consider
for example the first term explicitly

Rel R+l

‘ — y (B — ' - 1,
Jasx [y 42 L) <yl [ @45, DG T
R 0
According to Ruelle [8] the truncated matrix element

) EAD DTG AT I € By o

i.e. is a smooth function which decreases rapidly in ¥ and ;ﬂ o
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Hence after integration with fR(§) the remaining expression
decreases rapidly in X and hence the integral over the

ring R4 (X)€R + L gives a decreasing function in R.
Therefore the first commutator decreases rapidly as R - oo.
The argument for the decrease of the other terms as well

as for (31b) is the same.

Specializing lQ;> |‘:l’> J._f ) {g> to a one particle
state {proton state) with a sM00 th decreasing wave packet
(such states are quasilocal [7][5][9])and using lemma I we

obtain:

}ZRM; S5 Grodn) 37 Gr A ¥

- pe3
o]

t
= - Jle | Lo P n, 45), D o 3701195
¢ ~1

&

o Ji YIS GrA), DU 45T

F K2 a0

= [ie b U ed ) 1 Grt ]l

R0

) (34)
A I e D), G490 9

We now want to show that the contribution for large t of the

2nd and 3rd term vanishes.

s e e e 1 et 2

(4) If the integration over the T 's is performed as in the
Lemma the vacuum expectation value of the commu}afhrs
vanishes; hence the truncation would be superfiﬁous.
However, working with the integrands only, the truncation
is necessary for the existence of the limit R — oo,
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For this purpose, we use translational invariance and
obtain for the second term:

T D o, — () T,
:J&A(, Lo L3040, D Gt DN 1
(=)
For D (x) one has the formal development into incoming
fields:

oy 3 5 b

D (v = j‘%‘ <ol D' (\A)Iﬁr>ﬁﬁ.+
o T

+ < kDO m oy - %)}

(36a)

ipl ) M if:q'f i
Z J jif%’ <&153ii"1|)> (”) 2‘153:' F> ‘?Vn (g:s;) 7‘;, (&;Ss)

-t h

The first term in this formal decomposition is clearly
similar to the LSZ term. The only modification is due

to the fact that the matrixelement <Ol‘?(h)(¥‘)‘k'ﬁ+>

is different from the wave function of the pion

by the W -decay constant. The bilinear term in the

rewron creation and proton annihilitation operator is the
next term in this series. Terms with two particle creation-
resp.annihnilitation opera’ors and all the higher multilinear
terms have not been written down in (36a)} because of the
following theorem due to H.Araki and R.Haag (5).

(5) "Collision cross sections in Terms of Local Observables®.
Unpublished manuscript. Ve thank Professor Haag for
communicating to us some results contained in this

manuscript.
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Theorem  Let|y)and|¢> be in-resp.out-states with nonoverlapping
wave packets. Then formula (36a) is correct for the
matrixelements <‘£‘ D( ol - The matrixelement
of the rest <@1'RI‘£7‘ decreases to zero faster
than any inverse power of t for t» -e Uniformly in %,

The LS8 2 term evidently decreases like t,y& and gives after

wave packet integration the time independent creation resp.

annihilitation operator of an incoming particle The second
term goes l1like -3 for t—*-+ and hence vanishes after wave
packet 1ntegrat10n (as well as the rest). However, integrating

(36a) over £ space leads to a result in which only the second

term survives QG)

- 3
) 43x )”(?,1;);—% () 2 fgié%)"’-

\)g\Si

(36b)

bt inl D (OJH«&.@‘{/ %sg) ‘1’ (?as'

The validity of this formula taken between states[&)and [ >
as defined in the theorem is a immediate consequence of the

theorem. However, in formula (35) only one stateIWPhas the
form required in the theorem:

(Y '\)\OT (&, &7) jo\gx D ly> = (Xl/cl?x}(‘fru | >

whereas the other state l'%f> has no simple interpretation

(6) For our special ) field this contribution vanishes since

<%|)’>‘EJI E> =@ but this would not be the case if we take jﬂ(x)(w

instead of :D‘f7x)
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in terms of incoming or outgoing states. Fortunately, this
does not matter because of the following statement also due
to Arakil and Haag (5»,

Statement: For the matrixelement of space integrals of local
(or guasilocal) operators taken between states of which at

least one consists of incoming or outgoing nonoverlapping wave
packets, only the bilinear "density" term remains in the limit
t-—2 % ee and this term is approached faster thar any inverse
power in t. Applying this statement to the two operators D andJo
and taking into account that <k IDIk> =0

we obtain:

Gl o RADIYS 7, 6 TR G

t-#i0

<X fol" ey af:>|tf>éj

Too

(37v)

y T
(050 ks> Cr ™ thsy) 4,7 (k[

~+ R

y (7

Q S“J@‘k) <B*5'31 IJ

where decreases faster than any inverse power of t.
S

The first relation yields immediately:

-t
L... j< Jol'*hj)“ 4> de =0
R P =Qt

and hence leads to the vanishing of the second term in (34).
In an analogous fashion one shows that the third term in (34)
vanishes in the limit.

With the help of (37b) the fourth term in (34) yields:

)" 2 )Gk 7 gl 1704 >

(-2
X f? [ ‘ (Ol' P‘? .
\ IS3|h!JD }T)l fF> (38)
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where the summation goes over the two spin states of the
neutron. Since ffrﬁ)dt = 1. , the fr is dropping
out and we obtain: '

5, j ‘% [ f” (4~ (4Y) (39)

where we used the definition of the axialvector

renormalization constant:

e AM 6, =~ (40)

Chipl §70)] Rgnd> = et G0 o s . ()
Y

Now we want to discuss the remaining first term on the r.h.s.

in eq.(34). After integration ove: oneténd evaluation

0f 1im R —» oo one obtains

_@F)3 j() Xo Q(Ka) Xo ‘Jqu%x * (41)

el [P 47 D E 47

where we have omitted the wave-packet integration.

From the form of eq.(41), one would expect, after taking the
limit T-»0 that eq.(41) transforms with respect to Lorentsz
transformatiors like the zero component of a four vector,
i.e.1ls proportional to Po o Suppose the retarded commutator
appearing in (41) is Lorentz-invariant (7) and the integration
over the whole Minkowski space is independent of the order of
integrationg,then this proportionality to Po would be the case
indeed. But this independence of the order of integrationsis
not fulfilled for the one-particle contribution, as will
become evident later on. The definjite prescription given for
the order of integrations in (41) is an immediate consequence
of our distribution-theoretic definition of equal time
commutators. It agrees with the limiting procedure given by
Okubo [18]) in momentum space.
(7) That this is generally not true even for local commutators
will be discussed in the next section.
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Eq.(41) may be written as

1 D
12"" o qur (w)F

w~—>0

(42)
with Ry (W), =« (2?"}3‘}0\7‘06:“% 0 (%o «

U £, DT e

if 6?§r{“%’ is an analytic function inf) whose first
derivative approaches a continuous boundary value at w=0.
That this is indeed the case will be shown in the
subsequent discussion.

Due to the smearing in time the product of the step function
with the commutator in eq.(42) is a well defined gquantity. _
Therefore, we may evaluate the x-~integration which results in
the Hilbert relation

-+
00 A~ 2

(W, D)
- (&) J do _‘__‘i,r gr (v

where M is the Pourier transform of the matrixelement of the

(43)

comnmutator

HOR PR 1 AN S V]| oo

According to the spectral conditions M(q%, may be
decomposed as follows

Mgl = - (a o Grpe) 42 K (Gep™- M)

-+ }L;C?)P : (45)
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where the support of the continuous part M, is given by

To = = po v [(Mep) " (7+F)" (46a)

70 = Fo - m_v*)z"’ (?—?)Lf (46D)

and the vertex function K is defined ag follows

<PIP®Ip> =207 21 T g ute) K (p-p)?)

K(O) is collnected to the axial-vector coupling constant

renormalization G% by

z o
Ko - (AM 8,) (47)

The first term in eq.(45) results from the one-particle
intermediate state in eq.(44) and its "crossed counterpart",
i.e.the partially disconnected contribution from the
3-particle intermediate state (one antineutron, two protons).

We require that the operators DC”(X) are local relative to
each other i.e.

[D%0,2 1)) =0 1 (-p<e (4

For the further development, it is advantageous not to work
directly with the decomposition eq.(45) but with the closely
connected "“causal decomposition?

Mlq), = Hw(q)r « M7, (49)

where M7 1s defined by

Mg = Q0K £Gerp Tl =MY) (s0)
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The Fouriertransforms ﬁwu(ﬁh, are causal functions
(i.e.vanish for x746 ) because this is true for r by
consiruction and forﬁfit follows from the requirement
eq.(48).

. . . ) ("
By insertion of eq.(49) into eq.(43) and evaluation of the M
contribution we obtain

’R:h,(m T S ﬁ.z(ﬂ/p;,‘)

Welp,tie
+g I\{lZ)( I_.a,) o 2 (51)
-+ (2") J Ah’ W'a o=t g \fr{wj

= o

@, .
With the aid of eq.(45) and (46), we get the support of I (w',o)f,v

LTSN o
M (W &)=06 15 IW'I<~'FG+J(N*/J'*’? (52)

Therefore (R&r(w) is an analytic function ofw within a
circle around w=¢ with radius — p, -+ J(H’f/*)l‘* F?l‘
The differentation of'Rérlu) at w=0 may be carried out

now, leading to

~ 2 . too #), | > ~2
Kok (e | g |jw TP 70
‘lpu o Lt (53)

On the premises of the existence of equal-time commutators for
axial-vector charges the limit T—se of the r.h.s.of eq.(%3)

exists.

We now make the technical assumption that lim T-—>¢ may be taken
under the integral, which excludes certain oscillatory
behaviour ofrf”uﬂﬁvp for L0‘8";""0,:1..e.we obtain in this limit

for eq.(53) (resp,eqo(41))( p

(8) In the usual treatment of equal time commutation relations
without testing functions for example in S. Adler's treatment E?]
this formula follows directly from intermediate state

insertion.
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0 oy i 00,
1P° _ Al (54)

We mention that the prescription given for the order of
integrations in eq.(41) led to the absence of a one-particle
contribution, but to the presence of its "crossed counterpart"
in eq.(54) ‘

(1)

To exploit locality for M we use the Jost-Lehmann-Dyson
(J1D) - representation[1q1,[20] in its Lorentz invariant
non-unique form [20]:

Hw(w':jdqujzls 5(10--qu I((‘]-u)';s] Yla)(u.S)P (55)

with

Ob:ho *{/W——- fuo Tu)€ Y, Is’ ‘DJ.AM(O M- J(pm)2 H*/“ ~w)? )}

As is well known, this support of YAQ leads to support
properties for [1l%q) as given by eq.(45) and (46). Because
we have split off pﬁ” fromMin defining M% we obtain a

further restriction on suppif":

\//m(uls)‘a_ =0  if S £ u? (56)
The proof of'eq.(56)his given in the appendix.

If we would disregard this proved: prescription and
exchange the order of space and time integration in
eq.(41) by considering
-3 ~ 2
lim  1lim lim (- H(w,q)P ' i
)" 5%, | do L

T—0 ?—‘0 W>q W -{g

the result would differ from °q. (54) by the one-particle
contribution . Po k“w) T Aﬂ B)*
which may take any valuelghe wishes.
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The high-energy problen

Next we would like to remember that the existence of the
integral in eq.(54) which requires a good high-energy

{
behaviour for the even (with respect to i) part P1;)

of Hh) , 1.e.

i2) — 4-5 .
Mo (w©) ~ W £%0 (57)

LS = oo (

is an immediate consequence of the existence of the equal
time commutation relation eq.{28)., Therefore eq.(54)
already leads to a well defined sum rule without containing

any unknown subiraction constant.

In the following, we want to discusssufficient conditions for
. {2,

the spectral function q’()(M«Sﬁa to obtain from eq.(54)

the sum rule in its dispersion-theoretic 1like form (i.e.the

Adler-Weisberger relation [é] ,[3]) whereas more general cases

are discussed in the next section.

Necessary and sufficient for the validity of eq.(57) is the
following behaviour of ¥/w)

P
)Jqu Lkm(u.(w-—-ua)’r- TJF,/ S W g , £>0 (58)

27,9

We now consider the sufficient requirement, that the)good_
10

large $ behaviour of %/uﬂurﬂp is valid uniformly in u:
(4~
,l{/l“(u.ﬂf’ = c g BltmE , €206
$ oo (59)
(2)

for every W € »%pp ¥

(10) In eq.(58) and (59) we treated le“ as a function,
however, the distribution-theoretical modification can

easily be formulated.
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This requirement is not necessary, as will be shown by
counter examples in the next section.(11)

Inserting the JID-representation eq.{55) into eq.(54), we
may interchange the order of integrations by considering
eq.(59) and (56) and evaluate the®'-integration with the
aid of the 5‘ —-function. In this way we obtain

+o0

Ju “m( NACAZ . - Ja] Jo Qe s (o0)
(u~s)*

-0

Because of Lorentz-invariance kftv(“rfﬁg is only a function
of the invariants Uﬁ}u;p and § . Therefore, the r.h.s.of
eq.(60) transforms like the @ -component of a four vector,
i.e.is proportional to Fo s as expected. The non-covariant
term f{ﬂﬂvhpoin eq.(54) just cancels the non-covariant
contribution from the boundary term in eq.{(39). Therefore,
with the requirment eq.(59), we always get the sum rule in

a frame independent form.

For reasons of simplicity, we now work in the laborsystem F?zo
(this will be indicated in the following simply by
suppressing the indexp ).

Theorem:
-{-ac'.'n (9') [ = e - ! '
Lo M (W o) | N(w\ 2w) (61)
U \?— = (lbd 'w\?_ :
—_—00 L

—_— D

—y
where € 1is anmunit vector.

(11) But it turns out, that these counter examples are more
or less of a pathological nature.
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'Ther-hosof eq.(61) has exactly the ﬁﬂsubtraoted dispersion-
theoretic form. To prove this theorem, we first observe
that MY (), &0) =0 because HWH)P ~ gt
Inserting now the JILD-representation for M% 4into the r.h.s.

of eq.{(61), we may again interchange the order of integrations

and get by a simple and straighiforward calculation, thereby
using the rotational invariance of ty“JUMS) and the

support properties eq.(55)

jo” JJS Qu‘" kg

ut-5)°
due
which is/%0 eq.{(60) the desired result.

The integral on the right hand side of (61) may now be
rewritten with the help of the formula

2 ()
:D(*fx) = S 2" F AR (62)
iz jnur'KNwa) !

and one obtains:

2 [8gM V4 m.«ls ta tot

e Kivw (0

(ﬁﬁdL
4 k(s.9)
where pwi %) &(sf&) are analytic up to 71%/41
and (Sf‘ is the physical total cross section
pfdzscatterlng ( k(s,%) 1is the CMS momentum for

pions of mass fT),
Collecting all terms for the l.h.s. of the equal time

commutation relation eq.(28) we finally arrive at the
Adler-Weisberger relation[2] [3]:

6;{1“‘ 3“’[1.2‘ v (64)

ﬁNHW KNNr(O)

. + -
_/_{_- j 0\6 [O-_T'_ (5'10) - 6-}{::5 (-&hlGJ:]}
.*

y
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We would like to emphasize that formula (62) (often called
the PCAC-hypothesis) is not an assumption but a result of
quantum field theory. It follows from general collision theory
[2é},i§£},[§{] that if a local field has a nonvanishing
matrixelement between the vacuum and the one TTj state

<o | ’,Dm(o)l B> = (Ar —/zc. =+ 0 (6S)

then the field (12) %#y(})=:gfﬁ?uis 8 possible candidate of an
interpolating pion field(12). In other wbrds, this field inserted
into the LSZ reduction formula gives the correct on-mass shell
scattering amplitude. The application of this observation to

the problem of a "universal" P- meson coupling was pointed out

by Haag, Nishijima and Schroer (unpublished) and used extensively
by Gell-mann [1]. This result of general collision theory seems
to have been overlooked, however, in the recent literature on
PCAC.

Since the vertex function of the fielad ﬂrtaken at ‘the momentum
transfer )ﬂ' is also anéf—matrix observable (residue of the pole

tern)

(- ( M =
we can, by taking in addition the definition of the axial vector
coupling constant (40), in a well-known manner compute the
normalization C and obtain formula (62). Of course, in order to
obtain the right on-mass shell® N-scattering amplitude, we could
have taken any element of the Borchers class [25] (?é]of D(x).
However, the equal time commutation relation for the "generalized
charges" of the axial vector current force us to study the off-
mass shell extrapolation with the help of the fieldgégl. The
"smoothness" of the extrapolation from ?’iPL to ¢ =0 is, in
contrast to the analyticity in ? ,no0t a property of the whole

Borchers-class of D.

(12) Anybody who has a distrust of general quantum field theory
may check this insensitivity of the in and out fields with
respect to the particular form of the interpolating field in
pertubation theory.
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The nontrivial part of the PCAC hypothesis is the claim

that matrix elements of the preferred (by weak interactions)
physical field(D +ﬁﬁ)Di(x) have this smoothness property in ¥,
It is well known that from observed fr-lifetime the
"smoothness" Hyng (0} = f<NNW(}F) i.e.the Goldberger
Treimann relation follows [27) ,[28]. A sufficient condition
for this smoothness would be according to Gell-Mann[1)

an unsubtracted dispersion relation with fast decreasing
absorptive part. However, for matrixelements entering into
the Adler-Weisberger relation such dispersion relations in 9

have not been formulated.

5. A more general discussion of the high-energy problem

In the last section, we only discussed JLD-spectral

function® luS) which are bounded for §->s by C 5'4/2(4'FJ (£70)
uniformly in u. Now we want to relax this restrictive
condition by considering a more general class of spectral
functions bounded only by a polynom in s but leading to the
existence of the equal-time commutation relation, i.e.

to the existence of the integral

Jau el e

To avoid unnecessary complications with one-particle states,
which do not influence the high-energy behaviour, we consider
the example of the commutator of axial vector charges
transforming with respect to SU(3) like the ¥ -components of

a V ~spin vector, taken between one-pion states.

The support of our f10PP is then given by

o2 —po+ JQW‘/A)?W (5"

——
F

(o= P ¢ J(ww/“)‘+ @-¥)

wheref\resp.WL is the mass of the pion resp.kaon.
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i.e. we have in the system F; =¢ a symmetrical spectrum.
This allows the application of the unique Jost-Lehmann (JL)-
representation [ﬁg) for Me » Due to Lorentz-invariance

of M we have

MW, 8), = Hlw L 7 2)

(69)

/
Using the JL-representation for the even (with respect tow )

part of eq.(69) we oblain

He (6\B), = £lw) W‘%’)A"ujcls () §w's %iﬂi?“;'“‘*l"ﬂ (70)

with w =&

and supp 70(%5)-—{&:\4-/4,»]___{_;-—#‘”{7“ \J/A—M’“i
Necessary and sufficient for the existence of the integral
eq.(67) is the condition

Jou plupws wapea) ~ W) sm0 o

L' =» a0
Next we consider the special case Fﬂzo « Then a very general
class of JL~spectral functions satisfying eq.(71) but only
bounded by a polynom ins for largeS is given by the ansatz

N
w* plucs) = ut 72(“:&) « 2 a)tw (+u)" B(s-5iw)
n 20

(72)

o Y £
with /%(‘415)} < C¢§  £>2o0 for every ué€ supp ¥

& 0

and supp A, {u) = (6,M].

o
Because they -part of (72) has been considered already in the
lasﬁ section, we restrict ourselves in the following discussion

to/polynomial part {which we call'f) By partial
-integration in u we obtain from our ansatz

. N
JO\’}M 7; (u’( LO‘L—-“’?’) = L/ﬁ—jdh Z a""(u) Lollh X

(73)
y (L +58w) Slw'E o slw)
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-
P
i.e.we have s He(wf ©) with compact support.

But this fulfills eq.(71) for arbitraryp only after
imposing some supplementary conditions for the a,,(wy!
Calculating thel.h.s. of eq.{71) by using our?we get

FW) By (WD e

with ‘/P)JN”!) (w], (?1) = fi(w-'r) L [9 (IFU

R §
— — yl e
and j%.('f") = fou du S wf P ' Jm i
R p)

wherej][lw‘} has compact support.

The r.h.s. of eq.{71) requires

}) ((P 1) = 86 for every ‘FJ
i.e.

J du A (w ks o
(75)
if n>d4, K odd ana K« -4,
Further integral conditions for the a,lu)we obtain from the
requirement of Lorentz-invariance of the "naive defined"

retarded computator:

H A Ha(‘iolq}
5 F) \/ T HER EE: (76)
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The r.h.s.of eq.(76) always exists, because due %o
conditions (75) ﬁ¢[ﬁ§f¢%« has compact support with
respect to ¢,

Because H[Qtf) is already rotational invariant by
construction it is sufficient to consider an infinitesimal
special Lorentz transformation along the i-th coordinate
axis. Invariance of (76) then requires

DI N (77)
jol‘]o( (S—{L Me (‘io‘v(f)‘b = O

In coordinate space'eq.(77) is a condition for the equal-
time commutator of the divergences of our currents

s
A

M. ((Or—f))r ~ R (78)

Ve have not the intention to write down the complicated
conditions for the 4a,l«) following from eq.(77) resp.(78)
for a general N . Ve only give the results for the two

simplest cases:
N=o no condition

(79)
N=1: jclv\ aGlwuw =0
It is immediately clear, that from the Lorentz invariance

of H(QW) the desired proportionality of the expression
eq.(67) to p, follows, provided that [f(4p,q?) has a
continuousAfirst derivative in 11‘ at 930 (which is the case
for our M, ). Since the r.h.sof our equal time commutator
is proportional %o F% » we are forced to require Lorentz-
invariance of H {q,p)

After these considerations, the important question - arises
whether the unsubtracted dispersion-theoretic like sum rule

i.e.the expression
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ij' Ne(w,’e Ldl) (80)

wl?.
exists. Unfortunately, this is not always the case.

A simple calculation shows

j(pu' $lu daey ) (81)
— jfi ¢, w™ + 0w

w'_,,m Nz

with -
C,, ~ j du a, (w W

According to eq.(75), we have already

C_H-—-C) if . even

from the existence of the equal-time commutator, but no
condition for C,, with n odd is onhand.

-7
Suppose only terms withnevewn are present in y’
so that the expression eq.(80) exists, Iven in this case
the equal-time commutator, i.e.the expression Hs_ﬁggg)
is different from the dispersion-theoretic (i.e.Adle;i
Weisberger) expression -J ﬁ&iﬁ%éiﬁ) . This corresponds
to the situation in dispeQ§ion“%heory where an analytic
function (in our case ‘I Mﬁi%?ﬁgF) Ymay be represented
in the cutiv ~-plane by the uggubtracted dispersion integral

plus a real polynom in & .

It is our hope, that one may exclude the considered ‘?

by imposing more conditions following from general quantum
field theory on our commutator matrix element. From the

point of view of perturbation theory, thesetﬁ are of a
pathological nature, because in this case unsubtracted dspersim
relations and naive multiplication with the € function

are always synonymous.



- 34 -

Acknowledgementi

It is a pleasure to us to thank Prof.R.Haag and

Dr,0.Steinmann for enlightening discussions. We

are also indepted to Messrs.d.Langerholc, K.Pohlmeyer,and
DPr.A.H.V6lkel for helpful remarks.



- 35 -

APPENDIX

A theorem on the support of the JLD-spectral function

\2)

for M (1)r.

The purpose of this appendix is to prove eq{56)
Next we consider the JLD-spectral function Y(ws), for ff(ﬁ%
which has support in D{u.s)?

Plup) = {(’Piu)e Ve 152 M (0
M- V@, i p - o)) (A1)

This ¥ may be decomposed into two parts
=ttt (42)
where 4o have support in Do ¢
D, = Q (Dau;) witn U, = § e=wed] 1 <67

_ (A3)
:D_,, = iD - :}o

Theorem:
. Y, =0 if W -p
2 §, =0 if & = w*
Proof':

The domain D, consists of all points w,¥ for which the

hyperboloids (3—u)Pr§:c3 are admissable in the sense of
DysonLQO] with the subsidary condition (u«.,s5) e U, i.e.
we have for (¢ ’), in the Lorentz-frame p= (M, ) for

arbitrary ? :



TR R T AR LR St

Ue — Jf?iat-.’l_a’v?-(- ul+ = M- ‘/CM‘I"/“)z“*‘_ ?d (..A6)

with (6] < £>0, 2 >0,

Consider now (A5) and (A46) for one particular q’: §é=€>,

Theﬁ we obtain

£

ua -+ 'Uo' -+ llusi 2 O. | (.A.7)

[§l¢gv0, £ 0

Up ~ luel - 17%,1 £ -p (48)

From (A8) we infer U,<0. With that the limit case £=0

only allows the equality sign in (A7). Then the same is true
for (AB) because q is an arbitrary vector. But with the
equality sign and {=8 (A%) has the unique solution Ue=-— M, “”zo’

It-may easily be seen that this solution fulfills (A6).
This proves the first part of our theoremn.

Corallary:

The hyperboloid QT—M)l—S’zo is not admissible for S <u"
because it is a monotonic function ofS§ and (A7) and (A8)

are inconsistent for § < 0.

With that we have proved the second part of our theorem.

P, (us) =0 if seut

From the support of § and the JLD-representation for N(ﬂr

H(q) }al’* de plus, {(g~v)%-5) £(qs-u.) (19)

it is immediately clear that ¢, only gives a nonvanishing
contribution toff on the one-particle mass shell(P+7)L# M=
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2
In order to fix the contribution of?‘at 5 = U we consider

the derivative of M(t ,0) at W—sco

D o)
N( I (2n)? LZH g(m4~2a;N)

+ Y M !'(ﬁvrﬁzuﬁ)]@(wﬁ) (A10)

On the other hand we get, according to eq.{A9), and our
. theorem applied to O g
, Oy

r

(fi F{(wab) — ZQrJ AS E{w-va)u, »

{((\msggf=ri&:‘5) (fis_ k{/ (.u-kS))D (A‘}‘])

The following ansatz satisfies eq.(A10)

(\%3 &(/wa) — - |<;(01 f(‘S-u?’);\%P W {(wep) (a12)

Therefore \r(u.S)F may be decomposed as follows

5 ! .
L}/(u\SJf = x,u“{u,s;f + 2 (w8,

e (u ja&é’( &(/Luas)r) (A1%)

()
With the aid of eq.(A12),(A1%) and the definition of (1 (9]

it may easily be seen that %ﬂﬁ’(u.&%g is the
JLD~-gspectral function generating md” therefore %9(2)

(2)

generates M and has according to eq.(A1%) and our theorem

the desired property

(’ll/m(mm:@ i §ewr (A1)
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