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Abstract.

A non-local gauge-invariant Legrangian is given, which describes
gauge-invariant quantum electro-dynamics with a modified fermion

propagator, Some examples are discussed.



1. Introduction.

In a paper {1} on a simple model for the modification of guantum
electrodynamics (QED), McClure and Drell investigated the problem

of géugeninvarianée of QED with modified fermion propagator. In
particular they showed that gauge-invariance of the amplitudes for

pair production and g-2 is not guaranteed by merely changing the
conventional one-photon vertex as required to satisfy the Ward-
Takshashi equation {1} together with the fermion propagator. One

must include an additional two-photon vertex Lo restore gauge-in=
variance for these Sematrix elements.

Now the question arises whether one can obtain gauge-invariance for

2ll S-matrix elements by adding, in a similar manner, a certain num-

ber of suitably chosen multi-photon vertices., If this were possible

s simple procedure for constructing these vertices in a more syste-
matic way would be highly desirable. This procedure should prevent

the treatment of every S-matrix element separately.

Kroll {4} solved this problem by giving a suitable solution of the
Chang-Meni equations. In t h i s paper en answer is sought to the’
following question; if we postulate a modified fermion bropagator,

can we give a gauge-invariant Lagrangian which describes the inter-
action between a fermion field and the electromagnetic field, and

which corresponds to the Lagrangian of conventionsl QED? By "core
respondence' we mean that the Lagrangian should approach the conven-
tional form if the propagator does.

The form factors corresponding to the propagator and vertex modifica=
tions lead to a non-local interaction as an instrument for the treatment
of the provlem to be discussed, It is not intended %o discuss the well-
known problems of non~local interactions. ( form factors and convergence
properties, unitarity of the S~-matrix, ete.), Here the non~local inter-
action merely serves as a weéll=suited instrument for the examination of

the problem of gauge-invariant modifications of QED. Neither will
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the field equation which stands here for the Dirac equation be in-

vestigated further. It was discussed extensively by Pais and Uhlen-

beck. {3},
Instead of investigating the most general form of a nodified propagator

we are here mainly concerned with the substantial features of the

procedure. Therefore we shall confine ourselves to_substituting the

conventional propagator
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Generalizations should not be difficult.
As to mathematical exactness, we shall not apply the most rigorous

standards, but the refinement of proofs should not involve any

serious problems,

2, Construction of a Cauge-Invariant Lagrangian.

One is led to a non-local interaction by the fact that an interaction
between fermion field and electromagnetic field with vertex {1}
p' P
! — H + '2 2
r(p'ypya) = 8(p' +p+ ay, o', )

]
q

with C(p'z,pg) playing the rdle of a form factor can be déscribed

by the non-local interaction

2 2 1
i, = agagan + (Y  (E=n)?, (en) By, M)ule) ’
Now the Ward~Takahashi equation requires a one-photon vertex simi-
larly furnished with form factors when the fermion propagator is
modified., Therefore one must try to find a Lagrangian which corres=-

ponds to the non-local gauge-invariant interaction with the propa~

gator

TN . . .
C is the Fourier transform of the function C.
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for the free fermion field,

2.1 The Lagrangian.

It is evident that we obtain the postulated propagator by substituting

the Lagrangien for the Dirac figld by 1)

Ly= fagag * W) { (6 -mF ((e-02) F u(x)

This term is not invariant against gauge transformations of the second

kind

éieh(x)

It

wlx) » 9t(x) = p(x) -

Gx) » oeA(x)

W(x) > P'(x)

Au(x) - A;(x) Au(x) + Buﬂ(xj

but we can find a proper "interaction Lagrangien" b, different from _
that of conventional QED with the sum L = LD + Li being gauge-invariant
as in conventional QED, Extending e remark of C. Bloch {2} concerning

non=local meson-nucleon interaction we find.

@) Lo [ agar c TR)atE,0) | (1 4-m)F(g,2) }ula) .

1) Por the moment we shall disregard the requirement of invariance of
the Lagrangien against charge conjugation, |
This question is discussed on page 11 f.

Here vwe must add the Lagrangian L y Tor the free electromagnetic fie}d to
obtain the total Lagrangian for the interacting fields. We shell onmit

Lops 88 Lom is gauge-invarient, snd as it is not necessary to modify it.

2)
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o is a functional of the electromagnetic field having the form

(3}  alg,z) = e“iefdhx'ﬂu(X)Gu(x;a,g)

4

and F(g,z) 2 F { (e-0)% ) .

The function Gp in the exponent is not uniquely determined but has to ful=
£i11 two restrictive conditions. We request that
1, L is gauge=invariant and
2. for F(£,5) + 8(&=g) the function L approach-
es the Legrengian of conventional QED ('"correspondence principle").

These conditions are equivalent to the following equations for Gu:

(4) Bi Gu(x;'z:.t;) = §(&-x) = 8(g~x)
(5) Gu(x;i,ﬁ) =0

(6) G (x3E,5)% = =y §(x=£),
u g =g u
1)

Fourier transformation with respect to x givés

(kha) isuGu(s;E,c) = &% . 188

instead of (L},
Equations (4) and (La) are equivalent to gauge invariance, while (5) and

(6) guarantee correspondence with conventional QED.

2,2 Cauge Invariance and Correspondence; Proof for Equations (h)-(6).

Gauge transformation of A11i5 equivalent to the substitution

alEsz) + alesg) * e“iefdx‘auﬁ(x)'Gu(x;E,c) .

" We define for any function F(xi,...,x ) s
n
iy

F(P19""Pn) = dx.l...dxn . e 1 Z

Pixl F(x1,...,xn)
and therefore
F(x x ) = — PRI S S )
preeee¥, W p.loan Pn- P1g0.0|pn
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Assuming theat three-dimensional integrals of the type
th ¢ ¥ (ARG (x38,2) )
X X M
vanish, the additional factor can be written

. . i . ‘
glefax A(X)BXGH(X'E'C)'

If Gu fulfills equation (4), this exponential function is annihilated
by the factor

-ieA(E)HeA(r),

generated by gauge transformation of and'$.
To obtain (5) and (6} we substitute F(&,§) = §(5~r),
Now we cen integrate by parts with respect to {. Assuming ageain that

three-dimensional integrals shall venish, we have

T

L=~ [ e [Weate,0 T |

wifh

V(e)a(g,0) (ig5m) = {i2}3(2)) omieM(g,2) v,

iy(g) {3Ee_ieM(£’C)f Y, m"i'p“’(g)e-'ieM(a,c)
(We write I dx-AU(x)Gu(x;g,;) = M(£,r) ).

Inserting the power series for the exponential function and anticipating .

the terms of order o in e, ve get

Tﬁ(&)a(a.c)(iﬁgm) = Y(£)(iF +m) +
H{ 1000 ) (MBS Ly
+ my( £) [e'iEM(E'C.)-i]' o,
- . ede)mp T
+ iy ) {—1e3£M(E;,r,) * T o [(agﬂ)l-ﬁ-M(aEM)} Fioeo} v,

We see that L approaches

Tonv.

L s -f ac| "ir?(a)(iz.é+m)w(£)u“6(£)-eﬁ(a)'w(a) b,
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if in the last expression the second and third lines vanish for ¢ = £,

that is
M(E,E) =

and the remaining term of the last line

o[ we08] e

becomes =ey(E)K(E). A being arbitrery, we infer equations (5) and (6).
From this proof we see that there is an important restriction for (5) and
(6): in this form they hold only if G, is not & functionel of F. But if
Gp is a functional of F (we shall dlscuss an example) we can require thenm
only in a restricted mammer: if F(£,z) + &(&=g) then G approaches a func=

tion G and equations (5), (6) hold for G .

2.3 The Free Fermion Field.

For e + o0 we have the modified Dirac field

Ly = fded;-iks) { (iag-m)F(a.c) }owlo)

with the field equetions

8L, 8Ly,
= = = | ag*F(x=¢) { (if mbute) } = o
sy{x) 8(a,¥(x))

This is a Dirac equation

(iﬁx—m) "’M( x) =0

for the smesared field operator

¢ (x) = [ Qe F(x-E) ¥ (£).
M

‘fransforming into momentum space we have

V)

2 .
(7) ($+m) F(p ) u(p) =
Y]
with F being & scalar in spin space. The last equation means that the

solutions of the conventional Dirag equation also fulfill the modified

equation. Field equations of the type (7) are discussed extensively by Pais
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and Uhlenbeck {3}, and we shall not treat (7) sny further. For the

propagator for free fermions we infer from {(7) the desired form

8t (p) =.__ln_ v o .
PP TR pm

Using the Lagrangian
(2a) L= | asacT()ele,e) {187 ((6=0%)ury((5-0)%) } (2)

instead of (2), one arrives at the most general form of the fermion pro=

pagator:

To make things as clear as possible we shall continue to examine the
simpler Lagrangian (2}, The more general form (2a) is not expected to

involve additional difficulties.

3, The Interaction.

3,1 The Vertices in Configuration Space and Momentum Space.

Inserting the power series for o we get the following perturbation ex-

pansion for the Lagrangiant

[=-]
L= ]I

with the terms n=o

' T u
dgdCdn1nooldnn b w(E)A 6]?)...A (nﬂJ X

®x K (igﬁ;n1,-.:,ﬂn)¢(C)-

1000

Thus we have a theory characterized by the vertices

(9) Ku1.£§ﬁ§;ﬂ1,-o-,nn) = Gu1(n1;gn5)oooGun(nn;E,C)(iag“m)F(g:c)

which suggests the application of Feynman rules as in conventional QED
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(for more details see page 12 f and {2}).

Without any further calculetion we notice the following property:
In a gauge-invariant theory the modified fermion propagator is connect-

ed with a one-photon vertex of the form

(9a) Ku(a,c;n) = Gp(n;a,c) (iﬁgwm)F(E.C)-

Gu is an arbitrary solution of (4) which guarantees the validity of the
Ward-Takahashi equation for Sﬁ(p) and Ku' This means that the Ward-Taka-
hashi equation couples the modification of the one-photon vertex to that
of the propagator, but that this connection is not & definite one. With
the propagator fixed we have a large degree of freedam to choose suitable
vertices Ku and functions Gu respectively., If we want to mmintain corres-
pondence to conventional QED as described we have two additional equations
(5), (6) for Gu. They cause a further reduction of the number of candida-
tes for one-photon vertices K u but they cannot make G definite., In ad-
dition we have a certain number = generally an 1nf1n1te one = of multi-
photon vertices K u (n=2,3,..) as a consequence of the requirement of

+*e

gauge invariance, In "~momentum space we can write for the one-photon vertex

v . = 1 u * P
KU(.r’t‘S) = ‘("2-;)"5' f dp'Gu(Ssr Pst'*'p)?r(p) 1)

H(g=g) = (izg-m)F(s,c) .

Now we shall require thai we have & momentum=conserving factor at this

vertex. Then E must be of the form

(10) au(s;r,t) = 6(r+t+s)§u(r,s)
therefore
(10a) Gu(n;a,c) = __lmr . su(a-c,n—c)

(27)

As a consequence every vertex is furnished with & &-function:

1

]
{11) ku(,r.‘?i:';sﬂ'“'sn) = "“""‘ﬂ?‘“‘“‘;‘(eﬂ) Bl o S(r+t+ )1:31) * ‘Mu(rgs«];--'ssn)
1°*** n

1aoo_un

1)In the following r,t are fermion moments, while 8,8, are momenta of photons.,




-0 w

and the "reduced vertex" ﬁu can be calculated by folding the vertex

A, 1"“"“

iY)
with g H
ue!o-opn u1

n, L") Ny
M s = dpe - i ven
u1°'(°£r'181' llsn) f P Su1(r P'31)l‘u2“25532n ssn)

(12)

ﬁu(r,s) = J'dp . Eu(rup,s)ﬁ(p) .

Prensformation into the configuration space of the fermion with momentum

r yields
o L o
Mn ...{lx’sli"‘isn) - (2“) gu (X,S1)Mu ...H(X’SE'...’Sn) =
1 n 1 2 n
{(12a)
= (Qﬂ)hn°g (x,8,) (x,8 YH{x)
u ’ -I ll.gp , n »

1 n

For the reduced function g, Ve have equations

(1) 3£gu(x,y) = (2n)h{6(x—y) - &(y)}

resp. T _ 8
ig gu(r,s) = (2n) {6(r) = &(r+s)}

= 0
X=0

(5') g, (%)

= -(Eﬂ)hvué(y)

(6') g, ()%,
X=0

instead of (4)=(6). (L4') and (12) are equivalent to the Chang-Mani equa-
tions {4}(generalizations of the Ward-Takahashi equation} for the reduced

vertices

.M
1S

8
1 {

M (r,s

N
uqiooun M (ﬁ’szi“‘lsn) - ﬁu (r+ﬁ1, 32'10-) Sn)}

,...,S ) = (2”)

1 n 2.0. n 2u|o iy
Generally we have an infinite number of multi-photon vertices, but from the
"eorrespondence principle" (5}, (6) (see also page 1) we can derive: if
%(pe) is & polynomial 1) of p2 with degree m, and Gu is not a functional of

F, all vertices Ku " with n>m+1 vanish, ¥For the p r o o f we transform
10-- n .

1)

Then we have derivative coupling.
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(9) into momentum space. If %(pg) is a polynomial of p2 then F (x2) has
the form of a differential polynomial acting on the 6-function. This means

that H{x) has the form

H(x) = (14, m)F(x") = B_ (3 )6(x)

with Pm+1 being an invariant differentisl polyncmial of degree m+1; thus we

get

n .l _ CLITEFILE ) . -
K(ugf,t,si) = f dedgee -Gu1(s1,E,c)...Guisn,g,;)Pm+1(3E)6(£ g)
After integration by parts with respect to £ the last expression becomes

ar (6555550 (@ s6,00.n0, (s se00a030) :
- M ¥n me 34

The differential polynomial is generated from P__. by the process of
+1 m+1

integration. Once more we have assumed that threewdlmensional integrals

shall vanish,

If we perform the differentiation, only terms with every factor G diffe=
rentiated at least once are not equal to zero, 'That means that in the last
integral the number of factors Gp must be less than or equal to the order
of the differential polynomial. But as derivative coupling would involve

serious physical dlfflcultles, we shall generally exclude polynomials for
Fp2).

We have mentioned {page 8) that within the framework of this paper for a
given fermion propagstor the one-photon vertex is not uniquely determined.
But it does not suffice to fix the one-photon vertex in addition to get the
interaction definite; we have still much more freedom within the formalism,
For illustration we show that we can easily construct gauge-invarient inter-

actions without a one=photon vertex:

Lt = "za (_ie)n 1 —_ ‘11 H .
= S —— Edcdn1...dnn°¢’(€)A (ﬂ1)...A ?ﬂn)}{(g C,ﬂi)‘l’(C)
n=2 nl (uif

Given an interaction L we can add L' without modifying propagator Sﬁ(p) and
vertex Ku of I, To arrive at L' we can proceed in the following way: Let

Rys 8, be solutions of equs. (4)-(6), then




e 1]

1,
C ==(R + 8
i 2(u u)

is a third solution. That mesns:

ui(g,g) = e“ie dzJF(X)Gu(x;g,g)

and ] ~ie! axd ()R (x3€,2) -ief aeh¥ ()8 (x38,¢)
Gég,ﬂ 35-{8 H + e M

give us gauge-invariant interactions L1 and L, that will approach the con-

ventional interaction for F(g,r)+s(£=g). The difference

is a gauge-invariant interaction with o in L substituted by

G'(E,C)= C‘-I(Egt.-) e 0}2(€,C) .

L' has the desired form with vertices

1
Kp.1u2€,€;n1,n2) = {Rug"'t;g"?)“sui(”15€"3) } {Ruéqg;g’{;)_

-5, (n,,6,8) | ete.
2
It should be possible to construct, in a similar way, interactions with
all vertices vanishing up to a given order., This is equivalent to the

statement that the Chang-Mani equations are not uniquely sclvable.

3,2 Charge Conjugstion, Application of Feynman Rules {2},

In general L is not invarient against charge conjugation if we form normal

products, that means we have to use the invariant Lagrangian

(13} L' = (L+Lc)

1
2
instead of (2) to obtain a theory that is invariant against charge con-

jugation, We get Lc from L by the precess of substituting the Tield ope~
rators by the charge-conjugated ones: wc = da etes, The terms of lne per-

turbation expansion of L, can be written
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C  (-ie)™ | dca Hy Pa,  LLC -
() oo = dTkel fasaE L ) h MRS (B tin ey JTE)
1 n 1 n
with vertices
(15) &% (£,z3n n )= (=D%TK (g8, .0,0)C
u1..u; LA T ALY T “1"'ﬁn’ 1**h'n

If we want to apply the method of doubled graphs for calculating out~
operators or the conventional Feynman rules for the computation of S~

matrix elements (2} 1), the n~photon vertices in both L and Lﬁ contribute

characteristical terms of the [orn

Ly (K, (rsn ) A () e A0 e () 4
2V 2 ) 2 Mqleesfpdf Ty

b (RS (6,0sn A (n Yo B0 )T, (£) =
AT () Ealing Ay ping e dBypin Ty

_ 1. op =il iH

= 3 {h(ui)(i,égﬂi)wc N (g) +

¢ %0 (oo ) e T OTH ) A N (n) e AR (n )
(ui) LS 5 iR i y

Writing this as a sum of normal products and using
il =i} ~11} il
. T e | [
P (ede ) P (e)e t(e)
we can describe the contribution of L' to a definite normal product by the

vertex function

- Crc’(l‘p.)(e,z;;ni)} ,

' i) =+ ,
KE, y(Esesn) =5 {K(pi)(ﬁ,c,ni) 1

1

or, with (15) inserted, by

1)

We are aware of certain difficulties concerning the unitarity of the 8-
matrix involved in using Feynman rules in this way {2}, In the spirit
of the introduction we shall not enter into these problems here but will
investigate them in future work.
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(16) Kfpi)(ﬁ,C;ni)= % {K(p§§’c;"i)+('1)n+1'CK?u§§’€;ni)C;1}

In special cases such as conventional GQED L itself will yield C-in=-
variant expressions after the formation of normal products and there-
fore correct vertex function and matrix elements, However, it is im~
possible to formulate this property as a simple additional equation for
Gu. The form of this equation depends on the transformation properties
of G]J in the space of the Dirac matrices Y, If Gu is a scalar, for

instance, it has to be antimetric with respect to & and Z.

4, Special Solutions of the Fundamental Equations (4) - (6).

4,1 Degeneration of {dxAu(x)Gu(x;E,g) to a Path Integral,

A special solution of (4a) having all the required properties is

(17a) Gu(s;g,g) = Eé%é%%f (eiSC i eisg)

resp.

ik(gmx)_ik(g=x)

1
(170) G (x38,8)= — *{g=t) | dk°
. (2n) g ik(£mg)
when transformed into the configuration space of all particles. Ve can
write C—u in the form
in
( )(

{(17c) Gu(X;E’C) = f dzu°6 X~2) ,

1
integrated over the straight line from £ to §., To show that this re-
presentation of Gu is identical with {(17b), we insert in {17¢) the
Fourier transform of the §-function and anticipate the integration with

respect to Z.

In this special solution the electromagnetic field in the Lagrangian
appears as a path integral
g
u - b
fdxA (X)Gu(x;g,c) = f dzuA (z) .,

£
integrated over the straight line., Moreover, every function of the type

(17¢) with an arbitrary way of integration is a solution. It corresponds
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to an exponential function

4
a{£,5) = exp {—ient)[ dquu(X)}
£

in the Lagrangian,

Subsequently, only the simplest case of a rectilinear way of integration

1)

is considered . We obtain the vertices

(18&) K(ui)(ﬁ,c;ni) = l}:l;.lpn}:(n1;g’t;)'..I(nnig’g)(izg-m)F(g’C)

with
1T (c’,—c)u

ék(cmn)_ ék(s—n)

I(n3g,z) = — | d
(2n) ©ik(E-z)

or in momentum space:

n

4"

. 3 2

{(18b) Q(ugf’t’si) = 1 6(r+t+) Si) dq Rn(r-q,si)EE—TT?ga— (d=-m)F(q")
1 H1 H
n
with n iksi
- Jikr l ' e =1
Rn(r,51,aoo’sn) = jdk*e iksi .
1=1

n
It is evident that vertices of higher order will vanish if F(pz) is

a polynomial,

A detailed examination of the one-photon vertex in this example will be
postponed to Section 6, There we shall show that, unlike the one-
photon vertices of the following examples, this ku is different from the
conventional value even for the two fermions on-shell, This is equi-
valent to introducing a form factor for the electron that modifies, for

instance, the matrix element for e~p=scattering.

As for (16) we find here

1) This path seems to be the "natural® one in the sense that it is the
only path that can be described in & relativistic invariant way.,




K;(E,C;“) = Ku(gsgin) .

h,2 A Simple Model without Electron Form Factor.

Another simple solution is

[eisc _ eisE) .

(20) Gu(c;ﬁ,g) =Yy TT

Within the class of solutions of (k)

‘_xu(s)eiSE_ Bu(s) st

the solution (20) is uniquely determined by the "correspondence prin-
ciple". The one-photon vertex used in the deteymination of S~matrix

elements by application of Feynman rules becomes

K (r tys) = (2m) -1yu6(r+t+s) ; { F(r 2) + F(tg)} +

(21) (Eﬂ) +i6( r+t+s)'£ij;~;%;£-l “f(f -1} = (ﬁ+m)¢{ } .
2s

For the two-photon vertex we find

1
1

..;l —
x

izuv(rst;P,Q) = (Qﬂ)h5(r+t+P+Q)°Yu

w { (o) ¥ D) = emrd) B( (140) Z) = omrp) ¥((24p) F) -

- (g D)}
TESp.
Rt (r,55m,0) = (2m) 6(ratiprq)

I)2

;{%(rg)—%((r+p 21‘%[(r+Q)2J“%(t2){(ﬁ+m}dYUﬁYu"Yp¢Yué(f—m)} ¥
2p°q

2 2 2
K )-%£<r+¢) ) v b, - ¥(t5) - g(t+p) }fuﬁYu .
2D 2p
N, 2
’f*(r )"'g((gr"'q ] By 15 F(t = g[gr"'}?) ).YpﬁYu@)
2pq 2pq
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taking into consideration the requirement of C-invariance according
to (16}, 1If we apply this vertex to pair production the terms of

the first line do not contribute on account of the factors (f+m),

(#-m).

4.3 The Vertex of McClure and Drell {1},

Here things are somevwhat more complicated. The one=photon vertex
used by McClure and Drell {1} to satisfy the Ward-Takahashi equation

can be written {4} :

R (ryt39) = (2n)"i8(retas)
(22)
<) o) 20l B ()

t mr2 té-r

‘As i .1 H k' = %’ .
( n 5 . u)
To reconstruet (22) and to build up higher-order vertices, we have

to find a solution of (L) = (6) with the property

(9a) Gu(n;a,;)ﬁ(£~c) = Ku(i,c;n),
Ku is the Fourier-transformed of (22) 1)

A funetion GU which fulfills (9a) is

G ( ;E.g’) =.-__,g1 drdt ir(g“n)"'it(i}-n) X
w” {2m) J °
{23a)
g 1:(.%"_1%?_5 HEIN ﬁ'(t)li.lg:lgi} ' (£=)
ter t T =p
or

iap(s;p;q) = §(p+qts) dedz'R“(x,s)H(z-x)H"1(z)eipz -
{23pb) ‘
-8(pt+q+s) dedz-li(zﬂc)Ru(x,s)H_;(z)elqz

with

1)At first sight one might take
h' ﬁY "Yul‘ A, 2
+ - g
{(2n) i6(r t+s)—:§:;§— ( f=m) F(r°)
for a suitable vertex K , as it yields (22) for R', But for this
simpler expression the "Ward=Takshashi equation wbuld not hold.
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F+{g+¥) :
R (x,8) = |ar L*——-——-IE- e-lrX '
" (s+r)"-r

Now we have to show that this function is a solution of the funda-
mental equations. Equation (U4) brings no difficulties, but for the
proof of {5) and {6) we remark that now G!j is a functional of F.

If F(g,5) + &8(&-g) the function iGu approaches

L . -
16 U (nsgig) = -yué(g-n) TT?E—m)G(E-E) )

Using the relation

a1y 2. 800

ax X

for the é~function in one dimension, we see at once that

G(E)(n;é.ﬁ) =0

and in & similar way we can show

(o) . : 8(x) Ty .
iG " (n;&, z)ﬁ ~-Yu5(€—n)iin;m i =

£y
=-iYu5( £=n).

The calculation of the two=-photon vertex will be rather complicated,
A

and we do not expect to get the sanme Kuu as MeClure and Drell on

account of the ambiguity of the two-photon vertex with the one-photon

vertex fixed,

4.4 The Modification of Kroll {4},

Using equation (12) we can define a linear operator qj(s):

(24) B (r Byarenss,)

U1l00

N
dp* (P,S )ﬁ(ryp B, 30095 ) =
I gu1 1 UE--ﬁnQ n

D (8,04 (ry85y00ss )
}11 1 u2'“un n
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As Eu satisfies (5'), (6'), we can easily prove

(25a) Du(s)a= o

(250) b (a)¢=(2n) iy

if a is constant in momentum space, but possibly a Dirac matrix,

From the definition of Du(s) we get

Du(s)a = dp‘Eu(p,s)a = dpgu(p,s)e-ipx x;oa =
4
= {2m) g (x,8)] +a =0
and ' *=0
D ()4 = {ap-gu<p,s)(f-¢) = -[apE (p,9)% =
2 i dpe-ipxog {p s)§ = ni(2n)hg (x,8)73 = i(2n)BY
Y W e e

Starting from the propagator, Du(s) generates the vertices in the
same way as the operator du(k) does in the paper of Kroll. If we

require the additional equation
(26) Du(s){%cf>c<f>} = {Du(s)ﬁ(r)}E<f>+%(f+¢){nu(s)8(f)}

to be satisfied Yy the operator D (s) with %(f) S(#) out of a certain
class of non-commuting functions {h}, the operator -1/(2n) u(s)
has the same properties as dp(k) and we get the Kroll modification as
a special case of the more general type, characterized by equations

(5) and (6). Instead of {26) we can write an integral equation for

v .
gp :

(27)  fap'E (p,o)¥(#-p)8(¢-¥) = fap-g (p,0)H(A-9)E) +

+ F(3+d) fap-Eu(p,s)E(f—ﬁ)

The modification characterized by (25a,b) and (27) is a special case
of that described by equations (5) and (6). This means that we can

derive these equations from the integral equation.

Moreover g is uniquely determined by the integral equation together
with (25a,b). Choosing suitable functions for %, ¢ we can derive

from these equations all partial derivatives of gu(x,y) with respect
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t0 the components of x at x = o, Thus we can give for gu(x,y)
a power series in X, which shall converge within a certain circle
around X = o, We shall briefly outline the caleulation in the

Appendix,

Physically the minimal modification of Kroll is distinguished from
the others included in (2) by the fact that in the absence of closed
loops the propagator modification has no influence upon the theory.
But generally we have also to expect modifications in S-matrix ele-
ments without closed loops, as there is no reason to prefer the

minimal modification.

5., The One~Photon Vertex with the Fermions On-Shell.

In this section we shall resume the more detailed discussion of the
one-photon vertices of the examples discussed in section {4}, On this

occcasion also certain characteristics of the formalism itself will be

revesaled,

5.1 Current-Conservation and Boundary Value %(m2).

From (12) and (4') we get

'R (r,t38) = ~i(2m Ys(rate) ((#m) B2+ (#m) FD) ),
assuming we have free fermions with w(t)(f+m) = (pem)u(r) = o, the
continuity equation

u(t)s'® (xyti6)ulr) £ o
is satisfied,

Moreover, with both fermions on-shell:
MR (r,t58) = id(an) "o(reta)Hn?)

If, in addition, we put the photon on-shell (32 = 0), we have to
require that the last expression is the same as for the conventional

vertex

g¥ -iYu(2ﬂ)h6(r+t+s) .
A
Thus we get the additional condition for. F
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5.2 The Kroll Modification {4},

MY
The fact that for the fermions on=-shell the modified vertices Ky are

identical with the conventional vertex

(2n)h . iYua(r+t+s)

is obvious for the Drell vertex (22) and for the simple vertex (Ef)
in k.2 ,

The Kroll modification has the same property: it does not influence
the one-photon vertex with the fermions on=shell as for processes
without closed loops it reproduces the conventional S-matrix elements
{4},

However, we think that itshould also allow scme test of the formalism

to give a direct proof. TFor this case we shall assume that %(pz)

can be developed into a power series at p2 =m , that is, that

%(p2) is an integrel function !):

Then, from (12) we get for any model:

%(n)(me)

Hy(rye) = ] L

—~ dp*Eu(r—p,S)(ﬁ-m)(pe—mz)n .

n=o
If, proceeding to the Kroll case, we insert in (27)

E(#) = (Ffem)(rPem), B(£) = room?®

we find for r2 = m2 and n > o :

[dp‘gu(r"P,S)(ﬁ—m)(pe—me)n+1 =

= {(r+s)2~m2} jdp-gu(r-p,s)(ﬁ—m)(pa-m2 n’

" We have not examined ways for reducing this assumption,
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Ie)
which vanishes for the second fermion on-shell with (r+s)” = m",
Thus we have reduced the power series for ﬁu to the first two terms,
The integrals occurring there are computed in the Appendix, and we

get for the complete vertex
R (r,836) = (2n)“-iYua(r+t+s)i*(m2) +
1 *
+ (2n)iu%(runtu)ﬁ(r+t+s)¥'(m2)(f—m) for =12 =m .
For computing S-matrix elements we have expressions like
E(t)kp(r,t;s)u(r).

The second term in Ku giving no contribution, we can substitute

the vertex by

_ b,
ku(l‘.t;‘d) 22 2 (2n) 1¥u6(r+t+5) .

5,3 The One-~Photon Vertex for Example 4.1 : Degeneration of

Jax + aA%(x)0 (x;€,5) to a Path Integral,

This example yields a modified vertex ku even with both fermions

on=shell,

For arbitrary momenta the reduced vertex can be written (see (18b)) :

Hu(r,s) = i(21:)h jdq'Ri(r-q,s)séz(ﬁ—m)%(qe)
with

. iks

-1
iks

If we assume 5, =0 for the noment we find

3 r ~q
2
R,(r-q,s) = -(-s-f-)-— °{n(r0~q0+so)—n(ro—qo)}33)(3—?@- :O O)

with
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+ oo
+n1 for r > o
o)

= o Torr =o
o)

-1 for r < o .
[&]

- O3

When integrating in ﬁu we have to substitute

The singularity at s, =0 is a spurious onej it will cancel out
later in the calculation,

How the integrand in i gives two terms:
M

, +for y = o
33, (R = v M) 2w 2 (61)

«for py = 1,2,3 ,

™
!

the first of which contributes the integral
+ m

i

s

I~ 2
o "0
(r_s_._....._ ) .

o]

I = %; yp(2n)7 dqo{n(ro-q0+so)—n(ro-qo)}

- O

Corresponding to the physical situation we have r, > o, and il we
put So > 0 for the moment on account of

2n for ro < g <r + 8

+ - - - - = r S
n(ro o qo) n(ro q‘o)= m for 9 = For 9 0 o
> +
o for a < ro, qo ro 5,
the domain of integration is restricted to r = g =r 5 .

Substituting by 27 the value m at the limits of the domain of inte—

gration {(this does not change the value of the integral) we can write

iy 8r0+50 om0 \°
1 ===l (29) ! dqo'%‘ (I‘ - S—-s—-—“) .

s
O r e}
o

By substitution of the variable A defined by

<
qo=ro+)\so (O;A=1)g

the integral takes an invariant form with the singularity at s, =0
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vanished, namely 1
I = iyu(Qn)B I'dk' %{(r+ks)2} .
o

For s _ = o we get the same expression.

Dealing with the second term of the integrand in %p in the same manner,

we find without difficulty

ku(r,t;s) = (2ﬂ)h . iyué(r+t+s) ¢ Dlr,s) +

(29)
+ (211)h . id(r+t+s){(fmm)3§- + (¢+m)3%—} D(r,s)
with 1 H H
(30) D{r,s) = J ax ¢ %{(r+ks)2} .
)

These formulae hold for any momenta of the three particles involved.
If we form matrix elements for processes with both fermions on-shell

the second term does not contribute, As to the first term we can trans-

form D(r,s). On account of r2 = t2 = m2 the integrand % has the argument
2 2 e
n" + sA(A=1) =(-g-) '

As the integrand is symmetrical to A =.%_ we can write for D(r,s) in

this special case, after substituting q for A:

Lm o o2
(30') D _(s) = . jaq> F({‘L)

2/se / 2. 2 L 2
o > q +5 =im
b g

and the one-photon vertex is now

(201 R(r,u50) = (20)iy s(rrre)n (%) (=P

For ﬁ«qg) = 1 we have D(r,s) = Do(s2) = 1, but with T arbitrary we

expect Do(sz) + 1s
The expression DO(SQ) has the meaning of a form factor for the elec-
trony it yields a modified matrix element in the case of e-p-scatter-
ing, for instance.
Of course,
"y

Do(sa) > Wn®) = 1,
if we also put the photon on~-shell.
The experimental analysis of this model will be much more involved
then, for instance, that of the Drell-HMcClure nodel., Here we get a

correction factor for the conventional cross section for pair pro-
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duction in an external field that is formed from the function %(qz)
and its "mean value" D(r,s), With the model of Drell and McClure
things are much simpler as it yields a correction factor formed in a

\ ay
rational way from F,

6. Summary.

We have developed a formalism which allows to construct gauge-inva-
riant QED with given fermion propagator of the form
1 1

(1) S'F(p) =}'r(p'f'-’ Z +m

in a relatively simple way. Postulating a gauge-invariant Lagrangian

we have made allowance for gauge invariance of the modified theory.

Necessarily the Lagrangian has to be a non-local one., With the pro-

pagator {1) given we have the vertices

Ke(Ey2sng) = (o)™ g (£~0yn,=0) v g (E=gyn =2) (i 8, -m)F{(£mg)?)
“i7 1 H i My n £

for this non-local interaction. Requiring that the Lagrangian is

inveriant against charge conjugation and using doubled graphs for

computing out-operators or Feynman rules for computing S-matrix ele-

ments, the vertices K(u ) of the interaction are substituted by

[

rof—

(16) K(U_)(ac;ni)_=

i {K(ug(g’g;ni)+(-l)n+ICK?pi)(C’€;ni)C;1}'

Functions 8y suited for generating the vertices from the propagator
have to fulfill equations (L'}, (5'), and (6') which imply gauge
invariance and correspondence to the conventional theory as explain=-
ed in the introduction, They are by no means uniquely determined by
these equations, that is, with o given fermion propagator we have great
variety of interactions that yield a gauge-invariant theory with this
propagator, This manifold also contains interactions distinguished by

higher-order vertices only.

Generally we need an infinite number of multi-photon vertices to

")
guarentee gauge invariance, but for F(pe) being a polynomial the
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higher-order vertices vanish, We have not discussed the most general
form (2a) of a fermion propagator as generalizition should not be

difficult.

Special models contained in the variety of solutions of the fundamen-
tal equations (k') - (6') are the vertex used by McClure and Drell {1}
and the modification discussed by Kroll {4}, We have extensively dis-
cussed how to arrive at them by specification. In 4,1 and 5.3 we have
exemined another example that yields, contrary to the other solutions
discussed, a form factor for the electron, that is, for this example

we have a modified one~photon vertex even for the two fermions on-shell,
In this context we have pointed to certain complications as they can

occur in experimental analysis of a possibly modified QED.

We have not investipgated the problems of the non-local interaction
itself, As stressed in the introduction it has merely served as an aid
for the examination of the problem of gauge invariance of a QED with

modified propagator.
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Appendix

Determination of gu(x,y) for the Minimal Medification,

If we insert

S =
F(#) =y,

in (27), we get

v no_ LY n
fdp &, (p,s)v (¥-$) —vadp 8, (pss) (¥=¥)
For further treatment it is favorable to distinguish the two cases

n even and n odd. Then we get

(28a) Yv-fap-ky<p,s)(f~¢)2m-yv : hfdp‘gu(p,S)(#-ﬁ)gm

(28v) yvfdp-Eu(p,s>(f-¢)2m+‘oyv= -E[dp'gub.s)(fnﬁ)2m+1
{(m=0,1,2,004) .

Together with

(4') . s“éu(p,s) = §(p) - §(p+s)

(27)

and using relations of the form

(rax)gu(X,S)

X=0 (Qn
"1

X=0 (2n)

A
!dp-g (p,s}{rp)
7
G,

gu(X,S)Hn dp+g (p,s)g"

ete.,
these equations are sufficient to compute every partial derivative of g .
By the way we notice that the coaputation of g, (x, s)ax <=0 is equlvalent
with the differential operator acting from the

to that of ? Y (x,s) =

left, If we 1nsert
n
F(x) = HXG(X)

in the Fourier transform of (27) with G(x) arbitrary we infer
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;igu(xgs)

X=0 .

= (+1)"g (x,8) 4,
X=0

For m = o equation (28a) is fulfilled with

Jdpgu(p.S) = 0

and with this. (28b) becomes

Y, JdP'Eu(Pos)ﬁYb = "2fdp'§u(p.5)¢ .

Considering the transformation properties of the integral in the

space of the 16 Dirac matrices 1, Yy Y Yy seeen e infer

fdp'Eu(p.S)ﬁ = Yuf(s) .

The function f{s) is determined by (4'):

£(s) = -i(em)? |

and we have finally

Jdp'éu(p,S)ﬁ =—iYu(2")8 = fdp°ﬁ§u(p,s) .

A short calculation leads to

] J ap+ (p,8)(xp) = -ir, .

(2m)

In & similar way we get for m = 1 from (28a):

T

1

—-1 ap-E (p,s)p2 = is
(2_”) H u

For m fixed both the equations (28a,b) contain a certain number
of relations for the computation of partial derivatives, Form = 1,

for instance, (28b) yields the 5 relations:

(pel" rp2
(rp) (rp)#

vadp'gu(p,S){ 33 Y, = w2°fdp-gu(p.s)i 33
(rp)¥ (rp)d
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To split up (28b) in this manner we make use of the fact that terms
of the same order in r on the left and the right sides, respective~

ly, must be equal to themselves,

The first three relations are fulfilled by the expressions already

computed, while the remaining two equations lead to

i 2

(2n)

" 3,
3 dp'gu(pss)ﬁ = “lYus

resp.
1
(2n)8

dP'Eu(P,S)(rp)ﬁ = iyu(rs) .

if we use {b') to determine functions such as f(s) on page 27,
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