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Abstract

The storage ring luminosity as limited by the beam-to-beam
space charge interaction is calculatéd, taking into account
the crossing angle, the shape of the amplitude function

in a low-B-region and the dependence of the Q-shift on

the position of the particle within the punch. It appears
that there is an optimum value BO for which the luminosity
has a maximum. With increasing crossing angle and given
beam size, the Q-shift falls off more rapidly than the
luminosity. By adjusting the beam cross section for con-
stant Q-shift, an increase of luminosity with increasing

crossing angle is obtained.



I. Tntroduction

The rate of events in storage ring experiments is proportional
to the luminosity L. A course calculation of luminosity showed
that it increased as the amplitude function Bo in the inter-
action zone decreased so that it appeared to be useful to make
BO as small as technical 1imitations would permit. In this
study, luminosity will be calculated taking into account the
exact changes in the amplitude function in the beam-to-beam space
and it is shown that there is always an optimum BO where lum-
inosity reaches a maximum. This optimum BO lies within the

same order of magnitude as the technically feasible BO for small
bunch lengths, while for larger bunch lengths it is greater than
the technically feasible Bo so that in the latter case a narrow
beam-to-beam space does not increase luminosity rather it re-

duces it.

At the same time, the dependence. of luminosity on the crossing
angle of the two colliding particle beams will be observed. It
is shown that for a constant emmittance luminosity decreases
noticeably whenever the crossing angle & reaches the order of
magnitude of £%§° where € represents the emmittance in the ver-
tical directionxand Ox the bunch length. The Q-shift resulting
from the space charge effect decreases somewhat more rapidly than
luminosity as the crossing angle increases. LIf the beam cCross

section is so changed that the Q-shift remains constant, we ob-

tain an increase in luminosity with increasing crossing angle.



TIL. Tuminosity

Two volumes with particle numbers dN1 and sz and the dimensions

emobaron .

shown in the sketch yield dZ events lma=gas

- dX —

dz is given by

9 __ 4N, dN

dz = gar M M2

the effective cross section

where 0 =
le = pT dx dy dz
X X 8 )
sz = Py ds, dy dh = p, 2c cos 3 dt dy dh

2

l102‘ =c

DX(X, YV Zo t) = particle density

©
Il

dt = the time required for a particle consisting of dN1

to cross dNQ.



The rate of events is

—d—E = odL

dL represents the differential luminoisty, i.e. the luminosity

in the space element whose dimensions are dx, dy, dz. It turns
out to be
‘ § x X y dx dy d
dL(x,y,z,t) = 2 c cos Epl(x,y,z,t)pz(x,y,z,t x dy dz

The distribution of the particles in the bunch satisfied as a

close approximation a Gaussian distribution [1,2]

2 2 2
X L ' 1
pyx'y's2',t) = A exp (- (' -—et)” ¥y .2 )
, % 202 202 202
X y z
' 2 2 2
X . " ] "
p,(x",y",2",t) = %_ exp (- (x ; ct)” _ yz _z ; )
z 20 20 20
X y z
A = N |
: 273 ;s  k = number of bunches
k(2m1)"" "o o
Xy
Oi(i= X,y,z) = standard deviation
The coordinate systems x', v', a' and x", y", z" are always
rotated about half the crossing angle g = % with respect to the

coordinate system x, ¥y, Z.

y, 2' = = x sin¢ + z cos¢

"

x'" = x cos¢ + z sind, y'

" = x cos$ - z sing, y' y, z" = x sin¢ + 2 cos¢d
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The standard deviation C depends on X since
Z

= e
o, /eB
¢ = emmittance in the vertical direction
B = amplitude function for the vertical direction

TIn the field-free space Wwe obtain the amplifude function B from

the equation y" = 0 and the relationship y = fCBeilY[B]. It be-
comes
x2
B = B ¥ %
° 2
2 X
and = _-
2w es,0 )

0

The total luminosity for an interaction zone is finally obtained

by integrating over the entire space and by averaging over time.

L = k-ft J } J I dL(X,YaZat)dt

—0 0D 00 =00

wheve £ = the rotational frequency of the bunches.

The integrations over Yy, Z and t can be carried out directly and

there remains the simple integral

. re° 2 nna? 2 atn2
N { X° cos x4 sin 1
L = Jexp i- 2 L Xi" =7 dx.
k4m/T o_o Ve B x e B (1 + =) Mo+ 2y
Xy o ° Bo . Bo
Substituting
g 3 g 2
_ X cosd$ _ .
= -7;—-—, B = 81n2¢ cosz¢ o 2g ? C = cosz¢ 597

X x x



we obtain

2
L = _____f_I:].———-—-—-— ° Z(gg-)
kh4mo Ye O X
y X
8 B o
o 2 0 B dn
2> = =/ = expls —)J exp(~ n? * ) ——
— 2
W o %% Oy CH gl
The function A was calculated as 2 function of 32 for wvarious
€ b4
values of the parameters 5& and ¢ on an IBM 1o4l. Fig. 1
x
shows the result for %— = 3.66 ° 10_8. The curves approach
"X
zZero asynptotically in both directions. Fig. 2 includes &

correction factor, namely the value by which the 1luminosity

sz

=
o x4n o O
y 20

must be multiplied without taking into account the exact varia=
tion of the beam~-to-beam space and the érossing angle. The
smaller the ratio 59 and the greater the crossing angle, the
1ess accurately the ﬁimple formula describes the actual lum-
inosity value. Fig. 3 shows the dependence of luminosity on
the crossing angle for a fixed value of 52 and for varying

x B
values of €, i.e. for various beam heights. 52 = 1.6 is the

"b

value proposed for the DESY storage ring at 3 GeV. For small

angles, 1.e. sing ~ $ and cosg ~ 1 the curves are con. For in

. € . 2 Ox .
this case g and 7 only occur in the form of g-. == in the

integrand which leads to a shift of the curves in a logarithmic

. . €
representation of ¢ for changes in 7 o

X



TIT. Q-Shift

A charged particle flying in the x direction which crosses a
bunch approaching it in the opposite direction experiences a
change in momentum along path dx with respect to the z com~

ponent which is given by

oj—

dPZ = fz (X,Y9Zst) dx

9f 5
(fZ(X,y,O,t) + 'é? * Z) dx

1
ol—

where fz(x,y,a,t) is the 2z component of the force exerted by
the bunch on the individual particle. The first number in the
series development leads to a shift of the reference circle
while the second member produces a change in the frequency in

the vertical betatron oscillation [4]:

_ _ B 3f,
dQ = - E ez O

E = particle energy

Tt is now assumed that the height of the oncoming bunch is small
with respect to its length and width. If this condition is not
satisfied, the change in the betatron is somewhat smaller. The
direction of motion forms the crossing angle § with respect to
the negative X axis. In the relativistic case the electrical
and magneticcomponents of the force acting on the particle are
of the same magnitude, but assume different direction. While
the magnetic force is parallel to the z axis, the electrical

force forms the crossing angle § with respect to the z axis.



-7~
The total =z component is then equal to:

f = f 4+ cos8 £
z magne elec.

(1 + cosé) £

elec.

1]

-(1 + cos$) e

The negative sign stems from the fact that particles with the

opposite charges have been assumed. Tn the rotated coordinate

system (x',y',z') the following relationships apply:

8"6 ] agz' agxl a€z|
TUERAELY ond g %
a2 L 2
[ - v
3z 92z €
where p = space charge density
e, = the dielectric constant
[ [ 1 Ae (x' 4 Ct)z X_'_g_‘ Z'2
O(X Y »2 ,t) = —eXp (——-————_,_ ———‘)
o 2 2 2
. z 20 29 20
X y -z
From
' = x cos$8 - z sin$, y' = y; z' = x siné + z cos$
it follows that
3 €
—a-t—:-. = cosd rr
and
sz .
-, - cosé (1 + cos$) %— P
)
At time t = O may assume the coordinates (a,b,o) while at the

same time the center of gravity of the oncoming bunch may
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coincide with the coordinate origin. ¢t is then to be sub~-
stituted by %(x - a). The total Q-shift AQ results from the

integration over the path of the particle through the other

bunch.
2 o o 2
Ae“cos (1 + cos$ B %x cos§ + X = @
8q(a,b) 4ns(E ) J o] eXp ( ( 20 )
0 ‘o 2 X
_ b2 _X sinzd) dx
20 2 20
y z

The Q-shift of a particle therefore depends on its position in
its own bunch. Tts maximum oOcCCurs at b = 0 and a = a, # 0.

a is then equal to the distance between the center of the bunch
and the farthest particles, provided that the crossing angle
equals zZero, i.e., those particles which 1lie at the border of

the phase—stable range. Fror an increasing crossing angle,am

decrease, i.e. the particles with the highest Q~shift lie

closer to the center of the bunch.

gince particles whose AQ exceeds a critical value Achit’ are
lost, the particles with a maximum AQ (am,o) are those in
greatest danger. Tt must now be taken into account that the

peosition of the particles as a result of the quanta fluctuation,
the attenuation and the synchrotron and betatron oscillation
changes constantly. For the parameters given in the proposal
for the DESY storage ring [5] the periods of the synchrotron and
betatron oscillations are 210 times and 0.121 times the time of

rotation. The motion produced by the quanta fluctuation averages
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0.02 standard deviations per rotation and the motion resulting

10 times the

from the attenuation is 10-& times and 0.5

instantaneous synchrotron and betatron amplitudes respectively.

These values must be compared with the number of rotations a
particle must cover whose AQ > Achit’ before it gets lost or
before its betatron amplitude has become so large that it no
longer makes any substantial contribution to luminosity. These
times of increase may vary and depend on the type of instabili-
ty produced by a given Achit' For example, they are the greater
the higher the order of the non-linear resonance leading to the
increase of the betatron amplitudes. Two different cases will
be examined:
1) The time of increase is greater than the time during
which a particle reaches any random position within
the bunch. This must then be éveraged over the dur-
ation of a particle"s stay in the bunch which is given
by the Gaussian distribution.
2) The time of increase is greater thamn a quarter period
of the synchrotron oscillation, but smaller than the
time during which the particles change their oscillation
amplitude substantially as a result of attenuation and
quanta fluctuation. Tt must then be averaged over a
quarter period of- the synchrotron oscillation since the

Q~shift repeats periodically after that.

In the first case, the averaging process yields the integral
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1 =" a” %
e o J J AQ(a,b) exp(—zng-— - —z—é'y*z') da db

XY Lo -

AQI

Two of this total of three integrations can be carried out

directly and we obtain

2ﬂky0y/g. 1oy

B
s, = STl m D)

where

B o o '

0 2 / ‘

Nlcg;) = /%T(l - tan"¢) Ef exp (- %)[exp(— n2+ 5537)¢D+n2dn
0

and where

8 2 8 3
4 "o _ . 2 6, o
D = cos ¢ Al F = 2sin"¢ cos ¢ 7
X X

This last integral was calculated numerically and was entered

as a function of gg in Fig. 4 for ~wvarious crossing angles.

For each crossing aigle there is an optimum BO/OX in which the
Q-shift reaches a minimum. These minima fall off as the cros-
sing angle increases at a more rapid rate than the maxima of

the luminosity in Fig. 1. This behavior becomes evident in Fig.5
in which the quotient of luminosity and the Q-shift has been
entered. The quotient

2r ©
e x

L " F7 N 8Q

yields the maximum luminosity that can be attained without ex-~

ceeding a certain value of Ach'
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The {uminosity can also be increased by the crossing angle,

namely the more, the smaller the value of B / 0 s i.e. the
o .

narrower the beam-to-beam space.

It must be observed here that the beam Ccross section which was
derived from the luminosity normalized for AQ becomes smaller
as the crossing angle increases. For in order to attain
maximum luminosity, the beam Cross section must be SO selected
that the corresponding AQ actually occurs, i,e. the beam cross

section is given by the curves shown in Fig.h.

In the second case, upon averaging over a quarter synchrtotron
oscillation, it is assumed that the dispersion in the inter-
action zone is equal to zero sO that the width of the bunches
at this point is determined only by the horizontal betatron
oscillations and not by the synchrotron‘oscillations. The de-
flection b in the direction of the y-axis is then independent
of the phase of the synchrotron oscillation and in the worst

case it is equal to zero. The averaging then yields the integral

T
AQ, = %-J 2 AQ(d'dx-sinu, o) du

0

d represents the amplitude of the synchrotron oscillation in

units of standard deviations. After some conversions we obtain
Nre /E; Bd
6Q, = N, Qi?

mrk'yoy Ve
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where

NE

B o
1/2
Nz<r:) i tan%)/.-e;: xp (= Fﬁ’f

0 =00

® 4 .2, 2F
Jexp( (n ;E?lnu> + EE_IEZ) X

x V2D + n? dn du

The change of this Q-shift as a function of the amplitude is
shown in Fig. 6. Here to there exists for each crossing angle
a minimum, which, is some 2 to 3 times greater than that for
AQ1 and which shifts somewhat more as the crossing angle in-
creases. The break in the curves results from the fact that
at this point the maximum Q-shift proceeds from the particles
at the edge of the phase-stable range to the particles within
the bunch. The oscillation amplitude of the particles at the
edge of the phase—stable bunch was assumed to be 8.5 standard
deviations of the pbunch length. This corresponds to a life

of about 8 hrs.

Fig. 7 shows, as did Fig. 5, the juminosity resulting from the
elimination of the cross section and at constant AQ. Here to,

the luminosity tan be increased DY the crossing angle.

IV. Border Line Cases

For the two border line cases

B = constant, 4 arbitrary
2
and B:B +—X——,¢=O
0 BO

the integrals can be solved in a closed form 8O that the effect
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of the parameters becomes more pronounced, particularly the

effect of the crossing angle.

a) B = const.

A constant B in the interaction zone reflects a large BO,

i.e.
>> .
Bo 0x
Thus B >> C >> 1
and
ox e Gx C o C2
i
C,.X C + -6-
. £N2 1
k 4m o
/oi cos2¢ + 02 sin?¢
where Gzz = € Bo

The effect of the crossing angle 2 g is only noticeable if

Oz

Ox
Similarly, it follows from F >> D >> 1 for the Q-shift fol-

lowing the first averaging:

B ] ©
Nl(—‘l> /2 - eande)/ 2 GJexp(-nz ( +E9) dn
Ox T Bo ) D2

0

_ . /O

= a- tan2¢) ifi D
V2 o VD + =

D
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and
NreB

1 cos?2
aq :

21TkYOy V2 /g;z + 20x2 tan?¢

Since 0 << O s the denominator depends much more on ¢ than
the numerator so that hereto the effect of the crossing angle
becomes noticeable if ¢ reaches the order of magnitude of GZ/GX.

The elimination of the beam cross section from the luminosity

yields:
L = YN AQI v 2 0z2 + 2 ox2 tan?¢
2r B cos2¢ /g;é cos?¢ + ox2 sin?¢
Oz
For small angles, i.e. for g << 5 s we obtain
x
£YN 8Q, |0
L = ( + R tan?¢) .
v@reB z

The maximum attainable luminosity increases therefore for a

constant value of B as the crossing angle increases.

Tor the Q-shift following the second averaging, we obtain

NreB cos2¢

2
mhy 0y /822 + ox2 tan2¢

5Q, =

and for the corresponding luminosity

fyN A Q2 i
2reB cos2¢ °

i.e. it is less dependent on the crossing angle.
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From g = O it follows that B = 0 and thus we obtain the lum-

inos

ity as a function of the beam-to-beam space:

'y 2 2
L = .__ﬂ_z___l_/ieexp {_BP_Z}K (8_0_2,)
k4no Ve, Vm x Zox © Zq
y X
Here, KO represents the modified Hankel function of the zeroeth
order [6].

For large and small

sentation

arguments, we obtain the aymptotic repre-

£N° ’ 'sz
Bo >? 9% L = Yoo (1 Y 2)
y zo )
' 2 g g
Bo << 9% L= k4ncf§ z Eg'ln EE
y zo VT X )
From F = O, there results for AQ1
8 9 8 2 2 2
NreVox 1 0 0 0 0
8Q (=2 exp{s=z} (R G2 * ¥ (G55D)
1 2nkyoy/E' 2/2n °x 20,77t 020, ! 2'oy
with the asymptotic approximations
BO >> o‘x AQ] NraBn _1__ (] . O'xz\
21kyo_o /7 ZE;T)
B <<g AQ, = Nre 8o 1 %
° X 1 21kyo e
20 vam B
o
In the case of Eﬁ - 0 AQ1 differs from the expressions for AQ
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derived earlief by a factor of 1/ 2, which stems from the aver-

aging over the punch width.

For AQZ’ no simple analytical expression for the dependence On

the beam-to-beam space can pe found. For both border line cases

we obtain

Bo 7 9%
AQ, = ___Nre Bo (1 + 1 cx2 (1 o+ QE))
2 2t1kyo_ o g8 BZ 2
y 20 0
Bo << g
Nre B 1 %
pQ, = e_t0— = £(d)
2 ZﬂkYOydzo VT BO
where

2 2 ® K 2k 1
£(d) = exp(- 514—=) 10(%—) -2 3 (-1) d“ Tk + 7

/o 21k - D1 (2k = 1)




-17-

Bibliography

[1]

[2]

(3]

4]

[5]

(6]

K.W. Robinson, Report CEA-A25 (1959)

¢. Bernardini, The z-distribution of an electron beam in

a storage ring. LNF-62/5k (1962)
E.D. Courant, H.S. Snyder, Annals of Physics, 3, (1958)
F. Amman, D. Ritson, Report LNF-61/38 (1961)

Proposal for the construction of a 3 GeV electron~positron

storage ring, DESY (1966)

G.N. Watson, Theorty of Bessel Functions.



kLo, VEos
AR

0.2

J.b

Parameter: Crossing angle 5 in
£ -
o =366 10 8

mrad

—8L—

001

Fig-

1

0]

Luminosity as @&

functi

on of amplitude

10 = B



R

08+

05"

0L

02

k- b oy Ozo

f-N2

Parameter:

S
s
v,;“‘l‘

Crossing angle 0 in mrad

< =366 107

0L

001

Fig.

23 .

01

Luminosity as a fun

ction of amplitude



Parameter: —=

5 = 0 . &

0 02 | ] |
mrad

Fig. 3@ Luminosity as 2 function of crossing angle b



15

05-

001

Parameter: Crossing angle 5 in mrad

—LZ.—

1 =

1o of amplitude



8+ L ngdx

- fyN AL

" Parameter: crossing angle 5 in mrad

£ =366107°

nm.t : | -

Fig. 5: Luminosilty as a function of amplitude



Parameter icrossing angle $ in mrad

& =366-107°  d=85

0]

Py

1 -

A eeine angle O in mrad

10



B | - 2re oy

fy N a0y

Parametm': Crossing angle 0 in mrad

—géx- =166-107% d=85

Fig. 7:

01

Luminosity as a function of

10 | —

amplitude crossing angle ® in mrad

_nz_



