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Abstract

Sum rules derived from isospin current algebra are examined in
perturbation theory for nucleons interacting with neutral pseudo-
scalar mesons and isovector pioms. It is shown that the well-
known sum rules for electromagnetic isovector form factors of
nucleons and pions are correct in zero and second order of the

meson-nucleon coupling constant.



I. Introduction

Sum rules have been derived by Fubini et al. [1] from the assumptions:
a. The commutation relations of the current algebra hold,
b. The dispersion relations for the retarded invariant amplitudes
of the matrix element considered are unsubtracted.
It is the purpose of this paper to examine these assumptions in pertur-
bation theory. Because a proper definition of a renormalized current
operator can be given only for a conserved current, we discuss the
isotopic spin current j“,a(a =1, 2, 3) in meson—nucleon interaction.
We consider the matrix element of the retarded product of two isospin

currents between one-particle states of equal momentum,

ANTRTE. qux Ok <P1R(ju,a(X)jv,B(°))|P> (1.1)

In order to remove vacuum contributions we define (1.1) as the limit of
the corresponding non-forward matrix element. Actually it is more
convenient in perturbation theory to do the calculations for the time-

ordered matrix element

Tuv,aB = 1 Jd“x ein(Zﬂ)3 <pj'I(ju,a(X)i“B(o))lp> (1.2)

from which the retarded quantitiy can be easily obtained.

The matrix elements (1.1) and (1.2) can be related to the matrix

element of the equal time commutator, if the naive definition
[R(3, (1 @][p> = 06 <p|[3, ()3 () 1[p> (1.3)
applies for the retarded product, or
olT(3, (3, ()pr = 0Ge) <pli, (D5, G e
(1.4)

+ 0(=x) <pljv,6<0)ju,a<x)\p>

for the time-ordered product respectively.



We then find e.g.

- H = L in H . N ‘ 3 -
1T, 08 Jd x e 79 <PIT(JH,Q<X> J\)’B(O))|P> (2m)
(1.5)

= jd“x eiqxé(xo) <p][jo’u(x), jvs(.O)]]p> (2m)3

The same relation holds for R .
uv,0B

It is the basic assumption of current algebra that the part antisymmetric

in 0,8 of an equal time commutator does exist and can be evaluated by

application of the equal time commutation relations of free field currents.

The isotopic spin currents of a free pion field and a free nucleon field ¥

are:
plons Jy,¢ = L ¢ta 8u¢ : ‘ (1.6a)
nucleons Ju,a = 3 waTf'w : (1.6b)
where (t ) = i p,0 = 1,2,3 (1.7)
a’po poo ’ »= °

The currents (1.6) satisfy the equal time :ommutation relations

pions:
35,40 )5 3,501 = <oll3, G,0),j, j(@1]o> = (1.82)
= e 3y, @8 G w6 (5 e 100 s P D)
(k =1,2,3) o
nucleons: [jo,a(;’o)’jv,s(o)] - <o|[jo’a(;,o),jv,8(o)]|o> = (1.8b)

. , (3) > ‘
{ b'e
i EGBY Jv,y‘o) § (x).

&

The combination of (1.5) and (1.8) leads to the conditions for the
matrix element (1.1) or (1.2) implied by assumption a. The resulting
relations correspond to the well-known Ward-Takahashi identity in

quantum electrodynamics [2], [3].

In Sect. II we discuss the polarization averaged matrix elements (1.1)

and (1.2) between one-nucleon states of equal polarization r in second
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order of the meson-nucleon coupling constant g. In order to reduce
calculational work we consider an interaction of nucleons with neutral
pseudoscalar mesons, where only the nucleons carry isospin. Hence we

obtain from (1.5) and (1.8b)

—q¥ = 1 ; 3
q Tu\),mB 1eay 2 Z <p,r| Jv’Y(O)| p,r> (2m) (1.9)
Tt is shown in Sect. II that the relation (1.9) holds in zero and second
order, and there is little doubt that it holds in every order. This is

by no means trivial, because it implies that the matrix elements (1.1)
and (1.2) exist and that the definition (1.4) of the time-ordered product

is correct for the sum of all Feynman graphs of a definite order.

Let us now recall, how the sum rules follow from (1.9) ([4], [5D). If we

decompose the matrix element in the isotopic spin space of the nucleon,

= M s e Lo o

Tuv,uB v ap * uv 20 o B] (1.10)

each of the coefficients is a tensor and may be written as

(*) - (® (*) (*)
Tuv = Tlpupv + T

aa, ¢ O

+
BV 38

" T4(puqv + qupv)

(1.11)

From (1.9) we obtain the following relations for (—)Ti (L = 1,2,3,4):

(=) 2(-) = -
]| T‘ + T4 = 1
(1.12)
2(-) ) e -
q T2 + T3 + pq T4 =0
The same relations hold of course for the amplitudes (_)R. (L= 1,000,4).

1f we now assume unsubtracted dispersion relations for (- R, (L = 1,..,4)

(assumption b),

2
Ai(v',q ) )
; q°<o, v = pq

1= 1,000,4 (1.13)

v =v-ie

g, ,ad) = Jav'

-0

and observe the relations between the Ai implied by current conservation,

we arrive at the sum rules [5]



Idv(-)A](v,qz) =

o for q2< o (1.14)
jdv(_)A4(v,q2) = o

o]

The latter is trivial, because it follows from crossing symmetry. The

first is shown to be valid in zero and second order of g in Sect. II.

In Sect. III we turn to the more realistic model of nucleons interacting
with isovector pions and consider the matrix elements (1.1) and (1.2)
between one-pion states of equal momentum p. The decomposition in the

isotopic spin space of the pion reads

(=g Z[ta,tB]_ (1.15)

_ (o) (+)
T 28 _ + T 2[tu,t8]++ "

T
uv,af uv af Hv

Now nucleons and pions carry isospin and the total isotopic spin current
is the sum of (1.6a) and (1.6b). Combination of (1.5) and (1.8) yields

the relation

- - , ;
Tliv,as = 1 eggy <PlI, (@) ]p> (2
(1.16)

k

3
v qk p>  (2m)

. ] .
+ 8 <plio(o)zle ,t .1, ¢(0):
It differs from (1.9) by the second term on the r h s that is symmetric
in o, B. Thus only the antisymmetric part camn be supposed to satisfy (1.9)

- O afe e 1 = 1

n <pli,  @][p> (2m? (1.17)

By
We show in Sect. III that (1.17) holds in zero and second order of g.
This is also true for the sum rules (1.14). However, the situation is
entirely different for the symmetric parts. Here a deviation from (1.16)
already occurs in zero order, due to the principal indefiniteness of the
time-ordered product, i.e. the symmetric part of the zero order
contribution does not agree with the definition (1.4). In second order,
we encounter divergent contributions to the symmetric parts that cannot
be renormalized. Therefore they do not exist and no sum rules emerge from

the symmetric parts of the relation (1.16), in contrast to the model
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discussed in Sect. II. where the symmetric parts exist as well. But it
is remarkable that the Ward-Takahashi-like jdentities (1.9) and (1.16)
and the sum rules (1.14) are correct for that part of the matrix element,

for which they have been anticipated, namely the antisymmetric.
II. Nucleons and Neutral Mesons

Our first example is a theory of interacting nucleons and neutral pseudo-
scalar mesons with the interaction Lagrangian
L - U . e o+ g 2 g2,
T g v ysw¢ pot dmigys + 5 du N 2.1)
where ¢, ¢ are the unrenormalized field operators of nucleons and mesons

respectively. Because only the nucleons carry isospin, the isotopic spin

current density is given by

T
B = F by 7% Vo o= 1,2,3 . (2.2)

We first make some remarks on the vacuum expectation value

Fw’as(q) = 1 Jdux Jlax <o|T(ju,a(x)ij(o))lo> (2.3)

From the definition (1.4) of the time—~ordered product, we obtain in zero

order of g

(o) _ _ 2 2 p(s)
Fo o @ = {lagq, -4 g, )¢+ | gmZ ey 1t 81 8o C2)
4 2
m
T e (2.4)
X Sp(—z"z—-) 5 k=1,2,3
where
2 2+
1 2 2
o) = g (1059 (1 - (2.5)
and Cl’ 02 are divergent constants,
c, = |ds pls) C, = |dsp(s) (2.6)
1 s > 2 '
4m2 4m2
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Besides. the trace factor the r h s of equ. (2.4) is identical with the
lowest order of the vacuum expectation value of time-ordered electromag-
netic currents in quantum electrodynamics (QED). Because of the

Schwinger Term'gkugkvc2 [6], Fuéois is not conserved,
5

bp (@)

u
TF va = ¢ gkugkvcz (2.7)

This difficulty can be overcome in QED by a suitable redefinition of

the electromagnetic current as the local limit of a gauge invariant
non-local expression that depends on the electromagnetic potential and
does not give rise to a Schwinger term ([7]). A similar argument does not
apply in our case, because there is no corresponding vector field. By the
same reason the constant C1 which 1is equal tO(l-Z3)/e2 in QED, cannot be

removed by adding a counter term to the Lagrangian (2.1).

Therefore, the vacuum expectation value (2.3) cannot be given a meaning
within our model besides by a redefinition of the time-ordered product

that absorbs the divergent local term
CI(D guv - auav) §(x) + ngkugkvé(x)
We shall encounter a similar situation in Sect. IIT.

We now turn to the matrix-element Tuv aB(l'z)' The Feynman graphs of
)

Fig. 1 give the contributions in zero order

T T

(@) _ _ 1% (x) o 1 B '8 I Yoy @
fas = T2 L0 @ Ty TR 2t T s T e ®

1 - 1
= = Sp{y (v(p+q) + m)y (yp + m)} > .
2 u v 2 . 2 2
m~ = (p+q)” - ie
T, T
1 1 B o
+ g ey (y(-a) + m)y, (vp + m)} T % %
m- =~ (p=q)” - ie
(we use the normalization ;u = 2m). (2.8)
The identity (1.9) is satisfied by (2.8) in zero order
Mo (@) Iy, Ty (@
q Tuv,aB * Cagy 2 lu Yv 2 (2.9)
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On the other hand, we obtain from (2.8) the invariant amplitudes

(*)Tfo) - - 1 : 2 — 1 - (2.10)
m~ - (p+q)” - ie m” - (p=q)” - ie
L ; () (0) s o 2
and similar expressions for T, (L = 2,3,4). For q <o the corresponding

retarded amplitudes, e.g.

(i)Rfo) = — A ; ¢ — > (2.11)
m” - (p+q)” - ic(p*q) m” = (p~q)” + ie(p=q)
have the analytic properties required in I and the sum rule (1.14) is

valid in zero order

Jdv (—)Afo)@,qz) = 1 (2.12)

=00

It follows that we must have in all higher orders

Jdv (n)Afn)(\),qz) = 0 n= 24,0004 ‘ (2.13)

-0

if the sum rule (1.14) holds in perturbation theory.

The derivation of the sum rule in Sect. I was based on the assumptions

(1.9) and (1.13) which we now discuss in second order of g.

The contributions to the r h s of (1.9) are given by the Feynman

graphs of Fig. 2 and can be written as

@0 @1 B @l = P eh,P e ¢
i { 2
r YA 1P - ) s+ e (el @ - )l
(2.14)
x Ty u(r)
5= 47 (p)

Here we have defined

[P = & Jd“k y  Lpret) rm (2.15)

5 (p+q_k)2 _ 2752 2



2
i 4 y(p+gq=k) + m y(p~k) + m 1
2T Id ks - 7 2% T 2757 3 (2.16)
(ptq-k)” - m (p=k)“ - m k“-u ]

2(2) and Aéz) are linked by the Ward-Takahashi identity ([2])

(" 108 (prg, pa” = [P prg) - [P p) (2.17)

as in quantum electrodynamics. The relation (2.17) is maintained, if
the meson propagator is regularized and leads as usual to the equality
of vertex and self-energy renormalization constants,

Z = Z2 (2.18)

We find in second order
|

. T m?
Z=-1=- T%;Q’{E‘ln — "3t fdx x In 575 5+
m o xm” + (1-x)u :
(2.19
2 2

1
xm
+ de X
xzm? + (]—x)u2

for large values of the regulator mass M. While 22 describes the well-
known renormalization of the nucleon field by the interaction with the
meson field, Z is a additional renormalization constant that renormalizes

the isotopic spin current (2.2). It is defined by
Zm1)y L
Ay, ) = = 2=y 5 (2.20)

The remormalized current is

T
. Z o .
R AR SR @20
2
where
y'o= ;é: v (2.22)
Zy

is the renormalized nucleon field. Due to (2.20) the unrenormalized and

the renormalized currents are the same. Hence it follows from (2.14)




that
3 . (2) _
(2m) <Psr|J\) Y(O)‘|Par> = 0 (2.23)

The tensor Tuézlsreceives contributions from the Feymman graphs of
H

Fig. 3 and the corresponding crossed graphs. (We have not pictured

the mass renormalization counter terms):

T T ';“Z o (2.24)
2 b (b 1P 0w - o) ot W E ¢ 09
' AéZ)(p’p+q) E%' Y(p+q; =m v ;g' ¥ (3b)
+ @y, %Wﬁﬁ—-‘m' v, 2 (3¢) + (3d)
oY ;%';z;:a%-:—a A, (p*q,P) ;;- + (3e)
T_;Mii) (p>q) ‘TTB} o) + {a,u,p+q <> 8,v,p-q] (3£)
where

(2) -
MUV (P,Q) =

2
_ig” [ qup., y(p7k) +m v(p+q=k) + m v(p=k) + m |
(2m) Jd kY5(p—k)z A (p+q-k)Z - mZ Yy ()2 - m? Y5 KZ—Z (2.25)

It can easily be checked that the contributions corresponding to the

diagrams (3a) - (3b) and (3c)-(3d) separately satisfy the relation

q“TuéziB = o (2.26)
)

This follows from the Ward-Takahashi identity (2.17) and its
generalization to M .
nv

unﬁi)(P’Q) = Aéz)(P,p) - Aiz)(p+q,p) (2.27)

Thus the relation (1.9), which combines the conditions on Tuv B

’
implied by current conservation and equal time commutation relations,
is valid in second order of g. A similar proof applies in all higher

orders.



...10....

We now turn to the analytic properties required in Sect. L. It is clear

X +
that all the contributions to the invariant amplitudes ( >Ti (1= 1,...,4)

of (2.24) can be cast for fixed q2 < o into the dispersive form

oi(s,qz)

s = (p+q)2-ic

(t)Ti (p%, (p+) %) = st P= 1,004 (2.28)

m
if we use the well-known machinery for the analysis of analytic properties
of Feynman graphs. Similarly we obtain for the crossed graphs

2
+ , p,(s,q7)
() (% p-q)?) = st — (;—q)i—ie i=1,...,4 (2.29)

i
m

Thus the corresponding retarded amplitudes (i)Ri(qz,v) satisfy dispersion

relations in v of the usual variety. The remaining question is: are all

these dispersion relations unsubtracted? If so, (2.13) must hold, or in

other words (~)R1(q2,v) mus decrease faster than |vr1 as v + « for

fixed q2 < 0.

We shall now prove this assertion in second order. One may expect that the

relation (2.26) provides for a cancellation of the leading asymptotic terms

for l(p + q)zf > », We therefore restrict ourselves to the contributions

of (2.26) and check whether a cancellation takes place in the two subgroups

of terms that separately satisfy (2.26). We only list the results of the

laborious but straightforward calculations. The contributions to

+
( )Tl(z) from the graphs of Fig. 3a and 3b have the asymptotic form

2 2 2
(), (2) z _ g~ 1, M° 3 1 m 1 1
SRR A A 2rETyn ](p+q>‘|} ez * o grger) G2
(2.30)
(*) 2 2 2
Tzt 1, M 3,1 | ! !
A e gy (p*a) ) (v * ° (Tevayr @D

for |(p+q)?| » =

The sum of the two terms decreases in fact faster that I(p-i-q)zr1 as
I(p+q)2| * ®, In our simple model this holds equally for the symmetric
and antisymmetric amplitude (i)Tl. In more complex cases only the anti-
symmetric part (-)sz) has this property as will be seen in Sect. III.

Finally we note the asymptotic expressions from the graphs 3c - 3f:
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(i)Tl(Z) 24 (z,m1) (p':'q—l'z) (3¢) + (3d)
D1 2 & kw3 L i) T 0 (3e)
!
(i)Tf2> 2 %;-z{—lzln l—(p_TfT)Tl - 3. de x(1-%) 1n—(-1—_-£>—$—§:-;:2- (2.31)
1 o}
i de x ?m“ﬁﬁ)p‘ } Vpﬂl*q)lZ *o for [(pra)?f[ > e 03D

0

Again the sum decreases faster than |(p+q)2|“1 as can be seen with (2.19).
The situation is completely the same for the crossed diagrams. Thus the
retarded amplitude (-)RI has the required asymptotic behaviour and (2.13)

holds in second order of g.

The preceding discussion makes clear that there is an intimate link

between the asymptotic behaviour for large\v\ and the Ward-Takahashi-

like identity (1.9). Because the latter holds in every order there is
little doubt that this is also true for (2.13). We shall employ a different
method in Sect. III which makes these things more transparent. The sum rule
(1.14) is, therefore, in fact equivalent with current conservation and

equal time commutation relatioms.
III. Nucleons and Isovector Mesons.

Our second example is a theory of interacting pseudoscalar mesons and

nucleons with the interaction Lagrangian

3 ,
fx = g) PV oygT Vet Sm o Yy + % §u% ) 10,94¢ (3.1)

o=1 o=1

where ¢a and ¥ are the unrenormalized field operators of the mesons and
nucleons respectively. The isotopic spin current consists of a meson part

and a nucleon part (see (l.6a) and (1.6b))

T

: . . P U LI
JU,OL EO«BY . ¢BBU¢Y. + U)Yu 2 \p‘
(3.2)

TOL
'—zllJ: , a=1,2,3

i t 9 ¢ + ¢ 0
i:¢¢, u¢ wvu
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For the model defined by the interaction Lagrangian (3.1) we investigate

only one-meson matrix elements.

The outline of the proof for the second model will be similar to the
presentation in Section II. But instead of investigating the asymptotic
properties of separate graphs we first shall sum up several diagrams and
then study the behaviour of these sums for v + . For the summation we

shall use extensively Ward-Takahashi-like indentities.

The matrix element Tuv B is defined as in Section I (1.2). The zero order
H

contributions exhibited by the Feymnman graphs of Fig. 4 are as follows:

1

(o)
T pe = (p+q)?-ie

Hv, 0B

tte (2p+q)u (2p+q)v

(3.3)
1
ue - (p-q)“-ie

+ gty (2p-q)v (2p—q)u

where u is the renormalized meson mass. If the naive definition of the

time ordered product equ (1.4) is used we encounter in Tuéois an
H

additional noncovariant term equal to

[ta’t6]+ guo 8,0 (3.4)

The divergence of the zero order contribution equ (3.3) is:

Hop (o)

", 08 (3.5)

-q = [ta’t6]+ q, * ieuBY tY 2p,,
The identity (1.16) is satisfied for the isotopic spin antisymmetric
part. But the right hand side of equ (3.5) yields a different isotopic
symmetric part than the relation (1.16). The difference is accounted
for by the additional term (3.4). Now the invariant amplitudes
(i)Ti(o>(i = l,444,4) can be immediately read off from equ (3.3), for
example

() (o) 1 : 1 (3.6)

=

1 ue = (prg)-ie ue = (p=q)“-ie

and similar expressions for (t)Ti(o) (i = 2,3,4). All (o)Ti(o) are zero

in this approximation.




—]3...

As in Section II the corresponding retarded amplitudes have the
analytic properties required in I and the sum rule (1.14) is valid

in zero order

J av A,(°)<v,q2) = 1 (3.7)

Therefore we must have in all higher orders

J dv(_) Al(n)(v,qz) = 0 n= 24,444 (3.8)

-0

The next step is to show that the isotopic spin antisymmetric part of

Tuv B fulfills the relation (1.17) and that the retarded amplitudes
3

(—)Ri(qz,v) satisfy unsubtracted dispersion relations in pq = v for

fixed q2 < o. As in Section II we prove these properties in second

order of g.

The right hand side of (1.17) is given by the Feynman diagrams of Fig. 5

and is equal to the following expression:

, 2) ‘
3 oy D ] (2) A
@m? <ol3, Pl = & (Av (2:0) *+ 2 b, Ty 5o (3.9)
25,2
pT=H
where 2(2) is the meson self-energy in second order
2 2 1 1
Z( )(p) = -g Jduk Sp(YS TG0 —w 'S5k -m ) (3.10)
and Asz) the vertex function
A(Z)(+ )y = _1'-_8_2_;_ quS( 1 1 1 )
v PP (2m) PUY5 Y(prqrk) - m 'u y(prk) - m '5yk - m
(3.11)

As in Section II the functions 2(2) and A(Z) obey the Ward-Takahashi
itentity:

@1 0® rama’ = [P0 - 1P e (3.12)

As usual we get the Ward identity from equ (3.12) by differentiation:
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(2m* 1 A\EZ) (pyp) = a—z\;— 2(2)(p) = 2p, 3%2 2(2) (3.13)
and therefore equ (3.9) says that
(2m)3 <pljvf$>lp> = 0 (3.14)

just as in the first model. Equ (3.13) leads to the equality of vertex

and meson self-energy renormalization constants
7 =7 (3.15)

if the functions 2(2) and Aéz) are regularized in such a way that
equ (3.12) is maintained. Then as in Section II due to the relation

(3.15) the unrenormalized and the renormalized currents are the same.

The Feynman graphs in Fig. 6 which give the contributions to T (238
’
in second order will be considered in two groups. The first group
consists of the diagrams a) and b) and the second group is the rest of

the graphs in Fig. 6. The diagram a) and the corresponding ctrossed one

are:
(2a)
TUV,aB
1 i c(2) o (2) I
ERATLS AUy ey vy (zﬂ)u(i (p+a) - 17 (@) FCT LR AG ALUN
, (3.16a)
- et (2p-q) L{1P 0m0) - [P 0)) =20,
B o P (p= q)Y - e (27r)LH P (p-q)
whereas diagram b) and the corresponding crossed one are equal to:
(2b) _ 2, . 1
", a8 tytg A7 (Rap*) oy (2pt),
- tgt, (2p=q) - A(z)(p-‘q p) (3.16b)
B o PV p=)Z = uZ ’

2 (2)
The Ward-Takahashi identity eq (3.12) allows us to express Z( )(piq)—z (p)
, 2 ,
by the divergence of the corresponding vertex function A + Then in both
contributions, a) and b), the same vertex functions appear.

The sum of a) and b) is:




_15_-.

T (2a+ab)
uv,oB

q" Aﬁz) (»,p*q) |
w(p+q)® - w° u” - (p+q)

e g 07 ) - 2pra) ; (2p+q)

a B

i q“/\ﬁz) (p~q,p)

@), ) |
T om? (0,7 pma,p) + (2070, GryT 2 } (3.17)

+ tBta(ZP_q)

Equ.(3.17) can be simplified by introducing the following decomposition

of Asz)(p',p) into invariant functions AEZ)(p',p):
AP = e, 1260 + 6, 1 e (3.18)

It is easily shown that the experission on the right hand side of

equ (3.17) is identical to:

(2a+2b)
UV, 0B

2
12 (p,p+0) [(2p+q) ———3—72 = qu] gz—_—lg,;qj*z (2p*q)

t t
o u(ptq)c -

B

- - ! - 1 (2), _
tgt, (2070, T T )7 {(ZP D, GepZ =7 qu] A (pmq,p) (3419)

Since p2 = uz the sum of the contributions a) and b) has zero divergence

o = o (3.20)
b

A_(z), a function of q2 and pq, has been calculated in terms of an
integral representation whose asymptotic properties for pq = v > @
were studied. It is found that A(_) behaves for v - « like 1lm v.
Then it follows from equ (3.19) that the invariant function T1<2)(v,q2)
Tué?iEZb) decreases faster than |v|_1 for |v| + «, We remark that the
diagrams a) and b) seperately are logarithmic divergent. It is well known
that the divergent contributions cancel each other in the sum of vertex
and self-energy corrected graphs due to the Ward identity. Our derivation
shows that the same mechanism leads to a better asymptotic behaviour of
the invariant functions than would be expected from the convergent

contributions of the graphs a) and b) seperately.
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InT 5?:83b> the isotopic spin symmetric and antlsymmetrlc part of
T (2) have the nice asymptotic behaviour 1lnv/v? for v » =,
Unfortunately in the sum of the contributions from graphs c), d), e)
and f) only the antisymmetric part (_)T (2) has this asymptotic
property whereas the symmetric parts (OiTl(Z) and (+)T1(2) still

diverge.

The contributions of these diagrams and their corresponding crossed

ones are:
p (2e+2d) _ 1 i : 5 ()
Tavas T 7 Lartely 1), Sy ey e, w1 4

+ (2p-q) —z—:‘(?—q—)'z (2p-q) @;—)ﬂr 37 1)
+i[t t ]{(2p+q) l (2p+q) i 9 2(2) X
2" 0’ W= (prq) 2 PV 5p7
1 (2)
x =(2p-q) Mo ey 4 (2p-q) _(ZT)LT_Z—Z
(3.21a)
(2e) _
pv,oB
‘;‘[t + 1(2p+) '—z—](;_@'z' 12 (prq,p) + A< )(P,P’Q)T_"W(ZP‘CI) }
+ -;-[ta,tg]{(zp*-q) —z——lTPTqu 2 (2 )(P+q,P) - /\( )(P,P q)—z-w(Zp'q) }
(3.21b)
(2£)
pv,o8

- %%B{le\z))(p,q) + M\()ﬁ) (s~} - %[ta,ts]{Mé\?;)(p,q) - M\(j)(p,—q)} (3.21¢)
where
(2) (p,»

2
ig 1 1 1
- ) quk olvs v(ptk) - m "w y(p*ark) - m v y(p+k) -~ m '5 Yk =) (3.22)

qQ) =




...]7—
As in gGection II Méi)(p,q) obeys also a Ward-Takahashi identity:

P 0 = 1260 - 15 rap)

and

u 2 2

v, @od = 8P - 2P e (3.23)
Now we sum up all contributioms of c), d), e) and f) proportional to
[ta’tB]' For this purpose we express 2pv 3%7 2(2) by Aéz)(p,p) according
to equ (3.13). Then in the sum of c¢), d) and e) the vertex functions A(z)
can be replaced by the divergence of Més) by means of equ (3.23). The last

step is to add the contribution of (3.21c) and to introduce the invariant

functions Mi(2>(p,q) and ﬁi(2>(p,q) = Mi(z)(p,—q) respectively which
represent the decompositon of Méi)(p,q):
(2) -
MUV (P,CI) =
(2) (2) (2) (2) (3.24)
M e e, My e, My g Y M, (e g, * 4P,
Then the result for (_)T“52C+Zd+ze+2f) is:
(=) p (2c+2d+2e+2f)
I 2 I !
zila, + p+a), ;7#:7%5:372)(65 M, =M Op, g (- M)
_ 1 3 (2) _
Myg , + (2p+Q), 4, T (or) 2 (gpz ) M, )
2 1~ ~ Sy ~
- (q, = (2p-0),, ;z—_—%l;q)“z)(('g M= M)p, ~ gy (O - My)q,)
~ _ 1 3 2) _ ¢
+ Mg+ (2070 4, T (pmg) (apz ) My)} (3.25)
One verifies easily that
qp(—)T (2c+2d+2e+2f) _ 0 (3.26)

u

so that together with equ (3.20)

qu(—>T5§) = 0 (3.27)
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On the other hand the divergences of the tensor—amplitudes

(+)T53) and (O)Tsi) do not vanish. We remark that the right hand side
of equ (3.25) is a finite quantity. The divergent term proportional to
5%7{(2) is cancelled by an identical term contained in Mj.

()7(2)

The asymptotic behaviour or for v >+ » now depends on the

asymptotic property of the amplitude %-Ml - M4. This function behaves

for v + «» like:

N R ~ lnv
( M1 __M4) = ¢ + CH =5 (3.28)

where ¢ and\c2 depend not on v. The amplitude (%-M] - M4) has the same

1
asymptotic¢ behaviour with a different constant ¢y but the same constant

c,. The terms in the right hand side of equ (3.25) proportional to 4

1
cancel each other. Therefore (_)Tl(z) decreases for v » = at least like

lnv/v2.

Concerning the analytic properties of the invariant amplitudes (_?Ri
(i =1,.0.,4) we refer to the discussion in Section II which is valid
also for the invariant amplitudes of the second model. The unsubtractedness

of the dispersion relations for (—)Ri(z)(qz,v) (i =1,...,4) then follows
() ()
1

from the asymptotic property of as explained in Section II.
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