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Abstract

We obtain model-independent upper bounds on the off-diagonal
elements of the density matrices. They follow simply from a

geometrical interpretation of these gquantities,



-
The spin-density matrix of a resonance is determined by measuring the
angular distribution of its decay products, but very often not all the
matrix elements can be found in this way. For example, the Im ggo of the
vechtor mesons cannot be measured. It is therefore not possible to bring
such a matrix into a diagonal form and check whether it actually has
no negative eigenvalueg. There are other conditions for a density matrix
to be positive semi-definite; for example, in a multipole expansion the

(1)

multipole parameters have to satisfy certsin inequalities

Here, we point out some very simple conditions for the density matrix
elements (see (7) ), which seem to be not well-known. They should be
useful to check whether the background is correctly considered. They can
also be used as subsidiary conditions to insure that the measured
spin-density matrix is positive semi-definite. For the vector mesons

we give a-simple parametrization of the measurable matrix elements, which

incorporates these conditions.

The elements of any n x n density matrix ? can always be written as

+#
scalar products of n (complex) vectors Vy o oeee s V) (*)

(#) The inverse statement is also true. If the elements of a matrix € can
be written in the form (1), then $ is positive semi-definite. This

is proved by showing that X+9 X = real> o for any vector X:

o+ 2 x v - # L (= 2 -
XEX = 13 %3 ‘i’ij X —% X (vi, vj)xj = { Ty Vi xjvj) = (w,w)o.
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This can be seen easily as follows: Consider an ensemble (incoherent
mixture) of N normalized pure states ‘Qé:> (s = 1, +4sy N), each
ooccurring with a statistical welght (probability) pS;iL The gtates
(2)

need not be orthogonal. The density matrix describing this ensemble

is a weighted sum over projection operators onto the different states

N
? =Z PS \“Ps 7<q’s|

S=y
Phe spectral representation of the Hermitian § is a special case of

this equation. If we choose n-dimensional orthonormal basis states |m),

then the matrix elements of € are

N
S = wl8la> o T n, Lal¥, XY, 1w

m

We may then choose our vectors Vi to be

Vo= (e Wlnd>, Vy Hplnd, coeee s Vg Yyl m>)

From the definition (1) we obtain immediately two conditions by using

the Schwarz inequality

90,0 = o ol e o] ] = S S0™° (2)

and

I ?mj * ?nj =1 (v, v Vj)' é.lvm i v ||vj|

2 2 1/2
(v ™+ v l” t2 Re(v,, v,) ) / lvjl

[( ?mm * g’nn 12 Re 9mn) ?jj ]1/2 (3)

|2}

n

where 'Vi| = (vi, vi)1/2 denotes the length of the vector v,.

We now consider spin density matrices of particles produced in a two-body

reaction. Parity-invariance for the production mechanism gives the

(3,4)

symmetry relations



e = (™S | (4)

whers m and m' are the projection of the spin of the particle onto a
certain direction. Since § is Hermitian, it follows from (4) that

pin

?nl g 18 real (pure imaginary) for integer (half- 1ntegef7f If parity
-

is conserved, condition (3) will then read

| 1/2 or m integer
g+ _m,d{fﬂﬁm w555 ] for m integer

m -
¢ 1/2 i
2 Qmm jjJ for m half-integer

so that an actual violation of (6) will mean parity violation, For j = O

' mo .
eq. (4) ylelds 2 ?;o = gmo + (-1) ngo’ and we get the following

interesting condition

¢ 2 1/2(8, + (0" S ) %] Ve (6)

which is much stronger than (2). It reduces to (2) only when

?mm = (-n)" ?m,— *

m
From a number of current-experiments in high energy physios we quote in
Table 1 some data on spin-density matrix elements to illustrate the
practical importance of the above conditions. Ve shall consider vector

mesons and N%/g -resonances, for which we give the upper bounds

explicitely:

Vaector Mesons

]?‘,_,lé ?” =,(1 - ao)/2 40-5 (7.1)
| S0l € [172C 84 - l91,-1 )?fco]v2é Mo = 035 (7.2]

N*%/2 Resonances

5 £z

|?3_£_| or |_3_ MEX ?13 ?.L.L y1/2 . [93.;(0 5-5’/23/2)]*/24 0.247+3)

-5 =



.—5'-

|gz_£,_ - S, __1‘_|-.<_ (2%’%% S, )'/‘é 1IN o 0.353

T ) 1_‘£’ (7.4)
. - 1/2
lRe g%“!z‘ I-‘.e [(0-5“ Z ‘Re ?‘%’_%' ?MJ , ?MEM""(S,'.L{,%{_)(‘?.Q
. : o q1f2
Re gy ) <[ (os-2iRe Syl S ) (7.6)

The inequalities (7.5)and (7.6)£oilowa from (3) by noting that

?-.i..L and 9—3; 2. are pure imaginary, so that
z F3

[Re ®5 4 (< |85y * gyl oter
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Data Incident Scattering S in-densit
sat Reaction Momentunm angle or mo-~ mstrix vy Ref.
lo. GeV/c mentun trans '
. 7 18F
1 P 5§ J1.8¢E 2.5 [0.7<c080< 0. S, = 0.41 * 0.07
Sp-r= 0.35 * 0.05 (') |(5)
Re §,, = -0.12 0,03
L] ? +
2 YP =9 P 18<E <25 0.8¢c086¢0.94 S,,= 0.56 % 0.14
s = 0.26 £ 0.06 (") (6)
- -+ + P 2 9 4
3 itps et 4 & 0.3 GeV oo = 0.70 * 0,08
§1,~r = 0.17 F 0.08(4\(7)
Re §, = 0.07 X 0.07
4 X Py K*"P 5 0.9¢c0s8 <1 S0 = 0.34  0.08
§),—s = 0.35 % 0.06(")(8)
Re €, = 0.01 I 0.04
5 K+P"9Kog*++ 3 0.02<l§<0.16 ?3[3{: 0.20 i' 0.08(“)(9)
Gev? [Re F2-4= 0.25 £ o.os(m)I
Re 524 = 0.12 f 0.0t 7
5 2P~y 1Ot 4 A 0.3 Gevd 9{._}_ - 0.40 * 0.06(")
Re 9g,-4= 0.21 ¥ 0,08 ()
T:ule 1: Some spin-density matrix elements given in the Gottfried-Jackson frame
(! ) ™Phis violates condition (7.1) and hence we cannot calculate the upper
bound of §20 according to (7.2) because the argument of the sguare
root becomes negative.
(/) This violates condition (7.3). Note that if Ré%/é,_1/2 = 0, then
|93/z 3/, ‘*"; 'Ql/’z Yy [« 0.25 ana | 93/, vy | = 0
(") Tnis violates condition (7.5).

e cgonclude from ithese data that:

a) In many experiments the off-diagonal elements actually reach their upper

sounds given in (7).




b)

- 7‘...

In the qubted results the nondiagonal elements exceed their

upper bounds, although the deviations are generally small compared

to the experimental errors. Sometimes these conditions will still

be violated by a small amount even if we choose the most favourabhle
values within the experimental errors. For example, consider the data
get No. 1. We choose for %K)and 91’_1 their smallest possible values
in order to make §H1— ?1’_1 as large as possible., This gives,

according to (7.2)

The experimental value is Re ?10 = - 0.,12 1 0.03.

These small deviations are probably due to background. Since the
ﬁackground effects are very difficult to estimate, our conditions

ghould be useful as a check for such estimates. If the measured value of
some density-matrix element lies near it upper bound, our conditions
should be imposed as subsidiary conditions to insure that the

measured spin density-matrix is positive semi-definite.

Vg.c\tlawsons
From the angular distribution of the decay products of and N§/2—xeananmm
one can determine the real parts of ?10, 93/2 1/2 and ?3/2’_1/2
but not their imaginary parts. The data in Table 1 on the vector
mesons indicate that ?1 g = ?11 IIA,H, where 4 - gshould be smaller

’
or equal to the experimental errors. Therefore, in such cases

19,5 1 £(1/2 Ay, 8,02 ¢ (&, /2
For example, if ?oog 0.4 and the experimental errors = 0.05, we
can predict that [Im ?1c)|é-lq10|é 0.1 . Naturally, if §LO or the
experimental errors were smaller, we would get a smaller upper bound
on Im ?10. Similar considerations can beAapplied for the urmeasurable

spin density-matrix elements of N§/2 .

-8 -



Tt is easier to impose subsidiary conditions if a suitable parameterization
of the relevant quantities can be found, which insures that the conditions
are satisfied. For the vector mesons there are three measurable quentities
?OO,SQ 4 and Re 910, and we parametrize them in fterms of three angles
, -
a, 8 and v.
, 2
§ = sin® «
00

91’_1 = §,,c0828 (0< 8

N

z) (8)

™)

This parameterization holds when parity is oconserved in the production

i\

/2 .
Re %o= (844 900)/ sin B cos v (o< vy

process and hence it satisfies conditions (7.1) and (7.2). For the
H§/2 we were unable to find a similar parameterization for the

9% 3/2’, Re 9%)_4/‘& and Re 93/2}44‘ in terms of three variables only.

We finally remark that the above conditions should also be useful for

the theoretician, who wants to describe a measured spin density-wmatrix.

For example , if the data show that f;r_$5§31 holds for a certain & and t,
then he knows that the vectors vy and Vo4 have to be parallel at this point.
This will give him useful conditions on the scattering amplitudes, since

the components of v are usunally related directly to these scattering
amplitudes. For example, if the above relation holds in the Gottfried-Jackson
system(4), then the componenté of v, can be chosen equal to the helicity
amplitudes in the t-channel (except for a normalization factor), so that
S’,‘_,'x y would imply(*) < 1 /\EIFf'IAE Ay > L~1 Xg IFtIAE Ao 7

for all helicities Aé’m . If for a certain set of A’s this condition cannot

be satisfied, then the amplitudes on both sides have to be very small.
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the financial support of the lekswagen Foundation.

(#) see eq.(10) of Ref. (4)



Appendix A

An n-dimensional positive semi-definite hermitian matrix p, depends,
in general, on n2 real variables, However, these variables are not
completely free, since they have to satisfy certain conditions to
insure that p has no negative eigenvalues. It is therefore useful to
parametrize them in terms of n2 parameters so that these conditions
are automatically satisfied.

0)

Such a parametrization was given recently by Zwanziger(1 . He proved

that a Hermitian matrix p is then and only then positive semi-definite
if it has the following representation

o .5.of (A.1)

p - ni i im

nm

-

where Ei > o (i=1,...,n) and O is an orthogonal (complex) matrix
(i.e. 0T=0—1). Since 0O can be parametrized in terms of n2—n variables,

the right-hand side of (A.1) provides a possible parametrization of p.

Another parametrization follows from expressing the vectors v, of (1) in
E
terms of complex hyperspherical coordinates( ) with the polar axes €y

(k=1,...,n) chosen such that vy is a linear combination of €yserely enly.

v1 = |v1| ey 0 < gij <
1619
v, = IVQI (e1 cos 8, ,¢ t e, 51n912) 0 < ¢ij'$ n
i¢, . 1d,.
1i 21
= i . .- A,
vy Ivil (61 Cosgiie + e281n91ic05921e + (A.2)
1¢, 4
. . . i-1,31
toe, , 31n91i31n921 Ve 81nei_2,icosei_1,ie
t e, 31n91151n92i Ve Slngi—Q,iSlnei—i,i)'

» .
0 )Por real hyperspherical coordinates, see for example Erdélyl(ii)

-10~
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n(12)

This leads to the "Cholesky decomposition of p in terms of a

triangular matrix V
o = Vly (A.3)
and gives at the same time a parametrization of the matrix elements
V,, = T
1 (ey, ])
: 2 . P
in terms of n"-n angles and n dlagonal elements Pys = lvil '

A third parametrization may be obtained from the spectral represen-

tation

t t
nm vt = 1 (A.4)

o
T
e
&
-
o

where the A, > O are the eigenvalues of p. The eigenvectors of p are
determined only up to phase factors el¢l, i.e. we obtain the same ma-
trix p by using the unitary matrix Ugi = Uniei i with s arbitrary.
Therefore, we can impose n conditions to fix these phases in a
certain way, for example by demanding that the diagonal elements Uii
be real and non-negative. These additional conditions on U will make
it depend on n’-n variables only instead of n?. Thus (A.4) will
provide a third parametrization of p, if we can express U explicitly

. 2 .
in terms of n =n variables.

We illustrate the above three representations for the simple case of

2 ® 2 matrices.

Let

Then we have:

-11-
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I. The spectral representation

p = UAU+
with
AL 0 coso -sinae®
A = ( )9 U = ( _iB
0 A_ sinoe cosa
_ atbh 4 a-b,2 2 -
Ai = = 1 \/(—---2 Y+ el 20, AA_ = detp
A+"‘b )\ -a
coso = - R sino = -
A A XA
1P - e/ el
IT, The Zwanziger pepresentation
p = OEO+
with
E = (E+ 0 ) 0 =00 and of =0
0 B0 ™ h h h
cos¢ -sing cosy " isinhy
Or ) (sin¢ cos ¢)’ Oh - (—isinhx cosh¥ )
E, = /(%9)2 - (Ime)? # /(-a-;—b)2 + (Ree)? 2 0
E+E_ = detp
- .ab, . _atb
cos2¢ = f:— ~ cosh 2y = E,+E._

42~
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sign(cos¢) = sign(cosh x} = + 1

sign(sing) = sign(Re c)

sign(sinhy) = sign (Im ¢)
The matrices O, or Op will be equal to unity, if Re ¢ or Im c vanish

so that the unitary and the orthogonal representations coincide for

real p.

3. The triangular representation

p = V+V
with R
ity
ﬁ; Vb cose, e
- 12
Vo= ( e )
0 31n912
99

cos@,, = [c]/VES: e = ¢fle|.
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in Appendix A we gave the parametrization of the general n-dimensional

density matrix p in terms of n2 variables. But very often there are

some symmetry conditions on the elements of p, which reduce the number

of independent variables. These conditions will generally lead to

rather complicated relations between the different angles and it will

be difficult to eliminate the unnecessary variables.

An even more difficult problem arises in physical applications, when

some of the matrix elements cannot be measured. In such cases it is

desirable to express N (N < n?) measurable quantities in terms of only N

vapriables. We have solved this problem for the spin-density matrix of

vector mesons, but we did not succeed in finding similar solutions for

the more general ca

From (A.2) and (A.3)

Ses.,

we obtain

i¢ i¢
10 ————y 1-1
Piq P11Po0 cosQioe inipui—l cosGi_le
iCh, 4= )
o i-1 "0
p = P1o0 | Poe: /0P 1110059100058~
i¢
. . o-1
+ 81n91051n91_100390_1e
¥ *
P11 | Po-1 P11

where we have used the notation v, and v_; instead of v, and vj.

The symmetry relations(q) will lead to

008910(1 + cos@l_

_1 Li..
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so that, unless 51n010 31n01_1 coseo_1 vanishes, we must have

Sin(¢1o + ¢0_1) = 0, and we may choose @10 = n~¢o_1 to get

ctgh ctg(91_1/2) =+ cosf,y 4

10

Hence

cos 910 = Sln(91_1/2) cos a

2 2 -1

_ 2
cos” a = (1 + cos (91_1/2) tg 90_1)

The angle a can assume all values between o and # for any given 91_1 £ om,

if we choose © appropriately. Therefore, we can introduce a new

0-1
parameter vy such that cosy = cos a COS¢1O' This gives the desired
parametrization of the measurable matrix elements Poo? Rep10 and

Pl.q 0 terms of the three parameters Poo® 91_1 and v.
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