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Abstract

Electroproduction of N*(1236) is described by a model, in which the
left hand cut of the pion production multipoles is approximated by

the sum of ladder diagrams containing nucleon and pion exchange with
cut-offs, The cut—-off parameters have been fixed by use of scattering
and photoproduction data. Taking the cut-offs independent of the
virtual photon four momentum, predictions for the two transverse multi-
poles and for the scalar multipole are given. Special emphasis is laid

on a discussion of the resonance shape for different momentum transfer.



I, Intreduction

In this paper we want to describe the N*(1236) as a resonant state of

pion and nucleon by means of the Bethe-Salpeter equatiom in ladder
approximation, with the interaction given by nucleon exchange. Especially
we are interested into the electromagnetic excitation of this resonance,
exploring some detailed questions such as the magnitude of the small multi-
poles and the variation of the resonance shape with varying momentum
transfer in pion electroproduction. To look at as many details of that
process as possible is motivated by the fact that in a description of

the resonance by the Bethe-Salpeter technique some pavameters have to

be introduced, the first one being a cut-off in the nucleon exchange
potential, which may be fixed by the requirement that the resonance appears
at the experimental position., Then the Bethe-Salpeter wave function of

the N* is determined, and it can be checked by calculating electro-
magnetic transition matrix elements. For this purpose we have to make

the additional assumption that the transition potential * leading from

the state yN to mN can be approximated by nucleon and pion exchange
diagrams shown in Fig.l, where the bubbles at the photon vertices indicate
the insertion of electromagnetic form factors. The diagrams should also be
modified by cut-offs. Therefore only a successful description of all

three multipoles (magnetic, electric and scalar or longitudinal), both in
energy and momentum transfer dependence, by such a transition potential

would be a satisfactory check of the model.

Our interest into the resonance shape comes from the fact that the resonance
lies close to the wN-threshold, in which region the transition potentials
change their energy dependence strongly for different photon masses. Since
the resonance width is comparable to itsg distance to the threshold we may

expect interesting effects on the resonance shape.

*By potential we mean a set of two particle irreducible, partial wave

projected diagrams.



Such effects have already been predicted by dispersion theoretical
treatments of the electroproduction problem.!™® For instance the
authors of Refs. (4) and (5) have proposed as a reasonable solution

of dispersion relations

MG, k%) 2 POy, k%) - (W) (1)

Born(w’kz) denotes the

where M{y, kz) is a multipole amplitude, M
Born approximation of the dominant nucleon exchange part of the transion
potential, f(W) contains the resonance dependence on the CM-energy W,
and k2 is the photon four momentum squared, Those parts of the transi-
tion amplitude coming from plon exchange are not expected to obey Eq. (1)
because of their different energy dependence,? and their treatment is

certainly more involved.

The present experimental data®»7 are not in good agreement with Eq. (1) as
can be seen from the analysis of Adler? whose predictions for the
kz—dependence fall above that of Eq.(l) but are too low experimentally.?”
Since there exists also no quantitative justification of that approxima-
tion, we consider it worthwhile to reexamine the problem of the energy

dependence together with that of the kz—dependence.

As an alternative method to dispersion theory it would be desirable to

solve the Bethe-Salpeter equation (BSE) for the aNN*  vertex, and to cal-
culate the electroexitation of the N* from the diagrams of Fig.2 . Since
there are extreme difficulties due to the many different masses in that
process we have preferred a procedure which uses partly dispersion techniques:
The BSE will be iterated for values of the CMS-energy W on a complex
contour Cw separating the right hand and left hand cut in the W-plane of

the multipole amplitudes (Fig.3), By the Cauchy formula we thus get a

perturbation expansion of the left hand cut contribution to these amplitudes

*Of course one might take this as a hint for the contributions from other
one particle exchange graphs,® especially w-exchange. We believe however

that Eq.(1) is not reliable (see Section 6 for a detailed discussion).
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which has been shown to converge quite rapidly if the cut-off for the
exchanged nucleon is choosen properly.® The construction of the complete
amplitude is then easily accomplished by means of the Omnés-Mushelishvili~
method.? A disadvantage of this procedure is that we combine an experimental
phase shift with the left hand cut of a model amplitude which may yield a
resonance at a slightly different position. A direct solution of the BSE

in the resonance region is therefore unavoidable and will be attempted

later.

In Section 2 we describe the technical details of the computation of ladder
diagrams respectively their left hand cut, and specify the cut—off in the
nucleon exchange potential. In Section 3 the electromagnetic transition
potential will be discussed, and its cut-off parameters are determined

from a comparison with photoproduction data. 1In addition we discuss in

the frame work of the nonrelativistic Lippman—Schwinger equation the effects
that arise when transition potential and interaction potential have very
different ranges. This discussion should help to understand such phenomena
as zeros in multipole amplitudes in a more transparent way than the present
dispersion language offers,

Section 4 contains the prediction for the magnetic dipole in electroproduction
with an emphasis on the variation of the resonance shape. The agreement of
the predicted magnetic form factor with experimental data’ is not very good,
if the assumption is made, that the pion electromagnetic form factor is
equal to the nucleon electric (Sachs) form factor. If the pion form factor
however shows p-dominance, the experiments are rgproduced satisfactorily.

In the same section the predictions for the small multipoles (electric

and scalar quadrupole) are presented. In Section 5 we try to compare the

various methods used in dispersion theory with our approach,

II. Calculation of Ladder Diagrams

We assume the pion electroproduction amplitudes M(W,kz) (where M stands
for all relevant multipoles) to be determined by the two component Bethe-

Salpeter equation (graphically represented in Fig.4)
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with *  M(W,Kk2) = M (o, [B])

Here M?Ofn(qo,lél) denotes the projections of the nucleon and pion
exchange diagrams of Fig.l into the appropriate multipole channel as a
function of the final off-shell pion-nucleon relative energy q, and
relative momentum fal . These functions will be given in Appendix A.
The interaction kernel Kij(qo,]al, qé,[a'[), which is responsible for

the formation of the resonance, is for elementary nucleon exchange given

by8
s L L2 i
K"(q ,]C][, q'slq'l) =.g_ X
1 o 0 > W > Wep >
! arlq] (alr 2= q'2-u2) {ql- P?-q'2 - u?
] (- / /!
X {(q0+qo+ri+rj M);ri+M ;rJ.+M Q](Z)
1 ] A T
+ (q0+qo+ri+rj+M)1ri M /fj M QZ(Z)} R
B g2
Wlth H = ]4:5 3 (3)
1'] == r2 = "21} 2+M25
Ty =TTy = gt

>
*By P, > P Wwe denote on-shell relative energy and three momentum of

nucleon and pion. The arguments W and k2 have been omitted in

Mi(quIQI) .
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W - 2q
S | _—
ap = 1=y =gl 27 )
> > >y
z = {(q, + a2 - a® - q'? - wy/2fql[d'} ,
M = nucleon mass,
u = pion mass,

and Q,(2Z) = Legendre-functions of second kind.
£

Other kinematical quantities are:

=
[e]
1]

photon CMS energy,

=
[

photon CMS three momentum .

If we modify the propagator of the exchanged nucleon by a form factor of
a simple pole type (u being the four momentum squared of the exchanged

nucleon),

L . ) o ] )

- w2
w-M2 u-M2 oo uTM o2 -2 -2

AZ

which may represent a combination of propagator and vertex corrections and
is of purely phenomenological nature presently, we have to modify expression

(3) by the substitution
QE(Z) => QE(Z) - Qﬁ(zt) (5)
2t =z - A2/72|ql]q"] .
An estimate of the cut-off parameter A% has been obtained in Ref.8 by an
evaluation of a dispersion sum rule for the elastic =N scattering amplitude
in the (3,3)-channel, fl+(w), in comparison with the ladder approximation

for the left hand cut of £, (W) . A value of A2 = 2.6 GeVZ yields a

reasonable left hand cut.
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Eq.{2) has been iterated by numerical integration for wvalues of W
varying along the complex contour Cw of Fig.3 which has been choosen
lying far from the positive W-axis. We thus get an expansion of the
transition amplitude into powers of the strong coupling constant g2/4m,
which enables us to calculate the ladder series for the left hand cut

of the multipole amplitudes M(W,kz) by the Cauchy formula

| Loy g g2y

ML(W,kZ) = gt 220

T W w (6)

CW

where M(n)(w,kz) denotes the n—th iteration of Eq.(2) with
u© o,y = wPoai?y (7)

Our choice of the contour Cw ig motivated by the consideration that it
should stay far away from the real W-axis, where the convergence of the
series in the integrand of Eq.(6) is bad due to the rescnance pole, since
this would lead to large cancellations along the integration path (the

integrated series converges quite rapidly).®

It has been shown in Ref.(8) that the use of complex values of W also
helps to separate the various singularities of the kernel and of the
inhomogeneous term in Eq,(2) with respect to the qomvariable, which for
real W make a numerical iteration difficult beyond the inelastic
threshold win =M+ 2y . The small pion mass however in the pion exchange
diagram Fig,1b) causes additional difficulties in the following way:

Born

The Born term Mi qé,|a‘|) has cuts in the qé"variable starting at *

ay =k, ~ 5 AT = [KD? w2 (8)

’ , ‘_). -_> »
*Unfortunately the quantities Ik],lq‘] etc, are not necessarily real

here due to the complex values of W .
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If in the course of the Ia'l-integration in Eq.(2) we arrive at

Re|q'] = Re|k]
we must have

(0] - 1B < w (9)
in order to retain a real gap for the complex qé-integration. The
contour of the [a‘[—integration has to be deformed from the real axis

as to fullfil condition (9). The actual contour was taken as

Akl - iy, oA

H-
rofe

g
la'] =
Kl -ig+r, 0sAr<o :

Now if ]ﬁl z 131 two of the four poles contained in the propagators in
Ki; approach each other again closely, since for ]3'[ = l;] - ié%
they ly at

ol Tt 72
if !31!2 > u?

The pinching of the 9, '-integration contour by these poles, which of course
corresponds to the well known two particle singularities of M{W, k Y,
causes a pole in the |q'|-integration at 1q'] = |p] , the contribution of
which was subtracted numerically and added again analytically in a

standard manner. The same was done for the single poles in q; which cross
the q ~contour for increasing |q'| after the Wick rotation has been per-

formed. For large k2 however there is no gap between the cuts (8) from
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pion exchange and the cuts coming from elastic scattering nucleon

exchange, (which are located at

Q) =-p Y atl s B2+ w2 ), (10)

which is opened for all values of Ia'[ » This could be managed by using

a qé—integration contour which depends on ]3'], but we have preferre& to
use a contour going through the gap between the cuts of Eq.(10) and to
extrapolate the amplitude in qé when doing the integration over the pion
Born terms, For this reason we have restricted the present calculations to

the region |K[< 1 (GeV/c)

The numerical integration was performed with Gaussian quadrature taking
. - . . . .
11 points for the |q'|—1ntegratlon and 14-20 for the q;—lntegratlon. For

the calculations an IBM 360-75 was available.

In order to improve the convergence of the perturbation expansion in Eq,. (6),
the diagonal Pade approximantsl® have been formed from the ladder diagrams

M(n)(w,kz) , thus actually calculating

2
[M(W', k)]
ML,N(W’kz) SR Bt N,N ()

2ri W' - W

CW

with N =2 or N = 3 . The differences between ML as defined in Eq.(6),

between ML 9 and ML 5 were of the order of 37 for all W ., The calcu-
3 3

lations reported were mainly done using the [2,2] - approximant, which

requires ladders with four rungs,

Given the left hand cut of cur multipole amplitude M(W,kz) and the
scattering phase shift &(W) for all energies and assuming elastic unitarity,
the complete amplitude with the correct phase, and preseribed left hand and

the correct threshold behavior is °
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=]

2 1
M, k2 = M (0,2 - p(H,k) | gy Im DCWT) x (12a)
’ﬁD(W) W' - W - ic

i

Mty

x {M(W',kz)/p(w'akz)}lefc h.c.

o (i, k%) ORI IR .
o — W ; L (12b)
20iD() | o (WLED W - W)
Cy
. _ WM (W)
with D(W) = exp { - dw' (W'~M)(W'-W-ia)r}’ (12¢)

4

M+u

and o (W,k%) = |B]]¥] wWE, + M /B, FH

where

E, = CMS - energy of incoming nucleon,

E, = CMS - emergy of outgoing nucleon.
This form of the amplitude is unique even if &(») # O due to asymptotic

considerations, Formally one may add to Eq.{(12) a homogenous term

p(W,k2) (13)

2
M(W,k") = const
hom D(W)

which does not disturb the phase and the left hand cut of (12), but it has
an asymptotic behavior which is inconsistent with unitarity, and no cancel-
lations can occur between Eqs.(12) and (13), since M(W,kz)hom decreases

at least one power slower in W than the solution of Eq.(12)., We have to
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be aware of the fact, however, that the actual function defined by (12)
generally will violate unitarity also due to imperfecties in ML(W,kz)
and due to a breakdown of elastic unitarity. Nevertheless it is the only
form of the amplitude which may have the correct asymtotics. Neglection

of asymtotic behavior certainly allows for addition of terms like (13).1!

Our choice of the kinematical function p(W,kz) ensures the correct’
threshold behavior and helps to reduce the high energy region contribution
in Eq.(12) where the caleulation of ladder diagrams becomes imprecise.

The results for M(W,kz) should not depend on the special choice of
p(w,kz) , but they do in practice. This is of course due to our technique
to calculate the left hand cut from the BSE with a cut-off parameter
determined to reproduce that quantity at infinity, while our phase shift
is taken from experiment and may not coincide with that following from the
BSE. The deviations of M(W,kz) for choices of p(W,kz) differing by a

power of W are of the order of 10%Z in the resonance region.

The phase shift &(W) was taken as an interpolation to the data of
Donnachie et al.,}2 and it was extrapolated to =/2 at infinity. A recal-
culation of the scattering amplitude by the same technique as described for

the multipoles gave back the input amplitude as determined by the phase shift

up to 15% below W = 9,5u,

Having described the details of our calculation technique, we turn to a
determination of the parameters of the transition potential, which we
approximate by single particle exchange forces with form factors both with

respect to the electromagnetic and to the strong vertices.

III, The N » wN Transition Potential

For the scattering amplitude the need for a cut-off in the propagator of
the exchanged nucleon is obvious, since with an unmodified propagator the
ladder series for the left hand cut does not converge,® and in a numerical
solution!? of the BSE the N* appears for g2/4ﬁ = |0 as a bound state.

The electroproduction amplitudes can in prinmciple be calculated without a
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cut-off in the one-particle exchange diagrams of Fig.l) from Eq.(2),
but if we interprete the cut-~off as a combination of vertex and self-
energy corrections we would expect approximately the same cut-off for
diagram Fig.la) as for the scattering diagram. For the pion exchange
diagram Fig.lb) we have to assume another cut-off for the pion-nucleon

vertex and for the pion propagator. Thus we modify

=> - in Fig.la) (14)

u ~ M? u =M u- M- A2
and
| . ] | . .
=5 - in Fig.1b) (15)
t - p? t- w2 t-p?-a2

and determine the parameters A§ and A% from photoproduction data. As
input we use the absolute normalization of the magnetic dipole amplitude
Ml+(w,0) around the resonance region W = W, and the observation that
the electric quadropole has a zero in the resonance region;which follows
from an analysis of photoproduction data by Schwela et al.l* Since the
precise position obtained for this zero is different for the analysis of
ﬂ+ and n?—photoproduction and depends alsc on assumptions on other
multipoles, we shall make the working hypothesis that it is located at

W = 1280 MeV (Lab, photon energy = 400 MeV). Since for A§ < 3 GeVZ the
nucleon exchange contribution to Ei+(w,0) is small for W ~ wr , We
first investigate the energy dependence of E]+(W,0) as a function of

Aﬁ for fixed A§ = A?, which is the most natural choice, 1In Fig.5 we plot

the ratio

13‘ EE+(W’O)
HERG,

for different choices of A% , where both amplitudes are calculated from
Eq.(12)., For decreasing Ai the position of the zero is seen to move to

lower energies, and a value of



A2 = 0.5 GeV? (16)
s

shifts it to W = 1,270 GeV. We shall keep this value of A%' in the

course of our further calculations and determine Aﬁ by the requirement!"

lp] M, (u_,0)
[+ r 2 0,051 A7)

k| £, ()

Fig.6) shows that a value of Aﬁ = A2 = 2.6 GeVZ reproduces this ratio

very well.

The existence of a zero in E!+(W,O) close to Wr of course forces this
amplitude to be very small in the resonance region. It is a matter of
definition whether one interprutes this already as an almost vanishing
E1+—coupling of the yNN*-vertex, or if one extracts this quantity from the
radius of a circle in a Argand diagram of the amplitude. 1In Fig.7) we
compare the Argand diagrams of M1+(w,0) and E|+(W,O) and find from the
radii that the resonant contribution of B is about 6% of M, , but it
is out of phase by 90° and has a large nonresonant background.

The behavior of the Ei+"amplitude requires an heuristic interpretation.

We shall discuss in Appendix B a nonrelativistic model of the photo-
disintegration of a bound state leading to a final resonant state . We shall
indicate how in the case of a broad resonance the disintegration amplitude
is likely to develop a zevo,if the range of the transition potential is

much larger than the range of the scattering potential,which is responsible
for the resonance, The energy behavior of a transition amplitude thus can
give us a qualitative indication for the ranges of forces occuring in
scattering and transition processes. The observed behavior of the E -
amplitude is the consequence of the dominating long range forces coming

from pion exchange, the short range part being suppressed by the cut-off.

In dispersion theory a similar reasoning is possible,? when the range of
the force is defined by the energy behavior of the on-shell transition

potential. This will be shortly discussed in Section 5.
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IV, Electroproduction Amplitudes

After having defined our transition potential by adjusting the parameters
A§ and Ai in photoproduction, we can calculate the electroproduction
amplitudes under the assumption that Aﬁ and Aﬁ do not depend on k2 .
An equivalent assumption is that the photon vertices in Fig.l depend on
k2 only in a multiplicative way, i.e. that the vertex is given by a
function of the nucleon and pion off-shell momenta times the on-shell

electromagnetic form factor.

a) Magnetic Dipole, Resonance Shape

We want to separate two effects which govern the variation of the resonance
shape, in a somehow artificial way. The simplest approximation takes into

account only the threshold behavior which states that

- 2
M(W,kz) % lg(w,_k)_L M(W,0) + G¥(k2) (18)
lk(w,0) |

where Iﬁ(w,kz)] is the photon CMS three-momentum. Since this quantity
varies by 507 over the resonance width for k2 = 0 and 1s almost constant

for k2 < - 0.3 (GeV/c)2 we clearly should see this effect experimentally.
This threshold behavior is expected to holdlS if

+

k] » R << |

where R is the range of the transition potential.,® Therefore the contribu-
tions from pion exchange will not follow Eq.(18) even for |k?| < O.I (GeV/c)z,
whereas the corrections for the nucleon exchange terms are moderate for

k? = - i(GeV/c)z. We illustrate these effects in Fig.8 where the ratio

*Usually the threshold behavior is mainly used to draw conclusions for the
kzﬂdependence of an amplitude, but the W-dependence can be guessed as well

from (18).
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[®at,0)] n,, ,k%) cP(o)
2 |+ M (19)

R(W,k) =

%W, k2 M, (V,0) Gg(kz)

is drawm.
The amplitudes Ml+ have been calculated according to Eq.({12) with the

following assumtpions on the nucleon and pion form factors:

P %) eNekdy
P2y _ M _‘m
QU = =5 N (20)

2
F_(k%)

I
o

and Gg(kz) =

For the highest k2 (-I(GeV/c)z) the variation of R(W,kz) across the

resonance width is 30%.

Most of this large effect ig caused by the pion exchange contribution which
can easily be understood as a consequence of the small pion mass. As has
been pointed out in Appendix B, a transition potential of a range long
compared to the scattering potential will easily lead to an amplitude with

a zero., Now the "range'" of the potential is also a funetion of the external
masses, Let us study for scalar particles the contribution of a one particle

exchange potential with mass p to the £-th partial wave:

(21)

M

Born const
= 25— Q,(2)
SEPYTANET

]

z = (u2 + q2 + k2 - (q, - ko)z)/2l§|[3|

where for a moment we have denoted the four momentum of the final off-shell
plon by (qo, a). Let us define,in a nonrelativistic approximation,the
"range'" by min (l/iai), up to which the threshold behavior Mﬁorn ~ ]3[ R
is approximately valid for fixed q, - Obviously a large k2 has the same
effect as a large p? in the sence that the range of the potential

increases for increasing negative k2 . Consequently the pion exchange
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part of the amplitude will shift its resonance peak to higher energies
for large momentum transfer (see Appendix B). Important effects from

the nucleon exchange part will occur only for

which is outside the region of our present calculations.

. ; Born
We want to compare our results with the simple formula (2) where M
is either the sum of nucleon and pion terms or the nucleon term alone.

In Table I we have listed the ratios

> Born 2 Born 2
lk(W,0) ] M)y q(Wsk )+ Mk y 1

Born 2
R (W,k") = — (22)
2 Born Born P2
RER: [ (W, k%) | Ml+’N(w,0) + Ml+,ﬁ(w,0) Gy (k)
and
[B(w,0y] MO Ry, I

RBcn:n(w kZ) - 1+,N (23)
N ’ . Born

1Bew, k%) | BT (w,0) Gg(kz)

1+,N

and compared them with the quantity R(W,kz) defined in Eq.(19). <Clearly
Eq.(2) gives rather different results for the kz—dependence of Ml+ as
compared to the Bethe-Salpeter model. If we normalize Rgiin (W,k2) to
R(W,kz) at W =9y (second row in Table I), the W-dependence is seen to
agree moderately well., For the nucleon terms alone Eq.(2) gives somewhat
better results (Table I), but we don't expect this to hold for higher momentum

2
transfers (k2 << =1(GeV/e)™).

There are precise experiments’ measuring the total electroproduction cross
section as a function of W . Because of the substantial nonresonant back-
ground which is indicated in a fit to the data we hesitate at the moment to

compare our results concerning the resonance shape with experiment.
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b) Magnetic Dipole, k2~dependence

The kz-dependence of Ml+(w,k2) is of course more sensitive to assumptions
on the pion form factor than the resonance shape. If we neglect the
variation of the latter, our ratio R(w,kz) of Eq.(19) agrees up to a
normalization constant with the magnetic dipole transition form factor

Gﬁ(kz) defined by Ash et al,:16

c* (k%) P %y '
-E}———— = R(wr,kz) —%}———— . (24)
G¥(0) G (0)

In Fig.9 we compare this form factor with results obtained from an analysis

7

of single arm electroproduction experiments’ under

a) the assumptions (20) and

_— . (25
| - k2 /m? )
0

b) the assumption Fﬂ(kz) =

Clearly the second assumption fits the data better, but before one can take
. o . 2 , .

this as an indication for Fﬂ(k ) , the corresponding predicticns for the

smaller multipoles should be checked experimentally, since these depend

stronger on Fﬁ(kz) .

c) Small Multipoles

In constrast to the magnetic dipole the amplitudes E1+(W,k2) and

S|+(W,k2) obtain comparable contributions both from pion and nucleon exchange
graphs, and these tend to cancel in E1+(W,k2) near the resonance position,
while in Sl+(w,k2) this occurs at threshold. Thus for assumption (20)
E]+(W,k2) is so small around W = wr that it will be hard to detect the

sign., The scalar amplitude is a better candidate to check the model.
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In Figs.10 and 11 we summarize the predictions for E1+(W,k2) and

Sl+(w,k2) by plotting the ratios

k@,0] B, (0,k% ¢P(o)
RE(w,kz) = L+ i (26)

ke | m,w,0)0 R

and

& a 2
kw0l 5, WK G0

R (W, k7) =
> 2 2
EACA S TR AR C RO ACY!

under assumption (20). The pion contributions alone are shown separately
to allow for a modification due to a different pion form factor (as broken

lines)

In connection with the scalar amplitude the question of gauge invariance
should be mentioned. Clearly our model does not lead to a conserved current,
since we do not couple the photon to all charged lines in our ladder diagrams.
If we would include all those diagrams we would get ladder diagrams with a
special class of vertex corrections as well as crossed box diagrams with
attached ladders etc., Since we have included phenomenological vertex correc-
tions anyhow and since we hope that non ladder diagrams play a minor role

for our problem, we do not feel it urgent to include just those diagrams
which restore gauge invariance. We hope that these diagrams are small
corrections in the special gauge in which we are doing our calculation. This
gauge is defined by the requirement that the virtual photon has no longitudinal
component in the CMS (see Appendix A). It should be preferred to a gauge
with vanishing scalar photons, because current conservation imposes zeros in
W or kz on the longitudinal multipole, which require cancellations between
various diagrams:

We have from current conservation

k
o

2y 2.0 2
L, (W,k%) = % 5|, (W,k%) (27)
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with

2 _ .2 .2
LB ulk S S

° 2

which may vanish in the physical region of electroproduction in contrast
> . . , . . .
to [k] « Thus the gauge invariance restoring diagrams possibly give

relatively large corrections to Ll+ in that region.

V. Comparison with other Models

There is a large number of dispersion theory models on the same subject,
in which no adjustable parameters are needed. It is instructive to see
how they differ from our approach, especially what kind of assumptions
are made on the unphysical (left hand cut) singularities of the multipole
amplitudes in these models. In our model the far away singularities are

determined by both the Born terms and the iterations of the potential.

a) Born Approximation Model 4»5,17,18,19

In this approach one assumes that the kz— and the W-dependence of the

amplitudes are determined by the on-shell transition potential:

2. MBorn(w’kZ)
MOLKD) - o
M (w,0)

M(W,0) . (28)

The nearby left hand singuiarities of M(W,kz) which are those of
MBorn(w,kz) , are in general not well reproduced by Eq.(28), since the
position of these singularities depends on k2 , and in general

M(W,0) /MBOTD

to see whether an approximation like Eq,(28) can be gained from the Fredholm

(W,0) # 1 at the singular points of M(W,kz). It is interesting

expansionl® of the BSE.* Writing Eq.(2) in operator form as

M = MBorn + g2 KM, (29)

*Phis has been suggested in Ref.(18)
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the Fredholm solution 1sl?®
M = MBorn + g2 R MBorn (30)
with R = —~ o . (31)
l—g tI"K‘*...

Working with the lowest nontrivial approximation for R we get

Born 2 2 Born

1 - g2 tr K

It is not consistent to neglect the terms proportional to gz in the
numerator, since at resonance, if our expansion is sufficiently good,

Re(l - gz tr K) * 0

so that the kz-dependence is given alone by the real part of the last
term in the numerator of Eq.(32), which is the real part of the box

diagram (the imaginary parts of the numerator cancel).

Another argument to justify Eq,(28) has been given by Walecka and Zucker. >
They start from the full Omfies-solution of the partial wave dispersion

relation, Eq.(12a), and approximate ML(W,kZ) by MBorn(W,kz) and propose
that it is possible to take MBorn(W',kz) outside the dispersion integral:

i Born, . .2
% g DGy TR KT)
W'~ W - e
M+yu (33)
v
) MBOTR (17 1 2) gyt D@
) m W' - W - ie
M+u

for W= W .
r
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There are two difficulties in this procedure: First, if one evaluates

Eq, (12a) with ML(W,kz) = MBorn(W,kz) numerically, assuming a reasonable
phase shift, one does not obtain a result which shows much similarity with
a resonant amplitude,l® Either one has to add homogeneous solutions to
{12a), or take a more refined function ML(W k ) as is done in this paper,
Secondly, since MBorn(w k“) is not constant with respect to W , taking it
outside a principal value integral may introduce a very large error.
Generally a principal value integral is very sensitive to the derivative of

the integrand.

Concluding we think that Eq.(28) is an approximation which may be dangerous
in quantitative applications. It leads to a stronger decrease with k2

than Eq, (32), where the kz“dependence is given by the off-shell Born term
folded with the interaction potential, It alsc leads to an overestimate

for the contribution of long range potentials if applied to the photoproduc-

tion amplitudes, where it reads

Born

M(W,0) = B—““l?- £ (W) (34)
orn
(W)
f|+(w) is the elastic scattering amplitude, f?:rn(w) the scattering

potential). Both these features are observed to be present in a comparison
with experiment for N*(1236) production:® The predicted cross section

decreases too rapidly with k2 , and the E]+-amp1itude is overestimated.

b) Nearby Singularity Model

Following the ideas of Chew, Goldberger, Low and Nambu, 29 Adler? proposed
to start from Eq.(l12a), but to use only the nearby singularities of
ML(W,kz), which of course are those of the Born terms Born(w k™) . To

demonstrate the technique let ug assume that we can approximate®

*In the following discussion we take amplitudes M(w,kz) where the

threshold behavior has been devided out.
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2
C, (k™)
ML(W,kz) » MBOTR ey 2y 2 L (35)
W - W]
for not too high values of W , Then we easily get from Eq.(12b)
2
9 D(Wl) Cl(k )
M(W,k") = . (36)

D(W) W - W,

But for this to be a good approximation we have to assume that there are
no other poles or cuts in ML(w,kz), which have residues comparable to
Cl(kz) but which ly so far away that they do not disturb Eq.(35). Assume

for instance

2 2
c,(k“)y ¢,k
ML(W,RZ) = v 2 (37)

W= W] W - Wz

with C, (k) = G, (i)
and || >> [W |,
so that Eq.(35) is still satisfied,

Then

1 , D(W)) , D

2 2)
m(w k%) = —— § ¢ (&) + G, (k%) g . (38)

D(W) W~ Wl W - Wz

But in the narrow resonance approximation we get,? if &(») = T

D{(W) ~ const (W - Wr) P (39)
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so that the second term contributes as much as the first one.*

Consequently it is not sufficient to show that ML(W,kZ) is reasonably
well approximated by the nearby singularities of MBorn(w,kz) . To get
unique results one must have arguments or models specifying the residues

of the far away singularities.

Once one has decided to forget distant singularities completely, this
approach also explains the smallness of the Et+—amp1itude by the obser-

vation that the pion contributions are well represented by?

c
£ (1,0) : 2 (40)
: (W = Wy)
Wy ® M

from which one easily gets (considering Eq.(39))

const Wr - W
E = (41)

T pany (- w3)2

which indeed vanishes at the resonance position.

¢) Variational Techniques?®>??

It is possible to find approximate solutions to the partial wave dispersion

relatien

P

-y
Re M(W,k?) = M, (W,k%) + = Im M(H',7) @2

dyt IR X

T W' - W

M+y

*Phese remarks are in very close analogy to the ideas proposed in Ref.(i1),
namely that it is possible to add homogenous contributions (Eq.(13)) to any
solution as long as the asymptotic behavior of is not specified. Our dis-

cussion however is not restricted to the case &§(®) =1 .
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susject to the final state interaction condition

M, kD) = ot mw,k?) | 43)
by making a suitable ansatz for M(W,kz) with variational parameters,which
are determined by making the right and left hand sides of Eq.(42) to coincide

as close as possible over the low energy region in W (W < wmax)' This

means one has a function satisfying

2
N N J , Im M(W', kD)

Re M(W,k") = Mj (W,k") + — du e (44)

M4y

_ , 2 2 2
with [M (W,k7) - M (0K | << M @ED ], (45)
WsEW .
max

Now we have seen above that it is easy to construct functions which satisfy
Egs. (42) and (43), but whose inhomogeneous part M{(W,kz) is arbitrarily
small compared to the complete real part, just by taking a single but distant
pole for M;(W,kz) . These functions may always be added to a solution of
(42) without disturbing (45). Thus again one has to postulate the absence of
far away singularities,

The results obtained in Ref.(3) are not very different from ours in the low

kz—region. We expect larger discrepancies to occur for k2 < - 2(GeV/c)2.

d) Zagury's Method.!

Zagury again starts from Eq.(l12a) with

Born(w,kZ) ’

ML(w,kz) =M
but he does not take the expression (l2¢) for Im D(W) but uses??

Im D(W) = ~ p(WIN(W)
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where the kinematical factor p(W) behaves like 0(w3) y W oo,
N(W) 1is defined by

N (W)
£y = Y& .
I+ D (W)

By approximating N(W) by a single pole,

const
W-M

N(W) =

the integral of Eq.(12a) becomes divergent. Zagury now uses the same

method for the elastic scattering amplitude and assumes that the ratio

of the amplitudes,

M(W, k%)
fl+(W)

can be approximated by the ratio of those two diverging integrals. This
procedure has the advantage that the contributions to the integral (12a)
for M(W,kz) come from high values of W . Thig might give similar effects

as folding the off-shell Born terms with the wave function of the N* ,

e) Finally we want to compare the present calculations with a previous
version,23 where only the box diagrams had been used(besides the one
particle exchange diagrams) to approximate the left hand cut., The box
diggrams without cut-off actually are sufficient to give a reascnable left
hand cut for the magnetic dipole in photoproductiocn, but the nucleon terms
produced an El+_amp1itude too high by a factor of two at least, Due to the
introduction of cut—offs this term has almost disappeared. Also as a
consequence of suppressing the high momentum components the form factors
decrease faster with kz . This holds especially for the pion terms, and
the quantitative difference may be seen from Fig.9 where the Gurve c¢)
corresponds to the results of Ref,(23) with Fw(kz) = Gg(kz), and it should

be compared to the Curve a).
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VI. Conclusions

The present model uses phenomenological parameters, namely the three
cut-off paramters A2, Aﬁ and Aﬁ which determine the N* scattering
potential and the electromagnetic transition potential at short distances.
It is our hope that our results for the energy and momentum transfer
dependence of the multipoles do not depend too critically on the details
of this short range modifications of the potentials, at least for
moderate k2 . A better understanding of these parameters however is

neaded to justify their assumed kz—independence.

We have emphasized the fact that, in conventional scattering theory language,
the resonance pole contribution interferes in all resonant multipoles
strongly with a nonresonant background which changes its shape with varying
momentum tansfer, thus shifting the resonance peak to higher masses (if the
threshold factor has been split off). Since in our model the background is
generated by the same potential as the coupling to the resonance, the absence
of such an effect would disproof the model, The present experimental
situation is unclear because of the large nonresonant background in other
partial waves, which maskes this effect. A detailed comparison with data

will be given if experiments underway presently are finished,

If the indication taken from Fig.9 is correct that the pion form factor
obeys p-dominance, then it should not be too difficult to isolate the

contribution of the scalar amplitude Si4 since it will be about 15%

of M|+ at k2 = l(GeV/c)z. The electric quadrupole E1+ however remains

as difficult to find as it is in photoproduction.
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APPENDIX A: Off-Shell Electroproduction Bornterms

a) Nucleon Exchange Terms

The pion electroproduction matrix element according to the diagram of

Fig.2a) is given by (omitting isospin variables)

<i N'e'|T|Ne> = Eu(kz) <ﬂN'IJu|N >, (A1)

= 4
(“Nl|JL‘|N> =Nu (pN') d'q T(pqu) X

(A2)
4 - g-+ M
X FU(R’Q)
P\ o \ Pio o
(@ v 2 - w2 {(q - P? - )
The notation means:”
N=-~ 85—
2(2n)4
T(pN,q) is a &4 x 4 off-shell scattering matrix
which is given by a sum of ladder diagrams.
¢ 2 , 2 \)}d—%—uq—b{ (43)
rp(k,q) = (F (k )yu - 1F,(k )Ouvk ) - > > \E u(pN)
(q - 5 " k)" - M

*The normalization N is choosen such that if the daq—integration, the
matrix T(pN,,q) and the propagators in front of Fu(k,q) are dropped,
the matrix element reduces to an on-shell nucleon exchange matrix element
for photoproduction with a photoproduction with a photon described by a

polarization vector
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F. (0) = { 1 for a exchanged proton
1 0 for a exchanged neutron
. (0)'= _L_{ 1,793 for proton
2 2M {~1,913 for neutron (A3)
€ (kz) -——1%'37-2" —; u (e") v, u(e)
(2my”'" & !
2
& = 14.5
4
1
b 137
P = total four momentum of nN-system.

With respect to gauge questions we shall proceed as follows:
The scalar component J = <nN'|J0|N> will be computed according to

(A2) and the longitudinal component, defined originally by

<mN'P TN > (A%)

= — J . (A5)

This result will in general not agree with that derived from (A#). Tt

was discussed in Section 4 why we don't think this to be a serious defect.

An equivalent procedure is to usel8

NN N
Ey(k )y = su(k ) iﬁl ku 7 (A6)
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with

instead of eu(kz) in (A;), i.e. to calculate in a gauge containing no

longitudinal photons.

Now we write for 4 - % + M in (A2) in the CMS (3 = 0)

d-Lewe T Tug uy ;@
i=1,2 s=1,2

with

W - 2qO

G, = % (1 + )

1 r,

1

index
and u, i(q) being a Dirac spinor with spin s and energy®
H

r, = iv 32 + M2 (+ for i =1, - for i = 2). Therefore we are left with

the task of performing a multipole analysis of the matrix element

Moee =g ¢ @ 1 k0 elady (A7)

The only difference to the usual projection technique is due to the fact

that 3 is an off-shell three momentum, and

PO
ri+-2-—+q04=w.

At first we brak down the matrix element (A7) into a matrix element

between Pauli spinors: (A8)

M = {ié"é'fl+§-€;§'-(3xk)?2+i§-kq-?§'f3+

al=

> - —

+ig-qq-g'¥;~ig-qec');}—io-ke‘; gl s

* H : ] > = ] { XS\ =
Negative energy spinors are defined by us’z(q) 7?;ﬁ@ (¢ + M)\ o J‘ 4 quq).

The square root always drops out in the following,
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=3
]
Oy ad

">
I}
=y | !

We list those contributions to }; separately which are proportional to
Fl(kz) and Fz(kz) (we omit the coefficients ?; and ?% , which we

don't need):

371=-A /(E|+M)(ri+M) {w' - M} (A 9)

Fo= A VE -M(, - ﬁ) {w' + M} (A10)

Fy= 24 /E W, ~M) {r; +M) (AL1)

;4 = 2A /(El *M)(r, + M) {xr, - M (A12)

37'7 =-A JE +M; -W {r; - e+ M) (A13)

378 = A VE -MGE M {xg - e - M) (Al4)
'Fl(kz) N

with A = - ———— —, (A15)

u-M W

u=(q- -121 - 10°)

e =q ty = pion off-shell CM-energy ,

W' =1, + ¢ .
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The contributions proportional to Fz(kz) are:

F,= BYE v 0@ v 0 (u- 0+ 200 - ) (A16)
+ (W - WYW - M- 2sﬂ)}
7, = BYGE, -0, - M {u- 4 - MW" + 1) (A17)
+ W~ WM + M- 2eﬂ)}
Fq=2BVE, ~M(r; - M) {r; + M)W+ M)} (A18)
}‘4 = B /(E] FM) (v M) {(r, - MW - M) (A19)
e NG R M+ 2 - 2 4 (B, + M) + (A20)
+ (El - M)(ri + M)}
Fg =B /B —M(r; + 1) (u=-M +32-c2+ (B -Me_+ (A21)
+ (E] + M)(ri - M}
Fz(kz) N
B = 5 — . (A22)
u-M W

If we introduce a cut-off in the nucleon propagator as in Eq.(4), we

simply have to redefine A and B:

- f\.2
A=> A 8 (A23)
A§ + M2 - u
and
2
M
B =>3 > . (A24)
AZ + M2 -y
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Multipole projection is done by the formulas 22
+1
R r . -
-1
i —
“arw T (Pemy @ By () I
+1 (A26)
11 F - P S - 7
Epe = 747 2 { dx {P,(x) oLl L I, * T Po () = By (O F
oy
b L [Pﬂ(x) NS E AT
20 + 3 277
+1
| ] 7 7
Spr = Tl 3 | 9x (Bp )+ P Fg ), (A27)

-1

2

u= M + gi - q- - 2E - 2]?] |3I X

157
We do not write down the resulting expressions for M1+ etc., which
follows from (A8) - (A26). The modification due to the cut—-off are
analogous to Eq.(5) except for those terms in Eqs. (Al5) -(A20) which
are proportional to u - M2 . For instance the first term in Eq.(Al6)

contributes to M}+ as

P (k%) » AL N
t

s — Q,Zh (A28)

4 1k| la] W

- /(El + M) (x, + M)

with

o

2 = (B, - e)? =¥ = - -~ 27} /2lal k] (A29)
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For £ > 0 these terms of course vanish in the limit A§ > o,

b) Pion Exchange Terms

The pion diagram Fig,2b) is obtained from Eq.(A2) by setting

2
F (k%)

Pu(k,q) = (2q + P - k)u Y5 u(py) -

(q+§-k)2-u2

The contribution to the 3i-amplitudes is given by

Fi=% =o

Fo=2c /@ -W(; +0 |4
F, = -2c /@, * WE; - W) [q]
Fo= ¢ /@ +M(; - {2 - k)
Fg=-¢C VE, - M, + M) {2 -k}

2
C = Fﬁ(k ) jr-rj. .
(q +§ -~ -2 w

With a cut-off in the pion propagator we get

C A2
¢ => T

P 2
2 2 . P _
AZ + (q+2 k™)

(A30)

(A31)

(a32)
(A33)
(A34)

(A35)

(A36)

(A37)
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APPENDIX B: Connection Between the Range of the Transition Potential

and the Resonance Shape of a Multipole

We want to give a simple consideration how the mismatch of a transition
potential and a scattering potential can cause an unusual energy behavior

of a resonant inelastic amplitude. Let us discuss the electrodisintegration
of a bound state of zero angular momentum between a charged and neutral
particle leading to a final resonating state between these particles. In
nonrelativistic potential theory the transition amplitude E(e) is deter-

mined by the Lippman—Schwinger equation2"

E(e) = <¢ ()]V J¢, >
© 4 2 Born , 2
_ EBorn(EIE) + 1 de f{e|k™)E (k™) , (B1)
% 2 .
kW - e - 10
0
with the following notation:
¢0 = wave functions of initial bound state,
¢ (e) = wave functions of final scattering state of
energy € ,
EBDrn(k2|e) = < plane wave, kaY| ¢, >
= off-shell matrix element of transition operator
VY between bound state and plane wave of momentum k,
f(s]kz) = off-shell scattering amplitude of the two particles

at energy e .

The scattering amplitude is assumed to satisfy the elastic Lippman-

Schwinger equation

oc

B
orn (82)

fle,e) = £ f(eszg fB°r“(kzle)

i
(SIE) 4+ —
m kK* - ¢ - i0
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and should have a broad resonance at e = €. -

Assume now that

123

EBorn(s|k2) p(kZ) fBorn(elkZ)
(B3)

~

for E X €
r

where p(kz) decreases with increasing k2 , what will be the case if
the charged particle is much lighter than the mass of the particle which
is exchanged in the final state., The influence of such a function on

the resonance shape is best seén from the imaginary part of E (g):

Im E(e) = EBorn(EIE) Re £ (ele)

2 Im £eek®) 272 oo k) (B4)

k2 - €

dk

‘o

The first term in (B4) changes sign at e = € The sign of the principal value
integral depends on p(kz) : If this function supresses the integrand
in the region k2 > €. s the contributions from kz < e, will dominate
and the integral alsc changes sign for sufficiently large e , which may
introduce a zerc in ImE(e) within the width [ of the resonance, if
this is sufficiently broad. As a qualitative condition for that to occur
one expects that it is necessary for p(kz) to vary strongly in the
region
€r 7 % < k< € T % !
If the mass of the charged particle is comparable to the resonance width
this is expected to hold. Note that for p(kz) = const there can be

no zero in Im E(e) since Im f£(e]e) 2 0O .,



TABLE I

Wlnl 7.73 8.0 8.5 9.0 9.5 - 10.0
W[ GeV] 1.079 1.117 1.186 1.256 1.326 1.396
Rgiin(w,kz) 0.311 0.360 0.431 0.486 0.531 0.568
Same, but 0.469 0.542 0.649 0.732 0.799 0.856
normalized.
R(W,kz) 0.417 0.494 0.619 0.732 0.845 0.973
lﬁﬁ"mcw,kz) 0.511 0.556 0.608 0.641 0.665 0.684
Same, but

; 0.625 0.680 0.744 0.785 0.814 0.837
normalized.
RN(W,RZ) 0.597 0.652 0.726 0.785 0.843 0.909

) 2 2 2 2

Ratios between Born terms of Ml+(W,k } for k¥ = -1 (GeV/e) and k© = 0.

The second and fifth row are the same ratios normalized to those of the Bethe—Salpeter amplitudes

(W,kz) in Eq.(23) and R(W,kz) in Eq.(19).

at W = qu.

Born

Ryer

(W,kz) is defined in Eq.(22),

RN(W,kZ) is defined analogously to R(W,kz) with only the nucleon exchange contributions.

_Lg_



..38 -

Figure Captions

Fig.l a) Nucleon exchange contribution to yN -+ 7N transition
potential.
b) Pion exchange contribution to yN -+ 7N transition potential.
Fig.2 a) Nucleon current contribution to the yNN* vertex.
b) Pion current contribution to the yNN* vertex.
Fig.3) Contour C in the complex W-plane, on which the Bethe-

Salpeter equation has been iterated.

Fig.4) Graphical representation of the Bethe-Salpeter equation

for N*-electroproduction.

. . -+
Fig.5) Ratio |p|E1+(w,0)/|ﬁ]f]+(W)
for different values of the cut-off parameter A% which

are shown besides the curves.

N N 4 4
Fig.6) Ratio |lel+(W,0)/[kifl+(W)
for different values of the cut-off parameter A§ with

A% = (0.5 GeVz. The data are taken from Ref.(l4).

Fig.7) Argand-diagrams for ]E[M1+(w,0) and [g[E1+(W,O) .
The numbers attached to the curves are the photon Lab.-

momenta.,

. . P
Fig.8) Ratio ]i(w,O)[M1+(w,k2)/]§(w,k2)[M]+(w,0)GE(kz)*
for different values of k“ . It was assumed that
2, _ P 2
Fﬂ(k ) GE(k ) .

Fig.9) Comparison of the YNN¥* form factor Gﬁ(kz) with
experiment” under the assumptions (20) (Curve a) and

(25) (Curve b). GCurve ¢ is taken from Ref. (23).
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Fig.10 a) and b): The ratio |E(W,0) [E,, (%K% /[K (k%) i), (4,00 -cP (i)
for different values of k2, (in(GeV/c)z). The broken

lines are the pion contributions alone.

Pig.1l a) and b): The ratio [E(W,0)|s,, (k%) /[Kqw,k?) [, (1,068 ()
for different values of k2 (in (GeV/c)z). The broken

lines are the pion contributions alone., The relation

(20) has been assumed.
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