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Abstract

A consistent treatment of two-particle exchange currents in
nuclei in the framework of the One-Boson-Exchange-Model for

the nucleon-nucleon interaction is given, Relativistic effects
are taken into account up to order (P/M)Q. The general forma-
lism for the evaluation of matrix elements of two-body currents
in many-nucleon systems is out-lined. Possible applications to

the two-nucleon system are briefly discussed.



Introduction

In the usual quantum mechanical description of electromagnetic
(e.,m.) interactions of nuclei the e.m. current of the nuclear
system is treated as a sum of one-body operators. Two-body ope-

rators are taken into account usually only by means of the sub-

stitution F? — F?ﬁ— e i in the momentum dependent part of
the nucleon-nucleon interactions, But it has been known for a
long time that such a current cannot be a conserved one)if the
nucleon-nucleon 1nteractlon cgptalns exchange forces, i,e. terms

being proportional to C." LJ . If the exchange forces are
two-body operators, the one-body e.m. current must be supplemen-
ted by t@g,body termE; -312] in such a way, that the total

current | == J513 + J 27 satisfies the continuity equa-

tion 7. 3%+.Q3§6f._ ) Unfortunately, even if the N-N
interaction is known, the result for Jfli is not unique because
to each particular solution terms like -E?,x (v) may be added.
-’J7 .
In a number of papers [1] the most general form of ;49 and
the corresponding multipole moments allowed by the usual invari-
ance principles have been discussed. It turns out, that due to
Siegert's theorem [2] electric multipole operators are completely
determined in the long wave length limit by the nucleonic charge
density alone [3] , but the form of the magnetic multipole opera-
tors remains rather arbltrary. It is, therefore, necessary to re-
strict the form of J[}] further by means of additional prin-

ciples ,

In local relativistic quantum field theory exists the principle
of "minimal e.m. coupling" (i.e. the gauge invariant substitution
q . >q}_,1 +-,,elq )due to which the e.m. interaction of f.i.
nucleons and q’—mesons is uniquely determined for a given form of
the f"N-interaction [4] . If we would be able to solve the equa-
tions of motion in field theory, the form of NN-potentials and
the corresponding e.m. currents of a nuclear system would be com-
pletely fixed. But, the only systematic treatment of field equa-
tions known at present is perturbation theory.Many authors have
calculated NN-potentials in low orders of perturbation theory in
the last two decadesi}].



The two-body e.m. currents corresponding to the adiabatic
NN-potentials in second and fourth order respectively have been
derived too [6] .

But, even fourth order calculations for NN-elastic scattering)
taking recoil corrections fully into account,are only in quali-
tative agreement with the higher partial waves and disagree with
the lower ones [7}. Therefore, many of the present day NN-poten-
tials are of a semiphenomenological character: For large distances
they approach the one-pion exchange potential (OPEP) determined
from second order perturbation theory, whereas the short range
behaviour has to be determined by experiment [8] .

Having this in mind, some authors [9] used a mixed description of
e.m. interactions of nuclei: They used one -pion exchange contri-
butions (or somewhat refined forms) for jzil but the nuclear
wave functions have been obtained by means of phenomenological
forms or potentials respectively. It is obvious that such a kind
of approach is highly inconsistent.

Present experimental numbers show without any doubt the non-
negligible effect of exchange currents in nuclear physics: With
the d-mixture in the deuteron wave function determined by NN-
scattering data there is a d4screpancy for the deuteron magnetic
moment[ﬁ@] J the np-radiative capture process at threshold re-
quires a 10 o/o contribution from exchange currents [11} .
Recent calculations of this process by Adler, Chertok and Miller
[9] based on the use of phenomenological wave_gunctions and par-
ticular one-boson exchange contributions for j[l] have only
lowered the discrepancy between theory and experiment to 5 o/o.
Therefore, also from the experimental point of view, a more satis-

factory treatment of exchange currents is required.



From the discussion given above we conclude that a consistent
approach for the construction of two-body exchange currents
utilizing the principle of minimal e.m. interactions is called

for,

This can be done only in the framework of a solvable dynamical
model for the NN-interaction. As a dynamical model for NN-inter-
action we understand in this context any model based on particle
exchange between the nucleons as origin of nuclear forces. Within
such a model the field theoretical formulation of minimal e.m.
interaction may be applied.immediately. Besides the perturbation
theoretical calculations mentioned above we know.only one solvable
dynamical model: the one-boson exchange (OBE)-model for nucleon-
nucleon interactions. This model, which approximates the effect

of multiple-pion exchange by means of the exchange of the known
vector- and pseudoscalar mesons and two (or three) postulated
scalar particles, has been worked out in great detail in the last
couple of years [12] and it has been very successful in explaining
experimental phase shift data by adjusting about 1o free parame-

ters [1%] .

It is the aim of this paper, to calculate exchange currents in
the framework of the OBE-model and to outline the general proce-
dure for calculating the corresponding corrections toJ/-transi—

+)

tions and magnetic moments of complex nuclei.

The paper is organized as follows:

In chapter 2 we discuss more explicitly the problems arising in

the construction of exchange currents for a given nuclear inter-
action and give a brief description of the general solution of these

problems in the framework of minimal e.m. interaction.

+)

Exchange current contributions derived from the OBE-model
have been recently considered for the calculation of NN-Brems-

strahlung in Born-approximation [14] .



T

In chapter 3 a detailed discussion of exchange currents in the
OBE-~model is given, starting from the two~particle Dirac-
equation. The explicit form of exchange currents in the non-
relativistic limit, i.,e., in the usual(ﬁﬂw)z-approximation is
given by reducing the Dirac-equation to the Pauli-equation,
Finally we outline possible improvements of our calculations.

In chapter 4 we discuss the treatment of two=body currents in
nuclear many body systems, In section 4.1 it is shown how
transition rates between low lying excited states and the
groundstate of even-even nuclei can be calculated, if the
excited states are dominantly linear combinations of particle=-
hole states. In section 4,2 we investigate the possibilities
for the calculation of electromagnetic transition rates and
expectation values of two-body operators for odd nuclei with
the help of vertex functions,

In chapter 5 we discuss possible applications to the two

nucleon system.

2, Nuclear interactions, continuity equation and

exchange currents

The continuity equation for the e.,m, current

= - .
V. j&) + £P((¥) =0



takes in quantum mechanics (we use the Heisenberg picture)

+)

the form
FTE) + L [H ()] =0 (1)

If we consider a N-nucleon system in lowest order of e.m. inter-
action, the operatorsi?’and_? are independent of the degrees of
freedom of the e.m, fields and H is the total Hamiltonian descri-
bing strong interactions between the nucleons. If the potential
term in H only consists of two-body fgfces (this ‘will be assumed
in the following), the total current J decomposes in a one-body
and a two-body part 37¥] and JEI] respectively

with

—_ 'ﬁ — . — ety
‘Vb J I1) (T) + e [/( P/Y‘)J = (9 _ (2a)
V J[,zg (F) +¢ l_l/ ﬁ[r\')] = 0 (2b)

where T is the operator of the kinetic energy, i.e.

H=T+V

The charge density operator A7) is a one-body operator as
long as retardation effects in the NN-interaction are neglected

(compare sections 3.1 and 3.2)

4+L‘3 P (7) (3)

PE)= e 2

&

+)
In this paper we use sqgare brackets [é b] for commutators

and wavy brackets ia b3 for anti- commutators.



If furthermore the extended structure of nucleons is neglected

we have

in case of the Dirac-equation; in case of the non-relativistic
Pauli-equation with relativistic corrections taken into account

up to order (f?@{)x . J%(;?) contains in addition to
SYQ?’—$Z) a recoil correction f& recoll ,onnected with the
well known "Zitterbewegung': *)
ig} \
recad A Ty e —>
2l 2 (.7 :
B = fa (B (B L) 18 »

(‘.__.'-,-——‘1
-+ :LH Gﬁé d(f’*Va
M
. - ' '
Therefore, the commutator l_»ﬁ-P(f)] in eq. (2b) contains
three different contributions in case of the Pauli-equation:

1., terms arising from the exchange part of b/ _
— > :

due to the non-commutativity of 'Z}-ZJ with 2

2. terms arising from the momentum dependence of L/

3. terms arising from the momentum- and (or) spin-dependence
of JpPECOil

The corresponding total we call exchange current,

—>
Jpa

+)
For the derivation compare section 3.2

'_* -
( V¢ F(F-7) ) etc. means here and in the following

[

that the derivatives operate only on the § ~functions.




The solution of eq. (2) is not unique, because to each parti-
cular solution we can add terms like E?'x af??U.

The uniqueness of the solution will be achieved by utilizing the
principle of " minimal e.m. interaction" for our problem.

—2
The resulting unique solution ~j[a] of eq. (2a) in case
of the Dirac-equation is well known

—

—% == A’
Iy = 7 {77 e H(M)/ - (8)
A e

—3 —> o
leading to j () = Z = A g\(*-‘f‘,')
f‘f] Z —
The corresponding operator JEﬂ in case of the Pauli-

equation is now determined too. It contains one term constructed

-
according to eq. (5) and an additional contribution Jtrf
recoil +),

R S T SO | 7S B R =V N
J—L[_‘,O(r) .___ 6;7”2 [lf ZD: A (L %0‘9 X‘O“r J\(v-f“;)}

+ (TR (6)

gorresponding to

It is obvious that the expressions eq. (4) and (6) satisfy
together the continuity eq. (2a).

+) For the derivation compare section 3.2
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For 3[13 the prigiple of minimal e.m, interaction can be

utilized only within a solvable dynamical model for the NN-
interaction, As a dynamical model for NN-interactions we under-
stand in this context any model based on particle exchange be-
tween the nucleons as origin of nuclear forces. Within such a
model we formulate minimal e.m. interaction as the usual minimal
substitution A, —» o “+ e é;( for all participa-
ting particles, /h

If we neglect retardation effects in the treatment of particle
exchange between nucleons, and restrict ourselves to two-body
forces only, the whole problem can be treated most clearly in

the framework of a one-time two-particle Dirac equation. The two-
particle current “Eﬂ;) occurring in such a Dirac-equation is
directly determined by the minimal e.m., interaction of the ex-
changed particles., The remaining part of the e.m. interaction

is determined by the substitution (%M *‘?(%h *'JCF&A within

EES two-particle Dirac-equation. In this way, the exchange current
o3 occuring in the two-particle Pauli-equation is complete-
ly determined.

It turns out ( at least in case of the OBE-model treated in this
paper) that ’321) is not additiv with respect to con-
tributions 1) and 2) to the commutator \< f] in eq. (2b) as
might be expected.

But the @E&rd contribution is additiv (we call the corresponding
current Jfflj ). Furthermore, if the exchange part of V/ﬁais
zero (isospin zero exchange between the nucleons) JEJD - Jti27
is in general not given by the substitution F?L_a FP_.e'
within the two-particle Pauli-equation, as has been assumed up
to~day in the literature [15] y but additional curlterms may

occur.,

There exist at present two solvable dynamical models for the

NN-interaction:




A)

B)

Pertubation theoretical treatment of the usual pseudo-
scalar meson theory with pseudoscalar coupling. Recent-
ly Wortman [7] tried to understand NN-phase shifts by
means of Feynman diagrams up to the fourth order in the
f*N-coupling constants. In this way a qualitative under-
standing of the higher partial waves can be achieved, but
S- and p -waves are beyond the range of the model.

The OBE-model, based on the exchange of vector pseudosca-
lar and scalar mesons between the nucleons [12] .

By fitting about 1o open parameters (coupling constants,
masses of scalar mesons and cut-off parameters) a reaso-
nable agreement with experimental phase shifts can be
achieved [13] .

If we take the agreement between the predictions of a model and
experimental phase shifts as the criterion for the choice of a

dynamical model, we have to choose the OBE-model.

3, Exchange currents within the OBE-model

In this chapter we will treat exchange currents based on the
OBE-model for NN-interactions in some detail.

3.1

Two-particle Dirac-equation with OBEP and e.m. interaction.

A Lorentz covariant description of the two-nucleon problem in-

cluding interaction with an external e.m. field within the frame-
work of the OBE-model
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can be given by means of a Bethe-Salpeter equation (i,e, a two-

+)

time Dirac-equation) .

In such a framework the interaction is represented by the off-

shell Feynman=-diagrams of fig, 1 : Diagram la represents the
potential kernel due to the exchange of a boson B, diagram 1b
represents the minimal e,m., coupling of the nucleon, diagram
lc represents the minimal e,m. coupling of the exchanged boson
which has to be supplemented by diagrams of type 1d, if the
BNN-coupling contains derivatives, The mixed boson-exchange
diagrams of fig, le are of a nonminimal type, but they should
be considered too, if all contributions which are of a one=
boson exchange type are taken into account consistently *4).
Finally, e,m, interaction terms due to the anomalous magnetic
moment of the nucleon are given in the OBE=-picture by the

diagrams of fig., 1f,

As has been pointed out in the introduction, it is the aim of
the present paper to provide the formal tools for the consistent
treatment of exchange currents in systems consisting of non=-

relativistic nucleons.,

+)

A covariant formulation of the two=-nucleon interaction via
one-boson exchange by means of a one-time formalism has been
given recently by Schierholz 16 , But the inclusion of e.m,
interaction within such a framework is still an unsolved
problem,

*+ . , .
')This has been pointed out by de Swart (private communication),
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Therefore, it is not necessary to solve a BS-equation of the

type described above exactly; we are only interested in the
derivation of an approximate non-relativistic two-nucleon equa-
tion (Pauli-equation) which takes recoil effects into account up
to the order (fv44)2 as usual. ) This means in particular,

that retardation effects contained in the relativistic description
of one-boson exchange must only be treated approximately, i.e. up
to the order (P/H)z . An approximate treatment of retardation
can be made by means of a one-time formalism, i.e., the usual two-
particle Dirac-equation. Such an approach was first worked out by
Breit for the electron interaction in atoms [12] . In connection
with the OBEP most authors adopt a different point of view: By
means of an unitary transformation depending on the BNN-coupling
constants the retardation term can be transformed into a fourth
order potential term [18] . But,since fourth order potential terms
are not considered within the strict OBEP, retardation terms will
be neglected too. We do not agree with this point of view. Only
for reasons of simplicity we neglect retardation corrections in

the present paper. We will consider them in the near future.

The two-particle Dirac-equation derived from the BS-equation
described above by neglecting retardation completely looks as

follows
D p@ ) = (S (T pt e ALD)
9"

— ==
+ VO'BE’P + He-%[ﬂ) ‘,U('mf‘aft) (7)

with ﬁ}; = F.P;—é‘aﬁ(?:,f), €, = € 2

+
) M = nucleon mass



-] 2w
For OBEP one obtains from diagram 1la

2

\/0135? % ;;Z(J’I.,,,o* fare 57-3',,)# (8)

X [;' (//,i_f) T;(Z.?’:) ‘j‘.B (32)

with L= 2T
©

Here I, is the isospin of the exchanged boson and 7;; is the BNN-
vertex in coordiante space up to the order (f?h)z . Derivati-

ves occur only if B is a vectormeson; the time-derivative part

L] L] » 3

is in this case of order (F/@{) y therefore we keep only

the dependence of ?% on .ﬁi (which operates on d; ( 7, )).

H o [Z]in eq, (7) is that part of the e.m, interaction which
correspords to the two-particle e,m. currents, i.e,

ey = J2ox IE @0 BL(R2) (9)

where ;7{;3 may be decomposed according to its contribu-
tions from diagrams 1c, 1d and le, Due to the neglect of
retardation and the fact that Z; contains in our approxi-

mation no time derivative we have

0
JE:J (der1q) @ (10)
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For the space components we obtain

- .S {(3{; (T2 x2),

—
:]D'J' (e + 1d)

—3
Y TR B 7 3 g 2 ), R (%)
(11)
D ( )))
12
B o
with
g — = == — =y &2 ("'—"7—’ {12)
LE w7 = J(y-7) ¥ Ig (77D
<> —2 <
AV4 = VvV — Vv
We note that we get a contribution to (11) only from charged
bosons, i.e, from bosons with isospin IB = 1,
Using the equation
2 — —Ty — P ._-’_*(‘-_17-
(A _“"3) JB({Y»WQ}) = — 47 (—(Y‘ o)
(13>

and thqiform of the potential of eq. (8) we see immediately
that  Jriq (e +1d) satisfies the continuity equation(2}L).
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Some remarks should be made as to the minimal e.m. interaction

—
of charged bosons and the form of .351]('1c+‘1d) .

1. The e.m. vertex in the case of spin-zero particles is
fixed by the requirement of current conservation alone;
the requirement of minimal e.m. interaction does not give
any additional restriction, i.e. we have an orbital current

contribution only

<F9~l j/A(O)’Pﬂ> = e(‘?ﬁ)_s(F4+Fa)}A (14)

2, In the case of vector bosons, the e.m. vertex containg,bem
sides the orbital current term)contributions due to a mag-
netic dipole and an electric quadrupole moment. In contrast
to the spin 1/2-case, these electromagnetic moment terms
are not fixed by the usual principle of minimal e.m. inter-
action for particles with spin>= 1 [19] . We therefore apply
in this case an extended principle of minimal e.m. coupling
according to which only the orbital current term is taken

into account,

—
With respect to the mixed current contributions Ucuj(4e) we
have to make the following remarks:

1. If B is a scalar meson (S) and B' is a pseudoscalar meson
(PS), the BB'J/ -vertex vanishes due to parity conservation,

+)
Such an extended principle of minimal e.m. coupling has been

applied in the past with some success to the photoproduction
process &/”'F —> A (A236)FT T [20] .
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2, If B=8, B'=8' or B= PS, B' = (PS)' the BB'y -vertex
vanishes for real photons due. to charge conservation,

3, Therefore, the only non-vanishing contributions come from:
a) B = V, B‘ = V‘
b) B = PS, B' =V

i1

C) B S, B' = V¥

Only in case b) we have some experimental information on the BB'J'-

coupling constant.

Because of this limited knowledge on the strength of the mixed
contributions and due to the fact that they are of a non-minimal
type, we postpone their detailed discussion to a separate paper.

3.2 Two particle Pauli-equation;
General structure of exchange currents.

In the reduction of the Dirac-equation (7) to the two-particle
Pauli equation we follow closely the procedure of Green and Sa-
wada [12] for the OBE-potential problem: First we derive an
approximate equation for the large spinor components and perform
afterwards a renormalization of the wave function,

In this way we obtain a two-particle Pauli-equation

(15)

D @ Rt = =, 7,1
L @A) = W@

We split the Hamiltonian H (15) into one-and two-particle terms:
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H = HBJ + Hl_'.z]

(16)

On the other hand we may decompose H with respect to strong and
e.m, interaction:

H= T + opep T He, . (17)
First we discuss the e.m. interaction contained in H [1]
We have +)
—2 24,2 —_— = Y
HE‘O = & Q" (‘?‘:{t) + (—-———-6:' 7.) — (6_2' T.)
2” CPNIS
(18)

- L5 TR EE@D] « (1 «2)
C?H‘Z_ “a
with

— —_ 4
EF =—vH - H

210

We treat the e.m, interaction in lowest order of perturbation

theory, i.e. we consider transition matrixelements of He im.

only between eigenstate of Hstrong = + \/OBEP .

o .
Keeping this in mind we may perform for the f ~terms in
(18), which have the structure E?.ﬁ? » the substitution

—r — ‘ —
O A —> —L[HS,E,OM,O-H] 1o

Therefore, H[ij contains effectively also two-particle terms.
Corresponding to (19) we have to substitute for (18) the following

operators

+) Compare any textbook on relativistic quantum mechanics



-17-

/
HE!J 7 Hm + He‘m,t[ﬂ - He.mifﬂ (20)

with

f 7 o= 2 —
Hfﬂ = e A, + (6 M) (6_;7‘_:“3)1 L€ o =2 =2 1
A FM3 FM* i_q'mh(ﬁ-:"v';nu('rv?](gl)
+ (4 «2)

Hem.trry = 0;47,‘,. [7—, (6{(5’-7{‘:), E}-ﬁ(ﬁ")]f-(/I@Z))] (22)

4 — o —» 5 =,
Hew.t[2) = Fpe [VOBE‘P/ (e,,[a{ﬁf,e?,-ﬂ(m)]+(4ez)) (23)

By means of functional derivation of the expressions in eq. (21)
L] % * »
to (23) with respect to A, and A respectively we obtain:

f
coll

{ H = e (TE7)y+277T) (24)

g_ HQ ﬂf“:O “
where f’i recoil ;g given by eq. (4) ;
ey = - {Hemtrn (25)
Jt['f] N —

§ A -0
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leading to the result given in eq. (6) ;

i (;» — Sﬁ!4€dnft£13
Jttng 77 = = =
§ A () T=0

leading to
w7 > | //—f-a
r = - — [ T Edz
J.ﬂ-z} & FN? [ OBEP ! Z A

( [(6* XJ:"_‘,{(Y‘- )}-—f- ——(V 5(#“»))]

(26)

Now we turn to the discussion of the exchange currants arising
from the term H 9 in (16). In accordance with Green and Sawada
[12] we introduce the following abreviations

\/ — - 3.5 ] 3
= + 9dv ]
2 Zs yr Y
3 > — j‘L
= Jd7 e, ¥
v _ 36‘ + _g_-‘Z‘ JV (27)
< vi/a S Y7
i A
\/ = -~ :a__?_J —-%Mz.?;&__\ﬁ.j
d g °7F ! r
V(g Vi) = - § & Sf, i3
( 28)
i —_ — —S —
- B VS E -k WS R
LRPV, R - SRRV SF




—19-

For the potential term in the Pauli-equation we then obtain
in the case of isoscalar boson exchangel?12]

=‘\Q B ﬂ“Zi{@r'Fc

— T=6

V

OBEP

Va P~ Gm V(R VL)

=+ \/(3“) (V2) + V(M) (v, Pr)

(29)

where we added explicitly the terms arising from the Pauli-
coupling (f-type coupling) of the vector mesons to nucleons,
which have not been treated by Green and Sawada, For this terms
we have (compare Bryan and Scott [12] )

2 — 'y 4
Vegy = = 50 Ga) (B x¥ 3239 3,)

. :i_ g tf —» —n —_ - —d
\/(Qv:?) = g Lf‘:\f" (f Gi'f’z,("_—? 7‘67.-(\73 Dv’))} (30)

+d[€‘=’:'”ﬁ,(?:-"ﬁ o] + (4 Hz))

The potential corresponding to the exchange of isovector bosons
we obtain from (17) by means of the substitution ) -—9'33 i?
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Exchange currents in case of isoscalar boson exchange:

We note, that in deriving the potential term (29) we did not

yet use the commutation relations of the Pauli matrices. This
enables us to obtain the exchange current contribution, arising
in case of isoscalar boson exchange only from the momentum de-
pendence of the potential term, immediately according to eq. (7),
by means of the substitution P?-—J? ﬁji in eq. (29),

12

= T=0

Y = e o
m T SR (_ V. +1(Z>711za(°7”’<)« Vo

A —> | —
* g V(7 V) - V(av}) (v, ,F"))ﬁ%o

(31)
—'—3 T =0
—+ —
— I=0
wéere, according to eqs. (26) and (29) Jf[}j is
given by
—> T=0 e A+Ces /(= = == >
Jepy (77 = = Efz[ar “Z E3 (L{G-: X Pe S-(T_Y\")}
+ (7 )|
(%
(32)

With »/a from eq. (27) we obtain finally

- I=0 A+ O —
Jt[_'zj (¥) = ;%2 %— 2 35‘1‘""”9-)(6:? X(Vj\/q)) (33)
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The occurence ot terms like (GhTf/f‘) in (31)

leads, in general, to additional curl-terms in '3213 .
compared to the result obtained from the substitution 47;~%>ﬁ%
in the final expression for the potential. It turns out, that
these curl~-terms cancel each other (add) in case of vector meson

(scalar meson) exchange.

Exchange currents in case of isovector boson exchange

—
First we define quantities 3[13}{ by means of eq. (27) with

the r.h.s. changed by the substitution iy, (73,)—> g(_quz3 D (777
47 i
. -2 I<o
Then according to eqs. (7), (8) and (11) we obtain J

by means of the substitutions

2V 27V, ~ Jd3x pyy A

H

in the first term of eq. (31) and

\

b) V% —> Ez.%i_\/ o) 67,(32).

To this we have to add the contributions form diagram 1 d

(last term in eq. (11) ).
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In this way we obtain

I 22 =
jrl:} ('\") - jrf‘)q J)Hz "Z Pt." DL-Z:)Q}

_ 4 = = 4 > = g >
L/Hz ,(}(FCI :)[2"]”) -+ i__:; (-__ Z f(G“.:’T’.):‘??,zz Va?

, ~ — ZAT
\,Jb_":L V(O(1+ jvat) = \/(:Fz-f- 5\,5) (JV —92;'57_«7\/"‘ €(c, ¥ 13’}43)(

3.3 Explicit form of exchange currents

In this section we collect the explicit expressions for exchange
currents arising from the exchange of scalar, pseudoscalar and
vector mesons respectively with either isospin zero or one,

A) Isoscalar boson exchange

The formulas for exchange currents in case of isoscalar boson
exchange are obtained by means of an explicit evaluation of
eq. (31).
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a)

Scalar mesons

—
| r-o(_» e duz
R (T) = g (ZJ SE-Z)p
+j (‘;Y _"-;‘:))-f— 3 J4S '7'_":1 f(f_
+ Jg (T ( "’-F;’)))) + (4 «2)

where we introduced the abreviation

4 D
343 (r) = % o JB(T)

We note,;ghat the current generated by means of the substitution

....J) . . R

dQJL;fb "y from the spin-orbit term in the potential and
Jtclj cancel each other. Furthermore, there occurs in

(35) an additional curl term,

b) Pseudoscalar mesons

[2) (36)
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The result (36) is an immediate consequence of the following

facts:
1. The corresponding potential has no momentum dependence
prd
2. No curl-terms can occur, because . ( g%-?ﬁf)z-terms
in (31) are absent in that case
-
3. =0 due to V, =0
Jeras a
c) Vector mesons

We decompose the current with respect to its contributions from
g~and f-type couplings of vector bosons with nucleons:

i = e [1+7;3 311 - —
JD'J(gf})(T)_ - ZMZ( 2 ;,;:’_ ‘S_(f*—r,,)(,? v A
-
+ LT g + A (J:QXS)J,N) (37)
+ (4 «>2)

with
: A /=D
S= 7(F+3%)

In contrast Eg the scalar case, the spin orbit generated current

terms and Jtlij add but the curl-terms cancel each other.

—> =0

J[})(jv vanishes for the same reasons as in the pseudo-

scalar case,

—_ - — -

§ 170 = 5 () 4 I 0, (SXT)
2] (3v5’) N* 2 g7

+ (1 ¢>2)
(38)
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B) Isovector boson exchange

The following formulas are obtained by means of an explicit

evaluation of eq. (34).

a) Scalar mesons
—= —3 z
"T?r:q —?_L,—_— "(:'4 ’CZ) 3 —¥
P = T.T = z 98 )
£ ("'-) 1 2 J[—_J\D (Y‘) -+ € Z/?_, 7~ Ay

(2= (2, F -7  P)F 25 (F-7) - (1=2)

+  Ja o
(39)
~ e (Zx7T), 33 Is (7 (§-2) -T=7)
FH?
b) Pseudoscalar mesons
- T=A g > —a
JDU (F) = 4py 2( z) ? §(+-%, (Gg'qz):%P
+ (1 €>2)

e 95 (2, X7 X Za) ( =) (& 5
e 3 (E X2, (& )J)(w

yMH* 4T
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c) Vector mesons
T;:Zg&)(?):— h:a‘ —';D:cog;‘) 7 -
+ 2 BT 0, W (1w - Trw)
+ e(a;f:)s 32 _39./ * %X;(EX?Z); (f(?"-?j)r

N e
* (" v (c T X (69-82) — (&3 .6%) 7y + (65 +T12) 67 +

—
7 )

A a — —_ o
1 X 7-)3 __?_/_\;_7: (""' ‘:{— m,, jv -+ 2 DV (FT'F:l)
~ 2, (e, &) I (17-7)

+ 2 9 (2R, AT I, (F-FDE T

S = —h =Y - =7 -—?'
- 2 D (e 7-7) F (8. "-7) 3, (7% &5

(41)
_ 2 (=2 2 —3 =
TET = e(Sy) ) §@7) (8 x @) T,
I bl g o v
L2y (£%)
+ (1 «2)
- L =\ .
_e (] (‘4’“.1)3(V)><6“7 (72x80)J )
%(ﬁ) I ZRERA Y

(42)
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[2) (v +) fatle J[‘z‘)(jvf)(?)

+ AR ARx R Ty = 7 GO (1))

- x>
+ & Ivf (T, XT i(-*-v =T
7 HM3 4!/77‘2)3 ("" (V v, X (7-752) D,

L2 @)@ T) + 4 (5.7 I EE)

2
—+ MV Y - (’fé“:):l))
) > pracy — —_ -
s ?,‘jj (2 X %), ((vx = ((77)3, ~ (1)

(43)
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3,4 Torm factor effects

In order to achieve agreement between the predictions of the
0BEP=-model and experimental s-wave phase shifts one must intro-
duce a high momentum cut-off in the OBE-potentials [ﬁ3]. This
cut=off serves as an approximation of vertex and propagator
corrections to the potential diagram la, represented by the

diagram fig. 2.

The transition from diagram 1la to 2 in terms of formulas is

given by the substitution

—

V

OBETD (B) — jJ g Plmg) VO'B‘E'P () Cu)

The corresponding change in the formulas for our exchange
current contribution, i.e. the interaction of a photon with
the different bubbles in the diagram fig. 2 depends on the
unknown dynamical structure of these vertex and propagator
terms. On the other hand if we change the potential according
to eq. (44) additional terms must be considered also in the
current in order to maintain current conservation,

From a pure phenomenological point of view we propose a change
of our currents in analogy to the change in the potentials

2 i
J T (B) — jCIPHB f/h”-g) _:j:;!a (B) (45)

[
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3,5 OQutline of possible improvements

There are some points where our general scheme for the calcu~-
lation of exchange currents can be improved:

1. As discussed already in section 3,1 retardation effects
can be taken into account approximately.

2, In its present form our formalism is not adequate for the
description of processes initiated by virtual photons
(i.e. by electrons) because we did neither consider the
extended structure of nucleons nor that of the exchanged
bosons. The best way to take such electromagnetic form
factor effects into account consistently is given by means
of the vector dominance model (VDM) [21]., In the VDM the
photon couples directly to a vector boson which then inter~
acts universally (i.e., by means of a conserved current) to
all hadrons. This means, that in our diagrams 1b~lc we have
to change the e.m, vertices according to the prescription

given in fig. 3.
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4., Treatment of two-particle currents in the nuclear many-

body system,

- s
The exchange current operator Jex (7 ) is of the general form

3, (@) = J[3e &2, v W (B oW ) ()

—

where jEﬂlS composed of various terms according to eqs. (3%5) to
(43), The interaction of j%x with an external electromagnetic
field repregented by the vector potentlal/? (r,f’) is given

by

\/e«{{{') = — J(Pfr Hj?%(?’) t?(‘lr_-f ZL)

(46)

-—vﬁfﬂi‘s-{,,ol &//(n))" ('ﬂ 0, )P P

|
1

Expanding

%T(;—v) - q:r 70”*(?’)

h

—>
g (7)) = 3 an (7

n
where 4, ; 4w are creation- and destruction operators for the

single particle states y’(??), we obtain

ot ot

\/ax[{) = — jal.'-‘) [_"}(—7-[-) J[-'On - n( , %ny Dy,
H;' 3\’1,7,
woth
— —
' 7) = L LSNPS P P D
JD)n nzhan( ) = ]jal 'f'q(A 183 )f,q(m,/fnz(v,_) JL‘A) Y, T )X

v B () N )
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Carrying out the integration over T, V/ appears as a two-

particle operator

+ 4
\/ex () = Z V. (t) 4, G, a”s I, (47)

nn,n, n
h, 0y 0y hy R

where

—_ — .
Vo = = B0 B0 Tomminn,

h,ny hy v, Y

Quite generally expectation values and transition matrix ele-
ments of the exchange current operator can be calculated with
the help of vertex functions. In the case of electromagnetic
groundstate transitions in even-even nuclei the use of vertex
function can be avoided, if the particle-hole (ph) amplitudes
and/ or two particle- two hole ( 2p - 2h ) amplitudes of an

excited state are known. We will treat this case first.

4,1 Groundstate transitions in even-even nucleil.

We consider a transition between the groundstate [6)> and an
excited state [5) of an even-even nucleus. The contribution
of the exchange currents to the transition matrix element is

given by ( see eq. (47) )

.1.
6‘ \/@K{o> = Z \/"’4”2”}”‘1 @qu al_" q”s q"q'o}

Ny (48)
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The problem is therefore reduced to the calculation of the

2p - 2h amplitudes <5’ qt_, qj:z Ay, Ay [o) . In
principle they can be extracted from the spectral represen=-
tation of the eight-point function. However no reliable methods
are known for the present time which would permit to obtain the
necessary information on the eight-point function for nuclei.
On the other hand, well founded methods exist for the calcula-
tion of p~h amplitudes of low lying excited states. If it is
known that a given excited state is primarily a linear combi-
nation of p-h states then the following procedure would be app-
licable: As a first approximation the excited state in gquestion
is considered as a linear combination of p-h excitations:

(0) -f +
' S(ﬂl) § d"m " m |0>Then the 2p-2h amplitudes can be de-

termined by perturbatlon theory. The wave function is then of
the form [s) = A[Sph> + Bl S 2p,2h>

with IF”:: <SFL-. , ‘-Spl-.> —f-}’BI’L <S2f’2]" l 52F2L>

Bl <« |A]

The contribution of { S ‘> can be taken directly from eq.

2p,2h
(u48):
0y =>_V s, o |alal a, a, |d
<52p2|ﬂ{\/ ‘ > — h.-,V}zH3W(./ <2P2|_' qnqo‘“z Ny hy >
NN My Ny

Sph> gives also a contribution to the transition matrix,
coming from those summation terms where indices of creation

and destruction operators are equal:

CSpn| Voy [0) = Z \/nzst, (5ol a)af a, )

zhghq

X
(((“q“g,-fn nny F ‘E}J:& -+ {;12 m,)
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Making use of the anticommutation relations we obtain:

_ T
6‘91-[ VQX I O> - Z- \/}’L, v, VL,VT;{ (SPLI Ia?lz a-il-,., qh,f q”—y l®

YLl thIA/

+ ot

Z \/ AV, 1, (SL ay, A, ansqhq)(»

‘7
h4“;”3

B Z \/ 7 N2 Ny <Sf’l",q:-1 a ha "

Y
HHH

A, [ O

+ > V. . {S,,L.)q a , %, 4, 0>

2
h,h, g " 2

= ) \/n,,hzqu <SFLI a_v‘; (‘sﬁm"q_q”q qI ) A, l0>

T2 Ve Ll at (L

+
Do, s {8l (4 =Gy A, )8, | 0>

Z \/ sy, < L’ai (J;thhdnqatJl)GmZIO)

hlﬂh

- Z \/ Az W, <5PL\ ('J_m T ahsq;i) ahz\o)‘

h, vy ny
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The contributions of the terms containing the Kronecker

symbol cancel pairwise and we obtain:

<'SPL[\/P4<!0> = Z— \/MH N, Ny QPL]C‘ L Ony Qn, ""0)

Yiang ny
__{...
h% \/ a ¥z My, <S”la A qqq"' IO)
— 5 1
2 V”—;Wz nyn, {sFLIaI Ay, Gy, 4y, 0>
UMY

+
+ Z;' \/V,’T Mg N, h‘-f <SFL, a_:: ah‘f anz ahl-{o)

n,nyny,

Introducing the occupation number Nn of the single particle

state n in the groundstate, defined by (%aahlc9= anq> s
interchanging the indices 1 and 2 in the third and fourth sum

and relabeling n, ¢y Ny we get finally:

(SFLl\/M{O>: Z <'SFL\G;|;QH3}O> x

XZ/\/ [\/ -

2N q 2 N,V

— \/;q m, v, 1T l/Vi,,Mahlhq—VnznthnJ
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The preceeding expression corresponds to an effective two-
- particle vertex, defined by the graphical equation of fig.4,.
(For the meaning of symbols, see the explanation given in

connection with fig. 5 ).

The corresponding form factor diagram for the free nucleon
gives zero contribution, because the occupation numbers are

identically zero in that case.

The preceeding discussion has shown that for lowlying p-h
states with small admixtures of 2p-2h states the exchange
current contribution to groundstate transition rates can be

calculated with reasonable accuracy.

4,2 Transitions in nuclei of odd mass number.

(i)

We consider a transition between two states n, and
n (3)
N

propagators G, QZL) and Gnq(toq) respectively. The residues
] L]

“ and ZM(J ); the corresponding

and EHqJ . The electromagnetic

, being characterised by the i-th and j-th pole of the

of the poles we call Z,,,f .
energies are called Eh(L)
1

transition probability th_é,nd is given by ( see for
example ref. 22 )

W = A S g £t Eny | gl )
- t ‘o, () ( _-_7__________«1! n,” “hy

)|
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Here frcwj is the vertex, due to the usual one body current;
jdlj is a sum of effective vertices, due to two body currents,
To each meson exchange diagram corresponds a vertex, defined

by a diagram of the type shown in fig. 5. Here the double
arrows are renormalized single particle (or hole) propagators;
the dashed lines indicate ingoing and outgoing states; Jﬁ'z
and 3?42 are the complete scattering amplitudei)for the rele-
vant number of ingoing and outgoing propagators. The calcula-~
tion of expectation values of a two-body operator Q leads to a
pictorially identical vertex diagram. One only has to replace
the elementary electromagnetic vertex by a matrix element of
the operator Q In the arguments of the effective field /h’[ﬂ]
one has put E = £$3whlch gives for the expectation value of

Q in the state n1 (1) ( see vef, 22 ) :

<Q>,,u; (Zm)j “’H"’ (£.,0)

If virtual 2p-2h excitations are important, the evaluation of
‘jyfrjis hopeless, because in that case a detailed knowledge

of the amplitude J%2  would be required. However, if the

coupling between virtual p-h and 2p-2h excitations is weak (this

corresponds to the case treated in detail in section 4.1 for

the even-even nuclei), the main contribution to the effective

vertex comes from diagrams of the type shown in fig. 6a and 6b.

+) For brevity the bubbles Xa.Z and Jﬁﬁz contain also
the case of no interaction.
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If we introduce an elementary interaction vertex tough the

definition

<
i

/J./L'Z'.) _ _
then the vertex , defined graphically by the symbol

A

" is given by: \

(¥

* S AN
LY
= [V] -
VI + [y
; »
\
Here, in contrast to Jﬁﬂ s 3’ contains only genuine inter-

action diagrams, the free propagation contribution being al-
ready included in the first term on the right hand side. For
low lying states the equation for the effective field

can be solved by known techniques [??] » just as the correspon-
ding equation for 3‘133.

We close this chapter in summarizing: If in the respective nu-
clear states the coupling between p-h and 2p-~2h components is
small, then the two body current contribution to electromagne-
tic ground state transition prates in even-even nucleli as well
as to expectation values and electromagnetic transition rates
in odd nuclel can be calculated with the same degree of accu-

racy as the usual one body current contributions.
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5., Applications

In this section we discuss some examples for possible appli-

cations of our present approach to e.m. interactions of nuclear
systems. In particular we concentrate ourselves on those cases,
where we hope to resolve present discrepancies between experi-

mental data and recent theoretical treatments.

1, Deuteron magnetic moment

Only the isoscalar part of the exchange current can contribute
to the magnetic moment of the deuteron. The difference A
between /Amwm and the theoretical value obtained from cal-
culations without using any exchange current contribution (ECC)
and a d -state probability’ﬁi 2~ 6,5 of/o determined from NN-
scattering data +) amounts to be about 0.014 nuclear magnetons
[?3] . Different: authors have discussed the effect of particular
ECC's:

[3),
a) Adler and Drell\ [1o] considered the P-7 mixed ECC. With a
partial width for the decay P—> Ty of 0.5 MeV they could explain
AJA . On the other hand an OPE-analysis of recent experimental
datda for the process yp-—>» AP leads to T ' (P —>7T7y) 4
0.24 MeV [24] . Therefore, we agree with Kisslinger [23) , that
the - £-7I exchange current seems not to be the dominant effect.

b) Gersten and Green [553 considered the ECC arising by means
—=3 =
of the substitution ,93-‘9 e from the momentum depen-

dence of the OBE-potential. They conclude that sign and

+ , . . . .
)PD is not a direct measurable quantity, but it can be infered
from the 3S effective range parameters by means of phenomenologi-

cal potentials [8) .
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magnitude of this contribution to CAjA)&,. depend oriti-
cally on the particular version of the used OBEP-model.

In a consistent approach the effects discussed in a) and b,

+he additional curl-terms one obtains from scalar boson ex-
Iso have to be treated

T2
additively. But, because of the smallness of A%k , it may

happen that small relativistic corrections and (or) contribu-
tions of virtual N' -excitations [23") which one neglects other-

change and the contribution of

wise, are important in this case.

2. Elastic and inelastic electron-deuteron scattering at low q2.

Any comparison of theoretical predictions with experimental data
on elastic and inelastic e-d scattering depend on the values of
the e.m. formfactors of nucleons. As neutron e.m. formfactors

are just determined by means of e-d scattering experiments, only:
a comparative theoretical analysis of both elastic and inelastic
e-d scattering will give reliable information on the importance
of ECC's. A rough analysis along this line has been done by Dietz
and Month [?6] by using neutron formfactors from inelastic e-d
scattering (analysed without ECC's) and a simple parametrization
of ECC's iﬁ?%ﬁélysis of elastic e~d scattering. They conclude,
that there is an appreciable ECC to the charge and quadrupole
form factors of the deuteron. A small ECC.to the magnetic form

factor cannot be excluded (compare [1ol ).

A discrepancy up to a factor of two has been reported by Adler
[?f) for e-d inelastic scattering. He uses a dipole formula for
the nucleon form factors as input and considers also particular
+)
ECC's .

*)} Some eriticisms on the treatment of ECC's by Adler we bring in

connection with the deuteron photodisintegration.
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3. Photo disintegration of the deuteron at low energies

Noyes [ii] concluded from a careful analysis of the inverse
reaction np- radiative capture at threshold that the experi-
mental cross section data require a 1o% contribution from ex-
change currents. Recent calculations on this process by Adler,
Chertok and Miller [9] based on the use of phencmenological
wave functions and particular one-boson exchange contributions

- .

for Jo have only lowered the discrepancy between theory
and experiment to 5 % . In particular the following important
contributions to “j}géq *) have been neglected by these
authors:
a) the ©,—6, -exchange current (compare eq. (39)
b) the /£ -~p -exchange current (compare eq. (41 - 43) )
C) =P T=aA

Je¢ 20

In particular Adler claims [27} that the spin-independent term
in the £ NN-coupling has no effect on the exchange current, Our
result eq. (41) disagrees with this statement.

4. N=-N- Bremsstrahlung

Baier and Kihnelt [1%] considered recently ECC's to N-N-Brems-
strahlung in Born-approximation. They negelcted ECC's of the
mixed type. Their theoretical predictions for the cross section

are systematical too low at low energies.

+ - . . - s
) The transition is mainly a M-, [4Tl=41 -transition

(compare the discussion and the references given by Adler
et al. [9] .
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Figure captions

ia - 1f:

3a,3b

6a, 6b :

Interaction diagrams representing strong and
electromagnetic terms in the two-particle Dirac

equation,

Vertex and propagator corrections to the simple
OBEP,

Electromagnetic form factor effects due to the
VDM,

Effective electromagnetic two-particle current
vertex for p-h states in even-even nuclei,

General form of the effective two-particle

current vertex for odd nuclei.

Effective two-particle current vertices for odd
nuclei in the absence of (p,h)- (2p,2h) correla-

tions.
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