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Abstract

Relativistic two-particle scattering is generalized to include electro-—
magnetic interactions, A Hamiltonian consistent with the commutation
relations of the inhomogeneous Lorentz group and the principle of mini-
mal electromagnetic coupling is derived and can be defined selfadjoint.
The scattering operator is computed and found to admit a representation
suitable for calculations due to the invariance property of the Mgller
operators. Finally, the photodisintegration of bound states is dis-

cussed briefly,



1. Introduction

Relativistic quantum mechanics [1-3] provides a general scheme for
the dynamical description of relativistic two— and many-particle systems.
The interaction is expressed in terms of the 10 hermitian operators
H, ?, j, K, which are restricted only by the requirement to generate an

unitary representation of the inhomogeneous Lorentz group.

For strong interactions, i.e., interactions by short-range potentials,
relativistic quantum mechanics is discussed in detail in the literature.
The extension to electromagnetic interactions is an outstanding problem and

shall be studied in this paper.

Section 2 deals with kinematics, Section 3 and Appendix A give some
further description of the dynamics of relativistic two-particle systems.
In particular a theorem on invariance of Mdller operators and half-off-
shell T-matrices is proved. Electrodynamics of relativistic two-particle
systems is presented in Section 4 and Appendix B and C. A Hamiltonian
is derived consistent with the commutation relations of the inhomogeneous
Lorentz group and the general assumed principle of minimal electromagnetic
coupling. The Hamiltonian can be extended to a selfadjoint operator, so
that electrodynamics of two-particle systems is well defined. In Section 5
Mgller operators and scattering operator are discussed and prepared for
calculations. Finally, in Section 6 the results are applied to the photo-—

disintegration of bound states in first order of electromagnetic interaction.

2. Kinematics

The interaction of relativistic two-particle systems with real photons

can be described in the Hilbert space

% = ?5@%; , (2.1)

where {31 ¥ = ?{md@ﬁ,’*& "
"f’ i ’

for our purpose most suitable choice of representation of # is given by

and 92¢ denotes the photon Fock space. A

. * —> = .
eigenstates” /K 46‘;443 >  with

PR ‘7> = K IK&g7,>

/

*The notation of the two-particle system follows Ref.,[3].
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(2.2)
and the n-photon eigenstates of ?C$ are of the form
—_ —_ —4‘3" -}-__’
[1,6, 90,0 = ([l «cd; o)/
=
+ I s s (2.3)
[T ), a«Fie)] =29, 8¢F-5) St
with
- — —> —> bt %
(Ho,po)/?fc;/'“" ?'nc-n> = (QOIQ)/?TG;,!‘.“”7%G;<>/
* s (2.4)
- - ~ -7
Q =229, , Q=7 1941, ¢y= 217,
i= i= 7
In # the generators 30 and H  can be realized by
P - KsQ M o=(BYGhP)E (2.5)
Po = KT‘Q‘ / /o - 0 * 0 / '
where
/‘ -—‘az _z' ’.‘.'
A = (’/2 1‘40)44' ’/20 !

(2]

—%

R ==L (ke@)Q = LKe@)IK , Ry = (L(K+Q)R), | (2.6)

The corresponding generators jo and ﬁo arve given from Ref.[4-61, In

the following, however, we are not interested in their explicit form.

3. Further Dynamics of Relativistic Two-Particle Systems

Relativistic two-particle dynamics is determined by the mass operator
h=h, +v, or in case there are no bound states equivalently by the

Mfller operators [ 3 |



Qb= 1~ [Sectg-e) T ) dB 6
The underlying Hilbert space is % .

It can be shown and comes out to be important that the Mgller operators
(3.1) are invariant under h = ¢ (h) , ho ) (ho) for a certain class of
real valued functions® ¢ . The general proof, however, is beyond the scope
of this paper. 1In place of that we prove the following

Theorem**: Let one of the Mgller operators
=2 108 L2 =2 2.4 ¢ .. 1
0, (4,4,) , DL (&547), Q, (PrA,PR4A]) (2, ((P+A)(PE4))Y)

exist (f = fo). Then

‘Ql‘(&'ldo) = -(1_-_!-_ (&4,4':’)

- 0, (PAa PRA) = 0, (PO PN a})T) (3.2)

The invariance of the Mé¢ller operators (3.2) is a property of the

T-matrices defined by (3.1) and [Appendix A]

: > —2d N D
N (A ) = L (Pes’ Pra]) = 1 - S S, (4,-54)7;(4)(1@(&)/

20,08 (BLahE | g L0t BB T iy dPrey (3.3)
QL (Pt (F24))2) = 1 - [ S ((PRA - (PrgH08) T k) d B ea)

In Appendix A it is shown that

It

T, k) A P k) (40,0 T, (4) o« P, (%)

— — )
(R, +£) TP T (FYES)E) Tock) odPcky B8

which proves the theorem.

*In time-dependent scattering theory this fact holds under the strong
condition Il v ]ll< o [7,8]. In time~independent scattering theory the
theorem can be proved under more general and weaker conditions. In
addition, the proof is in closer contact with physical quantities.

**Finallg the theorem gives a consistent justification of the Mgller

operators (3.1). See Ref, [3],
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The bound states of mass m and spin s, are given by
Ao, 48> = g I g AT D (3.5)
They can be normalized according to

ot

(g 4 G g > = ey SUFEE) Spn dats 36
/

so that

A
<

Rlgn 17 0% > = 2K, FESR-F) Hgg 14,45 (31

+

The matrix elements (?éfg3/¢u“4;43> are the reduced wave functions of the

bound states and fulfil the integral equation

-3 —- a— -3/
(my-£) H1g, w445 = 2 [& Uy sy EED A 70 10, > (3:8)
;: 4‘!! 3t 3

In % the two-particle interaction determined by h leads to
- 4 =3 A
Ho= (BYdE B (P ai )i R, (3.9)
The Hamilton operator H implies a set of generators H, f, 3, K with
P=P and J=J . The corresponding Mgller operators €, (H, H) are
0 ) t 0

given by

_(11; (H,Ho) = -Qi- ('&’fg‘o)® 4}' (3.10)

as a consequence of the theorem,

4. Electrodynamics of Relativistic Two-Particle Systems

The generalization of relativistic two-particle dynamics to electro-
magnetic interactions consists first in the construction of a Hamilton
operator, which again results in a complete set of generators H, ?, j,
K of the inhomogeneous Lorentz group {1] and, in addition, corresponds

to the usual assumption of minimal electromagnetic coupling.

As in the instant form of dynamics [9] we set
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Eq.(4.1) means that linear and angular momentum are conserved and implies
that the commutation relations, which contain H, P and 3, are automatically
satisfied. Apart from spin interactions, the most general ansatz for a
Hamiltonian H consistent with the above mentioned conditions is given

from {3.9) by the substitution

—> — —
?‘;’2' - Tft‘t’ B e'ff‘c 0(14"(’ (4.2)

and
R-»> R-eA | e=¢+e (4.3)

Therein Zl (32) denotes the electromagnetic potential in the center—of-
momentum (c.m,) system of the cluster of the comnected two-particle and
photon states at the position of particle | (2), and £ means the c.m.
electromagnetic potential at the position of the center of mass of the two-
particle system., The quantities ey, e, are the charges of the
corresponding particles. The electromagnetic potentials are understood

to be in the Coulomb gauge. In case (4.2) the GCoulomb interaction v,

of the two-particle system must be introduced by the further substitution

r 7

70 20 = Tio? Yo ” ?E . (4.4)

Let us now discuss (4.2), Later we shall see that (4.3) is ruled out
by physical arguments. In the following we omit the Coulomb potential
v, o On the one hand Coulomb contributions can be neglected in comparison
to the strong part of the interaction. On the other hand usual scattering

theory does not work for singular potentials.

The local electromagnetic potential KI,Z at the position of particle '
1, 2 is given in Appendix B. Transformation of expression (B.3) to the
instantaneous c.m. system of the connected two-particle and photon states
then yields [6]
2 % (2 K,2 KL 4, 19,

47},1:&15}¢

! —y
x 03‘;: (R,,) exp [-<CO(F,L™) [ € (LK")g,5)
3

3

x a’c3e) 1K-5 %, &1 E O K Z g, ,
(4.5)



where [Appendix B]

2 2 42,4
e (k91" / (H)° - (k™) %"ﬂ = R(k-91"", K "’)/
PRI 2 V(T ™) g ) f s D (R, (2]") j
T (Lkthg), () (z(w'-)m-ﬁ"‘)a )

~ A2

R VA E A AR A &( (ﬂ? 4" ¢ "))Qf L (7 [EAEATN
77,77,

x <490, 49°1779,>

AL

£,, = (4, ™)1, %

/T

4,2

(e = Fae 4.6
> (=) . . .
The negative frequency part al(Z) is the adjoint of (4.5).
H
In relativistic quantum mechanics, however, local potentials are no
longer distinguished in comparison with nonlocal ones. On the contrary,
local potentials result in divergence difficulties, which can only be

avoided by introduction of certain cut—off form factors. Therefore, in the

following we set

AL AL

0( ? &{ k A ] 0{ [

s () .3 /y !
oL = (drn) ¢
aafﬁaﬁa,

X F (- £,)°) ¥ ) o [T (T, L) | e (Lg,e)

x 0§ IKF R L1M7 > (Reqpl
(4.7}

where F((Ml’2

- Ei)z) is a real function to be specified later.
Now we compute the Hamilton operator coming out of (4.2). For sim-
plicity the substitution is only done in hO , and it is assumed that

m=m =m, ., The general case of unequal masses is discussed in

(2K, 2 k)1 70 77,

9)



Appendix C. In general, the potential v will be affected too, But
since v is not specified further this case is left open. Those
expressions, which contain square roots of electromagnetic potentials

can be expanded according to

— — 4 -y 2 2 A4
((F -ea, )+m®)t = (£,7+ m")*

7

t U (D wt) ) e (a8 ) s S8 [ A F o &)

L (4.8)

~

where dﬂ?o denotes the spectral projection of H,. The single terms of
expansion (4.8) are finite, provided that the form factor F decreases
sufficiently strong for large energy transfer. Then, if we consider

only first order contributions and write for instance
-z Z A —=r 3 —r =y L 2
[(#% )t e (K a,ca,F)re d ],

Fa™

-3 I —y —7 —_ =% L —+ 4 —
A w) )T e (A ran g ) w e[ AT e Ay

[+]

u= f((;‘_:&fma)f

/
(4.9)

and in the same manner for the spectrum of the Hamiltonian (3.9), denoted

by brackets [ 1, we get
Y= ( 24, B +[4,1B] v + v[4,IB] 7‘[4"-0/3]:
+ [(R%0)E ] B4 (4,18 vsv{4,/8],+ 4,18l ][R,
) e A4 2 2 g:
+ R O[(R%e5)T B+ (4, B0+ v 4,/8], +[4,15] ] + & )

4.10)

with

B = £ 3, + 2B
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,a ~ ) rea (4.11)

The Hamilton operator (4.10) is a priori undefined. If the form factor
F is chosen properly, for instance has compact suppert, it can be shown
that D(Hz) is dense inéz, provided that v satisfies the usual
assumptions [3] and h > O . In consequence of (3.9), (4.2) and (4.10}
and the fact that the square of a symmetric operator is positive, H
comes out to be positive., Therefore, according to Friedrichs theorem [10],
H2 can be extended to a selfadjoint operator, which admits a spectral
representation. In the following we define H to be the positive square
root of that selfadjoint operator. That is always possible, since every
positive symmetriec operator has at least one positive selfadjoint exten-

sion.

The Hamilton operator H is by construction of generalized Bakamjian-
Thomas type [11]. The corresponding mass operator, if taken in an
appropriate representation, commutes with %, J and depends only on c.m.
variables for the single cluster contributions do have this property, Hence

it is a possible candidate for a relativistic Hamiltonian.

The exact choice of the form factor F 1is left open. For mathematical
purposes it is sufficient to assume that F has compact support. A

generalization to spin interactions is given in Appendix C.

The interpretation of the Hamiltonian (4.10) is quite clear. The photons
are coupled directly to particles | and 2 as is usually assumed., On the
contrary, the Hamiltonian that would come out of (4.3) has a different
meaning. In that case the two-particle system is no longer treated as a
composite system as far as electromagnetic interactions are concerned,

This is in contrast to the physical situation discussed here. Therefore

we need not go into details any further for that case.



5. The Scattering Operator

Electrodynamics of relativistic two-particle systems comes out to be
a multi-channel problem if bound states are present or can be produced.
In absence of electromagnetic interactions the various bound states behave
like elementary particles and, in addition to continuum states, constitute
the different channels, Let the bound states be labelled by o . Then

the Hilbert space # can be decomposed according to

A ~ A

H = @ 2 , se °¢ _ A & afezo,od’ (5.1)
£

o€ /

where Aa are the projection operators onto the bound states and

A = 0., (4’40)_()_:&(4 £,) ® 1¢ . In view of this the Hamilton
L] X e r

operator H0 must be changed to

/’/oz z‘ : 'L/oa{ .2)

where

Hoo- (FHdHTA -2

and

How = (7% 29 A, R

which accordingly yields

(p)\‘
9, .
C{ J":> - 2 0( fo , (5.5)

€

The Mdller operators are formally defined by

QL (HH,) = - [38,cH,-€) ?} (f)o{?o(---,s,..-)l

Ty (E) = 4t cha{ ) = Bt (H-t) (E-te ) (HH,) (5.6
N /

€ -7 40
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and lead to the scattering operator

Lty

S = 4-zni [SH,-6) T (6) AT, (ool 5D

In consequence of our previous results ?:f(E) exists for ¢ > 0, and
there should be no trouble in doing the limit & + 0 . The infrared
divergences can be avoided by setting F{(0) = 0 during caleculation. In
this paper, however, we do not treat the limit e -+ O any further but
leave it as well as renormalization questions to a future paper.”® In

place of that we prepare (5.7) for perturbation-theoretical calculations.

In the expansion of ?;(E)the single terms are meaningless from the
physical point of view if the square roots implied by H cannot be
expanded. 1In principle,this is possible according to (4.8). But there

is a better way already known from Section 3. Let

~

3‘;(,_:) = S i 32(5)

jt_f(!:_) _ A/%_ ”02. +(/7’{"‘{,6) ((grz'e)a’— /_/4)—4{//;_%/0.:) .

(5.8)
Then
o~ € . - £~ € .-
To () = (ExHyze) " T, (e) (E+#,27€)” L(crce)

+ (£-H,tdie) (Eﬁlon'e)"' ?; (-£) (£+x/ozz'e)"”(f-/fom'e) _
(5.9)

The second term on the right hand side of Eq.(5.9) converges for e + O
and therefore does not contribute to @, (H, Ho) and S because of the

factors (E - HO). Formally, or order by order this yields

L, (HH) = 4 - fJi ('L/:’~£‘) rfi (E) 0{?1(---,5,-") (5.10)

*The renormalization procedure is outlinmed ia Ref.[12].
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and
S = 7 - zm;f SeHi-£%) ’f;(s) o(?o(---,f,---) ) (5.11)

The scattering operator (5.11) does not contain any root of electromagnetic

potentials and therefore can directly be calculated term by term.

6. Application: Photodisintegration of Bound States

The photodisintegration of bound states is one of the problems we are
mainly interested in. In first order of electromagnetic interaction®

we get from (3.3), (A.1), (4.10) and (5.8)
<'7<’4€'m [ T, e) [ g %ss g6 >

= <Kkag7, 1{71+ 7o (%) S,ce-u*)f{ B+ [4,1B], ¥
i v Ay BT, + [(Ra®)E B +14,18], v+ v (4,/B], JR,

+ R, [RYNCNE B4 Lbg1BI v+ 0 L4181, ] | 1 g% G0

6.1)
with

A
E - 400 , , Eg o= (e (6.2)

/

However, Eq.(6.1) is not very useful because %;(%D is generally unknown
and cannot be computed as simple as T+(23 . In consequence of the theorem

stated in Section 3, especially of Eq.(3.4), Eq.(6.1) can be simplified to
(REgg, 15, ce) 17 mean i 50
= KR&gg [ 1+ T (&) S (654 ] [ B+ [4,18],7
v [0, 18], + [(R%&E 1B +14,18],v + v [4,181, ] R,

+ R, [(i‘i&’“)i [ B+l Bl,v + {4,181, ] | | %%, §’°“>,
(6.3)

*For the general case of unequal masses see Appendix C.
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provided that it is taken on shell, i.e. Eé = Ez-. The latter holds

always for physical amplitudes.

In Eq.(6.3) the strong interaction is calculated exactly. The matrix
elements of T+(z) can be computed from the integral equations already
discussed in Ref,[3], and the bound states are given by Eq.(3.8). Terms
like [4,/B],7, [(R%e)E 18] R, etce., belong to relativistie
corrections and are important for strongly bound composite systems. The
form factor F can be chosen equal to one on a compact support and zero
.elsewhere. That is consistent with our general assumptions. Therefore,
if the support is taken to be large enough, the matrix elements (6.3) are

not effected by F ,

I would like to thank Professor G. Kramer for useful discussions
concerning this subject. I am also indebted to thank Professor H. Joos

for eritical remarks.



Appendix A

The T-matrices defined by (3.1) and (3.3) are of the form

W+ Al W (E, -4 rie)

€—>+o0
T, (4) = by + b, + O°

4 gl (L vl s ut) ((Egti€)-4° ) T (&vsvbyrv®)
E—to

"?\H— —r 2 Fa A =" 2 :{
+ (") = (P4 e~ (P +4,)

, —3 4 =3z A -3 - =3 L =L I BN §
P ((7)&4‘)*—(%5::)1)(@—(?ia‘)fn:e)"((?ia,)"'-(?’*é,)‘),

€ —240

A
r Eg )4 (A1)

Without restrictlion we assume that Tiﬂk) exists. Then from (A.1) we get

7. (%) = 4, 7; (£) + T, (£) 4, +*’a_/5,, (Ep-C,) T4 (£)(E,~4,)

- Eé‘f" (E,-4,) (- O (Egs ) v ) (Ef-4,)
4 /

et

A
L (e (FELI))T T k) (ke (7))

bl o (FaE)E) [P )T (b (PhaD)E) T (- (B /
(A.2)
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which finally yields

Tp (&) A Pty = (4,7 E,) 7T, co ol )

. A
e (b El ) TP E A (FIELT) Tok) AT k),
(A.3)

Appendix B

N _)- » L]
In # the local electromagnetic potentials Al 5 at the position of
3

particle 1, 2 and instant ¢t = 0 are given by

S ) 3 (-] /;i’ +) = T
A'f]c?. B A4,z/ * A",-{z / 4’4 B A'f‘,z /
—> 3 As*” ocs"‘ o 3=>
A (+) ez T E i Fa,2 j : Foos, y
= w Z ] W O
K 4 4 e a0 Tt . OF
— — + 3 sty —_ 4}3 3 -3 3 __; 3
x e (9,5) a (3,7v) [, 4, % 44>(¢4,47 ;'ﬁ"cl (B.1)
with [6]
4,2 2,4
fcd,a - [’f‘;ﬂ- 7 ; Va7 P ;
_ -2 —s 2 L A -3 -2
[ #2291 = ((Fop-Trea )% 7,-7)
ECT o) - e (E(") (0,7 -406,0)
7! - V_l_.' ? / / { / (B-Z)
if # is spanned by eigenstates /%2-%3;52 4> . The transition to

representation states IR’Z:ggG >  can be performed according to Ref.[3]

and yields
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I o
ot ) [ e Sl
A“ = (4w ) _ j%‘?a f (R «, z[k 7.7”)" ( (&)

JIIG fjlfl,vcr
A%

x ol

_ede) 4G [R5 RIS (K&, ]
7%,77;

(B.3)

where

[&-91""= ((cL™ )4, —9)+'m ) Ll («)4 )+'m ):’1 K-9)

[%)]4’{"' o+ Z([‘(‘ﬂ‘w) /-_?‘\’) é.c,«f / ’41,4 = ((4’ 3 )" +4:,)

A2 4,3 P
A S AR o?i L@ 5" e-7"Y) D?J g (B 10e97™)
71, 72,
41
X %_ L, (B, K)) R‘ 333 (Rip,, 1) 3,497 /72,>
7,7 d 2
(B.4)

Appendix C

The generalization of the Hamilton operator (4.10) to the case of unequal

masses can be done along the lines of Section 4. We get

y
Ho= (7 +Z ¢ L(Rith Uz IR, + R IR IHY 2]+ &%) °
(c.1)
with
Zo= 8 o8, o+ (Fw) L ) 8,0, 4 LF ) 18] ()

(B ) LR 18,0, ¢ LR 0,1 (R )

— 2 =~y ¢ L] %
A AT N RWICATIN W



...16_

P U8 08,7, LR ) B T f v

LR ) B T e (Rl )E8, 1] €.2)

In presence of spin interactions the Hamilton operator must be
generalized further. We restrict ourself to spin-1/2 particles. Let 1y
and i, be the magnetic moments of particle | and 2, Then, in order to

be in agreement with the Dirac theory we are led to set

A —
=3 —> FA L& F3 i < 2
((+-e, @, )" +m, ) — (H‘,—G,C’o,) * ot

: A
_/u"'w‘?,et-'-é{ [47,;,%"44]7& * &W W)%

(€.3)
with
~n 1

3 VT Y A
. y A4 |[——u0 A
1 (r) 4:/470 .[ f(zl(,,z,k;)a ;}J‘:MJ

},74 l?li\!’fés .'G'

f

)
|2

%<

o Flentg)t) AL (R ey [0 (T L)
373
© (Leky), e, (Zekng,0) aliFe) [K-3 w2177 (Kdq,l

- (A e—Ds £ )
! (C.4)

and similarly for particle 2, Therein | ]+ denotes the anti-
commutator, and the individual spin operators él,Z are defined by
[2,5] gl + 32 = ? . In (C.3) higher terms are needed in order to keep
the radicand positive, We do not specify them any further for they are

ambiguous to some extent. Finally, this leads to
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