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Abstract

An attempt is made to calculate the terms of fourth order in the momenta
in wr-scattering from the nonlinear chiral-invariant Lagrangian of pions and
nucleons. Two parameters remain arbitrary in standard renormalization theory.
Heuristic arguments based on the idea of minimal singularity and the technique
of superpropagators lead to values which are in qualitative agreement with

empirical information.



I. Introduction

We take the minimal chiral-invariant Lagrangiani) which contains pion and
nucleon fields as a field-theoretic model for piom—pion scattering and we try
to calculate from it two parameters, denoteg by o, and Oy which occur in a re-
cent low-energy description of this process ). As regards the choice of the
Lagrangian, we are looking for a model which is simple, i.e. the input parame-
ters are known, and realistic enough so that we may hope to obtain a qualitative
or semiquantitative understanding. The simplest possibility, which takes only
the self-coupling of pions into account, does not lead to satisfactory results.
Therefore, we include the coupling of pions to nucleons. However, we neglect
the contributions from other hadrons fields without discussing their signifi-
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cance. We do not consider the linear O-model ) since it has an additional para-

meter and could only give one relation between o, and 0.

The essential parametérs of the model are the pion decay constant F_ and
the axial coupling constant gx which is introduced as a phenomenclogical ver-—
tex correction.. Alternatively, via the Goldberger-Treiman relation, we may use
F?T and G/MN with G the pion-nucleon coupling constant. Pions are taken as mass-—
less, m will be chosen non~zero only in kinematical relations to connect mo-—

menta correctly with energies. The nucleon mass M_ disappears (except in the

N
ratio G/MN) since we restrict the pion momenta to qz/MN2 << 1 (q the c¢.m. mo-

mentum) .

The main problem lies in the nonrenormalizability of the Lagrangian. In
fact, the parameters al and 0, are connected with loop diagrams and remain ar-
bitrary if we apply standard renormalization theory. To go beyond it, we pro-
posea) to choose renormalization constants so that the amplitude is, in a given
order of perturbation theory, of minimal growth for large energies. Such a
choice can be viewed as a generalization of the principle of minimality used
in renormalization theory5). It is possible in special cases ¢nly. For our prob-
lem it leads in the one-loop approximation to a relation between % and dz
which determines the isospin I = | amplitude. If combined with an effective
range expansion it gives a value for the p mass. To obtain a second relation, 5

needed forthe I=0,2 amplitudes, we have to rely on a superpropagator calculation

whose significance is less clear,




Both arguments use the one-loop approximation and therefore perturbation
theory as an expansion in f. = E%; . 8ince the interaction of massless pions
gives rise to a logarithmic dependence on momentaz), the perturbation expansion
cannot be’ a simple power series on dimensional grounds. It contains terms like
fﬂélog fﬂ2 etc which depend logarithmically on the coupling constant. They come
in through the superpropagator technique. Concerning the applicability of per-
turbation theory to our problem, we know from the low-energy theorems of Adler6)
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and Weinberg7 that the lowest order term, which is proportional to fTF q, is

exact in the zero—momentum limit. Therefore, higher order corrections are small
for small momenta. However, the relative importance of successive powers of fﬂ2
is not known. The parameters o and Oy (and also the axial vector constant gA)
are functions of fﬂzanlﬁnz = 0.66 which appears to be the relevant parameter.
We calculate them in lowest order, taking higher order effects partially into
account by renormalizing the pion-nucleon vertices. It can be shown that our
calculation by means of one-loop diagrams and an effective range expansion is
equivalent to a lowest order Padé approximation if terms of sixth and higher

orders in q(which are unreliable) are neglected.

The results obtained are satisfactory considering the limitations of the
model. They suggest a possible qualitative picture of low-energy pion-pion scat-
tering., Of course, the calculatjon presented here should be viewed as an attempt
to extract results from a nonrenormalizable field theory and further applica-

tions are needed before any conclusions can be drawn.

II, The fﬂ4-approximation

1)

The classical Lagrangian can be written as
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The interaction terms are minimal in the number of derivatives. This implies

that the deviation of the axial vector constant
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from one is to be accounted for by avertex correction, i.e. gA(Q) = |, In the
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Bogoliubov™’ formulation of perturbation theory the gquantized interaction

Lagrangian is then given by

L = - %_ fﬁ2:($ y aﬁ)z: - 28 1T iYS%glp: +2My £2: AT P 0(fﬂ3) (2)

where ¢ and ¥ now denote the incoming field operators. In the fﬂ4 ~ approxima-
tion to Am-scattering the five Feynman diagrams shown in Fig, | contribute. The

6)7 . ,
)7) assure us that the amplitude vanishes for zero momenta

low-energy theorems
and that the terms quadratic in the momenta are exactly given by the tree dia-
gram (a). Therefore, no 8uch terms arise from the subtractions necessary in loop
diagrams. Consequently, the nucleon contributions from the diagrams (c), (d)

and (e) are well-defined, Only the pion loop (b), which needs three subtractions,
leads to two undetermined parameters4 . We evaluate all diagrams for small mo-
menta discarding terms which are of higher than fourth-order in the pion momenta
since for them the fﬁa—approximation is certainly inadequate. Using standard
notation for the scattering amplitude

T =34 8. . A(s,t,u) + 8, & O . Alt,s,u) 8, . & . Au,t,8)  (3)
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we obtain the following contributions:
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The total nucleon contribution is therefore

4
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ITII. The Renormalization Parameters

We summarize the arguments which lead us to propose definite values for

. . . 4
the renormalization parameters OL],JT and GZH’ referring to Lehmann and Trute )

for a more detailed discussion. As already mentioned, a relation between o

and Oy results from the notion of minimal growth for s + o, It is Oy = Ooe
To show this we take the isospin I = | component of A(b)'
I=1 £ : : . Gy
A (s,t,u) = —x(u-t) |s log(-s-10)+t log(-t-i0)+u log(-u~i0)-3s log — }.
(b) 2 )
67 21
(8)

It has the following behavior for 8 + «, keeping t(or u) fixed:

I=] 2 i & o
Re A(b) ~—— const s 1if alﬁ + a2ﬂ
‘ (9)
I=1 E B
Re A(b) ——> const * s log s if Oyp = Cop

The other diagrams of order f1T4 do not destroy this behavior since they in-
crease at most as s log s. We take this property as a heuristic basis for choos~
=g, » An alternative formulation follows by ecalculating the I = 1 am~

Im 2m
plitude from its imaginary part by an ordinary dispersion relation. This leads

ing o

to
I=] £ 1 8 t u
T o T -
Ay = ) (t-u) J ol g ter o’ (10)
o

The integral converges on the energy-shell. This dispersion integral gives the
minimal definition. We could, as always, add to it a polynomial whose lowest
order term, due to the low-energy theorems and the antisymmetry in t,u, is

proportional te s(t—u) corresponding to oy # Lo 8).

The idea of making a least singular definition of renormalization parame-
ters has been discussed some time ago in the context of nonpolynomial
Lagrangiansg). Here we use it in a more restrictive manner, i.e. in a definite
order of perturbation theory, This is possible only in special cases. For ex-
ample, the leading term of the I = 0,2 amplitudes is proportional to szlogs for
§ + o independent of ain and azﬂ. Therefore, an analogous argument for the re-
maining parameter O = Oy = Oy cannot be given. A value for o follows from

Tr[‘)

the superpropagator method ~ with the result
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where Y is Euler's constant. Unfortunately the structure of chiral-invariant
Lagrangians is such that it is not known whether this result can be connected
with tﬁe concept of minimal singularity. It is obtained as the limit of a regu-—
larization procedure applied to a set of diagrams which is not chiral-invari-

ant.

IV. Renormalization of Pion—Nucleon Vertices

The coupling constants which occur at the pion-nucleon vertices have to
be renormalized. In the case of the three-vertex it follows from the Goldberger-—
Treiman relation, which is exaect for massless pions, that fy has to be replaced
by fﬂgA; For the four-vertex the situation is more complicated. Here too we
make the substitution fﬂ - f“gA which implies that we neglect a momentum—depen-

dent term.

The exact form of the renormalized on-shell vertices 1s known from the

6)7)'

low-energy theorems on pion-nucleon scattering However, these theorems

refer to the derivative coupling between pions and nucleons which follows from
our Lagrangian (2) by a transformation on the nucleon field]). If we were to

use this derivative coupling for the loop diagrams (c), (d), (e) the nucleon
contribution would become, for g, # 1, more singular and lead to a new unde-
rermined subtraction constant, To avoid singularities which enter through an
incomplete treatment of higher order effects we continue to use the Lagrangian(2)
with momentum-independent vertices. With this restriction the correct normaliza-
tion of pion-nucleon vertices is obtained by replacing fw by fﬂ,gA as seen from
the effective Lagrangian which gives the low-energy theorems for fN-scattering

in the renormalized tree-approximation. In the derivative form this Lagrangian

is

Lires = = 3 B i D% - £g by Gy ¢ - RN ST TN CEY

This is unitarily equivalent to
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Our normalization of vertices corresponds to neglecting the last term in (13).

V. Results

The results for the parameters o and 0, can now be read off by comparing
their definitionz) with the equations (5), (7) multiplied by gAa, and (i1).

With the notation

log a; = log o, + log & (14)

where o is the contribution from the pion loop diagram (b), Oy the nucleon

contribution, we obtain

N _ 4
log Oy =38 s log Cow = 7 By (15)

while g = O is given by (11), For the parameters £ and ﬁ defined in terms

of 050, this implies
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where _ f2

B, = log ( g ) = %% - 3y - log 4.
4 o

The parameter & which determines fhe P wave depends only on the condition
O = Ol e As seen from Eq.(16) it is a consequence of this condition that the
contribution of the pion leop to the P wave phase is extremely small and the

P resonance does not follow from the 1y self-coupling. However, the nucleon




diagrams provide, in the effective range approximationz), an attraction of the

correct order of magnitude. £ is related to the p mass by

l61r2 sz
E = e _ (17)

m
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p

Therefore, with m, = 0 and neglecting the pion loop contribution (- 1/18) we

obtain approximately

M 2
3 4«F 3 1
Mo */ 32 22“ YT 2 = (1%
A G™/4m F

the two expressions being connected by the Goldberger-Treiman relation
FHG x MNgA. (18) gives m, = 925 MeV with gy = 1,25 or mp » 815 MeV with
G2 /4m = 14.7, the difference being due to the rather large correctionsle) to

the Goldberger-Treiman relation., Use of the complete expressions (16) and (17)
faises these values for mp by about 50 MeV. Therefore, in this appreoach the
behavior of the P wave is governed by the scattering length given by the chiral-
invariant four-pion vertex and the range due to the nucleon diagrams, the main
contribution coming from the box diagram (e). Indeed of only the diagrams (a)
and (e) are taken into account (the imaginary part of the amplitude which is
determined by unitarity is of course related to the pion loop) satisfatory va-
lues for the p mass and width follow, the latter being given by the Brown-Goble
relationll). For the S waves, which depend on the superpropagator value (11)

for Os evaluation of n from Eq.(16) shows that the 7w self-coupling is essen-

tial., Numerically the I = O phase shift comes out as 63 (qu) x 110° at /5 = mp.

In view of the uncertainties inherent in the model and the various approx-
imations we have made, we can only remark that this attempt to obtain informa-
tion from a nonrenormalizable field theory leads to reasonable results which

may encourage further applications.

The author thanks K. Pohlmeyer for useful discussions,
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Diagrams which contribute to the fn—approxlmation




