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Abstract:

The K 4 vertex is considered in the technique of generalized Ward identies allow-
ing arbitrary chiral symmetry breaking, The Ist Weinberg sum rule is derived, and
constraints are found on the parameters of chiral symmetry breaking in a single
particle approximation to 2-point spectral functions. In the limit m§ + 0 these
constraints make all effects of general chiral symmetry breaking indistinguishable
from those of a (3,3) + (5,3) scheme, if unmotivated divergences are to be avoided,
We conclude that in the preéent framework the K13 vertex does not allow us to
distinguish between different models of chiral symmetry breaking, except for terms

of order O(mi).



I. Introduction

The phenomenological hadron dynamics seems to be approximately described by a
chiral SU(3) x SU(3) symmetry, But in the real world this higher symmetry is bad-
ly broken, and one is faced with the problem of dealing with a broken symmetry
which retaing the validity of Gell-Mann's SU(3) x SU(3) current algebra.l) In

the past few years this has given rise to many speculations about a possible
behaviour of the strong interaction Hamiltonian under chiral transformations. On
the assumption that the symmetry breaking term in the Lagrangian transform;)as

the (3,3) + (3,3) representation of the chiral group, Glashow and Weinberg™’ have

shown the natural appearance of the pseudoscalar nonent and the hypothetical
3)

kappa as would be Goldstone bosons. Gell-Mann, Oakes and Renner have used the

(3,3) + (3,3) scheme to parametrize the relative strength of the SU(3)~breaking
and the chiral SU(3) x SU(3)-breaking and obtained a value of the relevant para-
meter of their model quite close to that at which the chiral SU(2) x SU(2) sub-
symmetry becomes exact. Several authors have also considered other possible
mechanisms for chiral symmetry breaking such as the (8,8) schemeA) and the

(6,6) + (5,6) schemeS). Of all the models proposed so far the simple (3,§)+(§,3)
ansatz has proved to be most successful in spite of some of its conflicting

6)

aspects.

In our present investigation we will approach the problem of CSB (chiral symmetry
breaking) by asking a different type of question: Can we always consistently
apply various models of CSB to situations where we assume the validity of the
usual current algebra and other dynamical approximations? In other words, we
will be interested to know the implication of the current algebra and dynamical
assumptions alone on the possible nature of chiral symmetry breaking relevant to
the problem at hand. The following considerations have chiefly motivated our

approach:

(i) Simultaneous applications of specific models and apparently uncorrelated
assumptions may not always be internally consistent. In some cases such a proce-
dure may yield trivial results. For example, a consistent application of pion and
kaon pole dominance to the axial current matrix element in Ky transition leads
to SU(3)-symmetric results.y)
(ii) There is some evidence for overlapping of informatiens coming from
apparently different assumptions. In a hard-meson analysis of the Alﬂp~vertex,

8 . . .
Azcarraga and Renner ) have shown that a consistent application of meson



pole-dominance rquires the compact nature of the underlying current algebra,
leaving undetermined a scale factor of the axial currents.

(iii) Barnes, Dittner and Dondig) have established a theorem showing a connec—
tion between the PCAC assumptions and the (3,5) + (5,3) scheme for CSB.
According to this theorem, assuming the first seven divergences of the axial
octet currents to be proportional to the corresponding members of a single octet

of pseudoscalar fields implies the results of the (3,3) + (5,3) scheme,

Keeping the above observations and remarks in mind we will investigate the problem
of general CSB in the K13 vertex, by using only the usual current algebra

in the method of generalized Ward identities and some standard dynamical assump-
tions., This analysis will be carried out in two phases, differing in their levels
of assumptions. In Section 2 we investigate the general character of CSB

within the framework of spectral function representations of the 2-point functions
in question. In Section 3 we use the thehard meson technique of Schnitzer and

0)

tions on the physical particle parameters.

Weinberg1 to see whether the constraints on CSB-parameters have some implica-

We carry out our investigation in the following steps:

(A) We construct all possible Ward-Identities from the vertex containing two
axial currents and one vector current with the K13 quantum numbers. In con-
structing the Ward identities we use a local form of the SU(3) x SU(3) current
algebra, neglecting the problem of possible Schwinger terms. For the unknown
equal-time commutators of current-divergences with the time components of currents

we do not assume anything other than the local nature of these commutators.

(B) Next we represent all the 2-point functions appearing in the Ward identities
in their non-subtracted spectral integrals. Now we compensate for neglecting the
Schwinger terms in the equal-time commutators of the currents by also neglecting
the non—covariant part of the spectral representation of two currents. To denote
this compensating mechanism we replace the usual T-product by T*-product. We

assume, of course, that this definition of T* does not bring in inconsistencies

in the 2-point and 3-point functions of our problem.

(C) Within the framework of our assumptions we now demand consistency of all the
Ward identities, This leads to some conditions to be satisfied by certain spec-

tral function sum rules (8FSR):



I) First Weinberg sum rule for SU(3) x SU(3) spectral functions

IIJ A set of two independent equations containing spectral integrals related to
the current-divergences and the three unknown local operators which have been
introduced for the equal-time commutators between current-divergences and time-

components 6f currents,

(D} We repeat the above steps for the hard-meson analysis assuming pole approxi-
mations, where the 2-point functions are now approximated by single-particle
contributions, The consistenvy requirement yields again two types of results.

The results of type (II) now give two independent relations on the physical

parameters of the particles 7, K and ¢ , involving three unknown constants.

(E) Lastly we investigate the consequences of the limit mi + 0 in the Ward
identities for the case of single particle dominance., In this special limit all
the three unknown constants get fixed in terms of the decéy and mass-parameters
of the particles w, K and «, in a manner which makes the case of general CSB
indistinguishable from the application of a (3,3) + (3,3) model. We conclude
therefore that the consequences of different models of €SB, in particular the
amount of deviation from the (3,3) + (3,3) scheme, will appear only in the order
O(m2) for the Ky 4

makes the K13 vertex unsuitable to put further tight constraints on the nature

vertex, within the present framework of approximations. This

of CSB, once current algebraand pole dominance principles have been adopted.li)

II, Derivation of SFSR

In this section we will derive some spectral function sum.rules from an analysis
of the generalized Ward identities of our problem.
To start with let us define the three—current-vertex WuvA with K13 quantum

numbers by the following integral:
W (Pea) = JJ dhxdhyeP* ot <o]T*{A;(x)A3(y)v;(o)}lo>, (2.1)

with A;(x)+ and Ag(y) carrying the outgoing 4-momenta pu and q, respecti-
vely and VA(O) carrying an incoming 4-momentum kA = (p+q)A. We have abbrevi-
ated the octet indices (4+ i5) by the notations (+) on the currents., Our choice
of octet indices corresponds to the decay mode K - 7 1 ;1, which is connected

to other possible K13 decays through fAII = % rule,



Next by employing the usual trick of partial integration and taking the 4-deri-
vative inside the time-ordered product, we construct all possible Ward identities
from different contractions of wuvA with the momenta pu, q\J and kA. The {2
such identities involve 7 further vertices containing one or more current
divergences, and a number of 2-point functions. We define these vertices in a

way analogous to (2.1) and denote them by w'vA’ Wu'l’ W v Wu.., W'v" W"A’

H
W..., where a dot in place of a Lorentz index stands for the corresponding cur-

rent-divergence in the time-crdered product; for example,
w'vh = JJ d4x dly o 1PX 14y <0]T*{3A_(X)A3(y)V;(O)}|0> (2.2)

The 2-point functions in the 12 Ward identities of our problem will encounter

the following equal-time commutators (ETC):

(a) [A,A31, [A,V;1, [A3,401,083,V)1, [V2,A01, [V,, A}]
(2.3)

- - ot - + + - +
() [a_,04%], [A_,0v], [A3,04°], [A3,0V7], [V ,04 ), [V ,34%]

The ETC's of the type (a) are evaluated from the usual local form of the
Gell-Mann current algebra, while the ETC's of the type (b) are all unknown in

our general treatment. For 3 of these unknown ETC's we introduce the following

local operators:

[H]

[A;(x)3A3(y) 16(x -y,) %ﬁ"(x) 8" (x-y)

lit

P (x) 6% (x-y) (2.4)

[43 ), 0v" ()16 -y,) = 5

171

+ —
[V (x),04 (9)16(x ~y,) = P3(x) 8*(x-y).
The remaining 3 ETC's in 2.3(b) can be expressed in terms of these new opera-

tors and current-divergences by utilizing the relation

[Qi,BJj] + {BJi,Qj] = ifijk BJk . - (2.5)

, - +
for the current~divergences A , 9A3, 3V  as local operators. We want to stress
. . +
here that we do not assume single octet behaviour for the operators P and p3

in spite of the apparent octet symbols which we have used to denote the appropri-



ate isospin and C-conjugation properties only.

For illustration we write down 3 typical Ward identities here:

+

s i 4. _iky oy +
=i, + 3 j d4y e <O|T {Vv(y) V;\(O)}|0>

-i J gty 19 <0|T*A3(y)A}(0)} 0> (2.6a)

H|
P Wuvl

. i |- ik - +
puwuv' = 1W.v. + E-J d*y e 4 <OIT*{Vv(y)3V (O)}]0>

+i J dty ety <0|T*A3 ()23 (0)-43(y)34%(0) } 0> (2.6b)

P =W+ J dly e'% <o|THE (y)avt(0)} 0>

# I dby ' <0|T*{0A3 (y)P?(0)-343 (v)343(0) } |0> (2.6¢)

[A complete list of these identities can be found in Ref, 12] ,

Our next step consists in expressing all the 2-point functions occurring in the
Ward identities in their non-subtracted spectral representations, For this pur-
pose 9 different spectral functions have to be introduced - 6 for representing
3 current-propagators and 3 for the propagators containing the unknown opera-
tors P+, p3,38". Because of the assumed property of the T*product, we are con-

cerned only with covariant terms in the spectral representations. We write for

example (2.7)
o PPy '
. _ - q PP
I d%x eTPX <o[THAT (AT (0)}]0> = i dmz{ e w Dy, Twy 0y
i v p2 - 2 K 2_2 K J
p°-m
where the spectral functions pél) and péo) , receiving contributions respecti-
vely from spin (1) and spin (0) intermediate states with the quantum numbers
of charged kaon, are defined throughlz)
J <0|A |n,k> <n,k|A%]0> =( S 3ol w2y + k k 089 k?) 2.8)
n uh’ IR PR T T T B’k wovPK ) @.
The spectral functions pél), pio), pél) and péo) are defined similarly, the

, . . . + -
notations being obvicus, The coupling of the operators P , Pafx to the

current-divergences is represented by three functions Wes G B defined through

L <0|9A7|n,k> <n,k|PT|0> = 0, (k?)

n

E <0}3A3|n,k> <n,k|P3|0> = o (k?) (2.9
T OR™ [k K[V 05 =y (k2)



On having expressed all the 2-point functions of our problem in spectral integrals,
we demand consitency of all the Ward identities within our framwork., This means
that all possible ways of taking Ward identities by multiplying Wuvl with

pu, qv and kA should be equivalent and lead to the same Lorentz-scalar function

of the variables p“, qv and kx. In other words, we must have in particular

Hov, A LA MWV o VAN
P qk wyvk =k pgq wuvl qk'p wuvA (2.10)
As conditions for (2.10) to hold, we find two sets of relations among some
spectral integrals, when we explicitly utilize the Ward identities and the spec-—

tral representations as discussed above. The first set is the well-known spectral

function sum rule [SFSR] of Weinberg:la)

(n (N
J dm? K + f dm? péo) = J dm? —— &+ f dmzp(o)
o m? o 0 m? ) K

(2.11)
= 2[ dm? T + 2 I dm? p(o)
2 kil
) m? . )

[The numerical factor appearing in the last line of (2.11) is due to the normal-

ization used here,]

The second set of relations involves the functions Wps O 5 O, and pé?), p#o)
and p(o):
K
s W «© o o« w0
j dmz ._..15 L Zj‘ dmz i:_zl dm2 mz p(o) = j dm2 mz p(_o.)
2 2 T K
) m 0 m o 0
(2.12)
o] ) ol ) | oo (2]
1 2 K +] 2 -—’3=,2J in? m2 o 1 in? m2 p©
o m? 0 m?2 0 )

The SFSR's (2.12) put some conditions to be satisfied by certain integrals
containing the spectral functions corresponding to the operators P+, Ps, Qf, 9A
3% and BV+; but the constraints on the CSB are not unigquely determined because
of the lack of one more independent equation in the set of relations (2.12), This

is all what we can learn about the possible nature of €SB in our general approach.



IIT. Hard-meson Analysis with Pole Approximations

In this section we apply the standard hard-meson technique for our investiga-
tion of the CSB in K13 vertex. Following Schnitzer and Weinberg,lo) the
3-point functions wuvA’ W. ,» etc. are first reduced to their respective
meson pole terms and the "proper vertices" which are some "smooth' polynomials
expressing the residual momentum dependence. Then by saturating the spectral
functions with single meson contributions, we obtain from the Ward identities
(2.6) a set of Ward-like identities for these proper vertices.-

Fuvk

We define our 8 proper vertices etc. through wuuA(p,q) =

- 2 - 2 - 2
fK (pupu, gnn'mKA) fA (qqu, gvv'mAl) fK*(kAkA' gAA'mK*)

_ _A i ru'v'l”
2 2l 2 22 2 22 '
mp @Fmp ) omp @D m ()
A A i 1
- 2 - 2 ;
fKA(pllpii' gHU'mKA) FK k)\ fA] (qqut gvvthl) Lyt 1Fﬂ q\) g
+ F l+ F L3N
2 2.2 2 2 2 2n? 22
mKA(p ~mKA) (k=-mey mAl(q -mA}) (@*-m?)
- 2 : - 2 .
fA (qqu, 8yut™a ) lFK pu fokAkA' gkl'mK*) - FK kA '
+ 1 i I,.\) A + v
2 2 2 2ol 2 22
", (g Yy (p2-m2) (m  (k>-mZ ) (k2-m2)
- 2 : - 2 :
Ex(kyKy 8y 1) 1F A fKA(pupu, guu.mKA) o iF, P, N
+ F » + F..
2, (kZ-ml ) (q?-m?) m§A<p2~m§A> (p?-mf)

iF, p. iF_q F_ k
Y Prea o
(p?-my) (q-m ) (kS-me)

where we have introduced the decay constants of the mesons KA’ Al, K* K,

# and « in the following amplitudes of the currents:



(K,)
-, A -+ \ (X)
- < > =
<0[AuIKA > fKA €y OlAu,K 1FK Py s
<O|A3fA.> = £ ak <0|A3|A > = iF (m) (3.2)
Tios MO VL TR m Py oo '
+ o (K*) 1yt (<)
L = = .
<K*| Vu|0> £ty , < K iVu|0> Fop, s

e denotes the polarization vector of the spin(l) particle concerned. One can
write down similar expressions as (3.1) for all other 3-point functions

2)

. . 1
(w'vl ete.), showing their pole structures.

The 2-point functions are now approximated by keeping the single-particle con-
. ' . ' . ") P 4+
tributions, Certain 2Z-point functions will involve the unknown operators P,
+ : . . . .
P3 ands8 y Whose single-particle contributions can come only through the am-

plitudes of the form

<0|p3|m>

lit

<olp|x">

i

z Z., <c|8]0o> =1 Z,s (3.3)

K’

where the real constants 2 Zﬂ, ZK represent three unknown parameters of

K’
general CSB,

As a result of the above approximations the Ward identities (2.6) reduce to a
set of identities among the 8 proper vertices. Here we write down 4 such
identities which we will need later in our discussions, [For a complete list,

see Ref. (12)].

fK ZK F
___é__ ' FU\J- = - i.FK Po\)- b o— q + __{quqv_g}l\’(QQ_mi )}ku (3.43)
mﬁ 2m§ £, i

A 1

2

£ i(F z -F2m2) "A iF

K VA VI KK KmK 1 K Vv A WA

G 1 1 - @ g ) 5, Gt
i

2 2
me 2m1T fA] 2fA1



10

. 2.2 : pe. 2 2_.2
fK y 1ZK(q ~mﬂ) 1(Fnzn Fﬂmﬂ)(k ~mK)
e p TP'* = =iF_ T'''4 + (3.4c)
2 H K 2F m? F m?
A W K K

£ (F 2 ~F2m2) (q2-m2) 2 _(p?-m?)
*
g " peed P KK K:K 7 x me (3.4d)
'S ZFﬂ M FK g

As in the Section 2 we now demand consistency among the Ward-like identities

for the proper vertices. The equality
VA _ MVA_ ruuA
puqvkk r kxpuqv r qvapu
now yields the following conditions:

A) lst Weinberg sum rules:

2 2 2
fK fK fAl
Fz + ——— = F2 +  —— = 7 F2 + 2 — (3'5)
K 2 K 2 n m2
" e A,

B} Sum rules on CSB:

FZ =-2FZ=F2m2-2F n?
KK T K K T
(3.6)

F7Z + = F2 2 -~ P2 p2
K K 2 Fﬂzﬁ FK mK FK mr

One can easily see that the constraints (3.6) are not strong enough to uniquely
determine the unknown Z-parameters in terms of the particle parameters, so that
these relations must be satisfied in all CSB models which preserve the usual
current algebra. In other words, for consitency of the current algebra and the
approximations used, we require of a possible model for CSB the compatibility
of the relations (3.6). It can be easily shown that the (3,5)() (5,3) model is

compatible with them,



Now we consider one interesting case, If we take the limit mi + 0 in (3.,6) and

in (3.4) (no other identities of this type contain the mi—term), one must demand

Z =0
K
- 2
= 20222
Zﬁ (FK FKmK)/ZF1T

to avoid unwanted divergences of harmless expressions like the T's appearing

g’ Zﬂ, ZK get fixed,

independent of special models of CSB, Let us now consider this same limit in

in (3.4). So in this limiting case the parameters Z

the (3,5) + (5,3) model. The limit mﬁ + 0 would correspond to the Hamiltonian

HB =u - VZ Ug and to the vanishing of the operator 3A" in this model, so

that
£ = 2[A,5A3) = 0 and P* - 34T = 2[v',543] = 0
o] o]
(3.8)
ie, ZK = 0 and ZK - FKmE = 0 in the lim mﬁ +0

In other models the vanishing of the parameters 2K and (ZK_FKmé) in the
limit mﬁ + 0 1is not obvious without further dynamical consistency conditions,

(See, for example, the Ref. 4 for a discussion on (8,8)-model in this context)

IV, Conclusions

In this note we have made an attempt to investigate the problem of chiral symme-
try breaking from general considerations, Starting from the generalized Ward
identities utilizing only the usual current algebra, we have analysed the gemneral
CSB in the framework of some standard dynamical assumptions. We have found that
the complete nature of the CSB cannot be constrained by our consideration of
the K13 vertex., But we have also found that the limit mﬁ + 0, as applied in
the single particle approximation of our problem (this approximation in the case
of axial divergences is the natural consequence of regarding 7 and K as
Goldstone bosons), leads to results which make the (3,5) + (§,3) model more
plausible than the other models, For mi # 0 the predictions of different CSB
models can be in general different for the CSB parameters, satisfying the con-

straints (3.6). For example, in the (3,5) + (3,3) model we have for ¢ # - V2
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=£:E.L_2.,F mz;z = -3¢ F 2 3 Z =—_(_..@-E-.)..F m2 (4.1)

pA
" V2+e F U K 2y2-¢ K

The values of these parameters in other models can be different from (4.1) only
in the order of O(mi), because for mﬁ = 0 the Z-parameters are fixed by (3.7).
But at the same time one would expect corrections of order O(mi) to the
pion-pole approximation, which cannot be calculated in general. So we conclude.
that for all practical purposes there is no way to distinguish between the
different CSB models by considering only the K3 vertex in the framework of

current algebra, Ward identities and other general dynamical principles.

Acknowledgements

The author would like to thank Prof. B. Renner, who suggested this problem, for
his constant guidance in carrying out this work.
He wishes to thankfully acknowledge the financial support received from the

German Academic Exchange Service (DAAD),



13

References and Footnotes

M,Gell-Mann, Phys.Rev., 125, 1067 (1962},

S.L.Glashow, S.Weinberg, Phys.Rev.Lett, 4, 380 (1968).

M.Gell-Mann, R.J.0akes, B.Renner, Phys.Rev. 175, 2195 (1968).

H.Genz, J.Katz, Phys.Rev. D8, 908 (1972),

P.Dittner, P.H.Dondi, S.Eliezer, Imperial College Preprint, London (1972).
T.Cheng, R.Dashen, Phys.Rev.Lett. 26, 594 (1971).

See, for example, the discussion on Kl& decay in the article '"Current
Algebra and Weak Interactions' by B.Renner, Springer Tracts 52, 60 (1970).
J.A. DeAzcarraga, B.,Renner, Nucl,Phys. B23, 236 (1970).

K.J.Barnes, P.Dittner, P.H.Dondi, Nucl.Phys. B31, 195 (1971).
H.J.Schnitzer, S.Weinberg, Phys.,Rev. 164, 1828 (1967).

A similar remark has been made in the context of considering-'the

(6,6) + (6,6) model by the authors of Ref. 5. '

A.H.Kazi, Diplomarbeit (unpublished), II, Institut fiir Theoretische
Physik, Universit#dt Hamburg (1972).

S.Weinberg, Phys.Rev.Lett., 18, 507 (1967).

T.Das, V.S.Mathur, S.0kubo, Ibid. 18, 761 (1967).



