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1., Introduction

Since the attempt of DeWitt [1] y [2J to give a
systematic presentation of the quantum theory of gravity,
various simplified models have been investigated. These
are of two kinds., First, one can suppress some, or even

nearly all, of the degrees of freedom. Examples can be

found in [}] , [3] - [7] .

The second possibility is to study the linearized de-
(of the metric tensor)

viationsAfrom & chosen background space. For the case of the

Minkowski background one finds an elaboration of the usual
theory of the massless, spin 2 free field. Still, the pro-
blem turned out to be rather subtle, and was fully treated
only in 1970 by Kuchar [8] s where various obscurities
of an earlier study [9] were clarified.

One can increase the sophistication here by using a
curved space rather than a flat space as background. An
early investigation of this kind is that of Lichnerowicsz
[10] » who confined himself to the determination of pro-

pagators and commutators on a curved space.

The present article describes an analysis of the
linearized deviations from hypersurfaces of a de Sitter
universe as background., In particular, two families of
space-like hypersurfaces, indexed by a time parameter, are
considered. Members of one family are curved, closed, and

the metric is time-independent, while those of the other
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family are flat, open, and the metric is time-dependent.

The present study, like [81 y, depends in an essential ;
way on the decomposition of tensér fields. Such decomposi-
tions can be exhibited in a rather simple way for Einstein
spaces, and our hypersurfaces are of this kind. One then
finds a natural separation of variables in the functional
differential equations, and Gaussian solutions for the
ground-state vectors are easily found . (The problem of
decomposing tensor fields on a general space continues to

' be investigated by various authors. )

Our analysis provides an additional perspective for
various interesting observations which were made in [8] .
It brings, moreover, into focus the following problem,
which we do not pursue, Extend the present study by ad-
mitting hypersurfaces which would interpolate between the
two families,and which would consequently give an example

of a change in topology.

In sec. 2 we review various useful formulas bearing
on the de Sitter universe and on the Einstein equations.
Section 3 contains the decomposition of tensor fields, and
we give also geometric interpretations of some of the terms.
In sec. 4 we give the functional differential equations for
state vectors, and construct the ground state functionals,
for the two kinds of hypersurfaces. Section 5 contains a
brief discussion of inner products for state functionals.
Finally, in appendices we point out some simple connections

between the present work and the recent geometric approach
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to the Einstein equations, and also some group-theoretic pro-

perties of the de Sitter universe.

The work here described stretched over a long period
of time. The author would like to thank Professors K, Kucha;,
H. Leutwyler, A. Lichnerowicz, and S. Deser for useful dis-
cussions at various stages of this work. This project was
completed during the tenure of a grant from the A, v, Humboldt-
Stiftung. The author gratefully acknowledges the hospitality
and the support of the institutions with which he was associa-
ted.
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2, The de Sitter universe and the cosmological constant

We first recall a few basic formulas for the geome-
try of the de Sitter universe S ; a fuller discussion with
references can be found in the treatises of Synge [}{] and
of Tolman [jZ] . We will suppose that S 1s represented by

the following hyperbolod (with C real and nonzero),
o 4 02 1,2 4.2 -2
S = {(u veeuh) W2 - W - s e =o}) (2.1)
.imbedded in the space M°, with the metric
ds® = (au®)? - (auh)? - ... - (auH? . (2.2)

Consequently, the metrics of space-times will have the signa-

ol
ture + - - - , For the Ricci tensor, we use R,HFQ,F:,—:?»\",,O;*- ﬁlaﬂﬁ"
% 0
~lop D
We recall that an Einstein space is one where ([jfls P.
136)
pr = {const,) &, - (2.3)
The number of dimensions and the signature of the metric
can be arbitrary. Then S is an Einstein space of constant
scalar curvature 4R » where explicitly,
4 _ 2y 4 4 _ 2
Ruum(—BC) g,,» R=-12C°% (2.4 a,b)

In general, we will indicate the four-dimensional tensors

by Greek indices (when they are used), and by the prefix 4 ,

while the three-dimensional tensors will be indicated by Latin
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indices and without prefix.

Let us turn to the parametrization and to the hyper-

surfaces of S, We introduce the coordinates P, B, a,

and t by
1 . 2 . . 3
u = psin 0 cos a, u° = f)Sln @ sin a, u’ = pcos 9,
4 -1 o o o 1 N
u’ =tC (1-P C°)Y . cosh (t¢), u’= ¢ (1~P Y sinh(TC).

(2.5)

The metric of S then becomes
-1 z 2
as® = (1 _9202) it - (1 - 9202) | d(oz - 0”7 A% (5 6a)

where dfL% = d 62 + sin% 6 4 o2 (2.6Db)

This metric is stationary. For a hypersurface at 1 = const.
we find

2

2
R (-2C )gjk, R =~ 6C°, (2.7)

Jk

i.e. again an Einstein space. (Cf. the formulas in [111 ,
p. 271.) Such a hypersurface is a three-sphere,.  and P

is restricted to 0<p < ¢!

. See also Appendix B,

Let us make a further change of variables,

1 |
r = e“"“ce(f _9202)-2 , ot = +(20) log (1-p2c?),
(2.8)

and then go to the Cartesian coordinates. The melric becomes

2

ds® = dt°- e°tC (ax® + dy2 + dz°). (2.9)
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This metric is not stationary, and each hypersurface t = const.

is an infinite flat space.

We will refer to the hypersurfabes of the two kinds as

C-surfaces and F—surfaces (C for curved, F for flat), respec-

ti#ely. I.e., 1et A be a constant, and we set

C,-surface = {(fr, ) 6, a) € S

T = A}, (2.10a)

o+
H

Fy-surface = {(t, X, ¥, ) & S 'A-lj.  (2.10D)

The subsript A will usually be suppressed.

The universe S satisfies the Einstein free field equa-

tions with a cosmological constant 1‘&;-9- er+8puT'= 0), given by
P =3 2, . (2.11)

We will therefore suppose the same constant for the quantized
theory. Indeed, this constant brings about oniy a minor change in
the dynamical structure of the field equations. We introduce,
following Dl ‘and &ﬂ ,

N=("g s Y = detégik), (2.12a~c)

and the extrinsic curvature tensor is

R, = (2n) ! '-s(g}y;r Ve N+ 7 N (2.13a)

ik

with the trace tr K= g K (2.1%b)

ik*
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A comma indicates a partial derivative, and 7, the covariant

derivative (here, on a three-space),

The Lagrangian with T £ o takes the form,

L = gcfé y%N[,Kt.LK";(u KY & R+2T] . (2.14)

It follows, cf. D], that the canonical momenta retain their

usual form,

{
ok 3 ok ik
’ﬂ'k :-_,..Y (K "'% {TK>- (2.15)
The supermomentum densities ?(L likewise are not changed)
£ ik ik ol ) kwm
= - = — — - v
N =2V -2, J (thm,k Jem 10 (2.16)
while the superhamiltonian density » now becomes

2l
P = Y z[’l‘r‘:k’[‘l”ka - %C{:r“n’f:} + X%(K+2 T)' (2.17a)

We see that for a general cosmological censtanl z%

{
foer z 2.1 b

The new constraint equations are

X =0, v =0 (2.18)



We note that the arguments relating the constraints to the
variational principles remain valid also if T £ o D4].
We now take, as in [Jl ,» Equs, (2,18) and their quantum

analogues as the basic equations of the theory.

3, _Tensor fields and small deformations

Linearized deviations from given metrics are the ob-
Ject of our investigation. A field of deviations can be
considered as a tensor field, the tensors being of second

rank, covariant and symmetric.

For a flat space, one has the familiar decomposition

of such a tensor field [B} , [js] :

TT T L
k{‘\- = k cj“k i " k_f‘j- (3.1)
TT T
The parts k%i and kﬁ‘ satisfy
K o=k Ts0, k=0 (5.2)

Py TR WY Gy

2 fe yayd
and the decomposition is given explicitly by [with v™= Cz)jl) ]

T o1 .- ) Y k k;L'L“"‘ hl'.‘ o

kt] ° 3 (S’J 7 3“3)) kT) T Y k‘j) l) (3.3&)
Sy ST Ty (FN B .

kfj - "i,s ¥ Lw; k= v ("m 2’ kjl,jit)) (3.3b)
T

T Lt T
k.. kb) k'(,& L(:'

2 (3.3¢c)

4
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We now turn to the problem of decomposing tensor fields
one more general spaces, Various results bearing on this pro-

blem can be found in [16] - [1?} .

Following [jd} ) [1?] , [1%] y we introduce the La-
placian A, whose action on a p~fold covariant tensor field

@ 18 as follows:
S AN -
(AO()J‘IJP - V Vm D(J')p ZL(V]LVLJVLVM)D(:){ “jP' (304)

Ve setjfurthermore,

A v e
qu))?.)p {thjz...lp) -tr‘. - j(x R (3.5a,b)
Then

_&r = .
A k,t(x t‘h A (3.6)
and, in case of an Einstein space and a vector ﬁd and a two-

tensor @z)

VAR = AVp,. AS({)a . SA(:sz. (3.78,b)

The following result is now central [16] . Consider a (smoth)
field of symmetric covariant two-tensors 0 4, on a compact
Einstein space of dimension n y With the metric tensor g
and the scalar curvature R ., One can decompose ¢ as fol-
lows:

TT T H
O = + 0 o+ o-L-+0— ) (3.8)
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where cT is determined by a scalar function §, GL is the

Lie derivative of g with respect to a vector field .§ (cf.
[1§], p. 130), and oH is harmonic. One has, explicitly,

570, te s L0, STLadls), (s
o7 =[5 (a-(RAN +vT]S g1l (a), (3:10)
ot L Lsg = (V§L +Vk§)> | 2.1)

Act o Sot. (3.12)

b
Orthogonality refers to the L2 inner product defined by the vol-.

ume element

dpg (1) = ldek g|" di'y o pdlx”, (5.13)

‘and the four terms in (3.8) are mutually orthogonal.

Let us now suppose that the operator A acts on the scalar
fields, on a compact manifold with a positive-definite metric.
Then it has the following properties [2@]: (a) It is non-negative,
hence can be assumed self-adjoint, and (b) zero is an isolated
eigenvalue with multiplicity one. Thus zero corrésponds to the

constant functions.

Note that for a negative-definite metric, A will be non-po-~
sitive.

In view of the relations Vg = O and (3.6), one can write
A = (const.) g + cBTT, where o7 1ig traceless and satisfies
(3.12), However, one can show that the properties (a) and (b)
remain valid for A when it acts on tensor fields such as o [2{].
Thus ooov = 0, and (3.12) can be strengthened to

J{=(cmmtJ g , vl = o, (3.143)

The relation Slnul( A ) can also be strengthened., If
[}3— R/(n-1[]§ = 0, then the corresponding ol = 0. (This is
also implicit in [16].) One can therefore suppose that
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§ L owd (), ¢ wd[a-R/n-1)]. (3.14b)
The foregoing remarks imply in particular the orthogonal

decomposition of scalar functions f,

¢ CcoﬂS{-\ + 'Q'i \ Qi 1 V\WQ(AB' (3.15)
We will now use this relation to decompose the tensor field fg
on a compact Einstein manifold. We observe that if A is restric-
ted to scalar functions, then (A - R/n)"1 exists. Indeed, other-
wise we would have a function f, with (zx-R/n)fz = 0. Consider
0 =30, VVI,. We would have o = o = oL, in contradiction with
the asserted orthogonality GTJ_GL. We conclude that

Q% :(Q%\T-¥ (QQSL* [Q%\H) (3.16a)

where

(44)7= [4 (s-RA) + 7] [ (& IARAN (3.16b)
(Q?QL‘ VV[“ (n- R/m)"‘f,,] . (3.16¢c)

The three parts of a tensor, cT, GL, and cH, will now

be interpreted geometrically.

Let us consider deformations of coordinate systems, and
of C- and of F-surfaces. Let §' be a vector field on a C-surface.
Such a vector field induces th;minfinitesimal change of coordi-
nate vectors, A> A Eg and the (infinitesimal)

change induced on a tensor field ¢ is given by ¢ L§‘Gf
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Thus, if we take for o fhe deformation h of the metric

tensor, we see that hL

corregponds to a change of coor-
dinates. Furthermore, the ternm hH corresponds to a change
of the de Sitter constant C.

In order to interpret or , we first make a change of
variables in (2.5-6) as follows., We select one particular
C-surface, and we require that this surface correépond
to a constant time T, , that g and N‘E‘ there be

unchanged, and that N = 1 . (See [22| , Sec. 10; [23] ,
Part III ~§3; and Appendix.) We denote the new time va-

-riable by T, , and we make a small deformation of the T -

variable and of the chosen C-surface, as follows:

where
) (3.17b)
P i ((’)L) 7 (PJ 9) 0(‘3‘
We observe that, to the first order ih E;,
_ . — (3.18a,b)
94y /37, =0,  N;=3%/3p'= V. T,

see (2.12a), Consequently

. —_ 1 — .

(K v9F,  weopilqorvv)E e

The expression (g...)T is like oF , but we must pro-

vide the term (R/n)g T . However, we know that it can be re-

duced to the parts T, L, and _ " H, see (3.16). The
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{
factor y? in n characterizes = as a density, so that
1

Y 27 is a tensor Ttens s which we can decompose. We con-

clude that =n of (3.19b) satisfies

{
. Y2 T L H
/h/ . J/ (’IT;QV\S t ,‘T:';ens + Tr(;éus) (3.203)
[
= VT 4 TT’H} (3.20p)
and n. .. can be given in terms of T, & 6315316),

T . 3.21
Tt =(qa-a8/n + VV)[1 el (a-RpY T P2
X (T - const.).
For an F-surface, the situation is analogous to the con-

clusions in [8] . The change of coordinates §5+4§\-+£§i
induces a contribution L#' to the deformed metric. Further-
more, a deformation of the F-surface by the function E(§)

yields
((“J - T"("))—T = - éﬁc(("ges vt 01'33)75) L (3.22)

Note that for an F-surface, 7 = n*ﬂféo before deformation,
close
We this section with some useful formulas for the de-
formations of geometric objects resulting from a slight

change in the metric tensor,

37800 he (hy) (3.25)

(see []0] ). For the contmvariant metric tensor, (gék )
— (8%) + (g%)' , one finds that to the lowest order in W,
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(%‘3“)' (LY, (3.24)
Similarly, for the affine connection, |

(3.25)

SN ¢ : v ‘
(! -7 h vy b -V,
&( )“\_ vj \k vk ‘ lk
The result for the Ricci tensor is,
: A - — 3,26a)
2(RY = sh = Len s (
where
| §0,) = Sh+ %vv“]") (3.26b)
and for the curvature scalarj
’ ~ M
Q = A{‘.r L\ + c‘?c}l\. (3.27)
If the background metric is g = (-&),
then (3.27) becomes, cf. [8] and (3.33),
!
R'= Ay, (3.28)
. . TT H
In the case of a compact Einstein space , h and h do

not contribute to R' , but the situation with hL is less

clear., We write therefore

f L

R'= ate (WTeh™ )+ SSh . (3.29)
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4, Functionals of linearized deviations

In the gravitational theory the gjk and the “jk
are canonically conjugate. Thus, in the metric representa-
tion of the gquantized theory, one takes the ng as multi-
plicative operators, and then the nik should be differen-
tiations,

it L-fg/ggjk, (4.1)

This relation and (2.16-18) now determine the quantum opera-

tors ;rj and ,» , and the basic constraints on state vectors

become
YV -2 (v, 5/89..) -0, (4.2a)
¥ = yfi[_3)"(§7§3Jk5‘35“)+(ﬂf(’w %gﬂf«r (4.2b)
+(R+27Y] P-0,

We now follow [8] and expand the variable functions
gy and 79 in the small parameter ¢: '

k (4.3)

_ (9 (0 2 @ I oik ik
33“'3 iL,(Ei} 5k+£<j £ T e ewt™e

Here g(°%k and 1{9)3% have rixed values, i.e. those of
the C- or of F-gsurfaces. In view of (4.1) we will set
efr“’:a45yﬁkégay)s and the derivative is expected to yield

a quantity of order & . We also write

N Dk L (4.4)
&3 e ij ; e :[’S/Slqjk " P
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It is shown in [b] how for each order in g some of the
quantities gjk(n) y n(m)dk can be chosen arbitrary, and

the others are then determined by the (classical) equations
ﬁd= V = 0 . An analogous procedure for the quantized
theory is also indicated there. In principle, one could

adapt those procedures to deviations from the C- and the
F-surfaces, but the details would be more involved. In

order to shorten our presentation, we will restrict ourselves
primarily to the true gravitational degrees of freedom, in
the lowest order. We will ignore, in so far as conwenient, the

geometrical deformations within the de Sitter universe,

One also knows from [ﬁ] the suitability of the extrinsic
time representation,in which the relations (4.1) or (4.4)
are inverted for the thpart of the tensor field (hiQ’
cf. (3.1 - 3), In particular, pT is taken as the multipli-

cative operator, and then

T -1 T
AR Y2Y I (4.5)
Such a representation will also prove convenient here.

We now consider a C-surface, where

(o) o)
o ) =0 '%( jL = QX Slk) (4.6&)

7

with

2 sty 2
Q{):({-PC) ) Q@:F, Qd:Pls&uZé’) (4.6b)
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and moreover
XCOLQQQQQX) R@):—— QCZ:"Z (r (4.72,B)

To the deviation fields h, p we apply the decompo-
sition (3.8). The constraints (2.18) are necessarily satis-
fied in the zeroth order in €, and for the first order one

finds (note that op = &pb),
(1) —
€ (Q/J)U ]JJ; = "QSPLI‘{: = O) (4.8a)
£ (4) \E - X(O)é R)(ﬁ @;O (4.8D)

Equation (4.8a) implies that pY ¥ = 0, and that & is

independent of h“. (ctf. [1], [8], [17].) But we recall that

L

the tensor field h constitutes an independent variable, re-

lated to the change of coordinates., We will therefore suppose

L

that h™ = 0.

Next we consider L)(O » to which only hT now contributes.

We use (3.29), we set

e L9 (s~ RE/3)+ vV ] S, (4.98)
and we find :
gy g . Oz (A 513@;01 (4.9v)
where
A= (20-RO)A. (4.9¢)

In view of (3.14b), jiﬁﬂf = 0, and hence hT?E‘= 0. In the re=~
presentation (4.5), this means that ¢ is independent of pT.
This latter is an independent variable, which is related to the
deformation of a C~surface, cf., eq. (3.21), We will suppose

T

that p~ = 0.
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We recall, in this conﬁection, that the eigenfunctions of
A with the eigenvalue R(°)/2 do not contribute to hT, and
consequently to pfo likewise not, This appears to be related
to the invariance of the dynamical components of the metric

under conformal transformations, but we forego a detailed ana-

lysis. See [}3]; [36], and [1§].

The equations (4.8) say nothing about the harmonic parts.
We will suppose that

hH = ,pH = 0, (4-10)

‘This of course corresponds to keeping C fixed.

We have now reduced the problem to the case

TT’ p = pTT. (4.11)

h = h
These components, i.e, the dynamical ones, are restricted by the
Hamiltonian constraint in the second order. It is easy to see
what one will get. Second order quantities will give a term
like the one in (4.9b), i.e. proportional to azg(z)?, or to 5;2)

hiT T

and there will be quadratic terms in and pT y 8ince we sup-

pose the reduction to (4.11). One obtains the form
: 1 1 ok
2 (2 (o) 3 () YTk 7T Tr
VBl Y ag, e (OVE TP (W) (o)
where the {gquadratic) form Q contains derivations. One can
get Q explicitly from (3.27) by modifying the covariant deri-

vatives and the contravariant metric tensor, in accordance with

(3.24 - 26),

The term in (4.12) proportional to Sé is essentially a time

derivative, i,e. there exists an operator B such that

Y‘“%’A‘S’z_ - B(5/57) S (4.13)
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c¢f. (3.21) . For the ground state we set §/§% = 0 , and
the resulting equation (modified by renormalization terms,
cf. [?])has a solution of the following form)

{E(D){L\TTI = (COV\S{-) ex P [—' goﬁg" Asf)-z_ K (f)l)eZ) L‘TT(Pi)LTT(Pz)]
, T ) Z4. 14)

We do not determine the kermel K .

In the case of deviations from an F—surface,we can be .
more explicit. Various formulas of {?] carry over directly.
However, there is an essential difference, in that one no

longer has n(o) * 0, but rather,

(u vk
(i ‘QCQ, CJ (4.15)

4 L
The constraints ng'z 0 are not affected,so that p =0,
L
and we may again suppose that h = 0 . The Hemiltonian con-
straint in the first order then becomes a functional diffe-

rential equation for hfr’ or equivalently for PT [we presup-
‘pwe here one lower and one upper index in (3.3a); A = e'ZtCY72:]:

3¢, _
epO P = [QCP,.’re (a-6CPNL_[®=0 419
One can use either the metric or the extrinsic time represen-

tation. In each case the solution is a Gesussian, e.g.

?{PT) z CCOM%)@,P %Ce.tcgdx (ezEC QCJ V‘L'](tl 17)

where we took (3.22) into account in the following way,

pr=te (T-w9YTL € 9 o 2] | (4.18)
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The following problem néw arises. One can describe the time
evolution of QQin terms of the variable function Prs oOF E)
and also in terms of t . One should get the same answer as
t(x) > t', a small constant, but this is not evident from
(4.17). We expect that this paradox can be resolved by a more -
careful treatment of the domain of ¢2 and of the boundary

contributions, if t does not approach zero at infinity.

The Hamiltonian in the second order has a variety of
terms, coming from ﬂ(z) sy from g(T) n(T), etc, We will
‘forego further computations. They would be rather lengthy,
and we believe that they would give little additional insight.

Another problem which this investigation suggests is the
following. We pointed out that the linearized deviations from
the Minkowskil space yield a usual free-field theory. We expect
therefore that the deviations here described should be in

agreement with a spin-two field in a de Sitter universe. Such
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fields are described in LQ{] [25] y, and a comparison of
these works with ours might be of interest,

5. Remarks on the inner product

Let us consider more general solutions to the two Hamil-
tonian constraints. We should like to try to introduce inner
products for the respective state vectors, as one does in
case of the (Schrddinger) wave mechanics. Such inner products
can be given in terms of Gaussian functional integrals, dé-

fined with the help of the ground state functionals.

In a set-up like the present one, it is natural to re-
quire invariance of the inner product under slight deformations
of the surface in gquestion. This type of invariance was dis-
cussed (apparently, for the first time) in [7] +« The arguments
of this reference are adapted from the Schrédinger theory,
and they carry over directly at least to the case of C-sur-
faces, We will include a few details, in view of the novelty

of the subject.

We now consider a C-surface as background, and we sup-

pose hL =0, etc, as before,and we keep the second-order

2 (2)T

term ¢ in the Hamiltonian constraint..Now, in the ex-

trinsic time representation ,;)E;z 0 becomes

g TT
(8 ;;;*" F PR E0 6o

We will label the two components of hTT at each point by
nIT

3 3 =1,2, and to keep things simple, we will ignore the
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questions of continuity of each h§T . We then express

the inner product as follows,

SR ARRY VORIV A AYNCIMERS

We can define the integral by first choosing const. = 1 in
eq. (4.14) for the ground-state functional \f(o) , and then
by taking £(°)2 as the weight factor for the integral, with
'TTE%%§7 as a generalized measure, invariant under translations

[26] . (This will yield the vacuum sector of the theory.)

In order to examine the deformations F(P), we start with

an equation of continuity implied by (5.4),H

B -2— (¥7F)- - Ziﬁ/(@‘{?ﬁft ‘fz,‘f)(s.s)
(5% (p) AR i)
Note, first, that we have here a kind of point-wise conserva-
tion property, like the point-wise conservation of the densi-
ties of energy and of momentum. Second, eq. (5.3) remains va-

1lid if we make the replacement
¥ *
X:E- — 11;4 N g“‘% 73?2' (5.4)

It follows that the derivative with respect to T in (5.2))

[5/5’?@)] f@[&:r) (5.5)

is equivalent to a sum of derivatives with respect to the

hgT ; and the latter vanish in view of the invariance of the
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9(h§T ) under translation,

(These heuristic manipulations could easily be made ri-
gorous, but we omit further details.) It seems that the forego-
ing ideas can be adapted to F-surfaces, However, we feel
that the nature of the 1limit t(x) >t' ought to be clarified,
as we pointed out in sec. 4, before the invariance of the

inner preduct can be settled,
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Appendix A Some connections to the geometric approach

to Einstein's equations

There appeared recently some thorough studies of the
(classical) Einstein equations, from the point of view of
the space of metrics and diffeomorphism groups [22} , [233.
We would like to indicate a few simple connections of the
present investigation to this geometric or global-analysis

approach, in view of the current interest in the latter.

Let us first consider changes of topology. The trans-
formations (2.8) leading from the C-surfaces to the F-sur-
faces necessarily have singularities. For contrast, in the
cited works the functions are usually assumed to be Cf“’,
and the problem of changes in topolqudnes not arise. A

corresponding extension of these works should be of interest.

We next recall that the cosmological constant %' in the
Einstein equations required a modification of the Hamiltonian,
Thus, following [22], we select a smooth function of posi-

tion N , and write the new total Hamiltonian as

H=Tv, V()= eV n[RG v2 ], AD
M

Here M 1is a compact manifold, to which we associate the
space M, of metrics g. The quantity

R(g) , and Ric(g) below, are the scalar curvature and the
Ricci tensor associated with g , respectively. Finally,

T 1is the kinematic energy associated with the DeWitt metric
on M , and its form is implied by the expression (2.17a)
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for v (whose integral gives H ).

We find that with reference to the DeWitt metric,

-grad V = -N Ric(g) + 7 N[R(g)-2T)g + Hess N, (4.2)

where Hess indicates the double covariant derivative,‘?ug The cal-~
culations are Jjust as in [2?}, p. 552. Most, perhaps all, of

the discussion of this feference can now be adapted to the new
situation. In particular, Corollary 10.1, which we used with

T# 0 in Sec. 3, remains valid.

Finally, we should like to give an interpretation of
linearized quantum deviations. The remarksrhat follow apply
to linearized deviations from a classical path quite generally)

and do not depend on the details about M.

In general, a curve (g(t), g(t)) can be identified with
a curve in the tangent bundle T M. Suppose that this curve is
determined by Einstein's equation (with 7'= O or not, but
without lapse nor shift, i.e. N = 1y Ny = 0). Then along this

curve, v(g, g ) =0 .

Now, the linearized Hamiltonian operator, to firat order
in the deviations (g', g') from (g(t), g(t)), can be identi-
fied with an element of the bundle T#M;

' = (&11))3' + (azu)j’ : (4.3)

We write g' = h , and for g' we take the functional deriva-
tive 1"153/3h . Then the basic equation of linearized quan-
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tum theory is

p'?{LE‘O (A.4)

p)

where a fixed reference point (g(t), g(t)) is assumed. The

functional ¥ is defined on T*A,

If 1t varies, one finds a flow on a subset of UWL)
which induces transformations on subsets‘ﬁf*fi and of T*TM,
One can see directly that the relation (A.4) is preserved
under the flow. Indeed, for some .to » the solution to
(A.4) will be a Gaussian, cf. (4.17) , with the coefficients
in the exponent given by the components of g(to) and of
é(to). As t varies, both v and P will retain the same
functional form,with (g(t), g(t)) replacing the values at

t, « Thus (A.4) will remain valid.

(We have ignored here special cases, like those treated in
the text, where the deviations had to be examined to the

second order,)



- 27 -

Appendix B. Group-theoretic aspects of the de Sitter universe

We recall the following expression for the curvature tensor

of the universe S [1f1,

2
= Bo1
Roﬂ(}” C (guygps “3&8%(5?)' (B.1)
We see that this tensor is a covariant constant. Such a situa-

tion is characteristic of symmetric spaces,

The available extensive theory of symmetric spaces presup-
poses a positive-definite metric [2?} . However, as is empha-
sized in [?é} » the equations of Riemannian geometry do not
depend on the signature of the metric. The global questions
like that of completeness, on the other hand, can be answered
directly for a specifc space like S. We expect therefore
that various conclusions of [?i] can be adapted to the present

circumstance,

We now take C = 1 in order to avoid irrelevant distractions,
and following loc. cit., Chapter IX, we expressfhs a quotient

space,

d = SO({,HL)/SO(QS). . (B.2)

Then the tangent space at a point of S can be identified with
that subspace of the Lie algebra of _5(1)4), which is spanned

by the generators

j:o%) jI:M) 1;4) :I§4' (B.3)
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The first generator yields time-like geodesics)while the last
three, space-like. These three generators also constitutea Lie
triple system (loc. cit., p. 189), and thus generate totally
geodesic submanifolds of S . These submanifolds are three-
spheres, and the C-surfices can be obtained in this way. The
F-surfaces, on the other hand, are not totally geodesic submani-

folds,

Let us now imbed a C-suface in R4 » with center at the
.origin. We use the spherical coordinates (q, p) on R4 , where
q 1is the distance from the origin, and p , see (3.17b), de-

A

termines an angle. The Laplacian A on the C-surface, when
acting on the scalar functions, is related to the operator §72

on R4 by
o (daa?) + 39 (dg) + q 7
\V, :(d/d%)-*quF//C_[ tq 4. (B.4)
This relation can be used to determine the eigenvalues of N

The spherical functions on S3 are the elements of the
representation matrices of S0(4) [29] . We denote these

functions by

1")“&“«. (P)‘ [m\s’ﬂén (B.5)

(m, 1, n integers), and the'V’satisfy

v 2 [ﬁn aném\ -0 (B.6)



Equations (B.4) and (B.6) now yield

A—L‘)V\LW\ ;#”(“*25 I'!/mﬂvv\ ¢ (B.7)

IN particular, since r(O) _ 6, we see that
S (0)
CA-‘ R /’2) %Qw\ = (. (B.8)

This last relation is invariant under a change of scale, and

extends also to other dimensions.
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