


Eikonal Expansion .of the Scattering Amplitude

in Impact Parameter Representation

J. Weiss *

Deutsches Elektironen-Synchrotron DESY, Hamburg

" On leave from Institut fiir Theoretische Physik
der Universitdt Stuttgart



Abstract

An eikonal expansion method of the potential scattering
transition amplitude in impact parameter representation

is considered and evaluated, without approximation, through
third order in the inverse momentum., A sequence of four
approximations to the exact impact parameter representation
is obtained which consists of the eikonal representation of
Glauber and three systematic corrections to the Glauber
approximation. The correction terms agree with the form
conjectured by Wallace, Numerical results are given for the
exponential and Yukawa potential. The sequence of eikonal
amplitudes shows systematic improvement at all angles by

comparison with partial wave calculations,



I. Introduction

Eikonal or straight line approximations as used in geometrical
optics have been successfully applied to high energy quantum
scattering problems. The basic idea is that the propagation of

a high energy projectile is essentially unaltered in a very smooth
potential, so that it can be described as a weakly modulated plane
wave. Smoothness of the scattering potential means, in practice,
that the scale R on which it changes its value appreciably is

large compared to the wave length of the incident particle, i,e.
K:R> 1, Since the eikonal method is applicable to atomic, nuclear
and high energy collisions a detailed study of the range of validity

of the eikonal approximation is highly desirable.

Among the various versions of the eikonal representation that have

been proposed for nonforward scattering the original eikonal

amplitude of Glauber (1) has proved to be the simplest and mest

accurate representation in practical caleulations, The eikonal

path of Glauber is parallel to the average momentum L.='§‘(K¢*ng_
€

The amplitude for a given momentum transfer Q = 2K . shaz- takes

the form of a two-dimensional Fourier transform

i =

. a&B
T(C‘?) K (JZB & -/ (5) (1.1)
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s
where B = [B] is the impact parameter and in the approximation

of Glauber



— . . 4H2/(B)
T(a)~7 (8) = <[ 4] o

The phase 2?0(3) is given by the expression
5 Mo (g 2
/2'0(3): - __Lotz V (171) (1.3)

>
where V(X)) is the potential and % is the velocity of the incident
particle, Due to the particular choice of the straight line path

the Glauber amplitude is timereversal invariant and, for spherically

symmetric potentials, assumes the form of a Fourier Bessel transform

T(6)= K JaB 8 ] (Ba) /(5 (1.1)
o

Abarbanel and Itzykson (2) have suggested the form

4.1‘0(/?) |
— ( ; e
- (B) = 4 CO*SS:'[ e L 7] (1.5)

3
TAI(B) differs from TG(B) by the cos% - factors which arise from
using a momentum L = K cosg along Glauber's eikonal path rather

than Glauber's K. TAI(B) is not a Fourier-Bessel representation
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since it still depends on the momentum transfer via

: vZ 7
OGS'Q = 7 LA As TAI(B) varies strongly in the

2 4 *
backward region due to the coslg factors the Al-amplitude
is inferior to Glauber's at large angles, This will be sub-

stantiated numerically.,

Several authors have tried to derive corrections to the eikonal
amplitude (2’3). Apart from being very complicated to evaluate,
these amplitudes, however, turn out to be worse than Glauber's

(4)

in practical calculations

(5)

In a very elaborate paper Wallace has calculated correction
terms to the eikonal approximation using the approach developed

by Abarbanel and Itzykson. He notes that certain terms which

arise from the expansion of cos 2? in powers of ﬁ; cancel with
other termsoccurring in the eikonal expansion. The remaining
correction terms are calculable in practice and are in surprising-

ly good agreement with the exact amplitude at all angles.

As the findings of Wallace are very involved it is desirable to
cast some more light on this promising work from a different point
of view. Moore (6) and Swift (7) have shown that if the high energ
limit of each order of the Born series at fixed momentum transfer
is calculated and the resulting series is summed the eikonal
amplitude of Glauber is obtained. The high energy limit implies
that k = K R3 1, where R is the range of the potential. In
realistic problems nonleading terms in each order of the Born

series may prove to be important. In this paper we use k—1 as



the appropriate expansion parameter and systematically calculate
nonleading correction terms up to order k-3 in each order of the
Born series. The Born series of the correction terms can be summed
in closed form so that the transitien amplitudes are valid for
weak and strong couplings as well. With minor modifications we

obtain the corrections proposed by Wallace,

In Section 2 the eikonal expansion method is developed and the
first three eikonal corrections to the Glauber amplitude are
calculated., In Section 3 numerical tests of the sequence of
improved eikonal amplitudes are given for the exponential and
Yukawa potential which illustrate the angular range of validity

of the theory.

2. Fikonal Expansion

Let us consider the nonrelativistic scattering of a spinless -

particle of mass M by a spherically symmetric potential

v({Xl) = A U(/X/) of range R. The energy of the projectile
)

s

is given by E = %& where K = fKi] = }ﬁ?/ ig its wave number.
We use coordinates ﬁp= (ﬁz Z) where the Z-axis lies half way
between the initial and the final direction. The transition
amplitude is given by the expression

-2 L7 L7 ..;>,

£ (? B — H{/’r

- _ R
. 27 3/ Tiithe °
T(e) = Z/}_”j ,fd Bfa[' f?fdiffdz & e /[/V’/f’ o (2.1)

e e b i

e o ™ e e e e e
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where @ = Ki - Kf is the momentum transfer and T(X,X ') ful-

fills the Lippmann-Schwinger eqﬁationr
TUXT) = S CFF)-VIR) + J27- v G T (7 X)

with the free Green's function

$PUR-X)
Iy ’ -3 1231 e
&9{[%}): (27) .,ZMT(;U? PR TERes

It is appropriate to introduce dimensionless variables and
parameters by measuring all lengths and wave numbers in units

of the range and inverse range of the potential, respectively,
> B
-2 7. b : = . o P
%_zrﬁ- Ié R ) LﬁZ"KRIq,GvR

and the dimensionless ‘'coupling constant!

V, R M oy
/2: OK = A¢ }' CC“ZE )

We rewrite eqs. (2.1) and (2.2) in the form of an impact

parameter representation

P
Tt} = %;’3’— ‘fc;lzé e’ b

(2.2)

(2.3)

(2.4)

(2.5)

(2.6)



where

Jib) = fcl?_fol:gﬂfa,ﬁp £ (55

. (2.7)

f(;: ib') is the solution of the integral equation

fizi) =4 U0 d T2+ A UL GLERIZ)  (2.8)

with the modified Green's function

R .--"")._._»
K , M AL
ey RZ o %(X//()G’ , (2.9)
which by use of the average momentum
2"?
Wi [ = = -
can be put in the form
P ”_ *ﬂ
g} Ak (o
G(X'f’)“’-f(jt‘)% — & ( )
/ VY ,K“F""%}oz‘*rté 2.11a

- w4)?(f1§%)
— fé_gﬁ j{ —e (2.11b)
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where in eq. (2.11b) the z-axis is fixed to the average

momentum direction. The iteration of eq. (2.8) leads to

the Bern series

x >
Uz = 2 e (50 (2.12)

with
Mord Ve
r * i " I
£ = <KW (G 17> (2.13)
»n +4
In high energy problems it may he profitable to expand fiﬁﬂfxi‘fn
in powers of k_1
o i[’lh) . .
70w 5 Ay (7 (2.140)
tm) ~ ﬂ(%)[d’ H‘") -
PSS 5 /
*7 (£ &%) = 2 A U / (2.140)
1 mn=e

., (m? UL 1 A
A 4

where 1ﬂn*4 is of order

« In the following

the leading term and the first three correction terms of eq. (2.14a)
are calculated. It will be shown that under the integrals of eqs. (2.6)
and (2.7) the summation (2.1&b)can be done in closed form so that the

resulting amplitude is also reliable for a strong coupling constant .Z .
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As a first step in this direction the Green's function (; (A}i

is expanded in powers of'knl. In order to obtain an impact para-

meter representation for the transition amplitudes, this expansioen

is derived from the expression {2,11b) for (S(ijx?ﬂ » It reads

Cloom= 25 (¢ g, &

where

R

id I S
G55 7) = (-%) f(e"fg (py+ )"

By use of the relation

‘ "1:/-;;'('?_- 'z,) ptef /
/(Ci.ﬁ% P .y Bt = (_L) (f—‘?) 9(2 23)
J () (}) top &) -

the Iowest terms can be put into the form

a2, e
TR = -l Ela-21)¢ U:lb )
'

[(‘3' 2‘)(/(? 2’)[‘:," 4—4(/"’) (2 - ?]0/2 = _.,’

911 X K

q (£7)=- % [”(92)619?)fv+«qv)
427
4_2 éj[?___?()(VL Tatqﬂ) C‘I—((? ?}JJ{A [))

J[hiynﬁ+H] é%ﬂﬁJd

(2.15)

(2.17)

(2.18a)

(2.18b)

(2.18¢c)
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t - . D ?
9,757 = = [ Fe2 O (B0 T)

;,)2

? - —
43 (-2 Glz-2) (7 9% (2.184)
. 2 '
+ 3 (2-21) (v e AT9)
di -y — r k ﬂb"--‘,l
+ L ) 1-d-8
In order to get the complete expansion of G%’J <t in powers of

k—l, fﬂl has to be expanded. After collecting like powers of k_l

we get from eq. (2.15) the series

A & IR (2.19)

where the lowest terms explicitly read

G, (53) = 9 (%, %) (2.20a)
G, (%% = Ja (47) (2.20b)
G, (&) = Gl %) - 7 7) (2.20¢)
Gy (7 57) = 93 (4,40 = ; j” S (2.204)

' L)
At first glance the expressions (2.200) for U}[x}x’) and (2.204)
for 63 [j’; ;‘V) s which combine gz {/E'; _;"1) with }% 2, Jo (x"' i)
and g, (."T’; i) with %5‘”2 9a [;‘; 1"‘9 , seem not to be justified

> 2
for large g . It is shown, however, in the following calculations

that under the integral in eq. (2.6) those portions which result
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from ‘fif}“go { ':;") angd 2,1 ?DZ- 34 {x'j i”’) completely cancel
with certain terms which result from ¢, {xj f’ﬂ and 9, (x‘; xd”)}
respectively. It should be noted that the Green's functions
(%h(ijihj are singular functions which always act upon 'smooth’
functions in order to be well defined. It is in this sense that

Lﬁ‘_‘ [,F; xJ"') is 'small' compared to -k‘eh_q(;\f‘:f’) when k >>1,

Inserting eq. (2.19) in eq. (2.13) we obtain the series (2.14&).

The leading term and the first three correction terms are

(0) +a/ L -
O sy el (6w R
‘/-'nm( / J= A <Fl (2.21a)

(1) 4 /z'hﬁfZ— <ﬂ i @! U (Go 2()1"4/ B>

»%ﬁ+d(“/;7“r'“ P (2.21b)

m-A
12 = (A7 F <ALUE UGN
h ) el
P UG U GU (G 1> (2.210)

. ' Nt v A
1 = (< [ U 6, (6W)
§otaty P

(2.214d)

3oy
Qe ueucew Huky) (G JIE>

where .  denotes the sum over all different permutations of the

Green's functions Gn' The corresponding transition amplitudes are
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() a{zg’ ’“i f lﬂ
€ moted

()= KR\ Ga

Mt
(2.22)

(ei7)

K R? fué’l: 94: f[gf(ejt% e ;’”’) )

The leading order (2.21a) yields the expression

. 4‘:}”[;9 ‘ ) -l
O o[ 6T

}‘}H'?

R g TSN IR S WL

/

from which one obtains

A
)"

. (0) VN
#mm (h) = (w+a)l (2.24)

where
L) = - /2_f¢‘1f2 ({4 2) . (2.25)

Clearly, the summation over n with the expression (2.24) yields

the Glauber amplitude (1.2).

In the calculation of the correction terms the aldependence of the

Green's functions 3M’can always be dropped by integration by part
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<58 - g
2T g A g
J(G{ " e .Q}'(L) . (-9124- /L{(L) fd% € 1)(‘))‘{?’14((“) . (2.26)

a) First Eikonal Correction

The Green's function éi,(ﬁiiﬁ) can be inserted in n possible

()
ways into {ZHw, + Employing the notation

' 24 oy
[, Uthe,) felo, Utk - - - f 05, Uihey)
. L 4, s (2.27)
= ?’i, / '_L::l?d uu,e/,ﬂ = ;—’, (T th0)
and
IL@ ! l)?,,)fclg. 2((1’ ) - “"fah ZM%"’)
4
f’[ folre Utk 2, )] = ——[c (4%)) | (2.28)
where
oo o —4_
T, (42 + T (42) ;*gf'z‘,,[lfé,g) =T 3 2, 0) ’ (2.20)

the first eikonal correction takes the form



- ik -

A I A !
T = kr2(d) 2™ ) & ¢ ﬁ”’fd%fo“ -

’“ . € (2.30)
Z‘(//,)( m, (T, 1,4)) ’Z((Ae)g G :’f)Z{{Le)('rwe'})

from which by use of the relation

e 4 G( .ﬂ‘iw’i
> ' = L E (T 2)
((’i“’ﬂ)) Lhe) T () ‘4"“( B (2.31)
and eqs. (2.18b) and (2.26) follows
A.QL
i 'M? la (olr!
T ) = kr?a (id 2o [l &gt
2_ [[ T {(c ) e g g (232
b
1 y ‘h-bi-.-f,
27:?7:3’[% (7,60 e 20001 2l 04 ) Jf

After performing an integration by part in the z-variables the sum
in eq., (2.32) is of binomial expansion type and can be carried out

with the result

4} 2/ () i . -
121:(-!»4 ([’) = 4 (4 i ) - [ﬂll))

(-1)] ' ) (2.33)
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where

AT ) dT cé,_e)) ]
(

20 ) P .
7y - FE el War s (G5

By use of eq. (2.31) with 49= 0 and the relation
‘ - A :
oy lef Ulr) =b2 Ulr) ) (2.35)

which holds for spherically symmetric potentials, and integration

by part we finally obtain for the first phase correction

2/_7”,) = = é/zzf(//'f’é‘f%)fa(ﬁz 252(5,?) . (2.36)

b) Second Eikonal Correction

Second order corrections in -£n+4({;fq arise from terms with
one G2 -function and two Gi-functions. A new type of correction

terms already appears in the second Born approximation

2

202 = (%)2,(,2 U7 G (5 2) U0 (2.57)

: - -0y . .
Inserting the explicit form of GE[AIX ) and using twice the

eq. {(2.26) and the relation

LA S SR S PO
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dlulhl dwth) 4 dull dv (W

w— —— —

(5.’{ ‘T;}-;"”“U’))(@:‘).;"""U’j): AT A TR ah db (o,58)

one obtains for the transition amplitude

) . /.2'2 ) Z}, f..(f
7; (?) = KRZ -1 ‘TF:'Z 2” f"( f(’z?

JUUGD Al 4 o(a(h)dau, '
[ et (T ) O

(2.39)
le (41-1

_ % 2/—92 'Z((é’) 9(.’,91} 2((111.21) 7

The z and z' factors can be removed from eq. (2.39) by use of the

following relation (and a corresponding relation in the 2! variable)

. cor -
e YAV ne2 ol {baclbd
S;f,?- 2 _G(’_..;i"_?) 9(!!' ?;) o= - (,\[’2[(,“_4) 2 .__._.(_.._—-l 9( - J
e o b - oo
i d{u“ e 142) (2.140)
+ 2 o ; J(e- ')}
A b /

. . , . ( 7, 40
which holds for a spherically symmetric function AL bt

and follows from eq. (2.35) and an integration by part. The result
is

b 2 ey GROT

(2.41)

I
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where

of ol , vlz’%o(é)

4
W, (b) = zpz b b (2.42)

The second term in eq. (2.41) does not contribute to the scattering

amplitude as it involves the null operator of the Fourier transform,

that is '

> 458 ‘ —
fotll) S g (‘_’12,_92)[{(6) = , (2.113)

TN
which holds if Vi Jg{lJ satisfies the usual conditions for Fourier
transformation.
The second term in eq. (2.41) displays the cancellation of that
. . .;,4_-""2 S 2y . s N
portion which results from 79 ‘joﬁgx ) with certain terms which
result from ¢, (x,%*) . From this we conclude that, even at large

%72 y 3 [;:j”] can not be regarded as small compared with

The second correction term of the third order of the Born series

reads

[ oy () WA [G5 L0 6, (R
‘7_,/' 3 X{ X . .
(2.44)
+ Gy (BTN G () + G (XU 6, (;’;';_o]am)

which under the integrals in eq. (2.22) and by use of eqs. (2.26)

and (2.38) can be written in a form which contains besides 9-and

e e et e = ™ e o s e et e e s e
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n clm'ﬂ(é,e)
A 6™

a straightforward but rather lengthy calculation to remove

' -functions factors of the form 2 It is

(S
all z-factors from ﬁj (6} by use of eq. (2.40)., The result

is

{2} R ) 12 ,6) . (“ + (EZ_f?:z) (ﬂ: ZGUJ)?
£3 (L) = [.4, ZZUJ ) 0[ W, Ay 37 J (2.45)

)

where ', {(b) is defined in eq. (2.42) and

2-}00

P SRELY: B YONTE, d X
2, () - “%23%(/”% 45 deav_io(/eu(éé) J"rﬁ"l’(c{b )(2.%)

Finally a strict analysis of the second correction of the (n+1)«th

order of the Born series, similar to eq. (2.32), leads to the ex-

pression
)" (+ Lott)"
( (/‘LI C) w (L) -t DUJJ
‘ﬁf)v-l'lc )= [ /2/ LJ (n- 2)1 “e (-w--1)!
3 Syt A (2°&7)
(/L ,Z/ [5]) (4: ,2'0(1:)) +%£ﬂz E;”) (4,2’0( )) J
20 (m-3)! $ie Uy ,

where the last term displays that typical cancellations occur in

each order of the Born series.
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¢) Third Eikonal Correction

Due to the increased complexity of the third correction the
(3 i

calculation of ¢h*l

New types of phase corrections only appear in the second, third
and fourth Born approximation. By use of egs. (2.26), (2.38) and
the equation

c-ls..uu:} (/[3'1, ([;) n 3 aiuU» d“_u,—‘
ol b? 717 T b A

( (:1 Ld (.—’,‘, --{.Lf[}i) (('); C’) C-:b U (b))

: - o JLL(“ cl'lv'U’)
LA (E-A) 5 )

we obtain

1[ (t,‘) = 4 I_L f (b + 47?(?'* r_;_t)(.g,{,!(é‘;)’/

A oot (42, W) 002, W)
[( L) A ) = e k) F fm‘(? v (- )

11_,,

p"’“,) : [(“y*’“”)( b)) +(t1{u)( wilh) + i A gV

v?) C___“_ (t,Z(é.))]

* ‘u

with the phase corrections of third order

is rather extensive but straightforward.

(2.48)

(2.49)
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_ b) PR
4y [ 4BD g0 - Ll 2w ]

w,b) = 7 (2.51)
d A b

2”(1,) "' 2° (4+ e /’“Z' l’cuf* j’dﬁ)ﬁ"”ut ? e

2.52

B ob

With these phase corrections the third correction to the (n+1)-th

order of the Born series is expressed by

m~2

" ”»Zaa’) ( v{,?‘;(é)) o
TCEN) LA i)+ G2 )

-3 (2.53)
(}Z Cf)) (2 7,0) + w_(¢2(4))( 2y h)
W3

W) X, a ey (W) u,)]
P((.u—y))! 3 '”%l(q L) ol (n-1)! ( A0

Again typical cancellations under the integral in eq. (2.22) occur,

d) Summing the Born series

An important result of the foregoing analysis is that the impact

()
parameter amplitude fzn (L) differs from the Fourier Bessel

——L ()
transform /q, (b) of 7; C?) only by terms which involve
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the null operator glza-;%z of the Fourier transform (2,43).
This behaviour was confirmed in a few leading terms. There is,

(5)

however, a conjecture of Wallace that it is maintained in

general, i.e.,

(W)
ey ‘i) Z + - 2
</, ‘ }( 1)) = T ¢ (i)) v (vra ) h

(2.54)

for arbitrary m.

The Born series (2,14b) of the correction terms (2.33), (2.47)

and (2u53) can be summed in closed form

AL )
'7’”“)“)‘) - [ € («Z (h) — 7]

(2)

i

s e L, 2
gy = Z ét,?c(‘fi(,;{(m—wzfgp.@.‘5}_;__4”’))) _ /] (2.55)

1

< A’“”)(,L 2, 0h) - wy(h) 5 Sy Oh)

T%w
+ (2 2 b (L X b)) e 2 “’”) ]

As all necessary cross terms are present’exponentiation of the

various phase corrections is suggested, However in the calenlation
L)
of special terms of the fourth order e1konal correction ,fh*' (L)

I(L\, U;JJ éml_[@_

one finds the term — with a minus sign’which

(331" iy
. —————-—~_7 i, )
would suggest the factor fﬂf-h Q‘xu[gj instead of e o

Indeed, this behaviour is confirmed by considering the classical

limit (Jt 4’01 K~2¢) of the scattering amplitude (8). Thus we are
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led to the three phase corrected eikonal amplitudes

Tt - hE [ oo Tatn

where

. [ 64'(23(4’)* 2/-‘1(“)—_ 4‘]

L) 2, ) A b))
Tz ) = /’:[ € N PRI R U 7]

FOACRYALM L)+ 1)+ Filb) |
T )= ALC Ny /Ry YT Ry

— 4<;7 |
1

which systematically add k -, k“Q— and k-3~corrections to the

eikonal amplitude.

3. Numerical Comparison of Eikonal and Exact Amplitudes

Analytic forms of the eikonal phase and various phase corrections
can be obtained for exponential, Yukawa and Gauss potential. The
phase corrections explicitly vanish for the Coulomb potential. It

is a simple task to compute the impact parameter integral (2.56)

(2.56)

(2.57)

(2.59)



with the Glauber approximation 7;:(L) and the improved re-
presentations IIIL), [Elé) and TEZ(b) .
In this section we compare the resulting amplitudes with partial

wave calculations for the exponential and Yukawa potentials. We

choose a system of units where Fo=c = 2M= 7

a) Exponential Potential

For the exponential potential

the various phases are expressed by standard integrals (9). The

Glauber phase is

Joh) s = 24 kAR

where K;H 0y is the K-Besselfunction of n-th order, and the

phase corrections are

/'z’,]u_,}-: —.%Z( bk, (26) - 21;'1-/(0(24.))

3 . e S L . +..i 4 ) . Y 3
F )= ':‘27 ( (135 b K, (30) =62 H(38) + 5 b7 (Huh)) )

(3.1)

(3.2)
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’ - :  B2ZLH, (4
ACEET S G ST B R AL

i it

16 10K, (48) + (3h /»focu)—24%,(24,))19?(;(9(;;)2)

’ 12— 53K (6) KaLh)
wz(z»-:%ff(w(kow} b Hy 0 Hath) (3.3)

g A bE(2% Ko lh) Mo (2D + £ K, () Kot2b)
Wy bl =7 53

24 Ko lb) K, (20— 66 Ho(28) Iy (4] + 4 67 K (6) K,(24))

Y4 p (Kb —bbRy2s) + ShTK,20) )
g, =~ A L b(kep-saketn) - )

In our first numerical example we choose the parameters VO = -12,

- I/
R 1 = 1.45, K = 5 which are those of Berriman and Castillejo (*).

' a2
However our amplitude differs from their by a factor of (2}7}*}4 .
The expansion parameters are

24 ooy -
9 = - T b o= (29 , (3.4)

Berriman and Castillejo showed that for these parameters the simple

Glauber amplitnde is not worse than the correction amplitudes of

(3)

Saxon and Schiff and Blankenbecler and Sugar. In figs. 1 and 2

the Glauber amplitude 7é and the phase corrected amplitudes 'I‘I ’
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TII and TIII are compared to the amplitude of Abarbanel
and Itzykson (2) and the partial wave calculations Tex .
The figures clearly show the bad behaviour of TAI at large
angles, The phase corrected amplitudes are systematically

improved at large angles and converge to Tex for both real

and imaginary part of the amplitude.

A similar comparison is made in figs. 3 and 4 for the parameters

~ 4

R R A ] (3.5)
29 !
Even in this case where k is not very large compared to 1 the
convergence of the phase corrected amplitudes to the exact

amplitude is surprisingly good.

b) Yukawa Potential

The eikonal phase and phase corrections of the Yukawa potential

o= € Y €
l (f/fj - © 17,? it [ }Z‘L"f_%z 1 (3.6

(5)

are expressed by standard integrals. One obtains

1, ) = ~24 K, )

. Z¢ 9§
Y- 2g Kt
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y i o o . b C43
Xb) = -3 f,_(_*’ (ko - 5 Koo~ (K ))

{

K (o) + 26 1,120 ( k,,u,))z)

: 29076 4, -
Y- 7 (5 ket

c‘

| 2 e i e (b
N N ST N T
wolb) = _-f—g- b (Ko (W) I, 028) + 2R (28 )

)= ~f -ff-f (K (260 + 2h K, (24)) b

Figs. 5-8 show the real and imaginary parts of the various
eikonal scattering amplitudes corresponding to the expansion

parameters

- A

and

¢. 2

o
1]
1
-
=
0

The parameters are those of Byron, Joachain and Mund (10) in

their figures 1-4. The examples are high energy problems for

which the Born approximation does not dominate. For comparison
the amplitudes TB2 given by the second Born approximation are
displayed which yield a very poor result. The phase corrected

amplitudes converge very well to the exact amplitudes for both

(3.7)

(3.8)

(3.9)
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real and imaginary part of the amplitude. The already quite

good Glauber approximation is systematically improved at all

angles.
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Figure Captions

Fig. 1, The real parts of the scattering amplitudes for an
exponential potential of the form given in eq. (3.1)

.-
with V= -12, R - 1,45 and K = 5 (,2==—35 , ¥ ﬁ=azg),

29 i
TAI = Abarbanel-Itzykson, TEX = partial wave, TG’ TI,
T and T = Glauber and phase corrected eikonal amplitudes.

11 111

Fig., 2, The imaginary parts of the amplitudes of Fig. 1.

Fig, 3. The real parts of the scattering amplitudes for an

exponential potential with Vo = -b, Rm1 = 1,45 and K = 2.5

(2=-%  p'=052).

/

Fig. &4, The imaginary parts of the amplitudes of Fig. 3.

Fig. 3. The real parts of the scattering amplitudes for a Yukawa

potential of the form given in eq, (3.6) with VO =<5, R =1

and K = 5 (4= -0.5, k"' = 0.2). T, = second Born

T T = Glauber

approximation, Tex = partial wave, T ' 17

G’

and phase corrected eikonal amplitudes.
Fig. 6. The imaginary parts of the amplitudes of Fig. 5.

Fig, 7. The real parts of the scattering amplitudes for an

exponential potential with Vo = =10, R = 1 and K = 5

1

(1= -1, K" =0,2).

Fig. 8., The imaginary parts of the amplitudes of Fig. 7.
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