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Abstract

The cross sectlon for slngle hard photon brerasstrahlung in Rhabha scattering

1s presented, and Its main qualitative Eeatures are revleued. Subsequently the

structure of a Monte Carlo event generator Eor Bhabha scattering at T.EP/S1.C

energies Includlng all one-loop electroweak correcClons 1s dlscussed, In wtilch

t he results on the %-lriual and soft photon corrections In tlie fLrst paper of

this set are Incorporated- Final ly a nurober of nuraerlcal results ls presented.

l. Introduct Ion

Tills paper ls the second one of a pair deallng wlth the detalled predic-

tions of tlie Standard model of electroweak Interactions [1] In the process of

Blidblia scattering. In tlie flrst paper ([2] , herafter reEerred to äs I) tlie

phenomcnologlcal Iniportanc.e oE thls process was dlscussed In some detall. The

au Chors presented expressions Eor the cross sectlon for

In wlilch all one-loop corrections arlsing in the Standard model were Included,

.iö well .iy brcmsatrahlung of a soft photon, I.e. ulth an energy not exceedlng

a (sm.-i 11) vdliiü AE . Thls cross sectlon, whlch ls bot h ultravlolet and in f ra-

re ei f t n l t e , Incorporates all 'Standard' weak eEfects, and would In prlnclple

also be the quantlty In which 'new-physics effects' in thls process [3j are

moat Ilkely to show up (an exceptlon ts the case of the exlstence of an exe1t-

ed electron, e*, wlth mass sraall enough to be produced at a given energy: this

would moat clearly be seen äs an eey or eeyy event [4]).

Coraplete äs they are, the results of I are not enough for a successful

plicnomenologlcal t reatmen t: the efEects oE \\ard photon radlatlon have to be

adequately included before a SuccessfuL predlctlon is posslble. Restrictlng

ourselves to the one-loop level, this means we have to k.now the cross sectlon

' i r

Y(k)

wliere the photon ha s an energy greater tlian AE . Once the ingredlents (1-1)

and (1-2) are available, we still are not finished: 1t remains to Integrate

tliese crofis secllons over tlie phase space admltted by a glven experiment. As

soon äs a 3-body radiative final s täte ls Involved thts also becomes a higlily

nontrivial problera. The a Im of the present paper is therefore threefold. In

the Elrst place an expressfon for the cross sectlon for (1.2) nmst be presen-

ted in a form which ls äs simple äs pössible, and its qualitative Eeatures

roust be well understood. Second ly, tliese results must be cornblned wlth t hose

of I In such a way t hat they can be sultably Integrated over phase space: L he

Integration procedure raus t be bot h accurate enough so t ha t the one-loop ef-

fects can be sLudled, and flexible enough so that all klnds of experimental



restrictions can be iraposed on t he data- The optimal Integration technique

seems to be tliat of Monte Carlo Integration by Iroportance sampling, uslng a

multi-channel approacli where each channel is dominant In one kineraatical Situ-

ation. Finally, a number of numerical results are in order: apart from being a

reference for checking purposes and an example of the method, these will pro-

vide estimates for the radiatlve corrections whlch will approximate those made

for a very concrete, specific detector set-up. The lay-out of this paper i s äs

follows. In sect. 2 we discuss the multi-differentlal hard-photon cross sec-

tion and present an expression valid tn all ktneraatlcal situations of Interest

in Bhabha scattering. In section 3 we sketch the Monte Carlo approach and draw

up a list of ingredienta needed for this technique: we subsequently set out to

supply all these ingredients. Sect. 4 deals wlth the cross-section (1.1): äs

will be shown, this is the simples t ingredient from the pol n t of view of Monte

Carlo Integration. In sect. 5 we discuss the 4 dlfferent channels into which

the hard-photon cross section (1-2) can be spllt, and in sect. 6 the approxi-

mate cross sectIons valid in the kinematical regions where each of these chan-

nels dominate, together wlth the Integrals of these approximate cross Sections

over the phase space. These results lead dlrectly, in section 7, to the derva-

tion of numerical algorithms to generate randora values for the various phase

space variables. (Appendix B is devoted to a discussion of the structure of

the Honte Carlo program which ue have developed with these results.) In sec-

tion 8 we discuss some canonical cuts [5] appropriate for Bhabha scattering,

and present numerical results for these cuts.

Finally, a Honte Carlo treatment of mupaLrs can be obtained from the

Bhabha case by omltting the t-channel contributions and by introducing muon

masses. Such a muon event generator has been constructed.

2. The hard-photon cross section

In the Standard model, the radiative process (1.2) is described by L6

Feynman diagrams, depicted in flg. l (äs is usual, we neglect the diagrams

containing a Higgs boson exchange, and also the q q part of the ZQ propa-

gator: these give contributions that are suppressed by powers of rae/E). Rela-

tive ly simple expressions for this cross section, valid in the high-energy li-

mlt, have been known for some time. In ref. [6] the first of these was intro-

duced: these results were subsequently fürther developed by the CALKUL colla-

boration [?)• Particularly noteworthy is the fact that a factorlzatlon of si-

milar nature äs in the soft-photon limit occurs: the cross section can be

written äs a sllghtly generallzed form of the nonradiative cross section,

tlmes the well-known "Infrared factor" whlch describes the various infrared

and collinear s ingularlties•

In ref. [7] the complete expression for the cross section e e -» e e y

including a Z with flnlte width was given, in terms of vector products of the

particle momenta. As discussed at length in [8] a better way to handle these

processes seems to be to evaluate heltclty amplttudes using spinor products- A

numerlcally well-behaved, and very corapact form for the araplitudes, and the

one wc shall use in the following, was given in [8]. In that paper, emphasis

was on the correct treatment of the coraplex phases of the various helicity am-

plitudes, so that arbitrary beam polartzatlon can be taken into account: here,

we shall restrict ourselves to the case of unpolarieed beams, and consequently

the coraplex phases are of no iraportance.

Our expression for the squared matrlx eleraent, summed over the final

state spins and averaged over the inital state splns, 1s

(2.1)

Here the M^ are ehe twelve helicity amplitudes that do not vanlsh in the high-

energy limit, and W is a factor incorporating the more complicated behaviour

in situations where the photon is collinear to one of the ferraions- Up to an

irrelevant overall complex phase, the M^ are given by

= U'[E++(S')V

E_(s)v

s'[E_+(t')vp+
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also accounts for tliose helle!ty amplltudes t ha t ate neglected in the high-

energy llmlt). A more detalled dlscussion of these points can agaln be found

in [8]. If we evaluate the cross Seet Ion äs Indicated above, taking care to

handle correctly small values of p'k , the result will descrtbe the process

(1.2) up to truly negligible terras everywhere in pliase space except when s',t
T

or t' are of o(m /s) . The first of these cases will be treated later in thts
v e

paper: the lütter two, corresponding to situatlons where e or e~ are scat-

tered over angles of order rae/E ~ 10 degrees, are outslde of the scope of

this paper; they are for instance discussed (in the context o i: single-photon

events) In refs. (9j- The square of the matrlx elements can of course also be

written in a more conventional form, in which no spinor products are itivolved,

but only vector dot-products. This result, which 1s of course very sitnilar to
L _ J_ _

Ehe one for e e •» e c y given tn ref. [7], although a blt more systematlc and

compact, is given Tor completeness In Appendix A.

How a short discussion of the phase space is in order. The 5-dlmenslonal

phase space e lerne n t dl 1s defined äs

,4,

Various chuices of phase space variables can be made; we shall use three dif-

ferent alternatives. First,

g- dq°dk°dQ+d* (2.9a)

where q+ is the e+ energy, ß its solid angle, and $ the y azimuthal angle

around the Q direction, everything being defined in the lab frarae; then,

, U I_J_

k q

= dk°dß dQ ,
ii7ri7_i.°l Y +

(Z.9b)

where k° and Q are the photon energy and solid angle in the lab f r a m e , and E

is the beam energy; f inal ly,

where Q is the p roduc t i on solid angle of the e+ , now d e f i n e d in the centre-

of-mass Erame of the outgotng e+e~ pa i r . Thus , the observable cross section is

given by

d5o = --V- |H|2 d* . (2.10)

Before conclading tlils section we want to summartze the main qualitative fea-

tures of the cross section (2.10). These are:

(a) infrared peak; the cross section diverges for k •* o äs l/k° . Since k° is
-3 -2

defined to be larger than AE , uhlch is typtcally of order 10 - 10 of

K, there is no real slngularity: nonetheless the cross section varies over

several ordurs of magnitude äs a function of k°-

(b) o)l_linear peaks: If ttie angle between the photon and any of the e* dlrec-

tions varies from zero to order l, the cross section changes over typical-

ly 10 Orders of magnitude (5 Orders of magnitude between zero and •2

degrees!)- ThLs wild behaviour calls for a careful treatraent of the photon

emi ss ion angles.

(c) low-energy peak: if the Invariant rnass of the outgoing e+e- pair goes to

zero, the s-channel photon progapator blows up: therefore the photon spec-

trum is rather wild at its high end äs well.

(d) forward peaks: äs in the nonradlative case, the cross section rises äs

either the e+ or e~ scattering angle decreases. In the bremsstrahlung case

the cross section in fact reraains finite for zero angle; on the other band

the Forwnrd pcnks Tor the e+ and e" no longer coincide owing to the 3-body

kinem.itt.es. AIttiongh we shall not deal wlth the aero-angle case here, the

cross section increase over 3-4 Orders of iwignitudc tn an angular ränge of

10°- 170° again calls for careful treatment.

3. The Monte Carlo approach

We now comc to the second part of the problem, naraely the Integration of

the cross section over the allowed phase space. There are two goals that have

to be attaLned. In the first place we want a numerical result for the total

cross section, containing äs rauch äs posslble of the experimental cuts. For

the nonradlative cross section which, due to the 2-body klnematics, depends

cssentlally only on thi? scattering angle 9 , this is a relatluely simple pro-

blem which can be solved by about every posslble nuraerlcal Integration tech-

nique (and posslbly even analytically)• The radiative cross section varies tn

four dtmensions, r a ther than one and behaves wlldly, äs we have seen. This,

together with the necesslty of folding in the experiraental cats which are



seldora simple in terms of any seC of phase space variables, indicates that our

nuraerical technlque has to be that of Honte Carlo Integration. In the second

place, for purposes of analysis of the experiments it is deslrable to have an

event generator for our process, whlch yields events that have the correct

dlstrlbutlon, and (a no less Important requireraent) are independent of one an-

other. In our vlew the most sensible way to archleve this Is to use Importanee

saropling [10, 11]- Alternative methods, such äs the use of antlthetic variates

whlch rely on arttfIcial dependences between subsequent Monte Carlo events, or

stratlfied s.impllng, whlch only works if a mlnlmum number of events i s

requlred, and their distribution is artificlally uniform due to the st rati-

ficatIon, seem not to correspond in any simple way to the event-by-event inde-

pendence, anii the statistical fluctuatlons to be expected, in the actual expe-

riment. Our approach is äs follows• The cross sectlon to be integrated con-

slsts of the hard~photon cross section (2.10), taken over H, the allowed phase

space for eey events, and the soft-photon cross sectlon:

dc
(tlie result of 1)

defined in the soft reglon S, I.e. the phase space allowed for elastic ee

events. The result for the total cross section can then be wrltten äs follows:

d2o d5a

The technlque of. importance sampling now consists of finding a number of (re-

latively simple) functions f,(<t>) of the phase space variables such that the

hard-photon cross sectlon 1s more or less approximated by a sum of the f^. The

f. are called the channels- In other words, for sorae a, the wejjht

should not be too different from a constant over the whole phase space of in-

terest. In our case eacli f^ describes a different set of the pe.iks in phase

space, and is simple uhen expressed in different phase space variables- The

numerator in eq. (3-3) is essentially just the matrix eleraent squared, sumraed

and averaged over the spins: common factors in d o/d^ and the f^ can of course

he disreg;ird(_-d. The i ntegral (3.2) can now be rcwrltten äs

(3.4)

llaving thus split up the integral in separate pieces we proceed to choose In

each integral a particular set of variables * which makes the integral

simple. We shall use 4 different channels for the hard-photon events: we can

now Interpret the soft-photon contribution äs a fifth channel, and write

(3.5)

Here *,. is the 2-diriens lonal Q , and the other A are 5-dimensional. A. (.s the

appropriate Integration reglon in each case, and f ($ ) = d o /dQ äs given in

eq. (3.1).

When we choose the E ((fr ) carefully enough, the Integrals

can be calculated without problems to great accuracy. Our Monte Carlo approach

now consists of the following steps- First, the o are coraputed under some set

of reasonable a-priori experimental cuts, such äs a miniraum scattering angle

for the e and e . The second Step, which can be repeated äs often äs de-

sired, ts the generation of a Monte Carlo event. To this end, first a channel

i s chosen in a random way, with the probability of channel i being picked

eqnal to

then, a set of random phase space variables <fr. 1s generated by the so-called

iHL subgenerator such that it i s distrlbuted according to the probability

denstty ti($,)/a, > finally, the event wetght w($) Is computed using eq.

(3.3). After tlie desired nuraber N of events has been generated, the exact

cross section is estimated to be

(3.8a)
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where the surn runs over ehe Monte Carlo events, deftned by $. . The error es-

timate on ehe result 1s given by [10]

N

A few remärks are in order here. Firstly, In the Simulation of experiments it

Is often destrable to use unweighted evencs. Thts can be achleved by applying

the followtng rejection algorlthm: let Wg be the supremura of the wetghts W,

and take a random number v , equidistrlbuted In [0,1). Then If w($ ) > vW
K S

accept ehe Monte Carlo event $ , eise reject 1t and try the next event. In

case Wg is not known beforehand any value larger than the largest observed

welght will (lo- In thls way an unblased sample of events 1s obtained In which

the welglits can be taken äs unity.

In the second place, the welghts w(<fr, ) are only well-behaved if the f.
5

are chosen carefully enoueh, so the qualltive features of d o äs dlscussed
eey

in the prevlous section will direct our cholce of f^ •

In the tlilrd place, ehe a-priori welghts a are in prtnciple arbitrary äs

long äs Chey are positive: for N •» <° the Monte Carlo estlmate (3.8a) will con-

verge to the true answer for any choice of a. . For flnte N, however, the con-

vergence, dependlng on ehe varlance of ehe welght w, will depend on the a .

Thls glves us a handle to "tune" the relative strenghts of the subgenerators

so äs Co optiraize the convergence somewhat. A perhaps more useful properey of

ehe a is that a subgenerator can be "swltched off" by putting ehe correspon-

ding a, Co zero: ehe channel will then never be chosen. In partIcular, if

a = 0 , only eef events «111 be generated. If a kinematical configuratlon 1s

known to be rulßd out by the experimental cuts, the channel dominat ing In that

configuration can be suppressed or swltched off. This can be done provided

that w 1s se t equal to zero In the 'unwanted' sltuations, so äs Co avotd ehe

occurrence of huge w values. Thts leads to ehe last and nicest aspect: experi-

raental cuts can slraply and directly be applled by setting u = 0 if the evencs

are outside ehe cuCs.

The above discussion is of course also appllcable to other processes ehan

ee -* eey • ̂ e sha11 now start to focus on Bhabha scatterlng. As mentioned, the

followlng ingredients are needed for our Monte Carlo treaCraent:

(1) approxtraate cross sectlons f^ and the approprlate sets of phase space

variables In whlch to wrlee thern;

(11) analytical expresslons or numerical results for the Integrals o
l '

(iil) algorithms to obcaln the phase space variables t from random nurabers

equldlscrlbuted between [0,1). We assume these laceer Co be given by

sotiK' Standard (pseudo-)randora number generator [10], and only need to

find the appropriate mapplngs.

In the nexC Tew sectlons we shall discuss these points In detail.

4. The soft-photon cross section

Ue start our discussIon of the various channels in Bhabha scattering wich

the elas tIc scaitering process (1.1). The calculation of the complete one-loop

corrected formula for this channel, described in I, is very noncrivial; on ehe

other hand, fron ehe poinC of view of Monte Carlo event generation thls chan-

nel is ehr .s i mp lest. In parcicular, since it describes a Cwo-body final staCe,

t hure is in ttio absence o t" Cransverse polarizaeion ouly one nontrivial kinema-

tical variable Co he generated• Also, ehe complete formtila for do/dÖ presented

in I ts analytically very complicated: but numerically the result is a very

smooch funccion, with no scrong peaks other than the forward peak already pre-

sent in ehe Hörn approxitnation- For Chese two reasons a simple approach can be

used, which we shall now discuss. Let us define the following function of one

variable

F (x) = ̂  (cos6 = x) ,

where the right-hand side denotes the result of I. In terras of Computer pro-

gramming, F (x) is a function subprogram containlng all the formulae of I. In

the present paper we consider this subprogram äs a black box, with one input

variable x = cosQ (other variable quantitles such äs /s . m , m etc. are
z w

assuraed Co be conscancs whose values are fixed throughout the Monte Carlo ge-

neration). We do not consider the detailed form of F (x) , ocher than to note

that for x closs to l, Fc behaves roughly äs (l - x) , and that around the

Z° resonance the coraparatively Isotropie s-channel distribution ts strongly

enhanced. The evaluation of FC(X) ts speeded up by several ordes of magnitude

by the use of an Interpolation scheme; we first evaluate F (x) at 40 equi-

dtstant points in the tnterval from cos9 to cos(20 ), and 20 equidistant
max

potnts in ehe incerval from cos(20 ) Co cosö . After thls, ehe value of

F„(x) ts determined by a form of cubtc spline Interpolation. This means that
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photon reglon- In the hard-photon region whlch we shall now discuss, another

strategy will have to be employed.

We finish. thls sectton by pointlng out Chat, since we know the exact

value of the soft-photon cross section, and the elastlc events (1.1) will be

generated with the correct angular dtstrlbution, the event weight from thls

cliannel 1s just constant:

ilere d is the a-priori weight assigned to the soft-photon channel, äs dis-

cussed in the previous sectlon.

5. Channels for the hard-photon cross sectlon

Because of both tts multidimensLonality and tts peaked structure, the

hard-photon cross sectlon discussed in sectlon 2 calls for a slightly more so-

phisticated treatraent than the soft-photon one. Upon studying the 16 Feynman

graphs of flg. l it is clear that we can distlnguish several groups that dorai-

nate the cross sectlon In dlfferent parts of the phase space. These are:

jhannel l (a,b): inittal-state radlation Ln the photon s-channel • These

graphs give rlse to the low-energy peak (c) of sectlon 2, and dominate

generally if /s < m , especlally if the photon 1s emitted at small

angles.

channel 2 (e,f,g,h): final-state radiatlon. Thls 1s Important If the photon

1s close to the outgolng e or e~ , and domlnates if /s ~ n , at large

angles of the e , e~ .

Channel 3 (c,d): inltlal-stäte radiatlon In the Zn s-channel. This is slrailar

to channel l except that it tends to yteld e+e~ palrs with mass - m

For /s > m it dorainates at large angles.

channel 4 (i,j,m,n): t-channel radiatIve scatterlng. This dorainates for all

/s at small scattering angles oE the e or e~ , and is descrlbed by QED

only.

The remalning diagrams (k,l,o,p) and the Interference between the various

groups of diagraras are nmch less important, and are taken into account in the

weights assigned to the Monte Carlo events, descrtbed in sect- 3. 1t is the

distribution oE these event weights, obtained in a Honte Carlo run, that ulti-

15

mately just i fies our choice of channels; however, that the aboue split-up is

reasonable can be argued by simply looking at the various propagators.

We shall now proceed to derive the various approxiraants f^. First of all

we remark that tlie mass cffect factors Wm of eq. (2.1) will be incorporated in

the event weight: so for the raoraent we raay neglect me . For massless elec-

trons, simple expressions are available [7] for the spln-summed/averaged

squares of the various subsets of diagrams• Denoting by M. the set of diagraras

in cliannel i, we h.ive

2 ,2 2 ,2
t + t + u + u (5.1)

2 '2IM, 2 = -r—^--^ [ ( t z + t-S u*+ u '
' 2 s [q 'kJTq 'M L V

(eV 2v2

' 2. ,2 2 , , 2 iu + u ' - t - t l

B(s)
(5.2)

r f 2̂ _ 2-, , 2. , 2A 2_,_ ,2-
TT [(v + * ) (t + t' + u + u'

2 2 r 2, (5.3)

,M ,2 e , 2 ,2 2 ,2U
M, = i - l s + S + U + U l' ;Lt t

t (5-

i lere, B ( s ) Stands for the ZQ rcsonance shape:

We proceed to m o d i f y eqs- ( 5 - l ) - ( 5 . 4 ) in order to a r r ive at the a p p r o x i m a n t s -
2 2 2 2 2 2

To thls end we first note that t + t ' + u + u 1 < s + s' in the whole phase



space. Also , in eq - ( 5 . A ) the fou r terms in the last factor (wlth s , s ' , u and

u 1 ) which descr lbe the InterEerence between r ad i a t i on frora the electron l ine

and posi t ron line can be expected to be small whenever channel 4 is impor tant

( i .e . e+ and /or e~ at small angles). Apply lng thls we arr lve at the fo l lowlng

a p p r o x i m a n t s :

Accordlng to the prescriptlon given in section 3, whenever a Monte Carlo event

1s generated in channels 1 ,2 ,3 or 4 its weight wil l be computed äs

The next s t ep is the computat ion of the croys sections o co r r e spond lng to

the various cliannels- This we shall do in the next section.

6. Boundari.es aod Integrals

Before we can calculate the in tegrals ö ( 1 = 1 , 2 , 3 , 4 ) of the approx imants

A, we have to choose those phase space eleraents d* that are most appropr ia te

for each c h a n n e l . These are: eq . (2 .9 a ) for A 2 , eq . (2 .9 b ) for A ^ , and eq .

( 2 . 9 C ) for both A j and A ^ . Also we wi l l have to take the nonzero value of the

electron mass me tnto account in the products p ± -k and q + ' k , since we are

golng to in t eg ra t e over the collinear peaks.

Tlie m u l t i d i f f e r e n t i a l cross scction for channel l can be « r i t t e n äs

4n s
dz d^

, e = l + — m , r a = m / E ,

where k is the photon energy k° norraalized to the beam energy E , and z is
-* -» -t

the cosIne of the angle between k and p and $ the azimuthal angle of k
-t

around p . Tlie only nontrivial integrals are those over z and k: we obtain

-- «n 4 [H.(k ] - H](k )J ,
l s 2 L l l max' l v o' J

(6.2)

H e r e , k() is A K / E , i . e . the m i n i r a u m va luü of k, and kfflax i s the maxi raun va lue

of k that wo w a n t to al low in the M o n t e Carlo event sample. A d i f f i c u l t y

arises if we do not w a n t to icnpose an u p p e r bound on k: H ^ { k ) diverges äs

k -» l - In real i t y , the endpoint of the photon spectrura behaves äs [ 13 ] :

. . do. . -1-2 -2 L
L l t l l a l

k-* l d~k " " l-k

racher th;m äs (l - k) l , for finite rae . We solve this problera by defintng

an effectlve supremum Xgu such that o. with kma = ks has precisely the

correct area under the photon spectrutn curve. This value turns out to be

Uslng this value, we ensure that the total number of events eey with very-low-

Invarlant-ra.Tss ee pairs will be correct. The angular distribution of these

pairs in thei r_ centre-of-mass frame will not be correct: but for patrs of such

extremely low raass this i s unimportant.

Channel 2 is most easily treated by noticlng that the expression (5.7) is

Symmetrie in q+ "-' q_ . Provided that in the Honte Carlo generation of events

we apply t h L s symme t rizat ion, we rnay write

6 4 n

( 6 . 5 )
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w h i - r i ' x is f . l i i > (um [ t ron f t icrgy q in uni ts of E . A d e r i v a t i o n of the expres-

•^ i im ?! ' ,~ ( l - \ ••>) (oe < ( _ • k can f o r i n s t .T nee be f ound in [ 1 3 ] . I n t e g r a t i n g

()<. ! • r ( t . : , uu l dt , <md o vi' r x !~rora t In: k i n e m a t t c a l l imi t s l - k up t o l , we

Tor t l u ' t . ' j t . i l cross sect ion between k = ko and k = kmax:

8n

wl ie r f \,\2 d i ' t i o to s thc d i l o g a r i t h m f u n c t i o n . It should be noted Chat ^ (k ) re-

mai ns f ini ti> ns k -* l : f o r consis tency reasons, liowever , we s ha 11 always use

at most k s [ l [ ) as d e f i n e d in eq . ( 6 . 4 ) in H ( k ) äs well.

Charme l '3 d i f f e r s f rom channel l only in i ts O v e r a l l f a c t o r and plioton

spec t r u m - Uc l iave :

._
/

64it s »2o,2ll 2 2) +Y jk e - z

(6 .8 )

w t i ich caii be i n t e g r a t e d over diJ<t2 t o give the photon spect r u m

Jln

8n s

and the total cross section

m k[(k-O +
(6.9)

i ! 3 (k) = l^in k + I h 2 !n[(k-£) 2+ Y 2 J +• h- jarctan (-— ) - k

h, =

-l

T.ike 'I-, , n-j is regulär for k •» l . Due to the presence of the two raass scales
~2

K and m in t l ie spec t rum, its f o r m is q u i t e compl ica ted; for a d i s c u s s i o n , see

T o r i n s l - i n c e r e f s . [ 1 4 ] a n d [ 1 5 ] .

Our t r c . i L r a u n t of channe l 4 is e s sen t l a l l y the same äs was g iven for pure-

<JI£D Bhabha sr.a t t e r lng in r e f . [ 1 5 ] . A g a i n , ue praploy the symmct ry of eq. ( 5 . 9 )

ini t l iT the in te rc l i ange of e lectrons and pos i t rons to retain on ly the terra w l t h

t ( p _ ' k ) ( q _ * k ] j , and f i n d

whi1 r o z i s L he cos Luc o i angle be tween k and p, , and c t hat of the angle

between k and q - In thls channel the most complicated Integral is that over

ü rathcr tlian over k . It is most simply and elegantly solved by applying the

Feynman integral paramet rization, which introduces one additlonal dimension

into the integral. This is described In detail in ref. [15]. We end up with

so t ha t

L6a
- [ H , ( k ) - H , ( k ) | [F (cos6 . l - F[cos )] ,

' - j ' i ' r m v ' /i \' J t, V t*i 1 n ' ^ i n a v ' - 1 '

Ibis integral f orces us to include also Clie mi nimurn and maximura allowed

scacterina anales 6 . äs a-priori cuCs on Ehe phase space: which leads to
riLn.max

tl\ following obsoruaCion. In all channels, k appears äs one of the Integra-

tion variables, and consequently a-priori cuts on k are easy: no generated

Monte Carlo event will have k < k° or k > kmax . Houever, c appears äs an In-

tegration variable only in o. . Therefore, some events generated in channels

t, 2 or 3 will have c > cosÖ or c < cosO . Moreover, since in channel 4
min niax
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we are only ablc to restrict the direction of q , not of q_ , also q_ will

soraetimes fall outside of ehe adralssible ränge. Slnce no peak of the cross

section is associated to such events (remember that the peak for t* -* 0 1s

obtained afterwards by symmetrlzatlon) Ehe number of these events, which of

course have to be rejected, is raodest.

At thls polnt, several of the Monte Carlo ingredients have been obtained.

We have approxlmants Aj^ , and the total cross sections o corresponding to

them. Also, the exact rnatrix elernent can be calculated äs soon äs the moraenta

q^ , q_ and k of .1 Honte Carlo event are specified- The last necessary part ,

the algorithms to obtaln these values, 1s discussed in the next section.

7. Generation algorithms

We shall now discuss the methods used to generate Monte Carlo events,

that is, a set of phase space variables appropriate to the particular channel

(1-4) chosen, distributed randomly with probability densities proportional to

one of eqs. (5.6-5.9). An excellent review of methods to generate random vari-

ables with a spectEied distribution is given in [16]- We assutae the existence

of a source of satisfactorily random real numbers equtdistributed between on

[0,1): in practice we use the CERNLIB routine RN32 given in [10]. These num-

bers are subsequently transformed by mappings and rejection procedures so äs

to ensure the correct distribution. The above random number generator can of

course be replaced by any other generator in which the user has confidence,

without changing anything but the statistical fluctuations in our results- As

in section 4, we shall denote the above random numbers by p .. . .

We now list the vartous algorithms; for proofs that these do give the correct

distributions we refer to [11] and [16]-

Channel l

The photon spectrum is generated by a combination of mapping (to obtain

the two peaks for small and large values for k) and rejection (refining the

distribution äs äs to have the correct factor 2- 2k + k'):

-l

k = [i + exp(- in
k k ll-k l
o max o

P An __, r)
l-k l k ll-k 7

o o max'
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WL = (l + (l-k)2)/(l + <l-kQ)2) ,

if w < p try again •

The boundaries ko and km on the k-spectruai have been defined In sect. 6- The
2 2angular variable z requlres only a simple mapping. Using E = m /2E , we have

e + p
2+e

z = l - v , s = [v(2-v))'S ,

if p,> \ replace z by - z

(7.2)

It should bi? noted that due to the smallness of E (about 5.10 lä at LEP I

Y
energies), t)ie typical value attained by

make the comp

genernting not
Y

is very close to i. This would
2

, = >i-z+ r
which is typically small (median about

make the computation of s = sin ^ (k , p^J = /l-zv numerically unstable. By

/2e) the .iccuiMcy of s is iraproved by quite a few digits. The other variables

are obtatned trivlally:

(7.3)

whcre $„ and 0 are the two Euler angles of the outgoing e+ in the e+e

c-m.s.: since these angles are trivially distributed their orientation ts ir-

relevant, and we take 9 = Q to correspond to the positive z-axis. Frora the

flve variables k , z <L , cos6 and $ the füur-raoraenta q^ , q1^ and k11 are

easily constnicted, and can be used to compute the matrix element. However

some care 1s neeessnry in the comput.Ttion of p «k , p *k and W stnce there

slgnlficant cancellations are to be expected- We tackle this problern in two

ways- Firstly, the factors s(p,k)|2/(2p'k) In Wffl in eq. (2.7) were neces-

sitated bec.mse s(p.k) and p*k do noc behave in precisely the same way in the

collinear Situation k//p . We are, however, not interested in the squared

raatrLx eleinent (2-1) itself but only in the weight functlon defined in eq.

(3.3). ThereEore, if we replace the denominators (p+'k) and (q -k) in eqs.

(5.6-9) by j |s(p+, k)| and -^ s(q+, k)| in the computation of the weight.
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o k max o

(7.9)

if w, < P0 , try again
4 /

The cosinc c of the angle between q and p is obtained via a sirailar rule:

c = i - Lp 3 i i - cose n i l n j +

l-c>

i ~~ L
-l

if w < p. try again

while the corresponding azimuthal angle $ 1s again trivial. The algorithm for

the photon direction is more coroplicated, since Its dlstributlon peaks for

both k//p_ and k//q_ (cf- eq • (6.1L)). As explained in [15] we solve this by

the Feynman trick, by whtch we wrlce the distribution of the photon solid

angle äs a superposltlon of distributions wlth a more peaked behaviour, each

distribution oriented with respect to a linear combinatton (parametrized by

the Feynman variable u) of the directions of p_ and q_ (see eq. (4.2) of

[15]). A Feynman variable is now plcked according to the following prescrip-

tion

u = E/(!-C) , u, = 1+u
o o

= exp(ln u + p,An(u /u ))- u ,

f P, > h . replace u by l-u •

(7.11)

The cliolce of u de t c rmines a pa r t i cu la r lirie.ir corabination of the d i rec t ions

p _ / i p _ | and q _ / | q • For the moment we assume this d i r e c t i o n to be the posi-

t ive a-axis . The recipe E o r c' , tlie coslne of the angle between k and this

a x i ^ , and for s c i and $ , , the co r r e spond ing sine and a z i m u t h a l ang le , is

then

v' = 2e2[l-p7)[e2+ 2p7eu(l+2e+eu]] l , (7.12)

The direction e oF k In the lab frame ts, finally, obtained by rotatlng the

positive z-axis to tlie actual direction specified by the Feynman variable u :

e, = s ,sim

e, = [u s ,cos$ ,(l~c ) + (u-l-uc)c'j/e

The f our-raoment.T c-.an now be cons t ructed wi thout more ado. Notice that, since

c = cos£ (p, , c was restricted to be within the ränge between cosö and
-. -t -» max

cosO . , the symmetrizati on q <-» q_ , q, *-* - q_ and k -> - k (uhich we have

to apply in \f the cases) Eorces us to reject an event that has cos <

(p_ , q_] outside this ränge. Fortunately the number of these events is small,

äs discussed In sect - 6. The derlvatlon of a nuraerically stable representation

for this case is not trivial, again because of the variable distance between

the two penks in the direction of k . We find

? ̂
£, = u((l-c ) s ,cos$ ,+ (l-c)c') + v' ,

v = (̂  + (2e-e )/(l+e })/e ,

2 '

A g a i n , th is Is i n d e p e n d e n t of the rep lacement u -» l - u in eq. ( 7 . 1 1 )

Tiiis f i n i s h e s our desc r ip t ion of the generation algori thms. When an event has

been g e n e r a t e d , it mus t be checked whether it is wl th in the al lowed phase

min
qnd . If the

r* >
space: both q and q_ must have polar angles between

event fails thts check the welght has to be put to zero (in practice the pro-



gram then tr ies aga in , while s tor lng Ehe zero-welght result In a bookkeepi ng

device). IE the evenC [s admlsslble, its weight 1s calculated, keep lng in ratnd

the reraarks raa Je In connectIon w l t h the coraputa t ion of U . The event and itsm

weight are then Output. Optlonally, tliere is an tnternal additlonal rejection

to obtain unweighted events.

8. Results

A f t e r havlng d tscussed , In the prev ious sectIons, how the Monte Carlo ap-

proach to radiat ive co r r ecCions , togetlier wi th the par t icu lars of Bhabha scat-

t e r i n g , led to the algori thms that we have d i sc r ibed , it 1s now t i ine for a re-

view of the phys ics results, ob ta ined w i t h the Monte Carlo p rogram. Throughout

tlie dlscussion we have used the Eollowing parameter choices:

top

= 93 GeV ,

= 40 GeV (8.1)

wh lch lead to a value of 2 .464 GeV Eor T , 82 GeV for m . and lience 0.2227
z ' w '

Eor sin S . Our results, do not, however, change qualitatlvely for reasonable

changes In the parametcrs (8.1).

We Start with some remarks on the choice of AE , the cutoff between the

hard and so Et photon regions. As dtscussed in sect. 4, Honte Carlo events frora

channel 5 (the soft-photon and virtual correctlons) have a photon with energy

stricly zero. Thls is of course an approxtmat Ion to the real Situation in

whtch an unlimited number of arhltrarlly soft photons is eraltted [18]- Recent-

ly algori thms have been developed to deal with these photons [ 12]; however the

kineraatlcs of the remainder of the event, and In particular its recoil (which

glves rlse to e • g- e e~ palrs with extreraely small but nonzero acolllnearlty)

1s not yet undcrstood very well. We therefore stick to putting k° to zero in

the soft-photon reglon. This, however, forces us to choose AE/E äs small äs

possible. A loeical lower Itmit on AE 1s that value that makes do /dß (äs de-
ee

Eined In sect. 3) vanish, i.e. the suffl of virtual and soft-photon correctlons

are exactly - 100% (of course, the contrlbutlons frora hard bremsstrahlung,

with k° > AE are always positive). This approach has been taken successfully

In [16]. In the present case, however, the correctlons depend on 9 : general-

lv, Llie-7 dccrease with Lncreasine 6 . We therefore determined 6 . defined to
x

be that value oE 9 for whlch da /dQ becoraes zero, for the energy ränge oE in-

terest, for vartous valucs of AE/E . The result 1s glven In fig. 2. For

AE/E = 1 0 , 9 (E ) 1s qulte well-behaved. In parttcular at the resonance

(Eb = 46.5 GeV = mz/2) 6 is essenttally 180°, so that da /dS u positive for

all scattering angles. Outstde this region the cross section well-deflned up

to scattering angles of at least 170°. Since Bhabha scatterlng favours small

angles so rmich, this is qulte acceptable. A drastically dtfferent Situation

artses if we decrease the value of AE/E, to 5 • 10 . Especially at the reso-

n.uice, 0 drops to ;i spectacular 122.1 degrees. This meens that for this value

of AE/E a Monte Carlo study of ZQ production at the resonance 1s raeaningless

(or all those events that have an angle between tncoralng and outgoing electron

larger than 122 degrees! Thls ts clearly unacceptable. At higher energles the

sicuation is not very much better. The transltlon fron the well-behaved to the

iil-behaved cross section is sketched in table l, where we give 9 at the

fixed resonnnce beara energy of 46.5 GeV, for varying AE/E . The value of
b

i! is seen to drop quite suddenly when AE/E, decreases from -1% to -5% (for

v-'iliies of AE/E, larger than 17,, 6 remains a t 180 degrees). Ue can draw two

1. A lower lirait on AE/E, is naturally given to be about .7% (in practice we

have always used 17,).

2. Any experiraental Setup which is sensitive to values oE AE/E, sraaller than
b

1% (Eor instance, an angular resolut ion whlch makes an acollinearity deter-

raination down to .5 degtees possible) will necessitate the inclusion of

higher order corrections to make a study of resonant ZQ production meaning-

ful. Note that here the tssue is not so much whether the Standard model can

be tested to one-loop accuracy, but whether it can be tested at all-

The second polnt oE interest is the total radlative correctlon- In con-

trast to the case oE muon pair production, this concept has to be defined

carefully here, due to the forward Singular!ties- In the Born approximation,

both e and e will always be restricted In the same angular ränge, because

the events are elastic- We therefore define the total correction for a given

angular ränge to be given by the total cross cross section for all events that

have the scattering angles of the e and e restricted between 6 , and

, but with no additional cuts. We always take 9 = 180° - 9 ,
niax . min

and

studied Eour cases In detall: 6 , = 5° , 10° 30° and 50° . At 9 = 5 '
min min

the cross section is domlnated by the t-channel photon graphs, while at 9 =
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50° the Situation can be expected to look qutte a btt like muon pair produc-

tton. The two otlier cases are Interraedlate; 9 = 30° 1s typical for experi-

ments in a "central detector".

We have made runs oE the MC program at various energies, for the four an-

gular ranges specified ahove. Due to the forward peak, 1t 1s not practlcal to

obtain the ttiree smaller angular ranges by making cuts In the sample wlth

9 = 5° : hardly any events are left that way. Instead, separate runs are
min

advtsablc- Ln each case we genorated 10 welghted events (each run typically

takes about 20 minutes on an IBM PC/AT). In figs. 3a to 3d we plot both the

Born term cross sectton and the cross section wtth the total correctlon dis-

cussed above- The Born cross sectIon is obtained analytlcally, using the for-

mula In appendlx C. A few qualitative features are evident. Flrstly, at small

6 , the Z, "peak" is nearly tnvlslble. Only at 9 , =30 soroething like the
min min

muon-pair resonancc is evident. Furthermore, at the resonance the correction

is actually positive for small 8 . Being about 5%, this correction gives no

indication of a necessity of higher order corrections in the photon exchange

channel. Flnally, the high radlatlve tall (~ 100X) of the resonance of higher

energies which is familiär frora the muon case is not evident for 9 . = 30'
min

and 0 = 50° . This can be understood easily: the radiative tail orlginates
min

from events in channel 3, where a hard photon 1s typically emitted close to

the beam, wlth the Eermion palr recoiling in the other direction. Such confl-

gurations tend to be rejected by the angular cuts on both the e and e~ .

Of course the total correction 1s not what 1s usually measured, which

brings us to the topic of canonical cuts- In [5] the appltcation was advocated

of canonical cuts, i.e. simple and well-defined cuts which reduce (if possi-

ble) the radlatlve corrections and, since they would be applied at least once

by the relevant experiments, would allow for unambiguous comparlson between

the results of different experiments. For e+e" äs well äs u |i it seems that

the best canonical cuts are the following set:

1) the energies of. the e+ and e~ must be larger than some threshold value Etn;

2) the angle between the e4" and e~ directlons must be larger than 180° - C, ;

C 1s called the acolllnearity cut.

We apply Efu = -x E, and £ = 10 degrees and of course the angular cuts discus-

sed betöre- The effect oE this choice of E^ is marginal, the acollineartty

cut being rauch tighter: a motivation Eor the choice of C will be glven later

on.

In figs. V1- 4d we present close-ups of the resonance reglon for the four

valuns of '! . . Ue dräu both the Born cross section (dashed line), the Eully
m i n

correctad one (dashed-dotted line) and the result after the canonical cuts. As

1s seen the cuts serve to lower the resonance curve, without affecting its

shape. After cuts, the correction also becomes negative again at 6 = 5° •

A renrnrk 1s in order on the statistical accuracy of our results. Tlie

(statistical) error oE course depends on the parameters. It is smallest for

9 , = 5* , beine about .3% for 10 events, and increases to about .77, for
ml n

9 , = 50° . Of course this error can be reduced to an arbitrartly small
min

amount by using a sufficiently large nuniber of events. The only posslble

source of a systematic error can be the particular randora nuraber algorithra: we

have founct no evidence for any such effect. In figs. 3a- 3 and 4 c> d the error

is of the order of the line widths in the plots: in flg. 4a the error 1s about

0.05 tunobarn, ,ind in flg. 4" it ig about 0.01 nanobarn. It turns out, however

tl i r t t it I K IMSV t o draw a niee smoo th curve through the central values, indl-

cating that our error estlmates may be qutte conservat ive - In particular the

peak of the resonance curve can be well identifled.

This brings us to the next toplc of Interest: the peak shift. Due to the

interference between the ZQ and photon exchange graphs the peak of the cross

section will be shifted frora the exact value of /s = m to a value /s = m -
z ?-

Am : A^ ts the peak shift (positive If the peak 1s at lower values than mz) •

The peak shift is present already at the Born level where we can find it with

great precision becausc we know the resonance curve analytlcally. In flg. 5 we

present the relation between A and the scattertng angle 9 . The peak shift is

always positive: Its mi nlmum 1s about 70 MeV at 9 around LOO degrees. For

larger values of 6 1t remalns essentially constant- At smaller angles the peak

s h i F t incri-.isrs r.ipidly: a t 6 = 23° It reaches l GeV. For Ö - 13° (A -
m

1900 MeVj Llu1 effect of the Zn resonance becomes sufficiently relatively sraall

t hat i t can no longer cotnpens.ite the l/s dependence of the photon cross sec-

tion, and the cross section doesn't even become flat anymore äs a functlon of

/s . Determination of the peak shift in the radiatlvely corrected cross sec-

tlons is less precl se due to the statistical errors. We determined the peak

shift botli graphically and by fitting to the cross section values at four

polnts in a 300 HeV interval around the resonance. These results typically

coincide to about 20-40 MeV which we take äs an error estimate- In table 2 we

present the peak shifts for the Born, fully corrected and canonically cor-

rected cross; sections in the four angular ranges. For 9 , = 5 ° and 10" the
min

corrections shift the peak to lower values. In the more central regtons the
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pL'jk sliift is reduced by thc cortections: for 9 , = 5 0 ehe peak actually
ml n

sh i r ts t o v,? l MC s oF /s larger Chan m . Of coursc, runs utth higlier statisttcs

c.in improvL' ilie iiccuracy of these resul t s - We deemed this not relevant a t this

point because of the extant uncertainties in m • The overall conclusion is

clear however: the peak shift is qulte substantlal and can be given about any

value by applylng suitable cuts.

The last quantlty of interest is ehe effect of changes In the acolltnear-

i ty cut £ . To this end we made a nurober of runs uslng 10 potnts a t values EL

= 44 , 46.5 and 49 (5eV. The resulting values for the radiat ive correcticns are

given in flg. f>. IL is secn that the absolute value of the correctlon depends

(of course) o n E^: its Variation with t, is however always about the same.

Moreover for r, smaller t ha n about 10 degrees the correction varles quite

rapidly w l t l i f, , tmplying that measurement errors in the e+,e~ directions will

become Import ant - C = 10 degrees seems to be the optimal choice, glving rea-

sonnhle correcLions wti ich are not too sensitive to raeasureraent errors-

We f i n i s h this scction by presenting our concluslons.

First, an optimal choice for AE/E is dictated by the process under stu-

dy: if we r^strtct ourselves to ftrst-order corrcctions, AE/E, tnust be between
b

-7% and i%.

Second, ehe total radiative correction is a blt raore moderate than in the

nrnon case: at smaller scattering angles 1t remains positive even at resonance-

No high radiative tail is present- As for canonical cuts, an acollinearity cnt

on the e e pair works weil and a value C = 10° is optimal. After canontcal

cuts the resonance peak drops In height but keeps the sarae shape. Finally, we

have rietermined the sliifts in the apparent 7.Q peak from its exact mass value.

This shift is affected considerably by the angular interval considered and by

radiative correctlons and to a lesse.r extent by the application of canonical

cuts.
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Appendix A

In section 2 we gave an expression for the raatrix element squared, sumraed

and averaged over the spins. This expression 1s in terms of spinor products.

As stated there, it can be rewritten to a form consisting of only the more

conventional vector products, which we shall give below. First, we define two

functions of four f our-momenta p , p p and p, :

R ( p . P , P

(A.l)

l( P,P,P.P3.4

v p (A. 2)

where k is the four-momenta of the brems Strahlung photon, and E„ V D Ö

Civi ta tensor wi th £n]71 = + l - The I has, in fact the same symmetries in the

pi äs R: this is easily proven using Schou ten ' s identy . Nex t , we have two

f u n c t i o n s of two kinematic invariants (s, s ' , t , . . . ) :

2 2

U-m z)(y-a z) + razrz

B ( x ) B ( y ) " --
(A .3 )

( A . 4 )

where X take on the values + or - , and

B(x) = [x-m ) +
v ' "- '

(A.5}



The equivalent expression to eq. (2.1) can Chen be written äs

20 R(q_p_q_p_)Q+_(c'.c'

+ 2R(q_pj.+q+)Q+_(t',t}| . (A.6)

2R(q q p p )[Q Cs'.s) + Q (s1,S)]

+ 2R(q q q p ItQ^.Cs'.t1) + Q (s',t')J
— T ~TT

+ 2R(q q,P,q,)[Q,,(s1,t) + Q (s',t)j
— T T TT ~~"

+ 2R(p p q p }[Q.,(s,t') + Q (s,t1}]
T ~* ~"-

+ 2R(p p P.qJ[Q_..(s,t) + Q_ (s,t)]
T ~ T TT ^

-t- 2(t2+ t'2){

We have checked both analytically and nuraerically that this result is identi-

cal to the one obtained In section 2.

Appendix B

We briefly outline the structure of our Monte Carlo program. The f ive

different channels in which events can be generated are represented by so many

'subgenerators', sets of subroutines that operate independently• Our program

therefore has a raodular structure. The initialization of the program is per-

formed by calling the routlne SETBAB. To this the user supplies the beam

energy, and the masses of the Z0 and Higgs bosons, and of ehe top quark.

Furthermore. the crude phase space cuts 6 , ,6 and k„̂ „ are saeclfied,
min ' max ma!(

where kmax is the raaximum energy one wishes to allow (or in units of E^for

instance, with ehe canonical cuts described in sect. 8 a value of k̂ ĵ  = 0.51

would be appropriate since events with larger photon energy would always be

rejected)- The Initialisation progran then performs the foLlowing tasks: it
2

calculates the Standard Model values o f m , F a n d s i n S ; then, i t calls
w z w

five separate initialization routines for the five subgenerators• These return

the values of the approximate cross sections o i = l , . . . , 5 . On the

basis of these values, and using given a-priorl probabllities et,(l =

l ,-.., 5) it computes the relative probabllities of an event to come from

each channel*). An actual Honte Carlo event is generated by a call to the

generatlon routine GENBAB. This routine first picks a channel and calls the

subgenerator routine for that channel. These routines use the algorlthms given

+ R(P p P̂ P J
T " T ~

•) The results presented in section 8 are based on a _
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in sect- 7 and return the values oi q , q_ and k , together wich ehe value

of Wm. GENBAB first checks whether ehe event saeisfies ehe resericCions given

by 6 . and 9 (ehe k_._„ cut is automatieally sacisfied). If so, ehe event
min max x TaaJ!

weight is calculaced. For hard-photon events the expressions given in secCions

2 and 5 are used, while a soft-phoeon evenC has consCant weight. The weighe

infortnation is stored in coramon, while ehe routine Outputs t he momenta values

and the toeal weight. Optlonally, unweighted events are generaced by rejec-

tion. Additional cuts (such äs canonical ones) have Co be iraplemented by the

calling prograni.

After ehe desired event sample has been generated the computation of the

cross section corresponding to this sample in performed by routine ENDBAB.

This uses the values of o and a , and the Information on the event weights,

to eseimate ehe resultant cross section and the esclmated statlsCical uncer-

tainty. The resulcs are printed in the form of a table in which also Informa-

tion on the performance of the individual subgenerators is given.

We finish Chis appendix by specifving ehe randora number generator used in

our program- It is a rauleiplicative congruenc ional pseudo-random nuraber gene-

raeor based on the algorithm

k. = (69069 k, ,) mod 2
l i~l

31
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P, - / 2 (B.i)

where p. is the current random number, and p. the previous one. If desired

this generaCor can be raplaced by any other one in which the user has confi-

dence: the results should be the same uithin staeisttcal errors.

Appendix C

We present ehe Born level forraula for the cross section for e e •*

e e , ineegrated over the complete asimuChal ränge, and polar angles from

9 . up Co 9 • To our knowledge this result has not been given anywhere in
min max
ehe literature, and we include it here for completeness . It reads

ßfcosB , ) - ß(cos9
v min' l

where

B(c) =

35

Jv a ' v

where

2s2e%B(c)

(C.2)

»+-f + ̂
s-ra + im T

z z z

2 2,

s-m + im T
7. Z Z

(C.3)

and ehe functions $.(c) are gtven by

Mc> -f- [c + c 2 +i C 3 ] ,

. (1-Hi-c)] ,



Ö ? ( c ) -
A

" c + c

s ( l -c )

4

"10
(c) -—^ An (-±^) , (C.4)

where p is g iven by

It should be noted that this formula assumes that a Z° exchanged in the t
?

channel has a propagator proportional to (t - m } , vithout imaginary part.

This is in accordance with the Interpretation oE the 2° width äs a perturba-
o

tive, Q^-depeadent quantity-
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Table captions

Table l Position of the zero in do /dQ at resonance [/s = m ) äs a function
ee z

of the soft-photon cutoff AE/E .

Table 2 Apparent mass shift of the Z for various angular ranges.

Table l

AE/E, ( % )
D

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

9X (deg)

179.97

179.9

179.2

176.4

164.4

122.1

71 .7

46.8

31.5

12.4

Table 2

angular

ränge (degrees)

5 - 175

10 - 170

30 - 150

50 - 130

peak shifts

(MeV)

Born

680

444

214

132

füll corr.

900 ± 100

460 + 40

80 + 40

-20 + 40

canonical

900 ± 100

460 ± 40

70 ± 40

-40 + 40

Pigure captions

flg. L The sixteen Feynman diagrams contributing to e e -* e e y in the

Standard Model.

ßoundaries of the area of positivity of do /d2 äs a function of
ee

beara energy, for different values of the soft-photon cut off

AE/E. -
b

Born cross section and total radiative correction äs a function of

beam energy, for various angular ranges. Dashed line: lowest

order, solid line: corrected result.

_ Resonance shapes of the ZQ peak with total and canonical correc-

Lions, for various angular ranges. Dashed line: lowest order,

dashed-dotted line: fully correcced, solid line: result after ca-

nonical cuts.

Apparent mass shift of the Z related to the scattering angle, in

the Born approximation.

flgs- 6a~j_ Dependence of the radiative correction on the value of the acolli-

nearity cut, for various angular ranges.

figs-
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