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Abstract

The cross sectlon for single hard photon bremsstrahlung in Bhabha scattering
{s presented, and its maln qualltatlve features are reviewed. Subsequently the
structure of a Monte Carlo event generator for Bhabha scatterlng at LEP/SLC
energles including all one-loop electroweak correctlons is discussed, in which
the results on the vlrtual and soft photon corrections In the flrst paper of

this set are incorporated. Flnally a number of numerical results is presented.

1. Introduction

This paper is the second one of a palr dealing with the detalled predic-
tlons of the standard model of electroweak interactions [1] in the process of
Bliabha scattering. In the first paper ([2], herafter referred to as 1) the
phenomenologlcal Importance of this process was discussed in some detail. The

authors presented expressions for the cross section for

efp,) e(p) + e'la,) eT(a) (1.1

in which all one-loop corrections arising in the standard model were included,
as well as bromsstrahlung of a soft photon, i.e. with an energy not exceeding
a (small) value AE . Thls cross section, which is both ultraviolet and infra-
red finite, incorporates all 'standard' weak effects, and would in principle
also be the quantity in which ‘'new-physics effects' in this process [3] are
most likely to show up (an exception Is the case of the existence of an excit-
ed electron, e*, with mass small enough to be produced at a given energy: this
would most clearly be seen as an eey or eeyy event [4]).

Complete as they are, the results of 1 are not enough for a successful
plienomenological treatment: the effects of hard photon radlatlon have to be
adequately included before a successful prediction 1is possible. Restricting
ourselves to the one-loop level, this means we have to know the cross section

for
e*(m.l e (p_) e+lq+) e (q_) v(k) (1.2)

where the photon has an energy greater than AE . Once the lIngredlents (L.1)
and (1.2) are avallable, we still are not finished: it remains to integrate
these cross sectlons over the phase space admitted by a given experiment. As
soon as a 3-body radlative final state is involved this also becomes a highly
nontrivial problem. The aim of the present paper is therefore threefold. In
the flrst place an expression for the cross sectlon for (1.2) must be presen—
ted in a form which is as simple as possible, and its qualitative features
must be well understood. Secondly, these results must be combined with those
of 1 In such a way that they can be suitably integrated over phase space: the
Integration procedure must be both accurate enough so that the one-loop ef-

fects can be studied, and flexible enough so that all kinds of experimental



restrictions can be imposed on the data. The optimal integration technique
seems to be that of Monte Carlo Integration by importance sampling, using a
multi-channel approach where each channel is dominant in one kinematical situ-
ation. Finally, a number of numerical results are in order: apart from being a
reference for checking purposes and an example of the method, these will pro-
vide estimates for the radlative corrections which will approximate those made
for a very concrete, specific detector set-up. The lay-out of this paper is as
follows. In sect. 2 we discuss the multi-differential hard-photon cross sec-
tion and present an expression valid in all kinematical situations of interest
in Bhabha scattering. In section 3 we sketch the Monte Carlo approach and draw
up a list of Ingredients needed for this technique: we subsequently set out to
supply all these ingredients. Sect. 4 deals with the cross-section (1.1l): as
will be shown, this is the simplest ingredient from the point of view of Monte
Carlo integration. In sect. 5 we discuss the 4 different channels into which
the hard-photon cross section (l1.2) can be split, and in sect. 6 the approxi-
mate cross sections valid in the kinematical regions where each of these chan-
nels dominate, together with the integrals of these approximate cross sections
over the phase space. These results lead directly, in section 7, to the derva-
tion of numerical algorithms to generate random values for the various phase
space variables. (Appendix B is devoted to a discussion of the structure of
the Monte Carlo program which we have developed with these results.) In sec-
tion 8 we discuss some canonical cuts [5) appropriate for Bhabha scattering,
and present numerical results for these cuts.

Finally, a Monte Carlo treatment of mupairs can be obtained from the
Bhabha case by omitting the t-channel contributions and by introducing muon

masses. Such a muon event generator has been constructed.

2. The hard-photon cross section

In the standard model, the radiative process (1.2) is described by 16
Feynman diagrams, depicted in fig. 1 (as 1is usual, we neglect the diagrams
containing a Higgs boson exchange, and also the 9,4y part of the Z  propa-
gator: these give contributions that are suppressed by powers of me/E)- Rela-
tively simple expressions for this cross section, valid in the high-energy li-
mit, have been known for some time. In ref. [6] the first of these was intro-
duced: these results were subsequently further developed by the CALKUL colla-
boration [7]. Particularly noteworthy is the fact that a factorization of si-

milar nature as in the soft-photon limit occurs: the cross section can be

written as a slightly generalized form of the nonradiative cross section,
times the well-known “infrared factor” which describes the various infrared
and collinear singularitles.

In ref. |7] the complete expression for the cross section e+e— » e+e-y
including a Z, with finite width was given, in terms of vector products of the
particle momenta. As discussed at length in [8] a better way to handle these
processes scems to be to evaluate helicity amplitudes using spinor products. A
numerically well-behaved, and very compact form for the amplitudes, and the
one we shall use in the following, was given in [8]. In that paper, emphasis
was on the correct treatment of the complex phases of the various helicity am-
plitudes, so that arbitrary beam polarization can be taken into account: here,
we shall restrict ourselves to the case of unpolarized beams, and consequently
the complex phases are of no importance.

Our expression for the squared matrix element, summed over the final

state spins and averaged over the inital state spins, is

1
' . ; 2.1
Loy v (2.1)
Here the M; are the twelve helicity amplitudes that do not vanish in the high-
energy limit, and W, 1s a factor incorporating the more complicated behaviour
in situations where the photon is collinear to one of the fermions. Up to an
Irrelevant overall complex phase, the M; are glven by
M = ! + + f +
4 n[E++(s )vl E++(5)Vf E++(t )vP E++(t)veJ

; Lk * N *J
M, =u [E++(s Yoy + B (s)v + B (¢ )vp + B (B)v,
My = t|E,_(s")v+ E+_(s)vf]

: o W *
M, =t [E+_(5 vy + E+_(s)va
M = '
M s[E, (t )vp+ E+_(t)ve]

i , * *
Moo= s'[E,_(¢ v, + E+_(t)ve]

i = s'[E_+(t')vp+ E_(t)v,]



" * *
Mg = s[E_ (e))v + E_(t)v ]
My = t'[E_(s" v+ E_(s)v,]

g * + *
My = t[E_+(s v, E_+(s)vE]

Mll = u'[E__(s')vi+ E__(s)vf+ E__(t')vp+ E__(t)veJ

M

, * * 3 * *
i5 = ulE__(s')vy + E_(s)vg+ E__(¢ W, * E__(t)v,] - (2.2)

Here, we have Introduced the kinematic invariants

o = (ot p)? . t=(p-q)? » uw=(p-a)

9

U O T RN U CIC T (2.3)

s' = (q* a_
The functions E are the combination of the photon and Z% propagator and the
electroweak coupling constants:
3 e(v-r,a)(v-r,a)
Ey 5 (x) = 178 [§_ + X £
12 x-m_+ im T
z z z
. - 2 & = a
v = a(1-4 sin Ow) , a=-els sinewcosew N (2.43)

where e denotes the positron electric charge, Y4ma , and m, and Fz are the 2°
mass and total width, respectively; ew stands for the electroweak mixing

angle. In the notation of I, eq. (2.43) can be written as

_ ie/8 (1) (1) (1) b
E, o (x) =227 g gy v 7(x) - (2.4Y)
M x UM TN

The quantities Vi, f,p,e are the so-called radiation factors, each correspon-
ding to photon bremsstrahlung from a particular fermion line in the diagrams
of fig. 1:

a-d)

v,: initial-state radiation (Eig. 1

¢

v, = sla_, a,)"/s(k, p,)s(p_, &) ' (2.5%)

) e-h
Vet final-state radiation (fig. 1 ):

ve = S(Pk' p_)*/s(k. q_)s(q+, k) (2-5b)

Vol radlation from the positron line {figs. 11-1)

vo = sl v /sl py)s(ay, ¥) (2:5%)

v,: radlation from the electron line (figs. 1" F)
* d
v =slp,, ) /s(k, q_)s(p_, &) (2.59)

where the spinor product of two four-momenta pT and p; is defined as

po_ Px Po~ X

[ 2 2 1 1

s(pyr py) = (o]+ D)5l - (i3 1))l 5—=) - 2:8)
L Py~ P

For a derivation of these formulae we refer to [8]. Up to this point our re-
sults are only strlctly valid {f mg = 0. In order to correctly describe the
situations where the photon makes a small angle (of order m,/E) with one of

the charges fermions, we have introduced the mass effect factor Wy It reads

2
Is(p,. k)l ATy
L I Sl O e s &
Is(p_!k)lz mi Sv(s_sl)

o W e 2, L2

s+ s'
2 2
[s(a_,k)l [1- Y3 s(s—S')J
FICI (a_*kT ;
- - s +.8
2
) |S(ﬂ+.k)| [1- P s(s-s‘)] (2.7)
—_ZFHP'E] [q+°5T s+ s' '

The effect of this factor is on one hand to ensure that the cross section
peaks in the right places (for not-strictly-massless pu , the product s(p,k)
vanishes for some k' that are not strictly collinear), and on the other hand

to take care of the nonleading terms that are suppressed by a factor mz (this



also accounts for those helicity amplitudes that are neglected in the high-
energy limlt). A more detailed discussion of these points can again be found
in [8]. Lf we evaluate the cross section as Indicated above, taking care to
handle correctly small values of p*k , the result will describe the process
(1.2) up to truly negligible terms everywhere in phase space except when s',t
or t' are of O{mzls) . The first of these cases will be treated later {n this
paper: the latter two, corresponding to situations where et or e are scat-
tered over angles of order me/E b 1073 degrees, are outside of the scope of
this paper: they are for instance discussed (in the context of single-photon
events) In refs. [9]. The square of the matrix elements can of course also be
written in a more conventional form, in which no spinor products are involved,
but only vector dot-products. This result, which s of course very similar to
the one for e'e” » e'e’y given in ref. [7], although a bit more systematic and
compact, is glven for completeness In Appendix A.

Now a short discussion of the phase space is in order. The 5-dimensional

phase space element dP is defined as
4 4 2y 4
a® = 6*(p,+ p_a,- a_- k)a'q,6(a)a"q 8(a?)a*ke(k?) . (2.8)

Varlous cholces of phase space varlables can be made; we shall use three dif-

ferent alternatives. First,
1
@ = 5 dq:dkod9+doa , (2.93)

where q: ts the et

energy, Q+ its solid angle, and Qa the y azimuthal angle
around the Q+ direction, everything being defined in the lab frame; then,
2
koq:-
] ° b
dcb—————o—ddedQ+ 5 (2.9%)
2E(E-k°) Y
where k© and QY are the photon energy and solid angle in the lab frame, and E
is the beam energy; finally,
1

= 7 kodkoduydne , (2.9%)

where Qe is the production solid angle of the et | now defined in the centre-

of-mass frame of the outgoing e"e” pair. Thus, the observable cross section is

given by

P = =t % 6 . (2-10)

ooy P

Before concluding thls section we want to summarize the main qualitative fea-

tures of the cross section (2.10). These are:

(a) Infrared peak: the cross section diverges for k® + 0 as 1/k° . Since X° is
defined to be larger than AE , which is typically of order 10-3- 10'2 of
E, there is no real singularity: nonetheless the cross section varies over
several orders of magnitude as a function of k©.
tions varles from zero to order 1, the cross section changes over typical-
ly 10 orders of magnltude (5 orders of magnitude between zero and *2
degrees!). This wild behaviour calls for a careful treatment of the photon
emission angles.

low—energy peak: if the Invariant mass of the outgoing ete™ pair goes to

(c

~—

zero, the s-channel photon progapator blows up: therefore the photon spec-
trum is rather wild at its high end as well.

(d) forward peaks: as in the nonradiative case, the cross section rises as
either the e* or e~ scattering angle decreases. In the bremsstrahlung case
the cross section in fact remains finite for zero angle; on the other hand
the forward peaks for the et and e~ no longer coincide owing to the 3-body
kinematics. Although we shall not deal with the zero-angle case here, the
cross section increase over 3-4 orders of magnitude in an angular range of

109~ 170° again calls for careful treatment.

3. The Monte Carlo approach

We now come to the second part of the problem, namely the integration of
the cross section over the allowed phase space. There are two goals that have
to be attalned. In the first place we want a numerical result for the total
cross section, containing as much as possible of the experimental cuts. For
the nonradiative cross section which, due to the 2-body kinematics, depends
essentially only on the scattering angle 8 , this {s a relatively simple pro-
blem which can be solved by about every possible numerical integration tech-
nique (and possibly even analytically). The radiative cross section varies {n
four dimensions, rather than one and behaves wildly, as we have seen. This,

together with the necessity of folding in the experimental cuts which are



seldom simple in terms of any set of phase space variables, indicates that our
numerical technique has to be that of Monte Carlo integration. In the second
place, for purposes of analysis of the experiments it is desirable to have an
event generator for our process, which yields events that have the correct

distribution, and (a no less important requirement) are independent of one an-

other. In our view the most sensible way to archieve this is to use importance

sampling [10, 11]. Alternative methods, such as the use of antlithetic variates
which rely on artificial dependences between subsequent Monte Carlo events, or
stratified sampling, which only works LE a minimum number of events {is
required, and thelr distribution (s artificlally uniform due to the strati-
fication, seem not to correspond in any simple way to the event-by-event inde-
pendence, and the statistical fluctuations to be expected, in the actual expe-
riment. Our approach is as follows. The cross section to be integrated con-

sists of the hard-photon cross section (2.10), taken over H, the allowed phase

space for eey events, and the soft-photon cross section:

2

d o
dgee = gg (the result of I) e=R)

defined in the soft region S, i.e. the phase space allowed for elastic ee
events. The result for the total cross section can then be written as follows:

2 5

d"o d

ec eey
o = [ —5-de + [ — - db - (3.2)
tot 5 i dé

The technique of importance sampling now consists of finding a number of (re-
latively simple) functions 51(0) of the phase space variables such that the
hard-photon cross section is more or less approximated by a sum of the f;. The
fy are called the channels. In other words, for some ay the weight

SceBY)

_ @
VO E e (a,> 0) (3.3)
{

should not be too different from a constant over the whole phase space of in-
terest. In our case each ff describes a different set of the peaks in phase
space, and is simple when expressed in different phase space variables. The
numerator in eq. (3.3) is essentially just the matrix element squared, summed

and averaged over the spins: common factors in dso/do and the f, can of course

be disregarded. The integral (3.2) can now be rewritten as

d o

ce

e [ ===l 4 ) ay [ w(e) £, (6)do - (3.4)
5 i H

llaving thus split up the integral in separate pleces we proceed to choose in

each Integral a particular set of varlables 01 which makes the {integral

simple. We shall use 4 different channels for the hard-photon events: we can

now interpret the soft-photon contribution as a fifth channel, and write

a [ wle)f (o, )de . (3.5)

Here LB {s the 2-dimensional Q@ , and the other oi are 5-dimensional. Ay Ls the
appropriate Integration reglon in each case, and fs[os) = dzoee/dQ as glven in
eq. (3.1).

When we choose the Ei(¢l) carefully enough, the integrals

o, = / flLol)dai (3.6)
A
i
can be calculated without problems to great accuracy. Our Monte Carlo approach

now conslsts of the following steps. First, the o, are computed under some set

of reasonable a-priori experimental cuts, such ai a minimum scattering angle
for the e’ and e . The second step, which can be repeated as often as de-
sired, is the generation of a Monte Carlo event. To this end, first a channel
is chosen in a random way, with the probability of channel { being picked

equal to

P = /l? ) 5
%% jfl @495 3 (3.7)

then, a set of random phase space variables ¢, is generated by the so-called

i
Lth subgenerator such that 1t 1s distributed according to the probability
density fi(ol]/cl ; finally, the event weight w(4) is computed using eq.
(3.3). After the desired number N of events has been generated, the exact

cross section is estimated to be

Texact = N ° ) %% (3-8%



where the sum runs over the Monte Carlo events, defined by °k . The error es-

timate on the result is given by [10]

Ao E

T w‘,—J (g w0, )2 & (5 w(e,))?] - (3.8%)
A few remarks are In order here. Firstly, in the simulation of experiments it
Is often desirable to use unweighted events. This can be achieved by applying
the following rejection algorithm: let W, be the supremum of the welghts W,
and take a random number v , equidistributed in [0,1). Then if H(ok] > N,
accept the Monte Carlo event ok , else reject it and try the next event. In
case W, 1s not known beforehand any value larger than the largest observed
welght will do. In this way an unblased sample of events Is obtained in which
the weights can he taken as unity.

In the second place, the welights w(@k] are only well-behaved if the f;

are chosen carefully enough, so the qualitive features of dsoeev as discussed
in the previous section will direct our choice of fy -

In the third place, the a-priori weights a, are in principle arbitrary as

long as they are positive: for N #+ = the Monte éarlo estimate (3.82) will con-
verge to the true answer for any choice of a, - For finte N, however, the con-
vergence, depending on the variance of the weight w, will depend on the al .
This gives us a handle to "tune” the relative strenghts of the subgenerators
so as to optimize the convergence somewhat. A perhaps more useful property of
the ay Is that a subgenerator can be "switched off"” by putting the correspon-
ding al to zero: the channel will then never be chosen. In particular, if

ag = 0 , only eey events will be generated. If a kinematical configuration is
known to be ruled out by the experimental cuts, the channel dominating in that
configuration can be suppressed or switched off. This can be done provided
that w is set equal to zero in the 'unwanted' situations, so as to avoid the
occurrence of huge w values. This leads to the last and nicest aspect: experi-
mental cuts can simply and directly be applied by setting w = 0 {f the events
are outside the cuts.

The above discussion i{s of course also applicable to other processes than
ee * eey . We shall now start to focus on Bhabha scattering. As mentioned, the
following ingredients are needed for our Monte Carlo treatment:

(1) approximate cross sections f; and the appropriate sets of phase space
variables 01 in which to write them;

(11) analytical expressions or numerical results for the integrals o,

(iii) algorithms to obtain the phase space variables 01 from random numbers
equidistributed between [0,1). We assume these latter to be given by
some¢ standard (pseudo-)random number generator [10], and only need to
find the appropriate mappings.

In the next few sections we shall discuss these points in detail.

4. The soft-photon cross section

We start our discussion of the various channels in Bhabha scattering with
the elastic scattering process (l.1). The calculation of the complete one-loop
corrected formula for this channel, described in I, is very nontrivial; on the
other hand, from the point of view of Monte Carlo event generation this chan-
nel is the simplest. In particular, since it describes a two-body final state,
there Is In the absence of transverse polarization only one nontrivial kinema-
tical variable to be generated. Also, the complete formula for do/dQ presented
in I i{s analytically very complicated: but numerically the result is a very
smooth function, with no strong peaks other than the forward peak already pre-
sent in the Born approximation. For these two reasons a simple approach can be
used, which we shall now discuss. Let us define the following function of one

variable
i _ do _
Pc(x) 0 (cosB = x) , (4.1)

where the right-hand side denotes the result of I. In terms of computer pro-
gramming, F.(x) is a function subprogram containing all the formulae of 1. In
the present paper we consider this subprogram as a black box, with one input
variable x = cosf (other variable quantities such as /s , m , m, etc. are
assumed to be constants whose values are fixed throughout the Monte Carlo ge-
neration). We do not consider the detailed form of F (x) , other than to note
that for x close to 1, Fg behaves roughly as (1 - x)’2 , and that around the
Z9 resonance the comparatively isotropic s-channel distribution is strongly
enhanced. The evaluation of F.(x) is speeded up by several ordes of magnitude
by the use of an interpolation scheme: we first evaluate Fc(x) at 40 equi-
distant points in the interval from cosemax to cos(20.). {nd 20 equidistant

points in the interval from cos(ZO.) to cosem . After this, the value of

in
Fc(x) is determined by a form of cubic spline interpolation. This means that
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the whole set of complicated diagrams only has to be evaluated 60 times, irre-
spective of the number of events to be generated in channel 5. Therefore, com-
plicated functlons and tlme-consuming operations in I are no problem. We have
checked that the interpolation reproduces the exact value of F. with an error
of at most 0.01%: by taking more points this can of course be reduced still
further.

We now turn to the determination of ds . The behaviour of dos/dQ with

cos® motivates a change of variable from c = cosf to u, where

%%>= ~+ a0
(1-¢)
352
a = —-—m— . (4.2)
z e
(s-mz] # wly

The constant a, incorporates the s-channel resonance, and the factor a can be

used to tune the relative importance of the two channels; we found empirically

2

that for a ~ 10 - the Born-level cross section (do/d2) is approximated for

Born
all Ys by a constant times du/dc to within a factor of about 10 over the whole
angular range, so we expect the approximation to the corrected cross section

also to be reasonable. Integrating eq. (4.2) and solving for c we find

u=u(c) =ac+ 1/(1-¢) ,
e = g fat - Loy w2 4a 1) (3
¢ = c(u) = 75;- a+u a,-u a, . (4.3)

so that the differential cross section can now be rewritten as
do = Fu(u) du ,
o -1
F (u) = ZnFc(c(u))[az+ (1-c(u))™%) . (4.4)

The result of this excercise is that instead of the strongly peaked Fc we now
have a much smoother Fy» from which we can obtain a numerical value for the

integrated cross section using e.g. the trapezoidal rule:

Uyt Uy 1 N-1
o5 =~ [z Fulu) + 2 R + L Rle) (33

where the uy are equidistant in the interval from

)i

u, = ulcos® ) to u, = ufcos®
max m

1 N in

PR = (R (4.6)
0Of course, much more accurate quadrature formulae are available instead
of (4.6). Since, however, we aim at an accuracy of, say, IO'A (because ‘the
second-order corrections are unknown anyway), the simple rule (4.6), with an
accuracy of order N‘Z, is quite sufficient. For our purposes N is, say, 1000.
We now come to the generation of Monte Carlo events. This is done by a
simple hit-and-miss technique: denoting by p or P, 3 random number*) equidis-

tributed in [0,!), we proceed as follows:

= oY - .

u o= (uN "1] CH
(4.7)
Lf p,-FeSt> Fu(u) , try again
Here the estimator F®St [s defined as
est max
= +h)e 4.

§ 0L LI £ (u) 8:8)

and is obtained as a by-product of the integration in eq. (4.6). The factor
(14b) in eq. (4.8) is Introduced to ensure that F,(u) < FeSt for all u values:
that way the exact F distribution is generated. In practice we use b = 0.01
which seems to be all right For N = 1000. Notice that with increasing b the
expected speed of the algorithm (4.7) decreases as (1+b)‘1. Since the evalua-
tion of FU {s so fast we can therefore i{n principle choose b much larger (of
order 1, say) without slowing the event generation down appreciably. Once a
value for u has been generated, the computation of cosB from eq. (4.3) and the
construction of the four—-momenta q: and qE {s of course trivial: k" is taken
to be zero In thls case (see, however, the interesting results in ref. 12). We
were able to make the treatment of the virtual and soft-photon corrections

very fast as a consequence of the essential one-dimensionality of the soft-

*
) For a discussion of our random number generator, see sect. 7.
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photon region. In the hard-photon region which we shall now discuss, another
strategy will have to be employed.

We finish thls section by pointing out that, since we know the exact
value of the soft-photon cross section, and the elastic events (l.l) will be
generated with the correct angular distribution, the event weight from this
channel is just constant:

4

wip) === , (4.9)

4

Here ag {s the a-priori weight assigned to the soft-photon channel, as dis-

cussed in the previous section.

5. Channels for the hard-photon cross sectlion

Because of both {ts multidimensionality and {its peaked structure, the
hard-photon cross sectlon discussed in section 2 calls for a slightly more so-
phisticated treatment than the soft-photon one. Upon studying the 16 Feynman
graphs of fig. 1 it is clear that we can distinguish several groups that domi-
nate the cross section In different parts of the phase space. These are:

channel 1 (a,b): initial-state radiation in the photon s-channel. These

graphs give rise to the low-energy peak (c) of section 2, and dominate
generally 1if Vs < m, especially if the photon 1is emitted at small
angles.

channel 2 (e,f,g,h): final-state radiation. This is important Lf the photon

is close to the outgoing et or e” , and dominates if /s ~ m, , at large

angles of the et e

channel 3 (c,d): Initial-state radiation in the Z_ s-channel. This is similar

to channel 1 except that it tends to yield ete™ pairs with mass ~ m, .
For Vs 2 m, it dominates at large angles.

channel 4 (i,j,m,n): t-channel radiative scattering. This dominates for all

Vs at small scattering angles of the et or e, and ts described by QED
only.
The remaining diagrams (k,l,o,p) and the interference between the various
groups of diagrams are much less important, and are taken into account in the
weights assigned to the Monte Carlo events, described in sect. 3. It is the

distribution of these event weights, obtained in a Monte Carlo rum, that ulti-
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mately Justifies our choice of channels; however, that the above split-up fis
reasonable can be argued by simply looking at the various propagators.

We shall now proceed to derive the various approximants f,. First of all
we remark that the mass effect factors wm of eq. (2.7) will be fncorporated in
the event weight: so for the moment we may neglect m, . For massless elec-
trons, simple expressions are available (7] for the spin-summed/averaged
squares of the various subsets of diagrams. Denoting by M; the set of diagrams

In channel 1, we have

= e® 2, 2, 2, 2
y P s - e ' .
R OO P AU Bl
=% e 2, 2, 2, 2
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2 y 2
+ &vzaz[u_+ u'2— tz- L | [ (5.3)
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4 e’ ! (p, % (p_ k] " Ta, *«J{q_"K]
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Here, B(s) stands for the Z, resonance shape:
) 2 ) 3 2
B(s) = |s - m;) + mi[z . (5.5)

We proceed to modlfy eqs. (5.1)-(5.4) In order to arrive at the approximants.

To this end we first note that c2+ t'2+ u2+ u'2 < sz+ 9'2 in the whole phase
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space. Also, in eq. (5.4) the four terms in the last factor (with s,s',u and
u') which describe the interference between radiation from the electron line
and positron line can be expected to be small whenever channel 4 is {mportant

(i.e. et and/or e~ at small angles). Applying this we arrive at the following

approximants:

b
e 2 V2 )
S | 3 (s+ '), (5.6)

2
e 2
& et ' 5.7
Ay (7, %I (%] D(s)(s+ s'7) , (5.7)
eh oy 2 s - m2 s
D(s)=~s——+2(v'+a] >+(v+6va+a)8(5),
2 4 2%
_e (vt bvia’+ a )( s' ) .8
Ay B(s ) (p, k) (p_ ' i

6.2 2 = 1 -1

= g €)= ey, S — v 5.9

by = elatrs )(t'[p+'k](q+'k) t(P_‘k](q_'k)) s
According to the prescription given in section 3, whenever a Monte Carlo event

{s generated in channels 1,2,3 or 4 its weight will be computed as

W (5.10)

The next step is the computation of the cross sections oi corresponding to

the various channels. This we shall do in the next sectlion.

6. Boundaries and integrals

Before we can calculate the integrals o (1=l 2,3,4) of the approximants
Ay we have to choose those phase space elements d® that are most appropriate
for each channel. These are: eq. (2.9%) for Ay, eq. (2. gb ) for A4, and eq.
(2.9%) for both A; and A3. Also we will have to take the nonzero value of the
electron mass mg into account in the products p:-k and qt'k , since we are
going to integrate over the collinear peaks.

The multidifferential cross section for channel 1 can be written as

5 u] - )2

172 k(l ~% ([ kff__“k} dk & dz do,

S

a.
Ll

Ptk = kEZ(e?zy) + o(ml‘) ,e=1 +%m2

, m=m/E , (6.1)
e
where k is the photon energy k° normalized to the beam energy E , and zy is
3 5 3
the cosine of the angle between k and Py and ¢Y the azimuthal angle of k
around 5+ . The only nontrivial integrals are those over z, and k: we obtain

B 3

r51=_s, in -
m

=

[y (gae) = ()]

 r o

Hy (k) = 2ok = Sn(l = k) - k . (6.2)

Were, k. is AE/E , t.e. the minimum value of k, and kg

% is the maximum value

ax
of k that we want to allow in the Monte Carlo event sample. A difffculey
arises If we do not want to impose an upper bound on k: Hj(k) diverges as

k + 1 . In reality, the endpoint of the photon spectrum behaves as [13 ]2

do 2 2 2
Lim 1 1 Me M
ksl dk T Ik (1+ ?’J(l - s_“) (6-3)

rather than as (L - k)_‘ , for finite m, . We solve this problem by defining

an effectlve supremum k such that 9, with kmax =k has precisely the

sup sup
correct area under the photon spectrum curve. This value turns out to be

mi 5
=)= == oxp(iJ . (6.4)

k5up

Using this value, we ensure that the total number of events eey with very-low-

invariant-mass ee pairs will be correct. The angular distribution of these

pairs in their centre —of-mass frame will not be correct: but for pairs of such
extremely low mass this is unimportant.

Channel 2 is most easily treated by noticing that the expression (5.7) is

symmetric In qi b QE . Provided that in the Monte Carlo generation of events

we apply this symmetrization, we may write

2
S = %__ prgy LT AL =K
d'o, = % D(s) RC =5 5)

dx dk & do_ ,
2 64mn Y

5= mk/s' (6.5)



whiore % {5 the positron energy q) in units of E . A derivation of the expres-
)
sfon 257 (! « b %) for y_*k can for Instance be found in [13]|. Integrating
over 0 amd A, and over x from the kinematical limits 1 - k up to |, we
¥
find
L+ )2 1 -k
dofdi = % pesy LELLKL g (s(L2K)) (6.6)
B~ m
e
and Tor the total cross sectlon between k = kg and k = Kpax*

I, (k)

where Liy dge
mains finite
at most ksnp

Channel

spectrum. We

which can be
dﬂxfdk

and the tota

Oy

_

" S 0y (kgey) = H(ky)]

8n
)
= 200k = 2k + 5k a0 25 - 2 L, (00
m
e
FLO - 00 -0 - K < 26 - - k), (6.7)

notes the dilogarithm function. It should be noted that Hy(k) re-
as k * 1 : for consistency reasons, however, we shall always use
as defined in eq. (6.4) in H(k) as well.

3} differs from channel 1 only in its overall factor and photon

have:

sl Guraor a“) (1-k)[1+(1-k)2J 1 N
Ly > 7 g dk @ &,
b4 s [(k-E)H |k e°- 2,

1l - ,p= m%/s y Y = m.r7/s (6.8)

integrated over dzd&v to give the photon spectrum

2.2 -4
alv¥e 5} + g 1-k)( 2-2k+k
_oafv ; a a ) (ln 52 ( ) 'fl (6.9)
Mo

8n’s k[ (k-5) "+

I cross section

4 2 4
v+ bvla* a') |

5 n 1’ l“ max) - H}(RO)J 3
81 s
e
1 2, 2 k-E
fy(k) = byfn k + 5 nzxn[(k-g) +y7] + hjarctan (-7—) -k,

-1
)
(e5+y7)

19

h, = ]F hl_ 4 + 3F - 52+ YZJ/Y 2 (6.10)

Like ity | ll3 is regular for k 3 1 . Due to the presence of the two mass scales
s and mf in the spectrum, its form is quite complicated; for a discussion, see
for instance refs. [l4] and [13]

Our treatment of channel 4 is essentially the same as was given for pure-—
(LD Bhabha secattering in ref. [15]. Again, we employ the symmetry of eq. (5.9)
under the interchange of electrons and positrons to retain only the term with

le(p_ek)(q_+k)]™" , and Find

1,11
do, = 5
n s

2

1+(1-k)~ 1 1

I = e»fcv e OB 108y & R
where z is the cosine of angle between 4 and B+ , and cy that of the angle
between k and GL . In this channel the most complicated integral is that over
¢ rather than over k . It is most simply and elegantly solved by applying the
Y

Feynman integral parametrization, which introduces one additional dimension

into the integral. This is described in detail in ref. [15]. We end up with

) LY, - 2
oo, = LQZ_ l_ 1-k)? . An(2(1 c){q_l de (6.12)
(l-¢c)
sn that
1hq
g, = ln (ko) = HA(kOJJ[F[cosGminJ - F(cosmax]J ,
1,2
Hﬂ(k) = 2Wn k - 2k + 7—k ,
F(e) = |1+ n(2(1-e)/m?) |/ (1=c) - (6.13)

This integral forces us to include also the minimum and maximum allowed

scattering angles 8 .
min,max

the following obsecrvation. In all channels, k appears as one of the integra-

as a-priori cuts on the phase space: which leads to

tion variables, and consequently a-priorli cuts on k are easy: no generated

Monte Carlo event will have k < k© or k > Knax - However, c appears as an in-

tegration variable only in o, - Therefore, some events generated in channels

1, 2 or 3 will have ¢ > cosB , or ¢ < cosB . Moreover, since in channel &
min max
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we are only able to restrict the direction of a+ , not of a~ , also a_ will
sometimes fall outside of the admissible range. Since no peak of the cross
section is assoclated to such events (remember that the peak for t' » 0 is
obtalned afterwards by symmetrization) the number of these events, which of
course have to be rejected, is modest.

At this polnt, several of the Monte Carlo ingredients have been obtalned.
We have approximants Ay , and the total cross sections 9 corresponding to
them. Also, the exact matrix element can be calculated as soon as the momenta
q: N qE and k" of a Monte Carlo event are specified. The last necessary part,

the algorithms to obtain these values, is discussed in the next section.

7. Generatlion algorithms

We shall now discuss the methods used to generate Monte Carlo events,
that is, a set of phase space variables appropriate to the particular channel
(1-4) chosen, distributed randomly with probability densities proportional to
one of eqs. (5.6-5.9). An excellent review of methods to generate random vari-
ables with a specified distribution fs given in [16]. We assume the existence
of a source of satisfactorily random real numbers equidistributed between on
[0,1): in practice we use the CERNLIB routine RN32 given in [10]. These num-
bers are subsequently transformed by mappings and rejection procedures so as
to ensure the correct distribution. The above random number generator can of
course be replaced by any other generator in which the user has confidence,
without changing anything but the statistical fluctuations in our results. As
in section 4, we shall denote the above random numbers by p(i) .

We now list the varfous algorithms; for proofs that these do give the correct

distributions we refer to [11] and [16].
Channel 1|

The photon spectrum lIs generated by a combination of mapping (to obtain
the two peaks for small and large values for k) and rejection (refining the
distribution as as to have the correct factor 2- 2k + k2):

-1
kmax(l-ko)
- p in

1k, 1 W—j)] '

1-k
o max

k = [1 + exp(- in

21

£
I

(1 + a=-02)/(1 + k%), (7.1)

if v < Py s try again .

The boundaries k, and k on the k-spectrum have been defined in sect. 6. The

max
angular variable z, requires only a simple mapping. Using £ = mi/ZE2 , we have
2+E) _

v = explin e + pjln

z, =1-v,s = (v(2~v))5 , ) (7.2)

if p,> % , replace z, by - z,
It should bhe noted that due to the smallness of € (about 5.10711 at LEP I
energies), the typical value attained by |zv| is very close to 1. This would
make the computation of sY = sin { (i 3 B+) = /1—z$ numerically unstable. By
generating not z1 but v = 1 - |zy| which {s typically small (median about
Y2€) the accuracy of sy is improved by quite a few digits. The other variables

are obtalned trivially:

(7.3)
cosOR = 2p7 -1.

where QR and GR are the two Euler angles of the outgoing et in the efe”

c¢c.m.s.: since these angles are trivially distributed their orientation is {ir-
relevant, and we take BR = 0 to correspond to the positive z-axis. From the
five variables k , z_ , wY s cosSR and QR the four-momenta qi X qf and k" are

easily constructed, ;nd can be used to compute the matrix element. However,
some care Is necessary in the computation of Pk, p_k and W, since there
significant cancellations are to be expected. We tackle this problem In two
ways. Firstly, the factors ls(p,k)|2/(2p-k) in W_ in eq. (2.7) were neces-
sitated because s(p,k) and p*k do not behave in precisely the same way in the
collinear situation ﬁ//; . We are, however, not {interested in the squared
matrix element (2.1) itself but only in the weight function defined in eq.
(3.3). Therefore, Lf we replace the denominators (p+'k) and [q"k) in eqgs.

2
(5.6-9) by 5 's(pt, k)| and % ls(qi’ k)|2 in the computation of the weight,
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and keep the correct expressions in the calculation of %14 in sect. 6, we can
disregard the incorrect behaviour at the peaks: the weight will be computed
correctly. Moreover, at most only one of the four remaining factors in eq.
(2.7) can differ appreciably from 1 for any event. The consequence of all is,

that for events generator in channel 1 we may compute W as

2e (1-k)
W o=1-—"=e ——, (7.4)
m E+v l+(l—k)2

This form for W  1is independent of the sign flip of z in eq. (7.2), and glves

Y
the correct suppression due to the mass effect up to o[m:/s) .

Channel 2

Again the photon spectrum is obtained by combining mapping and rejection:

Py
k- ko (kmax/ko) ’
= s(1-k,)
Wy, = [ (1+(1-k)%)2n EL%51]/[(1+(1—ko)2]nn ——7TJLJ ; (7.5)
m m
e e
if vy < Py s try again .
The variable x is given by a k-dependent mapping:
5 = mk/s(1-k)
e b
Y = exp[ln & + Pq in Egél -6, (7.6)
x = E(1-v_) .

X

The angular variables Q+ and oa are again trivially generated as in eq. (7.3).
As in Channel 1, the cosine c¢_ and sine sY of the angle between a+ and k i

which tends to be close to 180°, have to be computed carefully, using

(7.7)

c,=v, -1, s, = (VY(Z-vy)]s .

23

After the four-momenta have been constructed, q: and qE have to be inter-
changed In one half of the events, as described in sect. 6. Finally, in this

channel the mass effect is incorporated as

k

e, (7.8)
l+(1—k)2

£
WEETSm
x

Again, this definition is independent of the interchange of q: and qu .

Channel 3

As stated before, the shape of the photon spectrum in the Z -exchange s
channel 1s complicated by the occurrence of different mass scales. No simple
combination of mapping and rejection is known to us which would be efficient
for all possible combinations of s and M, . Instead we rely on a purely nu-
merical method, which was introduced and explained in detail in ref. [17]. We
construct a histogram of the photon spectrum with, say, 1000 bins, such that
all bins have the same area to a very good approximation. The total area under
the hlstogram can be compared to the purely analytical result (6.10) to pro-
vide a check. Subsequently a k value is generated by choosing a bin at random,
and generating a k value uniformly distributed in the bin. This procedure
yields a distribution equal to the desired one to a very good approximation.
In particular the soft-photon and Z, resonance peak are accurately described
because the bins are quite narrow Iin that reglon. For completeness we summa-
rize this algorithm in appendix B.

The remaining algorithms for this channel are precisely the same as for

channel 1.

Channel 4

As stated before, this channel is just QED Bhabha scattering, and the
discussion of ref. [15] can be carried over without modification: only the
photon spectrum contains an additional factor l+(l—k)2 in the present case (in
ref. [15] this Ffactor was neglected in order to make the weights better be-
haved for k * 1 : since in this paper we explicitly include channel 1 this is
not necessary here). Again, the photon spectrum is given by mapping and rejec-

tion:
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Py

k),

foss ko [kmax o

v, = (1+(1—k)2/(1+(1-k°)2) ; (7.9)

if w <p

4 9 try again .

3
The cosine ¢ of the angle between q, and ;+ is obtained via a similar rule:

-1
-1 -1
=i = [p][l—cosemin) + [1—03)(1—cosemax) ) .

1-cosf

w_ = ana(2%) an(— )

1 wc < Py s try again .

while the corresponding azimuthal angle ¢ is again trivial. The algorithm for
the photon direction 1is more complicated, since its distribution peaks for
both &//p_ and k//4_ (cf. eq. (6.11)). As explained in [15] we solve this by
the Feynman trick, by which we write the distribution of the photon solid
angle as a superposition of distributions with a more peaked behaviour, each
distribution oriented with respect to a linear combination (parametrized by
the Feynman varlable u) of the directions of ;_ and a_ (see eq. (4.2) of
[15]). A Feynman variable is now picked according to the following prescrip-
tion

=
I

e/(l-e) , u = 1*00 ,
u = exp(&n u + psln(ul/uo)]~ U (7.11)
if Pe > 38 T replace u by 1-u .
The cholce of u determines a particular linear combination of the directions
B_/IE_I and a_lla_[ . For the moment we assume this direction to be the posi-

tive z-axis. The recipe for c¢' , the cosine of the angle between i and this

axis, and for sq! and ¢ , , the corresponding sine and azimuthal angle, is
c

then

Oy 2(l—c)(ul—u)(u+uo) ;
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e = (qu—e,,]li ;
v = 292(1—07)[e2+ ?.’97eu(1+25+eu)]_l R (7.12)
e =1-v', s, = (v‘(2—v'))g .

b, = 2“08 .

The direction Ek of % in the lab frame is, finally, obtained by rotating the

positive z-axis to the actual direction specified by the Feynman variable u :

5 X
X= . P = [ 1on®
e lac,cos®c,(u l-uc) - ue'(1-c”) ]/eu 5
Y= s ,slng (7.13)
ep = sosind 5
z 2 %
e, = [u sc,cosoc,(l—c ) + (u-l-uc)c']/eu .

The four-momenta can now be constructed without more ado. Notice that, since

c = cosi [ﬁ+ S a was restricted to be within the range between coseInax and
cos()mn , the symmetrization qg 4 qg i a+ A = a_ and k » - k (which we have
to apply in % of the cases) forces us to reject an event that has cos <

(6_ < i_] outside this range. Fortunately the number of these events is small,
as discussed in sect. 6. The derivation of a numerically stable representation
for this case is not trivial, agaln because of the variable distance between

N
the two peaks in the direction of k . We find

™
Ll

5
ul (1) Srcost ,+ (l-c)c') + v' ,

<
"

(g + (Zc—ez)/(ueu)]/eu ,

£, 20=k)

IR - (7.14)
1+(1-k)

m E+v
Again, this is independent of the replacement u * 1 -u in eq. (7.11)
This finishes our description of the generation algorithms. When an event has
been generated, it must be checked whether it is within the allowed phase
space: both a+ and é_ must have polar angles between emin and 6 . Lf the

max
event falls this check the welght has to be put to zero (in practice the pro-
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gram then tries again, while storing the zero-weight result in a bookkeeping
device). If the event is admissible, Its weight is calculated, keeping in mind
the remarks made In connection with the computation of Wn - The event and its
weight are then output. Optionally, there is an internal additional rejection

to obtain unweighted events.

8. Results

After having discussed, Ln the previous sections, how the Monte Carlo ap-
proach to radiative corrections, together with the particulars of Bhabha scat-
tering, led to the algorithms that we have discribed, it is now time for a re—
view of the physics results, obtained with the Monte Carlo program. Throughout

the discussion we have used the following parameter choices:

m, = 93 Gev ,

mtop = 40 GeV , (8.1)

Miipgs = 100 GeV ,

which lead to a value of 2.464 GeV for Fz , 82 GeV for m, , and hence 0.2227
for sln29w . Our results, do not, however, change qualitatively for reasonable
changes in the parameters (8.1).

We start with some remarks on the cholce of AE , the cutoff between the
hard and soft photon regions. As discussed in sect. 4, Monte Carlo events from
channel 5 (the soft-photon and virtual corrections) have a photon with energy
stricly zero. This is of course an approximation to the real situation in
which an unlimited number of arbitrarily soft photons is emitted [18]. Recent-
ly algorithms have been developed to deal with these photons [12]; however the
kinematics of the remainder of the event, and in particular its recoil (which
glves rise to e.g. ete” palrs with extremely small but nonzero acollinearity)
is not yet understood very well. We therefore stick to putting k® to zero in
the soft-photon region. This, however, forces us to choose AE/E as small as
possible. A logical lower limit on AE i{s that value that makes doee/dQ (as de-
fined in sect. 3) vanish, {.e. the sum of virtual and soft-photon corrections
are exactly - 100Z (of course, the contributions from hard bremsstrahlung,
with k° > AE are always positive). This approach has been taken successfully

in [16]. In the present case, however, the corrections depend on 6 : general-
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ly, they decrease with Increasing 6 . We therefore determined Ox , defined to
be that value of 8 for which dcee/dQ becomes zero, for the energy range of in-
terest, for various values of AE/E . The result 1is given in fig. 2. For

- |
AE/E = 10 © ex(sb)
(Eb = 46.5 GeV = mZ/Z) ex is essentially 180°, so that dcee/dQ is positive for

is quite well-behaved. In particular at the resonance

all scattering angles. Outside this region the cross sectlon well-defined up
to scattering angles of at least 170°. Since Bhabha scattering favours small
angles so much, this is quite acceptable. A drastically different situation
arises {f we decrease the value of AE/Eb to 5.10_3. Especially at the reso-
nance, Ox drops to a spectacular 122.1 degrees. This meens that for thls value
of AE/E a Monte Carlo study of Z, production at the resonance i{s meaningless
for all those events that have an angle between incoming and outgoing electron
larger than 122 degrees! This is clearly unacceptable. At higher energies the
situation is not very much better. The transition from the well-behaved to the
Il1-behaved cross sectlon is sketched in table 1, where we give Ox at the
fixed resonance beam energy of 46.5 GeV, for varying AE/Eb . The value of

Gx is seen to drop quite suddenly when AE/Eb decreases from .7% to .5%Z (for
values of r'\li/Eh larger than 1%, GX remalns at 180 degrees). We can draw two
concluslons:

1. A lower limit on AE/Eb is naturally given to be about .7%Z (in practice we

have always used 1%).

n

- Any experimental setup which is sensitive to values of AE/Eb smaller than
1% (for instance, an angular resolutlon which makes an acollinearity deter-
mination down to .5 degrees possible) will necessitate the inclusion of
higher order corrections to make a study of resonant Zo production meaning-
ful. Note that here the issue is not so much whether the standard model can
be tested to one-loop accuracy, but whether it can be tested at all.

The second point of interest {s the total radiative correction. In con-
trast to the case of muon pair production, this concept has to be defined
carefully here, due to the forward singularities. In the Born approximation,
both &% and e will always be restricted in the same angular range, because
the events are elastic. We therefore define the total correction for a given
angular range to be given by the total cross cross section for all events that
have the scattering angles of the et and e restricted between emln and
, but with no additional cuts. We always take Bmax = 180° - @ , and
=5", 10° , 30° and 50° . At Bm =5

in in
the cross sectlion is dominated by the t-channel photon graphs, while at Bmin=

8
max
studied four cases In detail: Bm
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50° the situation can be expected to look quite a bit like muon pair produc-

tion. The two other cases are intermediate; 8 " 30" is typical for experi-

mi
ments In a "central detector”.

We have made runs of the MC program at various energles, for the four an-
gular ranges specified above. Due to the forward peak, it is not practical to
obtain the three smaller angular ranges by making cuts in the sample with
emin = 5° : hardly any events are left that way. Instead, separate runs are
advisable. In each case we generated lOA weighted events (each run typically
takes about 20 minutes on an IBM PC/AT). In figs. 3% to 3d we plot both the
Born term cross section and the cross section with the total correction dis-
cussed above. The Born cross section is obtained analytically, using the for-
mula in appendix C. A few qualitative features are evident. Firstly, at small

emln in
muon-pair resonance is evident. Furthermore, at the resonance the correctlion

the Z, "peak” is nearly Invisible. Only at em = 30 something like the
fs actually positive for small © . Being about 5%, this correction gives no
indication of a necessity of higher order corrections in the photon exchange
channel. Finally, the high radiative tail (~ 100%) of the resonance of higher
energles which is familiar from the muon case is not evident for emi = 30"

n
and Om = 50° . This can be understood easily: the radiative tail originates

from eglnts in channel 3, where a hard photon is typically emitted close to
the beam, with the fermion pair recoiling In the other direction. Such confi-
gurations tend to be rejected by the angular cuts on both the et and e .

Of course the total correction is not what is usually measured, which
brings us to the topic of canonical cuts. In [5] the applicatlon was advocated
of canonical cuts, i.e. simple and well-defined cuts whlch reduce (if possi-
ble) the radiative corrections and, since they would be applied at least once
by the relevant experiments, would allow for unambiguous comparison between

*e™ as well as u+u- it seems that

the results of different experiments. For e
the best canonical cuts are the following set:
1) the energies of the et and e must be larger than some threshold value E.y;
2) the angle between the ot and e~ directions must be larger than 180" - [ ;

L is called the acollinearity cut.
We apply Eth = % Eb and ¢ = 10 degrees and of course the angular cuts discus-
sed before. The effect of this cholce of E ., is marginal, the acollinearity
cut being much tighter: a motivation for the choice of & will be given later
on.

In figs. 42— 44 e present close-ups of the resonance region for the four

=S eSS e e e e e S e e e R e e e e B S SSS
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values of ﬂ" . We draw both the Born cross section (dashed line), the fully

1
corrected nnl"(dashed—dotted line) and the result after the canonical cuts. As
{s seen the cuts serve to lower the resonance curve, without affecting its
shape. After cuts, the correction also becomes negative again at emin =5 .

A remark 1{s in order on the statlstical accuracy of our results. The
(statistical) error of course depends on the parameters. It is smallest for
Gmln = 5" , being about .3% for 104 events, and increases to about .7% for
6 = 50" . Of course thls error can be reduced to an arbitrarily small

n:;:nt by using a sufflclently large number of events. The only possible
source of a systematlc error can be the particular random number algorithm: we
have found no evidence for any such effect. In figs. 33- 34 and 4+d the error
is of the order of the line widths in the plots: in fig. 42 the error is about
0.05 nanobarn, and in fig. 4b {t {s about 0.0l nanobarn. It turns out, however
that it is casy to draw a nlce smooth curve through the central values, indi-
cating that our error estimates may be quite conservative. In particular the
peak of the resonance curve can be well {identified.

This brings us to the next topic of interest: the peak shift. Due to the
interference between the Z, and photon exchange graphs the peak of the cross
sectlon will be shifted from the exact value of vs = m to a value Vs = m, -
Am Ay s the peak shift (positive if the peak is at lower values than m,)-
The peak shift is present already at the Born level where we can find it with
great precision because we know the resonance curve analytically. In fig. 5 we
present the relation between Am and the scattering angle 8 . The peak shift is
always positive: I(ts minimum is about 70 MeV at 6 around 100 degrees. For
larger values of 8 it remains essentfally constant. At smaller angles the peak
shift Increases rapidly: at 8 = 23° {t reaches | GeV. For 6 ~ 13° (Am ~
1900 MeV) the effect of the Z, resonance becomes sufficiently relatively small
that {t can no longer compensate the 1/s dependence of the photon cross sec-
tion, and the cross section doesn't even become flat anymore as a function of
Vs . Determination of the peak shift in the radiatively corrected cross sec-—
tions Is less precise due to the statistical errors. We determined the peak
shift both graphically and by fitting to the cross section values at four
points In a 300 MeV interval around the resonance. These results typically
colncide to about 20-40 MeV which we take as an error estimate. In table 2 we
present the peak shifts for the Born, fully corrected and canonically cor-
rected cross sections in the four angular ranges. For emi = 5" and 10° the

n
corrections shift the peak to lower values. In the more central regions the
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pealk shift is reduced by the corrections: for emln = 50 the peak actually

shifts to values of vs larger than m, . Of course, runs with higher statistics

z
can improve the aceuracy of these results. We deemed this not relevant at this
point because of the extant uncertainties in m, . The overall conclusion is
clear however: the peak shift is quite substantfal and can be given about any
value by applying suitable cuts.

The last quantity of interest is the effect of changes in the acollinear-
ity cut € . To this end we made a number of runs using 103 points at values Ep
= 44, 46.5 and 49 GeV. The resulting values for the radiative corrections are
given in fig. h. Tt is seen that the absolute value of the correction depends
(of course) on Ey: its variation with £ is however always about the same.
Moreover for C smaller than about 10 degrees the correction varies quite

+,e” directions will

rapidly with © , {mplying that measurement errors in the e
become important. © = 10 degrees seems to be the optimal choice, gliving rea—
sonahle corrections which are not too sensitive to measurement errors.

We finish this section by presenting our conclusions.

First, an optimal cholice for AE/Eb is dictated by the process under stu-
dy: If we restrict ourselves to flirst-order correctlons, AE/Eb must be batween
7% and 1%.

Second, the total radiative correction is a bit more moderate than in the
muon case: at smaller scattering angles It remains positive even at resonance.
No high radiative tail is present. As for canonical cuts, an acollinearity cut
on the e*e™ pair works well and a value & = 10° is optimal. After canonical
cuts the resonance peak drops in height but keeps the same shape. Finally, we
have determined the shifts in the apparent Z, peak from its exact mass value.
This shift is affected considerably by the angular {nterval considered and by
radiative corrections and to a lesser extent by the application of canonfcal

cuts.
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Appendix A

In section 2 we gave an expression for the matrix element squared, summed
and averaged over the spins. This expression is in terms of spinor products.
As stated there, it can be rewritten to a form consisting of only the more
conventional vector products, which we shall give below. First, we define two

functions of four four-momenta Pis Pys Py and Pt
R(p,1pyrpyep,) = & { = (kep )(kepy)(pyp,) + (kep,)(kopg)(p-P,)

+ (kep J(kep,)(pyopy) = (kop,)(kep,)(pyop5)}l o (A1)

s : AN
Up pgopgip,) = 4 {lkepyJe, o Pok PPy
& By vpo A
- (kepyle ypopik P4P3l o (A.2)
where k" is the four-momenta of the bremsstrahlung photon, and € the Levi-

pvpao
Civita tensor with o123 + 1 . The I has, in fact the same symmetries in the

p; as R: this is easily proven using Schouten's identy. Next, we have two

functions of two kinematic invariants (s, s',t,...):

2 2
4 y-m X-m
_ 2re P o z z
QX‘XZ(x,y) = 8e [xy + " (vh ) (v gy + TEEY)
2 2 (x—mi)(y—m:) - mi?i
+ (v-ra)"(v-2,8) CIIC ], (A.3)
2
Jklxz(x’Y) = 8e (v—Kla)(v-kza]mZFz
x [ ) oy e? + (vr,a)(vrga) =t ] (A.4)
yB(x) = xB(y) 1 27 B(x)B(y)" ’
where kl 2 take on the values + or - , and
25 =22
B(x) = (x-mz) +m,Ty (A.5)



The equivalent expression to eq. (2.1) can then be written as
%-£|M|2 - (u2+ w'?){R(a_a,q_a,)[Q(s" 8" + Q__(s'2s")]

+ R(p,p_p,p_)[Q, (s,8) + Q__(5,9)]
+ R(a_p_a_p )[Q (et +Q_(c',e")]
+ R(p,a,p,q,)Q,, (£,0) + Q__(r,0)]
+ 2R(q_ap,p )[Q (s'28) + Q__(s",8)]
+ 2R(q_q,q_p_)[Q, (s"se") + Q_(s',e")]
+ 2R(q_q,p,q,)[Q,(s",t) + Q_(s",0)]
+ R(p,p_a_p )[Q (s,t") + Q_(s,e1)]
+ 2R(p,p_p,q,)[Q, (s,0) + Q_(s,0)]

+ m(q_p_p,a,)[Q, (t',0) + Q_(c',0)]

= Z(uz- u'2){ I(q_q+p+p_)[J++(s',s) - J__(s',s)]
+ Ha_gap )3, (s"he") - I_(s"eN)]
+ 1a_q,p,a,)[3,,(s"00) - 3_(s",0)]
+ I(p+p-q_p_)[J++(s.t') - J__(s,t')]
+ 1(p,p_p,a,)[3,,(s,) - I__(5,0)]
+ 1a_p_p,a,)[ I, (c",0) - 3_(c", 0]}

2 '2 ' A
+ Z(t + ') l(q_q+q_q+-)Q+_(s »s')

+ ®(p,p p,p JQ,_(s:5)
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+ 2R(q_q,p,p_)Q, ("))}

+ 2(s?+ ' 2){ R(a_p_a_p_)Q,_(t',t")
+ R(p,q,p,q,)Q, (£,
+ 2r(q_p_p,a,)Q, _(£",0)} - (A.0)

We have checked both analytically and numerically that this result is identi-

cal to the one obtained in section 2.

Appendix B

We briefly outline the structure of our Monte Carlo program. The five
different channels in which events can be generated are represented by so many
'subgenerators', sets of subroutines that operate independently. Our program
therefore has a modular structure. The initialization of the program is per-
formed by calling the routine SETBAB. To this the user supplies the beam
energy, and the masses of the Z, and Higgs bosons, and of the top quark.
o emax and k
is the maximum energy one wishes to allow for in units of Eb(for

Furthermore, the crude phase space cuts emi are specified,

max
where k..
{nstance, with the canonical cuts described in sect. 8 a value of kj,. = 0.51
would be appropriate since events with larger photon energy would always be
rejected). The initialization program then performs the following tasks: it
calculates the Standard Model values of m, Fz and sinzew ; then, it calls
five separate initialization routines for the five subgenerators. These return

the values of the approximate cross sections o i=1, ¢¢esy, 5. On the

»
basis of these values, and using given a-priori pr;Sabilities ai(i =

1 ,..., 5) it computes the relative probabilities of an event to come from
each channel*). An actual Monte Carlo event is generated by a call to the
generation routine GENBAB. This routine first picks a channel and calls the

subgenerator routine for that channel. These routines use the algorithms given

*) The results presented in section 8 are based on o = |
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in sect. 7 and return the values of qt 3 qf and k" , together with che value
of Wp+ GENBAB first checks whether the event satisfies the restrictions given
by emin and Bmax (the kg., cut is automatically satisfied). If so, the event
weight is calculated. For hard-photon events the expressions given in sections
2 and 5 are used, while a soft-photon event has constant weight. The weight
information is stored in common, while the routine outputs the momenta values
and the total weight. Optionally, unweighted events are generated by rejec-
tion. Additional cuts (such as canonical ones) have to be implemented by the
calling program.

After the desired event sample has been generated the computation of the
cross section corresponding to this sample in performed by routine ENDBAB.
This uses the values of ai and al , and the information on the event weights,
to estimate the resultant cross section and the estimated statistical uncer-
tainty. The results are printed in the form of a table in which also informa-
tion on the performance of the individual subgenerators is given.

We finish this appendix by specifying the random number generator used in
our program. It is a multiplicative congruentional pseudo-random number gene-
rator based on the algorithm

31
(69069 ky_y) mod 27",

=
]

ay =gt 22 (.1)

where p1 is the current random number, and [¢] the previous one. If desired

i-1
this generator can be raplaced by any other one in which the user has confi-

dence: the results should be the same within statistical errors.

Appendix C

We present the Born level formula for the cross section for e+e_ +
ete” » Integrated over the complete azimuthal range, and polar angles from
emin up to emax
the literature, and we include it here for completeness. It reads

- To our knowledge this result has not been given anywhere in

(C.1)

1
Q= T [B(cosemin) - B[cosemax)] S
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where
4 2 2
B(c) = 2e 6 (c) + [c++ a_)oz(c) +
[(s,+ )4+ (8,- ]A0 (e) + ZeZRe(c +0 )6, (c)
(8," 8, 8,7 83 %3 + 0%, e
+ 2Re[ (g + g )%+ (g - )25 ]#c(c) +
ByT By 9t e, By) 9_1%s
2 2 2 2
2e°((8,+ 8,)™+ (2, 8,)%Jog(c) + 2026, (c)
2 4 2,2 252
*+ 2s7e gg(e) + 257(g - &) 0g(c)

2,202 2
+ 4s%e®(g - 8l)e) ()

where
2
2 (gytg)
%= g 2 ’
s—m_+ im [
z zz
p 2
2 (e, g,
-
% s—m + im T
z Z0
2 2
2 (g, &)
g =% L v "a
X s

s—m2+ im I’
z zz
and the functions @i(c) are given by

@l(c) -t + 4n(l-¢c) - (l-c) ,

1=¢
2
¢y(c) = %"[C + % c3] X
(24
03(C) = “Iaio + 2(24) Rn(l+p-c) + (l+p-c) ,
s 1 5
%le) = 7 [42a(1-¢) - 4(1-c) + = (1-0)°] ,
¢5(c) = % [(2+u)21n(1+u—c) - 2(24p) (1+u-c)

1 2
+ 5y (=e)]

(C.2)

(C.3)
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0g(c) = 1—2 (05(c) = ¢,(e))
mz
2
L 3
07(5) = %—-[c - c2+ 3 ],
4
bole) = —5—
8 sz(l~c)
4
s (l+9-c)
_ 4 1+p—c
o10(0) = —3 tn () o (c.4)
1s

where ¢ is given by
u = 2m2/s
z

It should be noted that this formula assumes thgf a 29 exchanged in the t
channel has a propagator proportional to (c = mi) , without imaginary part.
This is in accordance with the interpretation of the 2% width as a perturba—

tive, Qz-dependent quantity.
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Table captions

Table 1 Position of the zero in do_ /d&Q at resonance (Vs = mz] as a function

of the soft-photon cutoff AE/Eb.

Table 2 Apparent mass shift of the Z  for various angular ranges.

Table 1
AE/Eb (%) Bx (deg)

1.0 179.97

0.9 179.9

0.8 179.2

0.7 176.4

0.6 164 .4

0.5 122.1

0.4 T

0.3 46.8

0.2 31.5

0.1 12.4
Table 2
angular peak shifts
range (degrees) (MeV)

Born full corr. canonical

5 -175 680 900 + 100 900 + 100
10 - 170 444 460 + 40 460 + 40
30 - 150 214 80 + 40 70 £ 40
50 - 130 132 =20 + 40 -40 + 40
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Figure captions

fig. 1

fig. 2

figs. 327d

figs. 43°d

fig. 5

fFigs. 6274

The sixteen Feynman diagrams contributing to e+e_ = e+e_y in the
Standard Model.

Boundaries of the area of positivity of doee/dﬂ as a function of
beam energy, for different values of the soft-photon cut off

AE/Eb .

Born cross section and total radiative correction as a function of
beam energy, for various angular ranges. Dashed line: lowest
order, solid line: corrected result.

Resonance shapes of the Z, peak with total and canonical correc-
tions, for various angular ranges. Dashed line: lowest order,
dashed—-dotted line: fully corrected, solid line: result after ca-
nonical cuts.

Apparent mass shift of the Z, related to the scattering angle, in
the Born approximation.

Dependence of the radiative correction on the value of the acolli-

nearity cut, for various angular ranges.
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