
DEUTSCHES ELEKTRONEN-SYNCHROTRON

DESY SO 173

Periodic Orbits on the Regulär
Hyperbolic Octagon

ESY

K.B. Boomoluv
L. D LuntL'i'.i for Th^orctical PLy>irs,

ovJcfl. '. 55 Ji

F. StrilUT

II. Institut für rLroretisrhf P^vsi

ISSN (U1S 9S33

NOTKESTRASSE 85 - 2 HAMBURG 52



DESY behält sich alle Rechte für den Fall der Schutzrechtserteilung und für die wirtschaftliche
Verwertung der in diesem Bericht enthaltenen Informationen vor.

DESY reserves all rights for commercial use of information included in this report, especiaily in
case of filing application for or grant of patents.

To be sure that your preprints are promptly included in the
HIGH ENERGY PHYSICS INDEX ,

send them to the following address ( if possible by air mail ) :

DESY
Bibliothek
Notkestrasse 85
2 Hamburg 52
Germany



DES V 89 173
December 1989

ISSN 0415 9833

Periodic Orbits on the Regulär

Hyperbolic Octagoii

E. B. Bogomolny

L . D . L a n d a u Inst i tute for Theoretical Physics

142432 Chm.ngplovka. USSR

F.SteilK'T1

II.Institut für Theoretische Physik. Universität Hamlnirs

2000 Hamburg 50. Luruper Chaussee 149. Fed. Rep. Geimany

Abstract

The length spertrum of closed geodesics on a compact Ricmann surface correspomling t n

a regulär octagon on the Poincare disc i- iiivestigated. The general form of tbe elemenls of

the "octagon groupv. a discrete subgroupof Sl'fl.l ). in 1enns of 2 < 2 matr ioesis derived. and

the Aurich-Sleiner law for Ihe length of penodir orbits is proved analytically. An algorithm

for T In- mult ipl ic i ty of geodesics with a given length is developed. \vhich leads t» an efficient

enmneratioii of the periodic orbits of this stroitgiy fhaotic System.

by Deutscht Forschungsgemeinschaft undcr Contraci No. DFÜ S U- 241.. 4 2

I Introduction

The free motion on a compact two-dimensioual surface of constant negative curvature is one

of the simplesi and best iiivestigated ergodic models of classical mechanics (see e.g. Ref. [l

and references therein). In Ref. 2 some properties of periodic trajectories were investigated

for one of such surfaces «Tuch corresponds to a regulär octagcm on the Poincare disc with

opposite sides being identified.

It is known [1.2 that for such a System the periodic Irajeclories are in one-to-one cor-

respoiidence with the conjugacy classes of fundamental group matnces. For the problein

considered, i. e. the "octagon group". the latter can be represented äs a product of an arbi-

trary number of the following 8 generators |1.2j:

' l

where l- 0.1 7.

In Ref. 2 all jiroducts up to 11 generators were found and. using a particular algorithm

for se])aratiiig thf conjugacy classes. the length spectrum of 206796242 primitive periodic

trajectories was calculated. The nuinerical resiilts strongly suggest that there exists an exact

formula für the lengths of primitive periodic trajectories '2 :

where l„ is the leiigth of a periodic t rajectory wi th n being a natural mimber and m an odd

uatural number. wliich is uniquely defined by ihe condition that the modulus of the difFerence

A ;- r« - 11 \ (3)

has a niiniininii value at given n.

The existeiice of such arithmetic relations in terms of algebraic numbers for this ergodic

System was not expected before. In part icular . froin tliese relations it could be concluded '2

tha t ihe inean imdtiplicity g ( l ] of periodic Irajerlories with a fixed length / is unexpectedly

krsjc. i.e. g ( } \ &\'2t!>'/l , l --» oc.

In Section 2 of this notc we shall study the fundamental group malnces for the regulär

(ictagon and shall find their geueral form from which we shall prove llie Aurich-Steiner law

i 2 ) . (3l fi:ialvt;<-ally.

In Section 3 we present a few nnportaii t symmctry relations for such malrices.

In Section 4 we develop an algorithm foi ihe caloulation of the multiplicity of periodic

t r a j ec tu r i e^ wi th a given Irngth. The usual method of constructing the fundamental group

malnces- a> product s of a f ini te number of generators (which was used m Ref. 2 l suffers from

tlu- drawback thal product s consisting of a large mimber of generators can give a periodic

trajcclory with a small period. This mcaiis t h a t the multi])l icity of periodir trajectories

ieven for small lengths) obtained by such a method. in peneral. will be uiiderestimated due

to ihe coniribution from producls wi th a larger number of gcncrators. This fact reslricls ihe

applicability of such calculations, especially for checking the Selberg trace formula (periodic-

orbit theory) for the System considered [3 .

The method proposed in Sortion 4 permit? ns to find ihe exact multiplicity of periodic

trajectories wi th a given length iiidependenl of the number of gt-nerators taken int o accouut.

.



II General form of fundamental group matrices for the
regulär octagon

An arbi t rary fundamental group inatrix of the "octagon group" corresponding to the regnlai

octagon shown in Fig. l represented äs a product of grnerators (1) can be wri t ten äs 2 , :

(4l
v/v'2-l(B, - iB2\l -iA2

where Al. _43, BI, B? are algebraic numbers of llie form

m -j- 77 v'2

with integers m, n,

(Note that we choose in the off-diagonal elements the factor \ v'2 — l iiistead of
äs in '2^ The reasoii for it will becoine clear below).

Tlie obvious propcrty of (4) is that its determinant umst be equal to 1:

2 + 1

h B * ) - l . ( 6 )

This condition seems to be trivial, but we shall show in a momeiit that it gives a lot of
infonnation about the matrix elements.

First of all, we introduce a few definitions- Let us call the algebraic numbers of form (5)
even or odd depending on the parity of m. (Here the parity of an algebraic number m — n \'1
is denned by p(rn -+ nv^) = m(niod2)). It is easy to show that AI must be odd. AI even, and
B], BI must have the same parity (both even or odd). Amoiig the general algebraic numbers
(5) which are denned by two independent integers m and n we shall be interested in particular
subsets of these nunibers for which rn is uniquely connected with n by the requirement that
the quantity

A = [m - nv'2' (7)

acquires its minirmmi value for nxed 77 and for a given parity of 777. We shall call the numbers
with this property minimal mmjbers. There are two types of minimal numbers: even and
odd depending on whether m is allowed 1o be even or odd in the minimization of (7). The
necessary and sufficient condition that an algebraic number C = m — n\/2 (n ^ 0) belongs
to the set of minimal numbers can be expressed in form of the inequality

l . (8)

In Table l we present the nrst 20 minimal numbers for the case n > 0. Minimal numbers liave
the interesting property that each class of minimal numbers is closed under multiplication.
This means that if one multiplies two arbitrary minimal numbers with the same parity. the
result will be again a minimal number with the same parity.

Let us consider condition (6) in detail. It is an algebrajc relation for the numbers(5). It
is clear that it will remain true if one changes the sign of v'2 in all terms. This implies that
if A-i, AI. B}. B] of form ( 5 ) obey (6), then t hei r conjugated partners A-, etc. will obey the
following relation:

Ä] + Äl + (^ + l l l B j - B]}-- l . (9)

77

m
even

m

odd

n
T71

even
m

odd

1 2 3

2 2 4

1 3 5

11

16

15

12 13

IG 18

17 19

4

C,

5

14

20

19

D C 7 8

8 8 lü

7 9 9

15

22

21

16

22

23

17

24

2S

12

11

18

26

25

9 : 10

12

13

19

26

77

14

15

20

28

29

Table 1: First positive minimal numbers

where AI :— m-f - n\\"l e t c . . But all terms in ( 9 ) are positive numbers, and therefore they
are restricted by the following values

\Ä,\ l , |B,I -" \/V2- l • l -i = 1.2 . (10

These inequalities mean tha t all A, and B, belong to minimal numbers.
Taking mto account the above-mentioned parity properties. we conclude that all funda-

mental group matrices for the regulär octagon must have form (4) where:

AJ is an odd minimal number

A2 is an even minimal number

BI and B; are minimal numbers of the same par i ty .

(H)

The length / of a periodic trajectory corresponding to a fundamental group matrix M can be
calculated from the relation '1.2 :

/ l
cosh- - Tr.U = A,

Combining this with (11 ]. one obtains formulae ( 2 ) . (3| which were proposed before in Ref. [2 , .
Xow we prove the revcrse Statement, i.e. that any matrix of form (4) with unit determinant

and with A,, B, obeying (11) belongs to the fundamental group of the regulär octagon. Our
proof will be based on the theorem proven in Ref. 4 and cited in Ref. [l]. (Actually. Ref. 4

was not available to us).
According to this theorem the group of all matrices of form (4) with unit determinant

differs from the considered ''octagon group'' by the existence of an additional generator

R, = (13)

with the propt-rties
(14)



The tlieorem states t l ia t au arbitrary matrix ( 4 l ran be represenl^d äs n word constructed
froin the generaturs bt, and the additiona] matrix /?„. Bul arcording t o 114 ) matr i res with an
even number of RT't, ran be reduced lü fundamental group matrices (withoul any /?„). and
matrices with an odd nuinber of RT's ran be reduced to matrices with one J?„. Therefore. an
arbitrary matrix (4l with algebraic elements -4 ] . A2. S], B; belongs cither 1o a fundamental
group mairix or lo a product of a fundamental group matrix with one R„. 1t is not difficult to
find a criterium \vhich distinguishes these two cases. As was indicated aliovc, AI must be an
odd algebraic number for any fundamental proup matrix and .4; must be an even tme. The
application of R„ to a matrix (4) results in ihe following Substitution: A] —> — A2. A? —* A]
and BI —' -Bi, BI —> B,. Hence. for a product of Rf and a fundamental group matrix
the .4] element will be an even algebraic number and AI will be an odd one. (B\d B?
will be. äs before, numbers of ihe same par i ty ) . This means that the parity of A\y
discriminates beiween these two cases. If AI is an odd number, Ihe matrix (4) belongs to
the fundamental group. and if AI is an even number. ihe mairix (4| is a product of R„ and
a fundamental gvoup matrix.

Thus we have proved the following Theorem: The necessary and snfficient condition lhat
a matrix (4) with unit determinaiit beUmgs to the fundamental group nf the regulär octagon
is t bat the A} element is an even minimal number (and all other elemeiits obey (11))-

From this theorem it follows that to construrt a fundamental group matrix it is enougli
to sort out niiiiimal algt'braic numbers obeyiiig conditions (11) and selert from them those
obeing ( 6 ) . Lei us emphasize thal ihe minimality conditions (7) (o r (8 ) ) . which in the end is
a simple coiisequeiice of the unit delerminaiit condition (6) . is of very importance. As it will
be shown below, due to this condilion it will be enough lo sort out oiily a nnite number of
minimal numbers in order to find all periodic trajectories with a fixed length.

(15)

III Symmetry transformations

Lei
AI = rri! + u i v 2. .42 — m-2 —
B, = /! + kn/2. B? = ( j - f i

be the represcntation of ihe matrix elements in terms of integers. As was noted above, rrii is
an odd integer, m: is an even integer, whereas ^ and 12 can be either even or odd. but must
have ihe same parity.

We present here a few raore parity propertie;. From Etj. ( C j one can show the following:

1) if H I is even, then n:. /i and /2 are even and £, and k-2 are of the same parity:

2) if nl is odd and l\. l^ are even, then "2 is even and A I and k2 are of different parity:

3) if 7i! is odd and li, /? are odd. then '); is even or odd depending o n whether i'i and k2

have ihe same or opposite parity.

From Fig. l it is clear that the simples! symmetry of the octagon is a rotation over jr/4.
If A I , A2, B-I. B; define an admissible matrix ( 4 ) . ihen .4], A2. B\, B'2 with

B{ ---- ( B , - B 2 ) / v / 2

B' = (B^ (16)

also givc an admissible fundamenta l proup ma t r ix . Note t hat an inverse matrix corresponds
to A1, .4:. B], B?. The reflertion over llic coordinate axis is equivalent to ihe Inversion
ivith resprct to the line which IIÖF the angle 7 T , 8 witli ihe abscissa. (1t is denoted by l in
F ig l ) . This iiiversion corresponds lo the following transformation:

-41 - -4,

D' i D D \• '•")
Ö2 - löi ~ "a)/ V -

The iiivcrsion over circle 2 in Fig. l gives the transformation

-4;--4 '
B\ -B,

Analogously, ihe Inversion over circle 3 in Fig. l rorresponds to the transformation

(17

(18)

A\ A,
A'2= - ( l -
5 i - J3 , / x :
tfü - -d -

-B,
V'2)A2

(19)

Note tha t

äs it must be for the refleotions over 3 lines having an angle of 60° with each other. And.
finally. the Inversion over circle 4 in Fig. l gives

- ( 2 + V2) i . (21)

Two important properties of the transformation s (17) - (21) are:

i) If _4, . A3. B,. B2 obey Eq. ( 6 l . ihen Al. A\. B\. B'^ also obey this relation.

11 ) If AI. -4:. B]. B3 are integer algebraic numbers of type (15) obeying (11 ) . then A}, A'2.
B'}. B; will be also integer algebraic numbers obeying (11).

Any sequence of these transformations will be an admissible transformation. So. knowing
a fundamental group mairix, one can construct another one witii ihe same trace by the above
symmetry transformations.

IV Separation of conjugacy classes

In this Section we discuss the connection between fundamental group matrices and periodir
trajectories. It is knowri (see e.g. Ref. | l ] ) lhat if M is a certain fundamental group matrix,
then all conjugaled matrices

M' = SMS ' . 1221



where 5 is an arbitrary fundamental group matrix. correspoiid to the same periodic trajectory.
Therefore. to enumerate the periodic trajectories it is necessary to know which fundamental
group matrices are conjugated to each other. If ihe matrices are given äs productS of funda-
mental group generators. then a pure ajgebraic algorithm exisis [2 , which solves this problem
within a finite number of Steps.

In the approach developed in ihis paper. we can construct aiir fundamental group matrix
directly, but, a priori, we do noi know its representation äs a generator product. and t ho
queslion of the Separation of conjugacy classes has to be considered in detail,

Let us recall a few general facts 1], Any geodesic 011 the Poincare disc is a circle which is
perpendicular to the boundary circle \z\ 1. Inside ihe fundamental region a closed geodesic
( i . e . a periodic trajectory) is a set of segments of such circles connected with each other by
the identification of the boundary arcs via the generators (1). An arbitrary fundamental
group matrix of the form

(24)

with unit determinant defines the linear fractional transformation (; = x 4 iy)

-' - az + P
~ 9'z + a' '

which leaves the circle : — l invariant.

Simultaneously. a matrix (23) defines a unique geodesic on the Poincare disc which is not
chaiiged by the transformation (24). In Cartesian coordinates this invariant geodesic is given
by the equation

2
- l = 0 . (25)y

0 2

where fa, /J?2, QI . ßj are real and imaginary parts, respectively, of ß and a:

ß = ß] •+- iß? , a = ü t -f ici-2 .

If a2 = 0- then ihe invariant geodesic is the straight line

(26)

(27

II is not difncult to show lhai geometrically the conjugated matrix (22 ) is the result of the
translation of the circle (25) (corresponding to ihe matrix M] under a transformation of type
(24) defined by the malrix S.

Let us assume that we know a fundamental group matrix and we want to construct the

corresponding circle (25) on tlie Poincare disc. Two varianls are possible. Either the circle
(25) goes through the fundamental domain or it entirely lies outside of il. Only ihe first case
corresponds to an arc of a periodic Irajectorv of the free motion on the surface considered.
The second case has to be considered äs the result of a Transformation of a geodesic under
the action of a fundamental group matrix. This means Ihat we have not to consider matrices
for which the invariant circle (25) lies outside ihe fundamental region.

The necessary and sufficient condition that ihe circle (25) goes through the fundamental
octagon is that tlie distance between the centre of the circle and a certain corner of the

octagon is smaller or equal to the radius of ( 2 5 ) . If ihe matrix M is written in the form (4) .
this condition is equivalent to Ihe following inequality

A,\ (2 - x 2 H B, - ( V 2 - l ) !Bj | ) , (28)

where we assume that BI ^ iß j l ( this can always be achieved by rotations over jr/4 äs in
E q . ( 1 7 ) ) .

Using Eq. (6) one obtaiiis ihe following condition on BI. B? (assuining B\ B: > 0)

D 2 r: D 2 / i D D . f l i "J k^ j A 2 ~\f)C\\ * -*- d±J r. Ti/liJ? [ 1 - r V ^ l / l l 1 . l iri* j

l ' J * * ' ' l V l / * '

Therefore, if the length of the geodesic is fixed (i .e. AI is fixed), there exists only a finite
number of matrices ( 4 ) which we have 1o consider. These and only these matrices correspond

to invariant geodesics (25) which go through ihe fundamental region.
To numerically construct such matrices. we shall use the following algorilhm.
Fix the matrix trace. i.e. choose the number AI. We repeat lhat AI rnust be an odd

minimal number of the form mi + "jv^2 which is uniquely defined by the inleger H I . The
numbers B! arid B2 have to be minimal numbers with equal pari t y, so at fixed A' i , fcj there
exist two sets of BI, B; with even and odd ( i , l?. Let us sort out all fr], £2 such that BI, B%

obey inequality (29). As the left-hand side of it is the equation of an ellipse there are only
a fimte number of pairs fcj, Jc2 obeying it. For each of such pair we find A? from Eq. (6) and
keep only such cases where A? has the form m2 -r rij\/2 with rn2 . n2 being integers (and m;

is even l. This can be achieved. e. g. by a direcl solution of Eq.(6) over variables m^, "2 or
by sorting out all rc2 obeying (28). It is ihese cases lhat give the fundamental group matrices

(4) with uni t determinant.
Let us consider such a matrix. By construction, i.e. by Eq. (28) an arc of the geodesic

corresponding to this matrix is located iriside the fundamental octagon. In general. Ihis arc
is restricled from bot h sides by two boundary arcs of our octagon. Since ihe opposite sides

of the octagon are idenlified, the pari of the geodesic which goes out of the octagon has
1o be brought back with the aid of a proper generalor (1). As was mentioned above, this
corresponds 1o the conjugatiou (22) where S is the matrix of this generalor. This means that

after the conjugation of the initial matrix with a certain generator (1) one obtains a matrix
whose geodesic goes through the fundamental region (and which obeys (28)}.

It is clear geomelrically that in general (when the geodesic does not go through a corner
of the fundamental region) there exist only Iwo generators which have this property. They

correspond to the two boimdary arcs which are crossed by the geodesic considered.
This suggesls the following scheine for the conslruction of periodic trajectories. Let us

assume that we know a fundamental group matr ix i 4 ) which obeys (28), i.e. its geodesic
(25) goes ihrough the fundamental octagon. Do ihe conjugation (22) with all 8 generators
(1). For all mairices obtained by this piocedure check condition (28). As was noted. in
general this condition will be satisfied only foi two generators. hence only for two matrices
the corresponding geodesic goes through the fundamental octagon. Choose one of these two
mairices and repeat the conjugation with the S generators oace riiore. As before only two

generators give matrices whose geodesics lie iiiside the fundamental region. One of them is
ihe inverse to the generator used in the first step. Therefore only one gives a new matrix
1o be considered. Repeat this process until ihe new matrix does coincide with the initial
one. (As our matrices belong to the fundamental group, this procedure will stop after a finite
number of steps.)



Let fci, t j , . . . , k„ be the labels of the generators obtained by the described procedure and

Mfc =

be the sequence of the corresponding matrices. By construction.
MI, obeys the condition (28). where the last matrix satisfies

(30)

„ — trM, and each

(31)

This condition gives a representation of the initial matrix M äs a product of generators:

M - b^bkn_, . . . b f c , . (32)

The periodic trajectory corresponding lo the initial matrix M consists exactly of those seg-
menls of geodesics (25) which correspond to ihe matrices Mkt (j =~ 1.2,. . . . n ) . Simultane-
ously. the proposed method gives. äs a by-product. tlie raiionical representation of the matrix
äs a product of generators.

In cases where the geodisic goes through a corner of the fundamental region the argurnents
have to be slightly modified but we don'i dwell 011 it here.

Actually, ihe initial matrix M (or. strictly speaking, the geodesic corresponding to it by
Eq. (25)) defines the position and the momentum of the point particle in the initial moment.
The subsequent molion is uniquely defined by these values. Between boundaries ihe particle
moves on a geodesic - an arc of a circle of the form (25). When the particle collides with
a boundary arc, it is transformed to another boundary arc according to the identification
used. It is this process that is described by Ihe sequence of matrices {30). It is not difficult
to construct an explicit algorithm which describes the motion inside the fundamental region
directly. The above method with the sorting out of all generators seems to be more algebraic
and more suitable for numerical calculations.

The method outlined above was used to wrile a program which perrnits to find all periodic
trajectories for a given length. The detailed description of this program and results of the
calculations will be published elsewhere. Here we menlion the results only for the first 80
lengths presented in Table l of Ref. 1\e product s of up to 11 geiierators were calctilated,
We find that the length spectrum given in this Table is almost complcte; there are only
two lengths for which the mulliplicity is too low. since products of 12 generators give a
contribution. They correspond to AI — 97 + 68 v- and A^ — 9? ~ 69\/2 for which the
inultiplicities have to be equal to 48 and 576 instead of 40 and 560 respectively.

V Sunimary

In this note it is shown tha t the fundamental group matrires for the regulär octagon can be
expressed in terms of minimal algebraic nurnbers with well defined parity (see Eq. (11)). This
proves the geodesic-length law conjectiired in Ref. 2 on the grouiid of numerical calculations.
A geometrical method for the Separation of conjugacy classes is proposed. The method

length
to construct a simple algorithm for calculating all periodic trajectories with a given
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Figure caption

Fig. 1: Regulär octagon 011 the Poiucare disc. Numbers denote circles of Inversion associated
with ihe symmetries T] J4.




