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We presenta methodwhich allows us to dealwith the stronginfrared effectsin three-dimen-
sional gaugetheories.In particular, we compute the three-dimensionalrunning of the gauge
coupling. Applying theseresultsto the electroweakphasetransition in the standardmodel, we
concludethat the transition cannotbe of secondorder. It is eithera first-ordertransition or a
smoothcross-over.

1. Introduction

The high temperaturephasetransitionin gaugetheories[1] is of interestboth
for the QCD phasetransitionand the electroweakphasetransition in the early
universe. Recently, a lively discussionon the order of the electroweakphase
transition in the standardmodel has developed [2], mainly triggeredby the
observationthat the baryonasymmetryin the universemay be createdduring this
transition[3]. Unfortunately,the methodsof hightemperatureperturbationtheory

[4] arenot reliablein all regionsof interest.This is dueto stronginfraredeffects
[5] in the effective three-dimensionaltheory for the modeswith momentamuch
smallerthan the temperature.

Oneeffectwhich is usuallyneglectedin hightemperatureperturbationtheoryis
the running of the gaugecoupling. We will show in this paper that this running is
animportanteffectin the symmetricphaseandalso for small expectationvaluesof
the scalarfield in the phasewith spontaneoussymmetrybreaking.Let usconsider
the one-loopgraphof fig. la which contributesacorrectionto the gaugecoupling
in a nonabeliangaugetheory. If the momentaof the externalgaugebosonsvanish
andthe gaugebosoncirculatingin the loop is massless,this graphgives an infrared
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Fig. 1. Infrareddivergentgraphsfor masslessparticlesin threedimensions.

divergentcontribution Id”q q ~. In four dimensionswe recognisethe familiar
logarithmic infrared divergence. It is regularizedin practice by some physical
infraredcutoff k. Usually the infraredscalek is determinedeitherby nonvanish-
ing external momentaor by a nonvanishingmass of the gaugebosonsif the
symmetry is spontaneouslybroken, or else by the scale of confinement for a
nonabeliangaugetheory in the confinementphase. For the four-dimensional
theoryof electroweakinteractionsat vanishingtemperaturethe contributionof fig.
la is g4 ln(A/k) (with A some ultraviolet cutoff) and describesthe slow
running of the small electroweakgaugecoupling ~. The smallnessof this effect at

zero temperaturehas led many authorsto assumethat the running of the gauge
coupling also gives a small effect at nonvanishingtemperatureand can therefore
be neglected.

In less than four dimensionsthe infrared divergencebecomesa power diver-
gence instead of a logarithmic divergence. In particular, one finds in three
dimensionsa correctionto the three-dimensionalgaugecoupling g

3,

~g~-~g~/k. (1.1)

(We note that g~has dimensionof mass.)For sufficiently small valuesof k this
correctionbecomesasbig as g~itself andperturbationtheorybreaksdown. This

* In this caseonly externalmomentaandmassare relevantinfraredcutoffs k.
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effect persistsin renormalizationgroup-improvedperturbationtheorysince (1.1)
implies a fast running of g~(k)for small k,

3 g34
k~g~-~—--~-. (1.2)

It is well known that field theories at high temperaturebehaveeffectively as
three-dimensionaltheoriesif one considersmomentasmaller than the tempera-
ture, q2 << T2. Indeed, the integration over the “time” component q

0 in a
euclideanfield theory is replacedby a discretesumwith q0 —~ 2~rmT,m E ~J.For
scalesbelow T the contribution of the modeswith m = 0 dominatesall infrared

sensitivequantitiesandthemomentumintegralsare thereforereducedto three-di-
mensionalintegrals.One expectsthat the spacecomponentsof the gaugefields
behaveas a three-dimensionalgaugetheory if the temperatureis high enough
comparedto momenta.Associatingas usualthe three-dimensionalgaugecoupling
g~with the four-dimensionalgaugecoupling g~by

g~=g~T (1.3)

one finds for the high temperaturecorrection to the four-dimensionalgauge
coupling

(1.4)

3 g~T
(1.5)

Eq. (1.4) gives a roughestimateon the infraredscale~ wherethe running of the
gaugecoupling becomesanimportanteffect, namely

£-~g~T. (1.6)

Only if the physicalinfraredcutoff is sufficiently larger than £ the running of the
gaugecoupling canbe neglectedfor high temperature.We observethat k is of the
sameorder as the “magnetic mass” of the transversalgaugebosons[1,2]. We
concludethat a careful studyof correctionsto the gaugecoupling is necessaryfor
all effects involving transversalgaugebosons.This is the subjectof this paper.

Our aim is to develop conceptsand methodsfor a solution of the infrared
problem in nonabeliangaugetheoriesat high temperatures.As a first step,we
addressin this paperthe somewhatsimpler problemin the abeliangaugetheory.
The effectivethree-dimensionalrunning (1.2) and(1.5) is of a similar natureas for
the abelian case,except for the oppositesign of the $-function. The insights
learnedfrom the abeliantheoryarethereforegeneralizedin the conclusionsto the
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nonabeliantheory, with implications for the high temperaturebehaviourof the
electroweakinteractions.The infraredproblem in the abelianHiggsmodel arises
from fluctuationsof a masslesschargedscalar field as shown in fig. lb. We will
introduce an effective infrared cutoff k which is independentof massesand
momenta.For massesand momentasmaller than k simple dimensionalanalysis
leadsto a running of the three-dimensionalgaugecoupling(t = ln k),

3
(1.7)

in analogyto (1.2). As we havediscussedabove,an understandingof the infrared
problem in the four-dimensionaltheory at high temperaturerequiresan under-
standingof the three-dimensionalinfraredproblemencodedin (1.7).

The correspondingproblem for masslessscalarfield theoriesin three(or two)
dimensionshas already been solved along similar lines [6]. One introduces a

variableinfraredcutoff k independentof massand momentaandtakesthe limit
k —* 0 at the endof thecalculation.For k > 0 the diagramshownin fig. ic is then
infraredregulated.This yields in lowest order for the k-dependenceof the quartic

scalarcoupling A3 at zeromomentum[6]

3 1~A~
(1.8)

Here we considera scalar theory with N real componentsin the regimewith
spontaneoussymmetry breaking. For a vacuumexpectationvalue Po = ~ the
excitationsconsist of N — 1 masslessGoldstonebosonsand the radial excitation
with mass m

2= 2A
3p0. The “threshold function” s~is renormalizedto one if

m
2 ~ k~and vanishesrapidly for m2>> k2, and 1~is a computableconstantof

orderone.This equationis of the type (1.2), (1.7). For smallvaluesof k —~ 0 it has
the asymptoticsolution (N ~ 2)

A
3(k)—k. (1.9)

In this casethe coupling vanishesfor k —~ 0 and the infrared problemdisappears.
Thesefeaturesaremosteasily seenby the useof a dimensionlesscoupling

A=A3/k (1.10)

for which the evolutionequationtakesthe form

3A 1~
— = —A + ~ 1 +9s~(2AK)I. (1.11)
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The scalek doesnot appearexplicitly on the RHS if dimensionlessquantitiesare
used (K = p0/k) since the threshold function s~dependsonly on the ratio
(mass/k)

2,i.e. 2A
3p0/k

2= 2AK.

The situation is completely analogousfor the running of the abeliangauge
coupling in three dimensions. One introducesthe dimensionlessrenormalized
gaugecoupling

e2=e~/k (1.12)

andfinds the evolution equation

a
—e2=fJe2= —e2+ ~ (1.13)

Here is againa constantof order one. The thresholdfunction s dependson
m2/k2 in the symmetric regime and on 2AK and 2e2K in the regime with
spontaneoussymmetrybreaking.In the secondcasethe quantity2 e2K correspond
to the ratio (photonmass/k)2.The thresholdfunction is againnormalizedto one
for small massesandvanishesrapidly for large arguments(m2/k2>> 1 or 2AK>> 1

or 2e2K>> 1). We notethat the generalform of (1.13) directly follows from (1.7) or
simple dimensioncountingfor masslessfields plus a decouplingpropertyfor heavy
massfields (encodedin the thresholdfunction).

The next sectionsare devotedto a derivation of the evolution equation(1.13).
In the conclusions,which are essentiallyself-containedwithout using detailed
propertiesof l~s,we discussthe physical consequencesof this equationand its
generalizationto nonabeliangaugetheories.The readernot interestedin more
technical developmentsmay thereforejump immediately to the conclusions.Our
discussionwill bevalid for arbitrarydimensiond andwefind thefollowing general
properties:

For the abelianHiggs model with a masslessscalar field in d < 4 the gauge
couplingruns to zerowith a powerof k, i.e. e~(k)= e~k4”. The infraredfixpoint
e~of the dimensionlessgaugecoupling is computedfor this case.Weproposean
upperboundfor the physicalgaugecouplinge~in dependenceon the massof the
scalarfield m. In less than four dimensionsthis bound is proportionalto a power
of m. For the four-dimensionaltheory at high temperatureT we formulate a
criterion for whichvaluesof m/T the running of the gaugecoupling becomesan
importanteffect. If this condition is violated, the high temperatureperturbation
theory(which doesnot accountfor the running of the gaugecoupling)may give a
qualitatively wrong picture.We finally generalizeour discussionto the nonabelian
gaugetheory of the standardmodel. We conclude that the electroweakphase

transitioncannotbe of secondorder.If the three-dimensionaltheory is asymptoti-
cally free, the sign of the $-functionis negative.As a result the nonabeliangauge
coupling g

3 will grow fast andbecomelargeat the three-dimensionalconfinement



96 M. Reuter,C. Wetterich / Runninggaugecoupling

scale ~ Since even for small g3 the running is linear in k’ and not
logarithmic as for d = 4, one expectsA~flf/Tto be a constantnot too far below
one, in contrast to the exponentiallysmall ratio A~~f/Afor d = 4 and small
g4(A). Three-dimensionalconfinementexcludesmasslessparticlesandthereforea
second-ordertransition. It remains open if the restorationor the electroweak
symmetry at high temperaturesis a first-order transition or rather a continuous
cross-over.

In orderto handlethe infraredproblemswewill usein this paperthe methodof

the averageaction as formulatedin ref. [71.The averageaction
Tk is an effective

action for averagesof fields. The averageis takenovera volume k—d such that
all degreesof freedomwith momentaq2>k2 areeffectively integratedout. The
averageaction is formulatedin continuousspaceandis the analogueof the block

spin action[8] proposedearlieron a lattice.The averageaction for gaugetheories
has been developedin ref. [9]. Due to the use of a gauge-invariantconstraint

(which determinesthe averagingprocedure)Fk is manifestly gauge-invariant.In
ref. [91the effective scalarpotential and the scalarkinetic term appearingin Tk

werecalculatedfor the abelianHiggsmodel.
Herewe completethe definition of Tk for the puregaugesector,concentrating

on the caseof abeliansymmetry.The formal propertiesof Fk are establishedin
sects.2—4. In particular, the averageactiondefinesa gaugetheorywith a covariant
momentumcutoff k. This meansthat Greenfunctionsfor low momentacanbe
computedfrom Tk andthis calculationis explicitly ultraviolet finite.

We then proceed(sects.5—7) to computethe running in dependenceon k for

the abelian gaugecoupling in arbitrary dimension d. The computationis per-
formed directly in the relevant dimensionwithout invoking expansionsin the
parameter~ = 4 — d. This will laterallow a reliablequantitativedescriptionof the

effective transitionfrom four-dimensional(k>> T) to three-dimensional(k .~ T)
runningin the four-dimensionaltheoryat hightemperatureT. (Thecorresponding
treatmentof the purescalartheory[10] hasproduceda good quantitativedescrip-
tion of the second-orderphasetransition.) We emphasizethat our formalism is
well adaptedto dealevenwith masslessparticleswhich are relevantif the phase
transitionbetweenthe spontaneouslybroken phaseand the symmetric phaseis
second-order.The averageaction allows to handle the notorious infrared diver-
gencesof masslesstheoriesin threeand two dimensions.

2. Formulationof the averageaction: normalization and integration measure

We consider scalar electrodynamics in d dimensions.The euclideanaction of
themicroscopicfields x(x) and a~(x)is givenby

S[~, a~]=f ~ (2.1)
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Here f~ ~ — ~ and D~(a) 3~+ iea~,where ë denotesthe bare gauge
coupling.The potential reads

V(X*X) =~i2x*x+~A(X*X)2. (2.2)

We first studythe symmetricregimewhere ~ 0. Following ref. [9], the average
action for this model is obtained by functional integrationover the microscopic
variableswith aconstraint

exp(—F,~[co,A~])= JDxDa~exp(—Sconstr[q~,A,~x~a,~]—S[~,a,j), (2.3)

where*

Sconstrf ddx(~[F~V_fk(_a2)f~P] 1—f~(—32) Ev_fk(_32)f~l

1 1
+ ~_3,~(AM — a~)1 — ~ ~2\ 8~(Av— av)

a Jk’~ I

*

+ k _fk(_D2(A))x] I —f,~(—D2(A))[~~~fk(_D2(A))x1

fk(x) =exp[_a(x/k2)P1. (2.4)

The functional F,~is invariant undergaugetransformationsactingon the macro-
scopic fields ~ and A. As alreadynotedin ref. [9], no gaugefixing is neededfor
the computationof [‘~“~ since the constraint alreadyeliminatesinfinite factors
from thevolume of the groupof gaugetransformations.(A similarobservationwas
made in the context of a lattice approachin ref. [11].) The constraint enforces
suitable gauge-invariantaveragesof the microscopicfields x and a~(or, more
precisely,averagesfor thefield strengthf~~)to coincidewith themacroscopicfield
up to a certain degreeof allowedfluctuations.The details of the averagingare
specifiedby the function fk.

More precisely,the propagatorfor the gaugefield fluctuation a
1~can be read

off directly from the term quadratic in a in S + Sconstr. (It is, of course,the
propagatorin presenceof the constraintwhich is relevant for a computationof
1k). For largemomentaq

2 >> k2 the function fk vanishesexponentially,yielding
in this limit the quadraticterm + (1/2a)(3~a~)2.For largemomentawe

* We have modifiedthe constraintfor the scalarfield of ref. [9) by addinga massterm. This is more

appropriatefor the symmetricregime. For simplicity, we alsohave omittedwave function renormal-
ization factorsin theformulation of the constraint.
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therefore obtain the propagatorof a usual gauge-fixedtheory. A perturbative
calculationof ~ is thereforewell defined.

The functional F~[tp, A~]is not yet normalizedin sucha way that it gives rise
to the samepartitionfunction as S[x~ag]. This canbe remediedif we define

exp(_F~0rm[tp, Ak]) = JDxDa~Pk[lp, A~x~a~Jexp(—S[~,au]), (2.5)

with the “constraintoperator” ~k normalizedaccordingto

JDcoDA~Pk[q, A~x~a~J= 1. (2.6)

Thenthe partitionfunctionsobtainedfrom F,~’°’~and S coincide:

Z=JDPDA~L exp(_F~0~~m[co,A]). (2.7)

Writing

Pk[q,, A~X, a,~] Nk[A~] ~ A~x, a~) (2.8)

it follows from eq.(2.6) that the normalizationfactor Nk has to be chosen as

—D2(A) +Th2

Nk[A~] = det 1 —f~(—D2(A)) det[H(—D2(A))J. (2.9)

Here the determinantcancels the inverse determinantwhich results from the
integrationover~p.The remainingintegrationoverA~yieldsonly a field indepen-
dent constantwhich is omitted. (This will be different for the nonabeliancase!)
The two definitions(2.5) and(2.3) are thereforerelatedby

~ (2.10)

They differ by termswhich only dependon the gaugefield A~.At thispoint one
might be temptedto identify the functional ~ A,j with the effectiveaction
for the macroscopicfields ~ and A~since it is obtainedfrom the microscopic
action S[~,a~]by “inserting a factor of unity” in the path integral (2.5). We will
see, however,that it is moreconvenientto split off from f,~0rm a measurefactor

such that

Z= fDpDA ~cik[A] exp(—Fk[q~, A]), (2.11)

exp(_F~0rrn[p,A]) P~k[M exp(—Fk[~]). (2.12)

We will motivate this choiceof the averageaction 1k in the following.
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Let us fix a gaugefield A~(x) and diagonalize—D2(A) for thisgaugefield. In
termsof its eigenvalues{A} the normalizationfactor (2.8) becomes

Nk[AI~1 = JJH(A), (2.13)

wherethe productruns overall eigenvalues.We will seethat the eigenvalueswith
A <k2 and thosewith A > k2 play a very different role. We therefore split the
determinant(2.8) in a product of two factors,det> [H] and det<[H], definedby

det>[H] = fl H(A) (2.14)
A>k2

andsimilar for det<[H]. (For the sakeof the argumentwe define det> anddet<

by a sharpcutoff at A = k2. Later on we shall employ a “smoothened”versionof
this definition.) First we recall from the general discussionof ref. [7] that a
physicallysensibleaverageactionshouldbe obtainedfrom the fundamentalaction

S by integratingout only the modeswith momentalarger thank. Themodeswith
momentamuch smallerthank shouldbeleft untouched.This meansthat for such
modesthe constraintoperator~k exp(— Scon~tr)shouldreduceto an approximate
5-functional 5[4, — x] if both x(x) and 4,(x) are slowly varying. More precisely,

expandingx and 4, in termsof eigenfunctionsof —D2(A), the constraintfor the
modeswith A <<k2 shouldleadto 5-functions.Becausefor suchfields fk(A)x x
and f~(A)4, 4,, the last term on the RHS of eq. (2.4) indeed gives rise to an
approximate5-functional.It is properlynormalizedif we multiply exp(— S~nstr)by
det<[H]. The otherpart of the normalizationfactor,det> [H], is not neededfor
this purpose.

Secondly,only scalarmodeswith I — D2(A )p I I k2~ andgaugefield modes
with I — 8~AI I k2A I shouldcontributeeffectively to functional integrationsof
the type (2.7), (2.11) since the high momentummodesshouldalreadyhavebeen
integratedout. For the averageaction of a theorycontainingonly scalarfields this
decouplingof the large momentum modes happensin the following way: For
modes ~ with momenta q2 >> k2 the effective theory becomesapproximately
quadratic,

f ddx ~*(_32)~. (2.15)

In this way the integration over the large momentum modes yields only an
irrelevantconstantdet> [~ Returningto the gaugetheory, eq.(2.3) with (2.4)
showsthat for q~-modeswith largeeigenvaluesA >> k2

Fj~”[co,A,~}= f ddx{2~~auge(A)+~*[_D2(A) +~n2]~p). (2.16)
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If in addition A~ has momentum q2>> k2, then ~auge = ~ Clearly the
situationis now more complicatedbecauseevenfor the largemomentummodes
FJ~gives rise to an interactingtheory.In particular,the low momentummodesof
the gaugefield do not decouplefrom the high momentummodesof the scalar
field. The normalizationof the constraintcures this diseasein a very particular

way: For the partition function

Z=fDpDA~ det>[H]det<[H] exp(_F,~[~, A~I) (2.17)

we observethat the integrationover the ~-modeswith A >> k2 produces a factor
which is the inverseof

—D2 + ~
det>[—D2+~2] ~det> 1 ;2f D2~ ~det>[H]. (2.18)

Jk~ I

(Recall that fk(q 2) 0 for q2 >> k2~)We concludethat the contributionfrom the
high frequencymodesis exactlycancelledby the det > [H ]-part of the normaliza-
tion factor.This guaranteesthat the highmomentummodesindeeddecouplefrom
the low momentummodes.A similar argumentapplies to the n-point functions
involving slowly varying fields.The disturbingdeterminantfrom the integrationof
high A scalar modes is exactly cancelled by det > [H]. In consequence,the average
actionbecomesan effectiveaction for the low energytheory.

This observationhasanimportantconsequencefor the correctdefinitionof the
average action 1k~ We want to extract the low momentum physics from 1k

directly, without any further functional integrationof heavymodes.We therefore
shouldnot include det> [H] in the definition of 1k~ This factor only servesthe

purposeto guaranteethe decouplingof the high momentummodes.It shouldbe
interpretedasan appropriatemeasurefactor in the functional integration,which,

togetherwith the particular form of 1k for the high momentummodes,ensures
decoupling. Wetherefore arrive at our final definition of the averageaction,

exp(—Fk[q,, A~j)=det<[H(_D2(A))] exp(—F,~[p, Ak,]), (2.19)

Fk[~’ A,
11 =F’~[~,A~I—ln(Nk[A~j)+ln(,.Lk[A~}), (2.20)

I~Lk[A]= det> [H(—D
2(A))1. (2.21)

For slowly varying fields and k —* 0 the low energy properties of the theorycanbe
read off from 1k directly. Shortly speaking, Tk contains the physical vertices
whereas I~Lkonly involves“regulator terms”.

For practical calculations it is advantageous to define I.Lk{A] = det> H slightly
different from eq. (2.14). Insteadof usinga sharpcutoff at A = k2 we interpolate
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smoothlybetweentheregionA >> k 2, which hasto contribute without any suppres-
sion factor, andthe regionA <<k2 whichshouldnot contributeat all. Comparing
two measures /ik

1//.Lk, at scales k1 and k2 >> k1, consistency requires that the

ratio /.Lk//lk receives contributions only from eigenvalues between k~and k~:

/ik1[A] fl H(A) fl (A +n~
2). (2.22)

/.Lk
2[A] A~[k~,k~1 AE[k~,k~]

In practice it is sufficient if the last relation in (2.22) holds in a central region
k~‘~zA <<k~.(In generalit will not be satisfiedin the transitionregions A k~,
k~.)Also, field-independentconstantsdue to the eigenvaluesA ~ k~and A >>

may beignored.
The following form of the measuremeetstheserequirements:

= det[ —D
2(A) + ~2 + k2}. (2.23)

In view of eq. (2.18) it is clear that the product of the eigenvaluesA > k2
reproducesdet [H]. The eigenvaluesA <k2 give rise to a factordet<[~2 + k2],
which can be ignored becauseit doesnot dependon any field. For the massless
theory, Th2 = 0, we may also usethe following measure:

-D2(A)
= det( 1 _f~(_D2(A)))’ (2.24)

where the cutoff function fk(x) exp(—ak2~x~)must be taken with /3 = 1 so
that x[1 —f,~(x)t1 k2/2a = const. for x ~ k2. Only for /3 = 1 the eigenvalues
A <k2 yield a constantfactor det<[k2/2a], which we can discard, whereas for
/3 # 1 one would obtain unwantedfield-dependentcontributionsfrom the small
eigenvalues.For A >> k2 we recoverdet(—D2)= det H.

With some obvious modifications the above discussionremainsvalid if we

replacethe scalar~ by a fermion. If the fermion is chiral, a naivemassterm —‘

as in p~is forbidden. In this situationwe haveto rely on the fermionic analogue
of ~ In the following sectionswe shall useboth p~and p~andshowthat (in
four dimensions)they lead to the same/3-functions.Furthermore,we prove in
AppendixA that for A/h correspondingto a constantmagneticfield the measure

p~is exactly equivalentto the original definition (2.11) where we used a sharp
cutoff:

,4”~[A] =expTr[ø(_D2(A) —k2) ln(—D2(A) +~i2)]. (2.25)

More generally,the precisedefinition of j~~[A]shouldnot matter,provided that
the measurefactor fulfils the criteria discussedabove.
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3. Greenfunctionsfrom the averageaction

In this sectionwe studythe relationbetweenthe Greenfunctionsderivedfrom

Fk[’p, A/h] andthoseobtainedfrom the microscopicaction S[x, a/h]. To startwith,
we first look at the simpler caseof a theorycontainingonly a complexscalarwhere
[7]

exp(—Fk[W]) = fDx exP[_1ddx(~3/hXl2+ V(X*X)

* _32+~2
+ [~-fk( 32)x] 1-f~(-d2) [~_fk(_32)xl). (3.1)

The connectedGreenfunctionsof Tk are generated by the functionalWk[ ~, ~

definedby

exp(Wk[fl, ~*]) = JD~exP(—Fk[~]+ fddx(n*~+ ~*~)). (3.2)

On the other hand, the microscopic action S[~] gives rise to the following
generating functional:

exp(W[~, ~*]) = JDx exp(_Jddx(~0/hx~2 + V(X*X) — ?1*X _x*~)).(3.3)

There existsaremarkablysimplerelationbetweenWk andW. Inserting(3.1) into
(3.2) andperformingthe gaussianintegrationover~ we find

1—f2(—32)
Wk[n, ~*] = w[fk(_a2)~, fk(_32)~7*} + fd”x ~*(x) _3~+~2 ~j(x).

(3.4)

Weobserve that Wk is obtained from W by averagingthe sourcefunctions rj and

* andby addinganadditionalpiecewhichcontributesto the connectedtwo-point

function only. For sourceswhich are rapidly varying at the scaleof k1 ( ~2

we obtain a free theory: Wk f~*(32 + ~2)_1~~ For slowly varying sources
(32 ~ 0) the second term on the RHS of eq. (3.4) vanishesand Wk and W
become approximatelyequal. We concludethat for small external momentaTk

producesthe sameGreenfunctionsas 5, but it describesa free theoryat momenta
largecomparedto 2 Inverting the exact relation(3.4),

~ ~*] = Wk[fk( 32)~, f~-l( d2)~*I

1 _f2(_32\
— f d’~x~*(x)f~2( 32) ~ —2 ~(x), (3.5)

—3 +m
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gives a preciseprescriptionhow the true connectedGreenfunctionsgeneratedby

W can be computedfrom the averageaction 1k~

Let usreturnto the gaugetheorynow. Accordingto the discussionof sect.2 the

functional integral for the generatingfunction obtainedfrom ~ A/h] contains
an explicit measure factor of p.~[A]:

exp(Wk[’q, ~7*,j])

= fD~DA/h ~k[A] exP(—Fk[~~A] + f ddx(~*~+~*~ +1/hA/h)). (3.6)

The microscopic action S[~, a/h] gives rise to the conventionalgeneratingfunc-

tional

exp(W[~, ~, f/h]) = fDXDa/h exP(—S[~~a/h] + f ddx(n*x +f~+1/ha/h)).

(3.7)

In order to establisha relationbetweenWk andW we insert the functional integral
defining Tk into eq. (3.6). Using eq. (2.20) we see that ~ak exp(—Fk)=Nk

so that the form of the integrandfollows from (2.9) and (2.3) with
(2.4), respectively.The integrationover A/h is gaussian only if ~ = if” = 0. In this
casewe obtain

Wk[0, 0,1/h] = w[o, o,[pL+fk(_32)pTI/hPjv1

f2( 32) — 1 3/h3V

+~fddxj/h k ~2 (5~+(a_1)~)Jv~ (3.8)

where(PL)/hV 33/32 and (~T)/hP 5 — 33/32 are the usualprojectionopera-
tors on longitudinalandtransversalmodes.For conservedsources,

3/hJ~h= 0, which
are rapidly varying on the scale of k’ (_32 cc), we find a free theory:
Wk _~j/h(32)~jM. In theoppositelimit of smallmomenta(~2 —*0) the secondterm
on the RHS of (3.8) vanishes —‘ (—a

2/k2)~1and Wk and Ware approximately
equal.

If ~, ~ 0 no simple relation betweenW and Wk can be written down.
However, the generalfeaturesfound abovestill persist:for small momentaWk is
approximatelyequal to W, whereasthe large momentummodesin Wk decouple.
This point will be further discussedin the following section.
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4. Gaugetheory with covariant momentumcutoff

If the averageaction 1k is defined properly, all short-distancemodes are
alreadyintegratedout. The short-distancemodesshould thereforenot contribute
any more if Green functions are computedfrom 1k~ Otherwise speaking, the

functional integral (3.6) (or correspondingderivativesof Wk with respect to the
sources) should not involve ultraviolet divergences.The ultraviolet behaviourof
the original theory is alreadyincorporatedin 1k~The averageaction,togetherwith
the appropriatefunctional measure,Ltk should exhibit an effective short-distance
cutoff. In this sectionwe sketchbriefly how this is realized.

We first describehow the ultraviolet finiteness of the one-loop integrals is
realized. The two- and four-point functions for externalscalar fields with small
momentum Q2 << k~involve Feynman diagramswith either scalarsor gauge

bosonscirculating in the loop (figs. 2a,b). (We specializeherefor simplicity to an
expansionaroundthe symmetricpoint ~ = 0 and give only the 1PI graphs.)The
first class of diagrams(fig. 2a) is ultraviolet finite becauseof the momentum
dependenceof the four-point vertexin 1k~As we will arguebelow this four-point
vertexvanishesexponentiallyfor a large loop momentumq2 >> k2, similar as in

o~
(a)

p __

(b)

Fig. 2. One-loopcontributionswith two orfour externalscalarfields.
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the pure scalartheory discussedin ref. [7]. For the secondclassof diagrams(fig.
2b) one has to distinguish between the physical transverse gauge bosons and the
gauge degrees of freedom (longitudinalgaugebosons)in the loop.We will seethat
the vertices in 1k which involve highmomentumtransversegaugebosonsandlow
momentum scalars are again suppressed for large loop momentum. The diagrams
with transverse gauge bosons in the ioop therefore become ultraviolet finite. On

the other hand, the longitudinal gaugebosonsin the loop correspondto the
functional integrationover gaugedegreesof freedom.The resulting infinite factor
cancelsin the Greenfunctions as usual and may be treated by a proper gauge

fixing.

In order to establish the exponential decrease with q2 of the vertices mentioned
above we first note that ~ decouples from all other fields in (2.4) in the limit

fk(—D2(A))—* 0, A —* 0. This is exactlywhat happensfor the q~-modeswith large
eigenvaluesA of the operator —D2(A), leading to the expressions(2.16) up to
corrections of the order exp[—a(A/k2Y3]. The exponentialsuppressionof the
four-scalarvertexwith at least one largemomentumfollows by inserting A = 0
sinceTk becomesquadraticin q up to corrections exp[—a(q2/k2)~].

The argumentfor the transversegaugebosonswith largemomentumis similar.
Let us consider~ = const. and AL/h = 0 (AL = PLA, AT = PTA). The classical

solutionderivedfrom 5k = ~ + 5constrreads(up to correctionswith morethantwo
powersof AT/h)

x=~~aL/h=O, ~ _f~2(q)]AT/h(~).(4.1)

Inserting this solution into 5k gives the classical averageaction ~ Onefinds that

the vertex ç2A~/h(q)At~(—q) is exponentiallysuppressedfor q2>>k2.

p

~
Fig. 3. One-loopcontributionswith two or four externalgaugefields.
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Fig. 4. One-loopcontributionswith externalscalarandgaugefields.

We expectthe suppressionto persistafter the inclusionof quantumcorrections

in the calculationof 1k~It shouldalso hold for p-modeswith nonvanishing,but
small momentum. Along the same lines one concludes the suppression of the cubic
vertex involving one low momentumscalar, one high momentum scalar and one
high momentumtransversegaugeboson.

We next turn to the one-loop graphscontributingto the two- and four-point
functionsinvolving gaugebosons(fig. 3). In contrastto the graphsin fig. 2 a high
momentumscalarin the loopdoesnot decouplefrom the low momentumexternal
gaugebosons.The interactionbetweenthesemodesis exactlygivenby (2.16),up to
exponentiallysmall corrections.Standingalone, the graphsin fig. 2 would suggest
an ultraviolet divergence.As we havediscussedin the last section,however, the
measurefactor p.~[A] exactlycancelsthe one-loop contributionsinvolving scalar
fields with high momentum.(Since 1k becomesquadraticin the largemomentum
modesof ~ up to exponentiallysmall corrections,only one-loopgraphshaveto be
cancelled.Higher loops involving high momentumscalarsare againsuppressed
and therefore ultraviolet finite.) Finally, the one-loop graphsinvolving external
scalarsand gauge fields (fig. 4) are ultraviolet finite due to the exponential
suppressionof the scalarfour-pointvertex, similar asfor fig. 2a.

We did not specifyyet how the original theory for the variablesx and a/h (with
action(2.1)) is regularized.In principle, we could formulate this theory on a lattice
or use dimensionalregularization.The previousdiscussionsuggeststhat we can
also use a continuum regularizationin four dimensionsinvolving an effective
covariantmomentumcutoff A. We require the following two propertiesfor the
gauge-invariantaction:

(i) Forlargemomentaof the gaugefield (q2 >> A2) the transversegaugebosons
shoulddecouplesuchthat

S = f ddx ~, Sf= ~ +2’(x), (4.2)

up to correctionswhich are exponentiallysuppressedfor q2/A2>> 1.
(ii) For largemomentaof the scalarfield (or, moreprecisely,largeeigenvalues

of —D2(ã)) the action should take a canonical quadratic form in x up to
exponentiallysmall corrections,

~‘= [D/h(a)x]*D/h(a)x+i~12x*x, (4.3)
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with

‘1/h [PL+fn(_32)PT]a/h. (4.4)

In addition,we introducea functionalmeasurefactor similar to theone in sect.2,
e.g.

= det[ —D2(ã) + ~2 + A2] (4.5)

Thisguaranteesthat thehigh momentumfluctuationsof x decouple.On the other
hand, the high momentumfluctuations of the transversegaugebosonsdecouple
due to the property(4.2). (This is consistentwith (4.3) since the vertices of high

momentum transversegaugebosons are exponentially suppressed.)In conse-
quence,all Greenfunctions areultraviolet finite. We note that this regularization
may also be understoodin a somewhatdifferent language:Expressedin terms of
the variable a/h the vertices areunsuppressed,but the ultraviolet finitenessis now
guaranteedby an effectivemomentumcutoff in the propagatoras implied by the
kinetic term

~ 1fj.—2( 32)f/hP (4.6)

The measurefactor (4.5) maybe interpretedasan effective Pauli—Villars regular-
ization (which can be generalizedevenfor chiral fermions(2.24)). We emphasize
that the asymtoticform (4.2), (4.3) doesnot exclude nontrivial interactions.For
example,a quarticscalarinteractioncanbe written in the form

-~ fAJfn(_D2(a))X~4 (4.7)

without disturbingtheultraviolet finiteness.
We canactuallyenforcetheform (4.2) with (4.3) for Fk[~, A/h] by modifying the

constraint(2.4), replacingD2(A) by D2(A) in the last line andcorrespondinglyin
the measurefactor ~ttg (A/h = PLA/h +fk(—32)PTA/h).This modification doesnot
affect the form of 1k for low momentum gauge fields as discussed in this paper
and in ref. [9]. It improves, however, considerablythe decoupling of the high
momentumtransversegaugefields comparedto the discussionin the beginningof
this section. All verticesin I~ are then exponentiallysuppressedif at least one
momentumin the vertexobeysq2 >> k2.

5. Wave function renormalization in the symmetric regime

The averageaction Tk[q’, A/h] hasa derivativeexpansionof the form

14cc,A/h] = f d~~x[Uk(IccI2)+Z~,,k(IcaI)~D/h(A)coI

+ ~ZF k(iccI )F/hVF/h + . . ~1~ (5.1)
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In ref. [9] we discussedthe averagepotential Uk and the wavefunction renormal-
ization of the scalar, ZQk. (Note that in ref. [9] we set A/h = 0 or A/h = const..
Hencetherewasno distinctionbetween1k and F,~”.)Herewe want to perform a

one-loop calculationof ZFk( I cc 12) for the symmetric regime, where ~ has no
vacuumexpectationvalue. Thereforethe relevantquantityis ZF,k ZF~(tp = 0).
This constantcan be read off from Ik(cc = 0, A/h) as the coefficient of the term
—‘ ~ The dependenceof ZFk on the scale k is sufficient to extract the

correspondingrunning of the gaugecoupling. Gaugeinvarianceimplies that the
same coupling ë appearsin D/h(A)= 3/h + leA/h in (5.1) as originally in the action
(2.1). Thereforeë is independentof k andthe renormalizedcoupling e~= Z~1ë2
dependson k only through ZF.

Our first task is to evaluatethe functional integral for F,~ on the RHS of eq.
(2.3) by the saddlepoint method.For cc = 0, the minimumof the action S + 5COnStr

hasto be determinedfrom the classicalfield equations

[—D2(a) +ñi2]~+AIxI2x +H(—D2(A))f,~~(—D2(A))~= 0,

(_325+3/h8v)a~_1—f~(—a2)(325/hv+3/h3P)[Af(32)a}

1 1
+ ~- 1 f2( _32) a’-’&(A~— a~)= 0. (5.2)

The solutioncorrespondingto the global minimum of the action is

= 0,

a~uh1(x)= [pL+fk(_32)pT]A/h(x), (5.3)

where ~L and ~T are the projectorson longitudinal and transversalphotons,
respectively.After expandingthe integration variables x and a/h around this
configuration and performing the gaussianintegrals over the fluctuations, one
obtainsfrom eq.(2.3)

F,~~~1~1)[0,A/h] = f ddx(~F/h~F~+ F~~~~1)[0,A/h] + higherloops), (5.4)

with the one-loopcontribution

—D2(A) ~
F~[0, A] = ln det(-D2(a~) + ~2 + l_f~(_D2(A)) A))). (5.5)
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From eq. (2.20) with eq. (2.9) we obtain for the one-loopcontribution of the

completeaverageaction

F~1)[0, A/h] ~1,~h1~1)[o, A/h] — ln(Nk[A/h]) + ln(/Lk[A/h])

_D
2(am1~~)+~i2

=lndet(f~(_D2(A))+ [1_f~(_D2(A))] -D2(A) ~

+ln(~k[A]). (5.6)

(Note that ln Nk andIn p~areof the sameloop orderas F~1~.)The complicated
determinanton the RHS of (5.6) resultsfrom combiningthe determinantsof eqs.
(5.5) and (2.9). It disappearscompletely if we restrict ourselvesto a gaugefield
which is only slowly varying on the scaleof k’:

fk(—32)A/h~A/h. (5.7)

In fact,we show in AppendixB that up to secondorder in A/h (and to lowest order
in 32/k2)

_D2(amm)+ü~2
~1~1~[A/h] ln det(f~(_D2(A)) + [1 _f~(_D2(A))] -D2(A) + ~2

F/hv+O(F~4, (5.8)

where c is a constant.This showsthat for slowly varyingfields ‘1/h with momenta
Q2 <<k2, the determinanton the RHS of eq. (5.6) is suppressedby powersof
(Q2/k2)’~1. For /3> 1 it does not enter the calculation of ZF and will be
neglectedfrom now on. Thus we are left with

11)[0, A/h] =ln(/hk[A]). . (5.9)

At the one-looplevel the averageactionis completelydeterminedby the measure

/--k~The cancellationbetween~ andln Nk will not persistbeyondone-loop,
however. If we choosethe measureas in (2.23) the one-loop average action
coincidesfor d = 4 with the conventionalHeisenberg—Eulereffective action [12]

for a particlewith mass~ + k2.
The wave functionrenormalizationcannow be extractedfrom theterm bilinear

in A:

ln(,Lk[A}) = f d’1x[i(ZF’k — l)F/h~F~+ . ..]. (5.10)
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6. The running gaugecoupling in the one-loopapproximation

In thissectionwe evaluatethe averageaction(5.9) for the measures(2.23) and
(2.24) for terms bilinear in A/h. We set cc = 0, so the derivativeexpansion(5.1)
reducesto

1,40, A/h] = f ddx(~ZFkF/hpF/h~~+...), (6.1)

with

ZFk = 1 + Z~ + higherloops. (6.2)

We note that for d s 4 Z~ is UV-divergent unless the theory is properly
regularized.Insteadof calculatingthe one-loopcontribution Z~,we shallevalu-

atethe anomalousdimension

d
?

1F —k~ln ZFk

d
= —k-~-~Z~+higherorders. (6.3)

This is UV-finite and therefore independent of the regularization.The running of
the renormalized gauge coupling eR can be directly extractedfrom i~. From eq.
(5.9) we have

k~-~.F~1)[0,A/h] = k~-~Z~Pkfd”x+F/hVF~ + O(A~)

d

=k-~-~ln(~Lk[A]). (6.4)

Choosing the measure as in (2.23) and (2.24) one obtains explicitly

k~ln(~4~[A])=Tr( D2(A+2k2)’ (6.5)

d k df,~(—D2(A))/dk

k~ln(~’~[A]) = Tr( 1 -f~(-D2(A)) ~ (6.6)

Since the factor ZFk is defined as the coefficient of the term in 1k which is
bilinearin A/h, it is sufficient to computethe traceson the RHS of eqs.(6.5) and
(6.6) up to terms quadratic in A/h. This is most easily done by evaluating (6.4) for a
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vector potential A/h which correspondsto a constantmagnetic field B. Then
~ = 2B2, and kdZ$~/dk can be read off as the coefficient of ~B2Q where
12 Jd”x. The advantage of this field configuration is that the corresponding

spectrumof —D2(A) is known explicitly. The eigenvaluesare

d—2

~ q~+(2n+1)eB;q/hEl~,n=0,1,2,... , (6.7)
/h1

where q/h is a (d — 2)-dimensionalmomentumvector and n labels the different
Landaulevels.The densityof statesis

d”2q eB
2 (6.8)
2~

so that for an arbitrary function Q(—D2(A)) the trace Tr[Q(—D2)J, provided it

exists,is given by

Tr[Q(—D2(A))] =12Vd2~ ~ f dxx~4~/2Q(x+ (2n + 1)ëB). (6.9)
n=O 0

Herewe have introduced(for d> 2) x ~ q/hq/h and

Vd~ [2d÷1~/21(+d)]’. (6.10)

Usingthe Euler—McLaurinsummationformula in the form

1 ëBd
~ Q(x + (2n + 1)ëB) = —a-—f dy Q(x +y) + — —Q(x) + 0(B3) (6.11)

2eB 0 12 dx

we canwrite downa systematicexpansionof the RHS of eq.(6.9) in powersof B.
In particularthe termin Tr Q proportionalto B2, Tr(Q)quad,is given by

— 2
(eB) d

Tr{Q( _D2(A))}q~~~= 12Vd2 12~j~dx ~~‘~4~”2 -ã—Q(x). (6.12)

This formula holdsfor all d ~ 3. For d = 4 it reducesto

(ëB )2

TF[Q(_D2(A))]q~~~= 12 96~2Q(0). (6.13)

For d = 2 the integrationoverx = q2 is absent, and (6.12) is replaced by

(ëB)2 dQ
Tr[Q(_D2(A))]q~~~=1224~~-~—(0). (6.14)
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Returningto the tracesin (6.5) and(6.6), we obtain from (6.12)for d ~ 3

= Vd2 ~k2j®dx x(d_
4)/2(x + ~2 + k2)2, (6.15)

e2 a
(II)__~ ——

—

3Vd2 2
~TI(

xf dxx~ 4V2~{xfk(x)[1 —f~(x)] 1}~. (6.16)

Herewe madeuseof (6.3) with (6.4):

k~-~ln~ —~[2B
2ri~”~. (6.17)

In four dimensions,eq. (6.13) gives rise to

e2 k2

= 24~r~~2 + k2’ (6.18)

e2
(II)— ____ a — ____

7lF 2~’ 2
L’F~T /3=1 L’IIT

We observethat for ~2 = 0 bothmeasuresyield the sameanomalousdimension
ë2/24ir2 This quantityis universal: It dependsneitheron theprecisedefinitionof
the measurenor on the averagescheme(the preciseform of fk(x)). Notealso that
it is only for /3 = 1 that ~ producesthe correctresult. This is consistentwith the
general discussion in sect. 2.

In two dimensions one obtains with the help of eq. (6.14)

e2 1 k2 2

2 2 —2 (6.20)6~k k +m

a
(6.21)

The resultsdiffer for a # 1 evenat ~ = 0. In fact, looking at (6.15) and (6.16), it is
clear that for d ~ 4 i~ and i~” will not coincidein general.In particular,any
explicit dependenceof ~ on k will alwaysinvolve the ratio k2/a.We note that
~ is well definedonly for d <6, whereas ~ canbe usedfor arbitrary d. (The



M Reuter, C. Wetterich / Runninggaugecoupling 113

measurej$~1)(2.24) can easily be generalizedfor ~ > 0.) For completeness, we
also give the resultfor threedimensions:

k2 3/2

~ 24~k(k2+m2) . (6.22)

We finally introducethe dimensionlessrenormalizedgaugecoupling

e2(k) =k~’~4e~(k)=k’~4Z~ë2. (6.23)

(Thephysicalrenormalizedchargeis eR= Z~~2ë.)Thenthe evolutionof e2(k) is

governedby the /3-function

/3e2 ~k~e2(k) = (d —4+ ~)e2(k) (6.24)

We use renormalizationgroup improvementand replacein 71F the bare cou-
pling ë by the k-dependentcoupling eR(k) and also the scalarmassterm by the
running massas given by the secondderivativeof Uk at the origin,

(6.25)

The /3-function can then be written in the generic form

/3e2 = (d — 4)e2+ ~vdlgsg(m/k)e. (6.26)

Here the thresholdfunctions s only dependon the dimensionlessratio m2/k2
and arenormalizedsuch that s~(0)= 1. They havea particularly simple form for

the choice(2.23),

2 2 (d—6)/2m m
s~1~’~-~- = 1 + -~-~- (6.27)

The constants l~dependin generalon the averaging scheme and the choice of p.~

exceptfor d = 4 where

1=1. (6.28)

For the particularchoice(2.23) onehas

~ = 1, ~ = ~n. (6.29)

In threedimensionsonehasv
3 = 1/87r

2 and(6.26) coincideswith (1.13).
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7. The regimewith spontaneoussymmetry breaking

Sofar we haveconcentratedon the symmetricregimewheretheminimumof Uk

occursat ~ = 0. For a studyof spontaneoussymmetrybreakingwe need,however,
the running of the gaugecoupling in the spontaneouslybrokenregimewhere the
potentialminimumoccursfor a nonvanishingscalarfield cco(k),

0
p0(k) =~cp0(k)I

2, ~—Uk(po)=0, p=1cc12. (7.1)

Two changesin the formulation becomenecessary:First wedefine the constraint
(2.4) with ~2 = 0. In the spontaneouslybrokenregimethe massterm at the origin

(cc = 0) is negativeand has no direct physical relevance.The massesenteringthe
computationshouldratherbegiven by an expansionaroundPo~This also dictates
the secondchange,namelythe definition of ‘17F throughthe k-dependenceof the
wave function renormalization at p

0(k),

d
ilF _k.~~~ln[ZFk(~o(k))]. (7.2)

Neglectingterms OZ/3p0 we canomit here the implicit k-dependencethrough
the k-evolution of the minimum p0(k).

In the spontaneouslybrokenregimethe massesof the relevantphysical excita-
tions are the radial scalarmassm andthe photonmassM as given by

m
2= 2Ap

0, M
2 = 2ë2p

0. (7.3)

In the limit m
2= M2 = 0 the running of the gaugecouplingshouldbethe sameas

for the symmetric regimewith m2—‘ 0. One concludesthe generalform of the
evolutionequationfor the gaugecoupling in the spontaneouslybrokenregime,

/3e2 = (d — 4)e2+ ~vdl~s~(2AK,2e2K)e4. (7.4)

The thresholdfunctions §~‘are againnormalizedas

~(0, 0) = 1. (7.5)

They dependon the dimensionlessratiosof renormalizedmassoverk, i.e.

M2(k) m2(k)

k2 =2e2K, k2 =2AK, (7.6)

where

K’~’k2~’Z~~,po(k),A =k~4Z,~2A(k). (7.7)
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In threedimensionseq.(7.4) gives the evolutionequation(1.13)in the regimewith
spontaneoussymmetrybreaking.

We havecomputedin AppendixC the thresholdfunction in the limit e2, —* 0.
Onefinds

ls~(2AK,0) = k3 ~J(2~p
0), (7.8)

with

J(w) = _jdxx~~”21(~~ — ~)(3P+ ~xP~
3~+ d(d+2)xP)

1 1
dxxd/2 — —

0 P(P+w) P2

18... 32 . 18
x —PP+ xPP~3~+ xP2

d d(d+2) d(d+2)

_jdxxd/2((1)
2 - ~)(~3+ d(d±2)~~)

+ d(d±2)I dxxd/2+1~13 —

— Vd2 f~dxd/22(x+k2)_1 (7.9)

0

Hereweusex=q
2, P(x)=x(1 —f,~Y1and P=8P/3x etc.. We alsoobservethat

the k-derivativein (7.8) actson P with

3 P\ 0 IP\
k— —I=—2x—I—I (7.10)

Ok xJ 3x~x)

andshouldbe appliedon the integrandsuchthat all integralsin k3J/Okare finite.
Onemaycheckthe limiting case

0
lim k—J(w) =k”4l~’. (7.11)
w-’O 0k

Onealso expects

0
lim k—J(w) =0 (7.12)
w—~Ok
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sincethe running of the physicalgaugecoupling e~= k4 - de2 shouldstoponcethe
scalar mass is much bigger than k. We refer for a detailed evaluation of .~‘ to a
future publication.Here we demonstratethe genericbehaviouronly for a “test

function”

f~(x)=k2/(x+k2), P(x) =x+k2. (7.13)

We haveevaluated(7.8) for this particularlysimple form in AppendixC andfind
for d ~ 4

= d(d+ 2) (1 + 2AK) 4)/2fdy{yd/2(1 +y)3(1 +y + 2AKy)2

x[(d—2)y+d+2][(2—~d)(1+y+2AKy)+2AK1}

+ 2AK)~8d
4. (7.14)

In four dimensionsoneobtains

y
2(y+3) 1

= 2AKJ dy + (7.15)
(l+y)3(1+y+2AKy)2 1+2AK

andverifies

lim § = 3/2AK, lim = 1 — AK (7.16)

8. Discussionandconclusions

Themain result of this paperis the runningof the gaugecouplingin the abelian
Higgsmodel as a function of the averagescalek, in arbitrarydimensiond. It is
given by eqs. (6.26) and (7.4) which correspond to the evolution equation(1.13)
mentionedin the introduction. In four dimensionsone recoversthe well-known
logarithmic running which is finally stoppedonce k becomessmaller than the
relevantphysical particle masses.Due to strong infrared effects this behaviour
changesqualitatively in two and threedimensions.If theparticlemassesaresmall
comparedto k (2AK ~ 1, 2e2K << 1 in the spontaneouslybroken regime, m2/k2
~ 1 in the symmetric regime) the running of e is determinedby an infrared
fixpoint

3(4 — d)
e~= ,~ jd (8.1)
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As long as this fixpoint dominatesthe evolution the physicalgaugecoupling runs
to zerowith apowerof k,

e~=k4~”e~. (8.2)

This running is much fasterthan the logarithmic running in four dimensions.The
running of eR ceasesonly once k becomessmaller than the relevant particle
masses.

In any model with a genuinelong-distancebehaviour, i.e. where the physical
particle massesare much smaller than the ultraviolet cutoff (the inverse lattice

distancein statisticalmechanics)the evolution equationimplies an upperbound
on the renormalizedgaugecoupling.Themasslessevolutionequation(t = ln(k/A))

0e2
-~j-—=(d—4)e2+be4, b=4vdl~, (8.3)

is easilysolved:

e2(A)
for d=4

1 +be2(A) ln(A/k)

4—d 4—d k 4—d
e2(k)= b ~ be2(A))(A) for d<4. (8.4)

The upperboundobtainsfor e2(A) --* cc

e2(k)<bl(~k) for d=4,

4—d
for d<4. (8.5)

b[1 — (k/A)4”I

In contrastto the slow logarithmic running for d = 4 the upperboundfor d <4
approachesrapidly the valuegiven by the fixpoint e2~= (4 — d)/b,

e~(k)<e2 . (8.6)
1—(k/A)4~

Of course,thevalidity of the bound(8.5)dependson thereliability of theevolution
equation for large values of e2. It could be invalidated,however, only if /3e2

exhibits an (approximative)ultraviolet fixpoint for largevaluesof e2. We seeno
indication of such a fixpoint in our approach.In view of the surprisinglygood
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descriptionof nonperturbativephenomenalike critical indicesin the three-dimen-
sionalscalartheoryor the Kosterlitz—Thoulessphasetransitionin two dimensions

we are actually quite confident that the bounds derived from our one-loop
computationareevenquantitativelycorrect.

The running of e~is finally stoppedonce k becomessmaller than physical
particlemassesas for examplem. This effect is dueto the thresholdfunctions s
or .~‘. Oneapproximatelyobtains

2(fl\..... 2~’J \_ 2~ \eR~JI—eI~~
1e~~cm1,

wherethe proportionalityconstantc = k~/mdependson detailsof the averaging.

We note that for k >> m the coupling eR(k) is not directly related to a physical
vertex.The dependenceof the evolutionequation(b 1) on the averagescheme

is therefore not unexpected.On the other hand, eR(k) shouldbe in a direct
relation with physical vertices for k <<m. The average scheme dependence of 1
and of c should therefore cancel if our approximationsarevalid. If the original
coupling e

2(A) is not too small,the scaleof the physicalcoupling in two andthree
dimensionsis alwaysset by the relevantparticlemass,i.e.

3(4—d)
e~(0)= A ;d (cm)~4. (8.8)

-t Vd g

(This formula holds for e2(A)> e~up to corrections cm/A.)
We finally observethat for small e2(A) thereis first a regimeof slowrunning of

eR before it “feels” the attractionof the infraredfixpoint for d <4. As long as

e2(k) <<e2~ (8.9)

the evolutionequationfor d < 4 hasthe approximatesolution for eR,

2 k — e~(A) 810eR( ) 1+be~(A)k~4/(4-d)~ ( . )

This regimeof slow decreaseof eRholds for

k4~>>be~(A)/(4—d). (8.11)

This remark is of immediate relevancefor the four-dimensionalabelianHiggs
model at nonzerotemperatureT. Nearthe phasetransitionone expectsparticle
massesmuch smallerthan T. This implies a regionof effective three-dimensional
running for the couplings.Identifying the cutoff A with the onsetof the three-di-
mensionalrunning A = T/9 (with 0 0.2 in analogyto ref. [10]) and thethree-di-
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mensionalcoupling e~(A)= 4irTa (with a the four-dimensionalfine structure

constant),onefinds that the running of e~can be neglected only for

k>> ~aT. (8.12)

Formassesof the orderaT or smallerthe three-dimensionalrunning of the gauge
coupling will be an important effect. A qualitatively similar remark applies to
non-abelian gauge theories as the standardmodel. Here b shouldbe replacedin

(8.11) by the appropriatecoefficient of the three-dimensionalnonabelian/3-func-
tion.

Indeed,oneexpectsfor the runningof the dimensionlessgaugecoupling g2 in a
nonabelianSU(M) gauge theory in d ~ 4 the behaviour

~g2 =/3g2 = (d — 4)g2 — (~M—4)vdl~As~A(2AK,~g2K)g4 (8.13)

(and similar in the symmetric regime). Here 1~Aare numerical coefficients of
order one to be computed,with l~A= 1 for one M-componentcomplex scalar
coupledto the gaugefields. For a vanishingexpectationvalueK = 0 at theorigin of
the scalarpotential the gaugefields are masslessand ~A = 1 ~. For d < 4 one

obtainsthe solution

2 g2(A)(A/k)4_dg (k) = 1— (44M_2)v~1~~g2(A)[(A/k)4~_11/3(4—d) (8.14)

Identifying the confinementscalewith the valueof k whereg2(k) divergesyields

Bg2(A) 1/(4—d)
A~”~—A 815conf 4—d+Bg2(A) ‘

pf44p~ 2\ jd
— ~ 3

We may apply thesefindings directly to the electroweakphasetransition(with
M = 2). At the origin of the scalarpotential the running of g~(k)= g2(k)k leads
to three-dimensionalconfinementwith

~ 43l~ 43l~ —1

awT 1 + a~O . (8.17)
3~T 3ir

* If the scalarfield is massivewith m2/k2> 1, theeffectivecoefficient l~Ais somewhatenhancedby

the decouplingof the scalardegreeof freedom.
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Here we have made again the identification A = T/0, g~(A)= 4rrawT. For
realisticvaluesa~‘~ ~ the three-dimensionalconfinementscaleis arounda tenth
of thetemperature:

~ 0.1T. (8.18)

We emphasizethat “three-dimensionalconfinement”relateshere to thebehaviour
of time-averagedspace-likecorrelationfunctions in the thermodynamicequilib-
rium and not directly to time-like correlationfunctions. Also, g~is the gauge
coupling of the transversalthree-dimensionalgaugebosons.The zerocomponent
A0 of the gaugefield behavesas a three-dimensionalscalar field in the adjoint
representation.It acquiresa massdirectly from the usual temperatureeffects for
scalarfields with an additional contributionfrom three-dimensionalconfinement.
For space-likemomentaof the order ~ (and q0 = 0) this scalar is strongly
interacting.For space-likecorrelationsand for cc = 0 we concludethat the high
temperature phase of the electroweakgaugetheorybehavesas a strongcoupling
theory with a three-dimensionalconfinementscale only moderatelybelow the
temperature.

The order of the phasetransition canbe characterizedby thebehaviourof the

space-likecorrelations.In particular,a second-orderphasetransitioncorresponds
to an infinite correlation length in the space-likedirection. In consequence,the
electroweak phase transition is describedby the three-dimensionalconfinement/

Higgstransitionwith stronggaugecouplingunlessa first-order transitioninducesa
minimal value of spontaneoussymmetry breaking p~at T = I~such that the
induced gauge boson mass (~~g~p~)l/

2is substantiallyhigher than 0.1T~.If the
transition occurs in the regimeof strongcoupling gR it could actuallybe a smooth
analytic continuationrather than a genuinephasetransition [13]. If confinement
operates,all bosonsexceptfor the photonwill acquirea (three-dimensional)mass
proportionalto the confinementscale.(This is the only mechanismby which the
transversegaugebosonscan acquirea masswithout spontaneoussymmetrybreak-
ing. Three-dimensionalgaugeinvarianceforbids the appearanceof a transverse
massterm which is not related to confinement.)Three-dimensionalconfinement
therefore excludesthat the electroweakphasetransition is secondorder! A
second-orderphasetransition necessitatesat the critical temperaturea massless
scalar field with vanishingexpectationvalue, in direct contradiction to confine-
ment. We concludethat the scalarfield is alwaysmassiveat the transitionwhere
spontaneoussymmetrybreakingsets in. It remainsan openquestionif thereis a
jump in some quantities(e.g. masses)indicating a first-order transition or if the
behaviour is smoothsuch that no real phasetransitionoccurs.The answer may
dependcritically on the ratio betweenthe quartic scalarcoupling andthe gauge
coupling, i.e. the (zero temperature)Higgsmassin units of the W-bosonmass.
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One last remark concernsQCD at high temperatures.Relation (8.18) is re-
placed for stronginteractions(M = 3) by

~ 5a5(5T)T, (8.19)

where a~is the four-dimensionalstrong gaugecoupling evaluatedat the scale
T/0 a 5T. The scale A~~1is of the same order as the temperatureor even
somewhatlarger for the interesting range in T. In a theorywithout quarksthe
following qualitative picturefor the behaviourof the space-likecorrelationfunc-
tions emerges:As long as the temperatureis small enoughsuch that the value of
the four-dimensional(zero temperature)confinementscale ~ is larger than
T/0, thethree-dimensionalrunningof thegaugecoupling is ineffective.For higher
temperatures,however,three-dimensionalconfinementreplacesfour-dimensional
confinementand A~~fsetsthe relevantmassscalefor the theory.

Such a transition seemsto indicate a smooth behaviour for the space-like

correlation functions (compare ref. [14] for the behaviourof Wilson loops in
space-likedirections.) For very high temperatures(T>> A~~1)the infrared be-
haviour in the space-likedirectionsis describedby three-dimensionalconfinement.
The relevantdegreesof freedomin the momentumrange q

2 < T2 are notweakly
interactinggluonsbut ratherthe glueballsof a three-dimensionalconfining theory.
Their massscaleis set by the temperature.

In the presenceof quarksthe pictureof the transitionis somewhatmodified.As
aconsequenceof three-dimensionalconfinementoneexpectsat very hightemper-
aturesthat the quarkdegreesof freedomaredescribedby mesonsandhadronsas
far asthe space-likecorrelationsareconcerned.(Thepictureof weaklyinteracting
quarkdegreesof freedomapplieshereto momentamuchhigherthan the tempera-
ture.) As a new ingredient, however, the spontaneousbreaking of the chiral
symmetry should disappearfor sufficiently high T. According to ref. [15], this

transitionwould be of second-orderin the caseof masslessup and down quarks.
On the other hand,theobservedvalueof the zerotemperaturepionmassseemsto
imply a rathersmoothtransition.

Noteadded

Recently,the finite temperaturemassof the transversalweakgaugebosonswas

computed[17]within resummedperturbationtheoryby solving gapequations.The
value MT ~awT is abouta factor of threebelow the three-dimensionalconfine-
mentscaleA~~f(8.17).The reliability of hightemperatureperturbationtheoryfor
processesinvolving transversalgaugebosonsseemsthereforequestionablein its
presentform.
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AppendixA

In this appendixwe show that the measuresi.t~[A] and ,.~“[A] definedin eqs.
(2.23) and (2.25), respectively,coincidefor weak and slowly varying gaugefields
A/h. The calculation will be performed for a constant magnetic field B with
ëB <<k2, using methodsof ref. [16]. In this limit the equality of ji~ and JL~JD

becomesexact.(For simplicity we fix d = 4 andomit the barsfrom ë and ~L)
Using the propertime representationof the logarithmandthe explicit form of

the spectrumof —D2(A),eqs.(6.7) and(6.8), we obtain from (2.25)

In ~ = —f _Tr(O(_D2 — k2) exp[—s( —D2 +m2)])

= _fl~~_-~f_exp(_m2s)~fdx 9(x + (2n + 1)eB— k2)

x exp{—s[x + (2n + 1)eB]}. (A.1)

After shifting x —px — (2n + l)eB, the integration is easily performedwith the
result

eB codsln t~”= _n_—~f—~-exp(—m2s)~ C,~, (A.2)8ir o s n~O

where

C,, exp[ —s(2n+ 1)eB]O((2n+ 1)eB— k2) + exp(—sk2)O(k2— (2n + 1)eB).

(A.3)

Becauseof the step functions, ln ~ k suffers from discrete jumps wheneverk2
crossesone of the Landau levels (2n + 1)eB. Therefore ~ = In /-~k(for any
definition of the measure)is not a sensible effective action for strong fields
eB k2. For weak fields eB <<k2 the Landaulevels form a quasi-continuum(i.e.
therearevery many levels below k2) so that a smoothdependenceon B and k2
results.This is seenas follows. Assumethat eB ~ k2 and define

N~[k2/2eB} >> 1,

where[x] denotesthe largestintegercontainedin x. Then

N

~ C,, = ~ exp[ —s(2n+ 1)eB] + ~ exp(—sk2)
n=0 n=N+1 n=0

e/c2s k2
+ —exp(—k2s). (A.4)

2 srnh(eBs) 2eB
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To arrive at the secondline of eq. (A.4) we summedthe geometricseriesand
approximatedN by k2/2eB. This leadsto the desiredsmooth(averaged)depen-
denceon k2 and B. Inserting(A.4) into (A.2) yields, up to an irrelevantconstant,

In JII)_ — 11 jcods [(2k2)J sinhBs)~ (A.5)

The RHS of (A.5) is preciselythe integral representationof the Heisenberg—Euler
effective action FHE[A; m2] ln det(—D2+m2) of scalar QED [16] with m2
replacedby m2+ k2. Thus,recallingthe definition (2.23) of ~ we arrive at the

conclusionthat for weak and(almost)constantfields

ln(,$~”~[A])=FHE[A; m2+ k2] = ln(,~[A]). (A.6)

This illustrates the points made in sect. 2 in the kinematical region where

= lnjs~is a good effectiveaction,many differentforms of the measureILk are
physically equivalent.

AppendixB

Functionaldeterminantslike thoseappearingin eq. (5.6) cannotbe computed
exactlyfor a genericgaugefield A/h. Often it is sufficient to know the first few
termsof anexpansionin powersof A/h(x). In this appendixwe describea general
strategyto obtain this expansionin powers of A/h for an arbitrary function
M( —D2(A)) of the covariantderivativeoperator

—D2(A) ~1~2’

~ ~2= —2ieA/h3/h—ie(O/h A/h) +e2A/hA1h. (B.1)

Because~ and ~2 do not commute,one hasto be careful in keepingtrack of
commutatorterms [4~, zl~’].We assumethat the function M has a Fourier
representation

M(x) = f dyIl~(y)exp(iry) (B.2)

so that

M(—D2(A)) = fdy ~i(y) exp[iy(L1
1 + ‘~2)]. (B.3)
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For any pair of (non-commuting)operatorsA and B we can write down a

“Dyson series”

= eAT exp(fldt e~4tBe.4t), (B.4)

where T denotesthe t-ordering operator.Applying this formula to (B.3), one
obtainsthe following expansionin powersof B iyz.t2:

M(—D
2(A))=M

0+M1 +M2+

1_co~~(y) exP(iy~i)(1+ iyf
1dt exp(—iy~

1t)42exp(iy41t)

— ~y2f
1dt

1f’dt2 T{exp( —iy~1t1)~2exp[iyzl1(t1 — t2)] ~2

xexP(iY~it2)}+...). (B.5)

Here M,, containsn factorsof ~2’ i.e. the number of A/h’s containedin the
various termsof M,, rangesfrom n to 2n. If we are interestedin an expansionup
to order A~,we haveto retainthe termsup to M2. They are given by

M0 =M( _02),

M1 ~M1
4 +Mj~,

M~= 2ef dy M(y)yf1dt exp[ —iyO2(1 — t)]A/hO~,exp(—iyo2t),

M~~A=ie2J dy I%~(y)yf1dtexp[_~,o2(1— t)]A/hA/h exp(—iyo2r),

M
2 = 4e2f dy M(y)y2ftdtiftldt2 exp[ —iy(1 — tl)0

2]A/hO/h

x exp[ —iyO2(t
1 — t2)] AVO~exp(—iyO

2t
2)+ O(A~). (B.6)

Herewe havetakenfor simplicity a transversalgaugefield 0/hA~ = 0.
In order to further simplify theseequations,oneeitherexpandsin the number

of derivativesacting on A/h and truncatesthis seriesat a certain stage,or one
assumesthat A/h(x)hassomeparticularly simpleform. We shall do the latter and
assumethat A/h(x) is a transverseplanewave with momentumQ~:

A/h(x)=a/hexp(iQ~x°’),a/hQ~’=0. (B.7)
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(Theextensionto complex A/h posesno problem in our context.)For this form of
the gaugefield it is easyto commuteoperatorslike exp(— iy82t) throughA/h(x),so
that Mj4, say,becomes

M{~=2M/hfdyJi~(y)yexp[_iy(O+iQ)2~fldtexp{iyt[(O+iQ)2_O2]}O/h.

(B.8)

Now the t-integrationcanbe performedand the Fourier transformationcan be
inverted.In this way onefinds to secondorder in A/h (andall ordersin Q~°):

M(—D2(A))=M(—02) —2ieA’~’3/hM
1(3,Q)

+e2A/hA/hMl(0,2Q) _4e
2A~3/hM

2(O,Q)A~O~+O(A
3), (B.9)

with

1~f(O Q) = M(—32)—M(—(0+iQ)2)

(O+iQ)2_02

M
2(3, Q) = 1 2 M( _02) — M( —(0 + iQ)

2)
(O—iQ) ~2 (O+iQ) ~2

- M(-(O - iQ)2)-M(-(a + iQ)2)) (B.10)

In the limit Q —* 0 the operatorsz~and ~2 commute,so that (B.9) shouldreduce
to the naiveTaylor series.Indeed,from (B.10) it is easyto verify that

lim Ji~f
1(3,Q) =A~’(—O

2), lim M
2(O, Q) = ~M(—o

2), (B.11)
Q—.0 Q—*0

where the dot denotesa derivativewith respectto —

As a first applicationwe now usethe expansion(B.9) to establisheq.(5.8) of
sect.5. Let usevaluate41~1)[A/h] for A/h givenby (B.7). Eqs.(B.1) and(5.3) imply
that

_D2(amm) = —D2(A) + ~ + ~2’

Si 2ie[1 —fk(Q2)1A~0/h,~2 _e2[1 —f,~(Q2)1A~°A/h.(B.12)
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Insertingthis into zl1,~1~as definedin eq.(5.8) we obtain

4F,~1~[A]= Tr ln[1 + M( —D2(A))(5
1+ ~2)], (B.13)

with

1 —f,~(x)

M(x) . x + ~2 (B.14)

Expandingup to secondorder in A/h, onefinds

41,~’)[A] = G1 + G2 + G3 +

G1 2ie[1 _fk(Q
2)lTr[M(_D2(A))A/hO/hJ,

G
2m _e2[1 ~f,~(Q~)]Tr[M(—D

2(A))A/hA/h],

G
3 2e211—fk(Q)] Tr[M( —D

2(A))A/hO/hM(—D2(A))A~O,,].(B.15)

In G
2 and G3 we may replaceM(—D

2(A)) by M(—32) immediately. Because
1 —fk(Q2) (Q2/k2)~,we observethat thesetermsareof the order of (Q2/k2)~.
In G

1 we use(B.9), so that

G1 = 4e2[1 —fk(Q
2)] Tr[M

1(O, Q)(A’~0/h)
2j. (B.16)

Eq.(B.11) showsthat A~becomesindependentof Q for Q2<<k2. HenceG
1 is of

order(Q
2/k2)~.Invoking gaugeinvariance,this implies that 4J~hasan expan-

sionof the form anticipatedin eq.(5.8).

Appendix C

In this appendixwe calculate the one-loop contribution to the anomalous
dimension11F in theregimewith spontaneouslybrokengaugesynunetry: —

> 0. Becausethe relevantrenormalizationconstantis Z$.’) Z~(cc~)where cc~

Po ~j2/~ is the minimumof the classicalpotential,we will evaluateFk[cc, A/h] for
cc = cco = const.and for a planewave A/h(x)with momentumQ2 <<k~.We make
the approximationof keeping only the terms of order ë2. This simplifies the

calculationconsiderably,since the relevant term in eq. (5.1), ~Z~i)F/hVF/hV with
Zj.’~ ë2, contains ë only in the combination ëA/h. Thereforewe are allowed to
drop from the integrandof the functional integralall termscontainingfactorsof ë
which arenot accompaniedby correspondingfactorsof A/h. For the field configu-
rationat handtheminimumof Sk S+ SCOfl,t~is givenby Xmi~~(x)= cco~a~’°’ A/h.



M Reuter,C. Wetterich / Runninggaugecoupling 127

The quadraticaction for small fluctuationsaroundthis solution canbe read off
from ref. [9], Appendix B. For our approximationthe part which dependson ëA/h
reducesto

S2Sk f d’~x[~7(Psym+2Apo)tT+U)Psymcu+2coPasu]+ ..., (C.1)

where

~[P(—i2(~)) +P(~~D2(_A))],

Pas ~ [P(_D2(A)) -P(-D2( -A))],

P(x) =x[1 -f~(x)] ~. (C.2)

Eq. (C.1) is obtainedby expandingSk aroundits minimum up to secondorder in

2~’~(o-+ ho) and Sa/h. In (C.1) the terms containing Sa/h are either of
higher order in ë or they decouple from A/h. They can be omitted in our
approximation.(For detailswe refer to ref. [9].) The one-loopapproximationof

asdefinedin (2.3) is given by a gaussianintegralover a- and w. Using(C.1),
we find

P +2Ap
0 —P

= ~ Tr In Sytfl as (C.3)
+Pas

1~~ym

BecauseA/h(x) is chosento be a planewave,the formalism of AppendixB canbe
usedin order to expand~symand ‘1as in the numberof A/h’s:

1~ym= P( _32) + ë2A/hA/h1~
1(O,2Q) — 4ë

2A/hO/hP
2(O,Q)A°OV+

Pas= —2ëA~O/h1~1(0,Q) + o(A~). (C.4)

Here.t~and ~2 aredefinedasin (B.10)with M replacedby P. Inserting(C.4)into
(C.3) andkeepingonly terms ë

2A2 leadsto

F~~”W==~e2Tr({[P(_32)+2XpoJ’+P(_32)1}

X[A/hA/hJ~l(O, 2Q) —4A/hO/hP
2(O,Q)AVOV])

+ 2ë2 Tr{[P( 02) + 2~p~]‘A~’°0/h1~
1(O,Q)P( 32) ~Avo P1(O, Q)}

(C.5)

For agenericfunction P(x) this is arathercomplicatedexpression.
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To get a first feeling for the qualitative propertiesof (C.5) we usethe cutoff
function

fk(x) =k2(x+k2)’ (C.6)

which leadsto a very simpleform for P(x):

P(x)=x+k2. (C.7)

In this casetheinfraredcutoff k2 actspreciselylike a massterm.Eq. (C.5)reduces
to

d”
1~~~~1)=f ddx ddyA/h(y)Av(x)f ~de~~~J/hV(Q), (C.8)

(2~r)

with

— ~ d”p (QP+PV)p/h
/hV(Q) = -J (2~ [(Q+p)2+2~p+k2~(p2+k2y (C.9)

In order to extract the F/hVF~’”-termfrom (C.8) it is sufficient to expand(C.9) to
secondorder in Q2: J/h

0(Q)= 2ë
28/h~Q2J

0+ .... In termsof the scalarquantityJ0
the renormalizationconstantis given by ZF = 4ë

2J
0,so that

71F = — 4ë2kdJ
0/dk.

An elementarycalculationleadsto the formula

16ë
2v k2

flFd(d+2) (d_2)~Ad_4

+~(4_d)k2Md_6fhuh/Mdyydh/2 (d—2)y+(d+2)
0 (1 +y)3(y + k2/M2)

+ 2k2Ap
0Md_8f~~

Mdy yd/2 (d — 2)y + (d + 2) , (C.10)
0 (1+y)3(y+k2/M2)2

where A is an ultraviolet cutoff and M2 2Ap
0+ k

2. (If d ~ 4 this expressionis
finite for A —‘ cc.)

Let us finally turn to the evaluationof (C.5) for a genericfunction P(x). Going
to momentumspace,one obtains integralssimilar to (C.9) but with additional
factors of P

1(ip, Q) and P2(ip, Q) appearingin the numeratorof the integrand.
Thesefactors haveto b~expandedup to secondorder in Q usingthe formulas
(B.11) of the previousappendix.After combiningthem with the Q

2-dependent
termscoming from the denominatorand performing the (symmetric)integration
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over p/h, one obtains again a result of the form (C.8) with J/h~(Q)=
2ë

2S/h~Q2Jo(2Apo)+ .... The function J
0 is given by

6 xPP 2 x2(~1iP~3)+3P2)d d/2—1 —— ________ — _______ ______________0’. — dJ dP(P+w) d(d+2) P(P+w)

2 xP
3 20 x2P2P 8 x2P4

~d (P+w)2P + d(d+2) (P+w)2P — d(d+2) (P+w)3P

..f 1 1\ 3 / 1 1
+PI +—I+—xP~3~I

~P+w P) d \P+w P

+ 3d(d7+
2)XP (P±W+ ~)I- (C.11)

Therefore f~un(l)contributes the piece

= _4ë
2k~~~j~J0(w) (C.12)

to the anomalousdimension. From eq. (2.20) we seethat we have to add the
contributionsfrom — ln Nk and In ~ k’ respectively.BecauseNk is given by (2.9)
with ~i = 0, we have —ln Nk = —in det[P(—D2)]. The contributionof the latter
determinantfollows from (C.12)with (C.11)for w = 0. This is dueto the fact that
for w 2Ap

0= 0 thequadraticform in (C.1)maybe recombinedinto X*P(_D
2)X.

Finally the term coming from In /-~k is exactly the anomalousdimensionin the

symmetricphasewith ~ñ= 0, seeeq.(5.9). Denotingthiscontributionby i~”°’, the
completeresultreads -

flF = ?IF (2Ap
0)— ~“(0) + ~,r. (C.13)

Here i~Pis given explicitly by eq. (6.15) for m = 0, or by eq.(6.16), respectively.
Somepropertiesof ~lF arediscussedin sect. 7.
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