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We present a method which allows us to deal with the strong infrared effects in three-dimen-
sional gauge theories. In particular, we compute the three-dimensional running of the gauge
coupling. Applying these results to the electroweak phase transition in the standard model, we
conclude that the transition cannot be of second order. It is either a first-order transition or a
smooth cross-over.

1. Introduction

The high temperature phase transition in gauge theories [1] is of interest both
for the QCD phase transition and the electroweak phase transition in the early
universe. Recently, a lively discussion on the order of the electroweak phase
transition in the standard model has developed [2], mainly triggered by the
observation that the baryon asymmetry in the universe may be created during this
transition [3]). Unfortunately, the methods of high temperature perturbation theory
[4] are not reliable in all regions of interest. This is due to strong infrared effects
[5] in the effective three-dimensional theory for the modes with momenta much
smaller than the temperature.

One effect which is usually neglected in high temperature perturbation theory is
the running of the gauge coupling. We will show in this paper that this running is
an important effect in the symmetric phase and also for small expectation values of
the scalar field in the phase with spontaneous symmetry breaking. Let us consider
the one-loop graph of fig. 1a which contributes a correction to the gauge coupling
in a nonabelian gauge theory. If the momenta of the external gauge bosons vanish
and the gauge boson circulating in the loop is massless, this graph gives an infrared
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(a)

(b)

(c)

Fig. 1. Infrared divergent graphs for massless particles in three dimensions.

divergent contribution ~ [d“g g~ *. In four dimensions we recognise the familiar
logarithmic infrared divergence. It is regularized in practice by some physical
infrared cutoff k. Usually the infrared scale & is determined either by nonvanish-
ing external momenta or by a nonvanishing mass of the gauge bosons if the
symmetry is spontanecously broken, or else by the scale of confinement for a
nonabelian gauge theory in the confinement phase. For the four-dimensional
theory of electroweak interactions at vanishing temperature the contribution of fig.
la is ~g*In(A/k) (with A some ultraviolet cutoff) and describes the slow
running of the small electroweak gauge coupling *. The smallness of this effect at
zero temperature has led many authors to assume that the running of the gauge
coupling also gives a small effect at nonvanishing temperature and can therefore
be neglected.

In less than four dimensions the infrared divergence becomes a power diver-
gence instead of a logarithmic divergence. In particular, one finds in three
dimensions a correction to the three-dimensional gauge coupling g;,

Agi~g3/k. (1.1)

(We note that g7 has dimension of mass.) For sufficiently small values of k this
correction becomes as big as g3 itself and perturbation theory breaks down. This

* In this case only external momenta and mass are relevant infrared cutoffs k.
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effect persists in renormalization group-improved perturbation theory since (1.1)
implies a fast running of g2(k) for small %,

I g3

k w8 T (1.2)
It is well known that field theories at high temperature behave effectively as
three-dimensional theories if one considers momenta smaller than the tempera-
ture, g2 < T2 Indeed, the integration over the ‘“time” component g, in a
euclidean field theory is replaced by a discrete sum with g, = 27mT, m € N. For
scales below T the contribution of the modes with » = 0 dominates all infrared
sensitive quantities and the momentum integrals are therefore reduced to three-di-
mensional integrals. One expects that the space components of the gauge fields
behave as a three-dimensional gauge theory if the temperature is high enough
compared to momenta. Associating as usual the three-dimensional gauge coupling
g2 with the four-dimensional gauge coupling g; by

g5 =8T (1.3)

one finds for the high temperature correction to the four-dimensional gauge
coupling

Agi~giT/k, (1.4)
d gir

2 24 5
354 k (15)

Eq. (1.4) gives a rough estimate on the infrared scale I::, where the running of the
gauge coupling becomes an important effect, namely

k~glT. (1.6)

Only if the physical infrared cutoff is sufficiently larger than k the running of the
gauge coupling can be neglected for high temperature. We observe that k is of the
same order as the “magnetic mass” of the transversal gauge bosons [1,2]. We
conclude that a careful study of corrections to the gauge coupling is necessary for
all effects involving transversal gauge bosons. This is the subject of this paper.
Our aim is to develop concepts and methods for a solution of the infrared
problem in nonabelian gauge theories at high temperatures. As a first step, we
address in this paper the somewhat simpler problem in the abelian gauge theory.
The effective three-dimensional running (1.2) and (1.5) is of a similar nature as for
the abelian case, except for the opposite sign of the B-function. The insights
learned from the abelian theory are therefore generalized in the conclusions to the
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nonabelian theory, with implications for the high temperature behaviour of the
electroweak interactions. The infrared problem in the abelian Higgs model arises
from fluctuations of a massless charged scalar field as shown in fig. 1b. We will
introduce an effective infrared cutoff & which is independent of masses and
momenta, For masses and momenta smaller than k simple dimensional analysis
leads to a running of the three-dimensional gauge coupling (¢ =In k),

—ey ?, (17)

in analogy to (1.2). As we have discussed above, an understanding of the infrared
problem in the four-dimensional theory at high temperature requires an under-
standing of the three-dimensional infrared problem encoded in (1.7).

The corresponding problem for massless scalar field theories in three (or two)
dimensions has already been solved along similar lines [6]. One introduces a
variable infrared cutoff £ independent of mass and momenta and takes the limit
k — 0 at the end of the calculation. For k£ > 0 the diagram shown in fig. 1c is then
infrared regulated. This yields in lowest order for the k-dependence of the quartic
scalar coupling A, at zero momentum [6]

i 54 N-1+9s3 1.8

—Ay=-——(N—1+9s3). .

"l 4ax k ( 2) (18)
Here we consider a scalar theory with N real components in the regime with
spontaneous symmetry breaking. For a vacuum expectation value p,= %qoﬁ the
excitations consist of N — 1 massless Goldstone bosons and the radial excitation
with mass m?=2A;p,. The “threshold function” s; is renormalized to one if
m? < k? and vanishes rapidly for m?> k2, and I3 is a computable constant of
order one. This equation is of the type (1.2), (1.7). For small values of k — 0 it has
the asymptotic solution (N > 2)

A(k) ~ k. (1.9)

In this case the coupling vanishes for k — 0 and the infrared problem disappears.
These features are most easily seen by the use of a dimensionless coupling

A=Ay/k (1.10)
for which the evolution equation takes the form

oA l% 2(IN-1 3(2A 1.11
Et_z_)‘-'-;‘n'—zA[ - +9S2( K)] ( )
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The scale & does not appear explicitly on the RHS if dimensionless quantities are
used (k= py/k) since the threshold function s> depends only on the ratio
(mass/k)?, i.e. 2A3po/k? =2Ak.

The situation is completely analogous for the running of the abelian gauge
coupling in three dimensions. One introduces the dimensionless renormalized
gauge coupling

e’=el/k (1.12)
and finds the evolution equation
d 3
)4
562=Be2= —e?+ 6—77.2-64S§. (1.13)

Here lg is again a constant of order one. The threshold function s;’ depends on
m?/k? in the symmetric regime and on 2Ax and 2e’c in the regime with
spontaneous symmetry breaking. In the second case the quantity 2e%« correspond
to the ratio (photon mass/k)?. The threshold function is again normalized to one
for small masses and vanishes rapidly for large arguments (m?/k? > 1 or 2Ax > 1
or 2e%x > 1). We note that the general form of (1.13) directly follows from (1.7) or
simple dimension counting for massless fields plus a decoupling property for heavy
mass fields (encoded in the threshold function).

The next sections are devoted to a derivation of the evolution equation (1.13).
In the conclusions, which are essentially self-contained without using detailed
properties of lgsg, we discuss the physical consequences of this equation and its
generalization to nonabelian gauge theories. The reader not interested in more
technical developments may therefore jump immediately to the conclusions. Our
discussion will be valid for arbitrary dimension d and we find the following general
properties:

For the abelian Higgs model with a massless scalar field in d < 4 the gauge
coupling runs to zero with a power of k, i.e. eg(k) =e2 k*~?. The infrared fixpoint
e2 of the dimensionless gauge coupling is computed for this case. We propose an
upper bound for the physical gauge coupling e in dependence on the mass of the
scalar field . In less than four dimensions this bound is proportional to a power
of m. For the four-dimensional theory at high temperature 7 we formulate a
criterion for which values of m /T the running of the gauge coupling becomes an
important effect. If this condition is violated, the high temperature perturbation
theory (which does not account for the running of the gauge coupling) may give a
qualitatively wrong picture. We finally generalize our discussion to the nonabelian
gauge theory of the standard model. We conclude that the electroweak phase
transition cannot be of second order. If the three-dimensional theory is asymptoti-
cally free, the sign of the B-function is negative. As a result the nonabelian gauge
coupling g, will grow fast and become large at the three-dimensional confinement
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scale AQ) .. Since even for small g, the running is linear in k! and not
logarithmic as for d = 4, one expects A2) ./T to be a constant not too far below
one, in contrast to the exponentially small ratio A® /A for d =4 and small
g4(A). Three-dimensional confinement excludes massless particles and therefore a
second-order transition. It remains open if the restoration or the electroweak
symmetry at high temperatures is a first-order transition or rather a continuous
Cross-over.

In order to handle the infrared problems we will use in this paper the method of
the average action as formulated in ref. [7]. The average action I, is an effective
action for averages of fields. The average is taken over a volume ~ k~¢ such that
all degrees of freedom with momenta g2 > k? are effectively integrated out. The
average action is formulated in continuous space and is the analogue of the block
spin action [8] proposed earlier on a lattice. The average action for gauge theories
has been developed in ref. {9]. Due to the use of a gauge-invariant constraint
(which determines the averaging procedure) I', is manifestly gauge-invariant. In
ref. [9] the effective scalar potential and the scalar kinetic term appearing in I,
were calculated for the abelian Higgs model.

Here we complete the definition of I', for the pure gauge sector, concentrating
on the case of abelian symmetry. The formal properties of I', are established in
sects. 2—4. In particular, the average action defines a gauge theory with a covariant
momentum cutoff ~ k. This means that Green functions for low momenta can be
computed from I, and this calculation is explicitly ultraviolet finite.

We then proceed (sects. 5-7) to compute the running in dependence on k for
the abelian gauge coupling in arbitrary dimension d. The computation is per-
formed directly in the relevant dimension without invoking expansions in the
parameter € = 4 — d. This will later allow a reliable quantitative description of the
effective transition from four-dimensional (k > T) to three-dimensional (k < T)
running in the four-dimensional theory at high temperature T. (The corresponding
treatment of the pure scalar theory [10] has produced a good quantitative descrip-
tion of the second-order phase transition.) We emphasize that our formalism is
well adapted to deal even with massless particles which are relevant if the phase
transition between the spontaneously broken phase and the symmetric phase is
second-order. The average action allows to handle the notorious infrared diver-
gences of massless theories in three and two dimensions.

2. Formulation of the average action: normalization and integration measure

We consider scalar electrodynamics in d dimensions. The euclidean action of
the microscopic fields x(x) and a,(x) is given by

S[x. a,1= [ dx[4f,, 2+ DLa)x| + V(x*x)|. 2.1)
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Here f,,=d,a,—4d,a, and D(a)=3, +iea, where & denotes the bare gauge
coupling. The potential reads

V(x*x) =mx*x + 2 (x*x)". (22)

We first study the symmetric regime where 72 > 0. Following ref. [9], the average
action for this model is obtained by functional integration over the microscopic
variables with a constraint

exp(—I¥"[ ¢, A,]) = fDXDa,L exXp( ~ Sconse| 25 Aus X> 4,] = S[x, a,1), (2.3)

where *
1
Seomsr = [ 4% | 4 Fuw = Fe =) oo | 5=y [P~ =) 1]
1 n n 1 v v
+5;3“(A —a )Wa,(A —a)
-D?(A) +m*

+[o = f(~D(D)x]” [¢ — fu(=D2(A))x] ]

1-f(-D?(4))
fu(x) =exp[—a(x/k2)B]. (2.4)

The functional I'}™ is invariant under gauge transformations acting on the macro-
scopic fields ¢ and A. As already noted in ref. [9], no gauge fixing is needed for
the computation of I'’" since the constraint already eliminates infinite factors
from the volume of the group of gauge transformations. (A similar observation was
made in the context of a lattice approach in ref. [11].) The constraint enforces
suitable gauge-invariant averages of the microscopic fields y and a, (or, more
precisely, averages for the field strength f,w) to coincide with the macroscopic field
up to a certain degree of allowed fluctuations. The details of the averaging are
specified by the function f,.

More precisely, the propagator for the gauge field fluctuation a, can be read
off directly from the term quadratic in a in S+ S, (It is, of course, the
propagator in presence of the constraint which is relevant for a computation of
I,). For large momenta g% > k? the function f, vanishes exponentially, yielding
in this limit the quadratic term 3f,, f** + (1/2a)8,a*)*. For large momenta we

* We have modified the constraint for the scalar field of ref. {9} by adding a mass term. This is more
appropriate for the symmetric regime. For simplicity, we also have omitted wave function renormal-
ization factors in the formulation of the constraint.
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therefore obtain the propagator of a usual gauge-fixed theory. A perturbative
calculation of I'}'" is therefore well defined.

The functional I';"[¢, A,]is not yet normalized in such a way that it gives rise
to the same partition function as S[y, a #]. This can be remedied if we define

exp(—I7™[¢, 4,]) = [DxDa, P[e, 4,; x, a,) exo(=S[x, a,]), (25)

with the “constraint operator” P, normalized according to

JDeDA, P e, A, x,a,] = 1. (2.6)

norm

Then the partition functions obtained from I';*™ and S coincide:

zZ= fquDA# exp(—I™[ o, 4]). (2.7)
Writing
Pelo: A x> a,) =Ne[A,] oxp(=Sconsa[ €2 Aui X2 a,])  (28)
it follows from eq. (2.6) that the normalization factor N, has to be chosen as
-D?*(A) +m*
1-f2(-D*(4))

Here the determinant cancels the inverse determinant which results from the
integration over ¢. The remaining integration over A,, yields only a field indepen-
dent constant which is omitted. (This will be different for the nonabelian case!)
The two definitions (2.5) and (2.3) are therefore related by

= det[ H(—D?*(A))]. (2.9)

N A, = det[

Fknorm[(P’ A“] =Fkun[¢’ A#] —_ ln(Nk[A#]) (210)

They differ by terms which only depend on the gauge field A,. At this point one
might be tempted to identify the functional I';}°™[¢, 4,] with the effective action
for the macroscopic fields ¢ and A, since it is obtained from the microscopic
action S[x, a,] by “inserting a factor of unity” in the path integral (2.5). We will
see, however, that it is more convenient to split off from I'7°™ a measure factor
such that

Z= fDq;DA wl Al exp(~T[e, A1), (2.11)

exp(~I7"[¢, A]) = u [ A] exp( - T, [#]). (2.12)

We will motivate this choice of the average action I, in the following.
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Let us fix a gauge field 4,(x) and diagonalize —D?(A) for this gauge field. In
terms of its eigenvalues {A} the normalization factor (2.8) becomes

N [4,]= 1:[11(/\), (2.13)

where the product runs over all eigenvalues. We will see that the eigenvalues with
A <k? and those with A > k2 play a very different role. We therefore split the
determinant (2.8) in a product of two factors, det . [H ] and det _[H], defined by

det . [H]= [T H(A) (2.14)

A>k?

and similar for det _[ H]. (For the sake of the argument we define det . and det
by a sharp cutoff at A = k2. Later on we shall employ a “smoothened” version of
this definition.) First we recall from the general discussion of ref. [7] that a
physically sensible average action should be obtained from the fundamental action
S by integrating out only the modes with momenta larger than k. The modes with
momenta much smaller than & should be left untouched. This means that for such
modes the constraint operator P, ~ exp(—S ,ns,) should reduce to an approximate
d-functional 8¢ — x] if both y(x) and ¢(x) are slowly varying. More precisely,
expanding y and ¢ in terms of eigenfunctions of —D?(A), the constraint for the
modes with A < k2 should lead to §-functions. Because for such fields f,(A)y = x
and f,(A)¢ = ¢, the last term on the RHS of eq. (2.4) indeed gives rise to an
approximate §-functional. It is properly normalized if we multiply exp(—S_ ) by
det _[H]. The other part of the normalization factor, det ,[H1, is not needed for
this purpose.

Secondly, only scalar modes with | —~D*(A)¢| < | k%p| and gauge field modes
with | —8%4| < | k24| should contribute effectively to functional integrations of
the type (2.7), (2.11) since the high momentum modes should already have been
integrated out. For the average action of a theory containing only scalar fields this
decoupling of the large momentum modes happens in the following way: For
modes ¢ with momenta g?> k? the effective theory becomes approximately
quadratic,

L]l = [ d'x o*(~3%)e. (2.15)

In this way the integration over the large momentum modes yields only an
irrelevant constant det . [—d2]. Returning to the gauge theory, eq. (2.3) with (2.4)
shows that for ¢-modes with large eigenvalues A > k?

Iele, A,] = [ d%{ L A) +*[-D*(4) +7%]g).  (2.16)
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If in addition A, has momentum g¢°> k?, then %, = ;F2. Clearly the
situation is now more complicated because even for the large momentum modes
'™ gives rise to an interacting theory. In particular, the low momentum modes of
the gauge field do not decouple from the high momentum modes of the scalar
field. The normalization of the constraint cures this disease in a very particular

way: For the partition function
Z= ngoDA“ det. [H1det [[H] exp(—I"[¢, 4,]) (2.17)

we observe that the integration over the g-modes with A > k? produces a factor
which is the inverse of

-D?+m?

T=r2-py) |~ det- A1 (2.18)

det>[—D2+m2]zdet>[

(Recall that f,(g*) =0 for g% > k2.) We conclude that the contribution from the
high frequency modes is exactly cancelled by the det . [ H]-part of the normaliza-
tion factor. This guarantees that the high momentum modes indeed decouple from
the low momentum modes. A similar argument applies to the n-point functions
involving slowly varying fields. The disturbing determinant from the integration of
high A scalar modes is exactly cancelled by det . [ H]. In consequence, the average
action becomes an effective action for the low energy theory.

This observation has an important consequence for the correct definition of the
average action I',. We want to extract the low momentum physics from I,
directly, without any further functional integration of heavy modes. We therefore
should not include det  [H] in the definition of I,. This factor only serves the
purpose to guarantee the decoupling of the high momentum modes. It should be
interpreted as an appropriate measure factor in the functional integration, which,
together with the particular form of I', for the high momentum modes, ensures
decoupling. We therefore arrive at our final definition of the average action,

exp(—Iy[@, 4,]) =det [[H(-D*(A))] exp(-T"[e, 4,]), (2.19)
Iile. 4] =I"le, 4,] ~in(N[ 4,]) +In(w[ 4,]). (220)
pi[A] = det, [ H(—D*(A))]. (2.21)

For slowly varying fields and k — 0 the low energy properties of the theory can be
read off from I, directly. Shortly speaking, I, contains the physical vertices
whereas u, only involves “regulator terms”.

For practical calculations it is advantageous to define w,[A] = det  H slightly
different from eq. (2.14). Instead of using a sharp cutoff at A = k? we interpolate
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smoothly between the region A > k2, which has to contribute without any suppres-
sion factor, and the region A < k2, which should not contribute at all. Comparing
two measures u /u, at scales k; and k,> k,, consistency requires that the
ratio pu, /p,, receives contrlbutlons only from eigenvalues between k? and k3:

Al By = T ). (2.22)

pelAl relk, k3] relk?, k3]

In practice it is sufficient if the last relation in (2.22) holds in a central region
k? <A < k2. (In general it will not be satisfied in the transition regions A = k2,
k2.) Also, field-independent constants due to the eigenvalues A < k7 and A > k]
may be ignored.

The following form of the measure meets these requirements:

uP[ A] = det[ —-D*(A) + m® + k?]. (2.23)

In view of eq. (2.18) it is clear that the product of the eigenvalues A > k?
reproduces det . [ H]. The eigenvalues A < k2 give rise to a factor det _[m? + k2],
which can be ignored because it does not depend on any field. For the massless
theory, 7% = 0, we may also use the following measure:

—D*(4) )
B=1

i —

[4] det(l—sz(—Dz(A)) (2.24)
where the cutoff function f,(x)=exp(—ak 2x#) must be taken with 8 =1 so
that x[1 — fA(x)]"' = k?/2a = const. for x < k?. Only for 8 =1 the eigenvalues
A <k? yield a constant factor det _[k?/2a], which we can discard, whereas for
B # 1 one would obtain unwanted field-dependent contributions from the small
eigenvalues. For A > k2 we recover det(—D?) = det H.

With some obvious modifications the above discussion remains valid if we
replace the scalar ¢ by a fermion. If the fermion is chiral, a naive mass term ~ k?
as in u¢ is forbidden. In this situation we have to rely on the fermionic analogue
of u{P. In the following sections we shall use both x{ and u{P and show that (in
four dimensions) they lead to the same B- functlons. Furthermore, we prove in
Appendix A that for 4, corresponding to a constant magnetic field the measure
u® is exactly equivalent to the original definition (2.11) where we used a sharp
cutoff:

WIPLA] = exp Tr[ ©(~D*(A) k%) In(~D*(A) +72)].  (225)

More generally, the precise definition of u,[A] should not matter, provided that
the measure factor fulfils the criteria discussed above.



102 M. Reuter, C. Wetterich / Running gauge coupling

3. Green functions from the average action

In this section we study the relation between the Green functions derived from
Lle, A ,L] and those obtained from the microscopic action Sy, au]. To start with,
we first look at the simpler case of a theory containing only a complex scalar where

(7]

exp(~Ti[¢]) = [Dx expl—fddX(lt’,Lxl2 +V(x*x)

— 0% + m?

+le - fi(-)x]" )[w—fk(—az)x]”- (3.1)

1-fe(-2

The connected Green functions of I', are generated by the functional W,[n, n*]
defined by

exp(Wi[n, n*]) = [Dg exp(—Fk[so]+fd"X(n*<p+qo*'n))- (32)

On the other hand, the microscopic action S[x] gives rise to the following
generating functional:

exp(W[n, n*]) = fDX exp(—fddx(|6ﬂx|2+ Vix*x) —n*x —X*n)). (33)

There exists a remarkably simple relation between W, and W. Inserting (3.1) into
(3.2) and performing the gaussian integration over ¢ we find

1-f2(—-9%)
-9+ m?

n(x).

(3.4)

Wiln, n*]= W[fk(—ﬁz)n, fk("az)Tl*] + fddx n*(x)

We observe that W, is obtained from W by averaging the source functions n and
n* and by adding an additional piece which contributes to the connected two-point
function only. For sources which are rapidly varying at the scale of k=1 (—3% — «)
we obtain a free theory: W, ~ [n*(—8?+#i%)"!n. For slowly varying sources
(—9* > 0) the second term on the RHS of eq. (3.4) vanishes and W, and W
become approximately equal. We conclude that for small external momenta I,
produces the same Green functions as S, but it describes a free theory at momenta
large compared to k2. Inverting the exact relation (3.4),

Wln, n*1=W,[fe'(=8%)n, f'(-8*)n*]

1-f2(-9%)

— 0% + m?

— [ dx m* () £~ ) n(x),  (35)
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gives a precise prescription how the true connected Green functions generated by
W can be computed from the average action I.

Let us return to the gauge theory now. According to the discussion of sect. 2 the
functional integral for the generating function obtained from I'[¢, A M] contains
an explicit measure factor of u,[A]:

CXP(Wk["?, ’fl*, ]M])

- [DeDA, uylA] exp(—Fk[qo, AT+ [ dix(n*o +¢*n +j”A“)). (3.6)

The microscopic action S[y, a #] gives rise to the conventional generating func-
tional

exp(W[n, n*, jﬂ]) = /DXDa‘L exp(—S[X, a,]+ f dx(n*x + x*n +j“aﬂ)).

(3.7)

In order to establish a relation between W, and W we insert the functional integral
defining I, into eq. (3.6). Using eq. (2.20) we see that u, exp(—I}) =N,
exp(—I™), so that the form of the integrand follows from (2.9) and (2.3) with
(2.4), respectively. The integration over 4, is gaussian only if 7 =n* =0. In this
case we obtain

W, [0, 0, j,] = W[0,0,[ P+ (=3%) Pr],,,0"]

ara¥

i sl PO (a- 1)?)];, (3.8)

+%fddxj# —

where (P,),, =4,6,/9* and (P),, =8, —9,9,/9° are the usual projection opera-
tors on longitudinal and transversal modes. For conserved sources, d, j* = 0, which
are rapidly varying on the scale of k! (—=9%*—> ), we find a free theory:
W, ~j(8*)~'j*. In the opposite limit of small momenta (—4* — 0) the second term
on the RHS of (3.8) vanishes ~(—3?/k?)?~! and W, and W are approximately
equal.

If 5, n*+#0 no simple relation between W and W, can be written down.
However, the general features found above still persist: for small momenta W, is
approximately equal to W, whereas the large momentum modes in W, decouple.
This point will be further discussed in the following section.
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4. Gauge theory with covariant momentum cutoff

If the average action I, is defined properly, all short-distance modes are
already integrated out. The short-distance modes should therefore not contribute
any more if Green functions are computed from I,. Otherwise speaking, the
functional integral (3.6) (or corresponding derivatives of W, with respect to the
sources) should not involve ultraviolet divergences. The ultraviolet behaviour of
the original theory is already incorporated in I',. The average action, together with
the appropriate functional measure u, should exhibit an effective short-distance
cutoff. In this section we sketch briefly how this is realized.

We first describe how the ultraviolet finiteness of the one-loop integrals is
realized. The two- and four-point functions for external scalar fields with small
momentum Q2 < k? involve Feynman diagrams with either scalars or gauge
bosons circulating in the loop (figs. 2a, b). (We specialize here for simplicity to an
expansion around the symmetric point ¢ =0 and give only the 1PI graphs.) The
first class of diagrams (fig. 2a) is ultraviolet finite because of the momentum
dependence of the four-point vertex in I',. As we will argue below this four-point
vertex vanishes exponentially for a large loop momentum g2 > k2, similar as in

Q SO

TN

Fig. 2. One-loop contributions with two or four external scalar fields.
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the pure scalar theory discussed in ref. [7]. For the second class of diagrams (fig.
2b) one has to distinguish between the physical transverse gauge bosons and the
gauge degrees of freedom (longitudinal gauge bosons) in the loop. We will see that
the vertices in I', which involve high momentum transverse gauge bosons and low
momentum scalars are again suppressed for large loop momentum. The diagrams
with transverse gauge bosons in the loop therefore become ultraviolet finite. On
the other hand, the longitudinal gauge bosons in the loop correspond to the
functional integration over gauge degrees of freedom. The resulting infinite factor
cancels in the Green functions as usual and may be treated by a proper gauge
fixing.

In order to establish the exponential decrease with g? of the vertices mentioned
above we first note that ¢ decouples from all other fields in (2.4) in the limit
fi{—=D*(A)) - 0, A — 0. This is exactly what happens for the ¢-modes with large
eigenvalues A of the operator —D?%(A), leading to the expressions (2.16) up to
corrections of the order exp[—a(A/k?)?]. The exponential suppression of the
four-scalar vertex with at least one large momentum follows by inserting 4 =0
since I', becomes quadratic in ¢ up to corrections ~ exp[ —a(q?/k?)?].

The argument for the transverse gauge bosons with large momentum is similar.
Let us consider ¢ =const. and 4;, =0 (4, =P, A, Ap=PrA). The classical
solution derived from S, =S + S_,., reads (up to corrections with more than two
powers of Ar,)

2

q
24 28%%(1 - f2(q)]

x=¢, ay,=0, aT,L(Q)=fk(q)q Ar(q). (41)

Inserting this solution into S, gives the classical average action I'{"). One finds that
the vertex ¢’A,(q)A4(—q) is exponentially suppressed for g* > k>.

L O

SO OO O

Fig. 3. One-loop contributions with two or four external gauge fields.
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“OX )OX =X

Fig. 4. One-loop contributions with external scalar and gauge fields.

We expect the suppression to persist after the inclusion of quantum corrections
in the calculation of I',. It should also hold for ¢-modes with nonvanishing, but
small momentum. Along the same lines one concludes the suppression of the cubic
vertex involving one low momentum scalar, one high momentum scalar and one
high momentum transverse gauge boson.

We next turn to the one-loop graphs contributing to the two- and four-point
functions involving gauge bosons (fig. 3). In contrast to the graphs in fig. 2 a high
momentum scalar in the loop does not decouple from the low momentum external
gauge bosons. The interaction between these modes is exactly given by (2.16), up to
exponentially small corrections. Standing alone, the graphs in fig. 2 would suggest
an ultraviolet divergence. As we have discussed in the last section, however, the
measure factor u,[A] exactly cancels the one-loop contributions involving scalar
fields with high momentum. (Since I', becomes quadratic in the large momentum
modes of ¢ up to exponentially small corrections, only one-loop graphs have to be
cancelled. Higher loops involving high momentum scalars are again suppressed
and therefore ultraviolet finite.) Finally, the one-loop graphs involving external
scalars and gauge fields (fig. 4) are ultraviolet finite due to the exponential
suppression of the scalar four-point vertex, similar as for fig. 2a.

We did not specify yet how the original theory for the variables x and a, (with
action (2.1)) is regularized. In principle, we could formulate this theory on a lattice
or use dimensional regularization. The previous discussion suggests that we can
also use a continuum regularization in four dimensions involving an effective
covariant momentum cutoff A. We require the following two properties for the
gauge-invariant action:

(i) For large momenta of the gauge field (g2 > A?) the transverse gauge bosons
should decouple such that

S= f dix &, Z=1Lf " +2(x), (42)

up to corrections which are exponentially suppressed for g?/A? > 1.

(ii) For large momenta of the scalar field (or, more precisely, large eigenvalues
of —D?(d)) the action should take a canonical quadratic form in y up to
exponentially small corrections,

Z=[Da)x] D*(@)x +mx*x, (43)
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with
d,=[PL+fs(—9*)Pr]a,. (4.4)

In addition, we introduce a functional measure factor similar to the one in sect. 2,
e.g.

pald] = det[ —D?(a) + m? + A?]. (4.5)

This guarantees that the high momentum fluctuations of y decouple. On the other
hand, the high momentum fluctuations of the transverse gauge bosons decouple
due to the property (4.2). (This is consistent with (4.3) since the vertices of high
momentum transverse gauge bosons are exponentially suppressed.) In conse-
quence, all Green functions are ultraviolet finite. We note that this regularization
may also be understood in a somewhat different language: Expressed in terms of
the variable g, the vertices are unsuppressed, but the ultraviolet finiteness is now
guaranteed by an effective momentum cutoff in the propagator as implied by the
kinetic term

P = (=) . (46)

The measure factor (4.5) may be interpreted as an effective Pauli—Villars regular-
ization (which can be generalized even for chiral fermions (2.24)). We emphasize
that the asymtotic form (4.2), (4.3) does not exclude nontrivial interactions. For
example, a quartic scalar interaction can be written in the form

2= f(~D@)x|' (4.7)

without disturbing the ultraviolet finiteness.

We can actually enforce the form (4.2) \yith (4.3)for I',[e, 4 ..J by modifying the
constraint (2.4), replacing D*(A4) by D?(A) in the last line and correspondingly in
the measure factor u, (A u=PLA, +f,(=8*)P1 A,). This modification does not
affect the form of I, for low momentum gauge fields as discussed in this paper
and in ref. [9]. It improves, however, considerably the decoupling of the high
momentum transverse gauge fields compared to the discussion in the beginning of
this section. All vertices in I, are then exponentially suppressed if at least one
momentum in the vertex obeys g2 > k2.

5. Wave function renormalization in the symmetric regime

The average action I'[¢, 4, ] has a derivative expansion of the form
Lo, A] = [ dx[U16F) +Z, i(16F) DL Ao

+3Ze i (l0P)EL P + . (5.1)
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In ref. [9] we discussed the average potential U, and the wave function renormal-
ization of the scalar, Z,. (Note that in ref. [9] we set 4, =0 or A, = const..
Hence there was no distinction between I', and I''™.) Here we want to perform a
one-loop calculation of ZF,k(|(p|2) for the symmetric regime, where ¢ has no
vacuum expectation value. Therefore the relevant quantity is Z,, = Z, (¢ = 0).
This constant can be read off from I',(¢ =0, 4,) as the coefficient of the term
~ F:,,. The dependence of Zp, on the scale k is sufficient to extract the
corresponding running of the gauge coupling. Gauge invariance implies that the
same coupling & appears in D,(A)=4, +iéd, in (5.1) as originally in the action
(2.1). Therefore & is independent of k and the renormalized coupling e = Z; '&*
depends on k only through Z,.

Our first task is to evaluate the functional integral for I'}'" on the RHS of eq.
(2.3) by the saddle point method. For ¢ = 0, the minimum of the action S + S .
has to be determined from the classical field equations

[-D%(a) + Mm% x + Al x*x + H(—D?(A))f¥(-D*(A))x =0,

(=550 + 910, = 12 (e ) 4, ()
+ l " (A, — =0 52
a 1_fk2(_62) ( v au)— . ( . )

The solution corresponding to the global minimum of the action is

Xmin ( x) — 0’

apn(x) = [Py +fi(=9*) Pr] 4,(x), (5-3)
where P; and P; are the projectors on longitudinal and transversal photons,
respectively. After expanding the integration variables xy and a, around this

configuration and performing the gaussian integrals over the fluctuations, one
obtains from eq. (2.3)

rgofo, 4,] = f dx({F,, F* + [}"®[0, 4,] + higher loops),  (5.4)

with the one-loop contribution

—D?*(A) +m*
1-f2(=D*(4))

[0, A] =1In det| —D?*(ap™) +m* + fA(-D*(A))]. (5.5)
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From eq. (2.20) with eq. (2.9) we obtain for the one-loop contribution of the
complete average action

[P0, A4,] = 1000, 4,] ~ (N[ A,]) + In(s [ A,])

D(a™") +m’

= In det| f2(=D%()) + [1= FE(-D(D)| Tt

+In(p [ 4]). (5.6)

(Note that In N, and In u, are of the same loop order as I'?®.) The complicated
determinant on the RHS of (5.6) results from combining the determinants of egs.
(5.5) and (2.9). It disappears completely if we restrict ourselves to a gauge field
which is only slowly varying on the scale of k™1

fk(—az)A# =A,. (5.7

In fact, we show in Appendix B that up to second order in 4, (and to lowest order
in 82 /k?)

2(_amin) + 7
-D*(A)+m

mw[A,L]—lndet(fk( ~DX(A)) + [1 - f2(~D*(A))] =

p—1
=cf d%x F, ( ) F= + O(FL,), (5.8)
where ¢ is a constant. This shows that for slowly varying fields a, with momenta
Q% < k?, the determinant on the RHS of eq. (5.6) is suppressed by powers of

(Q%/k*)A~1 For B>1 it does not enter the calculation of Z. and will be
neglected from now on. Thus we are left with

oo, 4,] =In(k,[A4]). . (5.9)

At the one-loop level the average action is completely determined by the measure
pi- The cancellation between ™Y and In N, will not persist beyond one-loop,
however. If we choose the measure as in (2.23) the one-loop average action
coincides for d = 4 with the conventional Heisenberg—Euler effective action [12]
for a particle with mass 72 + k2.

The wave function renormalization can now be extracted from the term bilinear
in A:

1n(p,k[A])=fddx[%(zF,k—1)F,wFW+ - (5.10)
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6. The running gauge coupling in the one-loop approximation
In this section we evaluate the average action (5.9) for the measures (2.23) and

(2.24) for terms bilinear in 4,. We set ¢ =0, so the derivative expansion (5.1)
reduces to

[0, 4,] = f d%(5Zp  E F* + ..., (6.1)
with
Zp =1+ Z{, + higher loops. (6.2)

We note that for d >4 Z{) is UV-divergent unless the theory is properly
regularized. Instead of calculating the one-loop contribution Z}l’}c, we shall evalu-
ate the anomalous dimension

d
nF = —‘kaln ZF,/(

d
= —kd—kZ“) + higher orders. (6.3)

This is UV-finite and therefore independent of the regularization. The running of
the renormalized gauge coupling e; can be directly extracted from 1. From eq.
(5.9) we have

ki o0, 4,] =k—2{ [ d*xiF,, F* + O(42)

—kiln(uk[AD (649

Choosing the measure as in (2.23) and (2.24) one obtains explicitly

l 6.5
~D(A) +m+k? ) (6:3)

d
kaln(u(kl)[/l]) =Tr

k- n(uOpAT) = Tr

" (6.6)

k dff(—Dz(A))/dk)
l—sz(_Dz(A)) B=1
Since the factor Z., is defined as the coefficient of the term in I, which is

bilinear in A4, it is sufficient to compute the traces on the RHS of egs. (6.5) and
(6.6) up to terms quadratic in A4,,. This is most easily done by evaluating (6.4) for a
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vector potential A, which corresponds to a constant magnetic field B. Then
F2 =2B? and de,Q)(/dk can be read off as the coefficient of ;B2 where
0 = [d%. The advantage of this field configuration is that the corresponding
spectrum of —D?(A) is known explicitly. The eigenvalues are

d—2
Zq3‘+(2n+1)eB;q“ER,n=0,l,2,... , (6.7)

pn=1
where g, is a (d — 2)-dimensional momentum vector and n labels the different
Landau levels. The density of states is
d4%q eB

so that for an arbitrary function Q(—D?(A4)) the trace Tr{Q(—D?)], provided it
exists, is given by

Tr[Q(-D*(A))] = Qv,_,— Z f dxx@=92Q(x + (2n + 1)eB). (6.9)
ki
Here we have introduced (for d > 2) x = ):d 1 9,4, and
vy = [29* 1420 (1a)] . (6.10)

Using the Euler—McLaurin summation formula in the form

® _ éB ,
ngoQ(x+(2n+1)eB) /dy Q(x+y)+Ed—Q(x)+O(B) (6.11)

we can write down a systematic expansion of the RHS of eq. (6.9) in powers of B.
In particular the term in Tr Q proportional to B2, Tr(Q) is given by

(eB)® = o d
'm'/(‘) dxx(d 4)/25Q(x). (612)

quad?

TI[Q( _DZ(A))]quad = Qud—l
This formula holds for all d > 3. For d = 4 it reduces to

(eB)’

TI‘[Q(_DZ(‘A))]quad=_'Q 6 2

0(0). (6.13)
For d = 2 the integration over x = g2 is absent, and (6.12) is replaced by

('2':3__ Q() (6.14)

Tr[Q(_DZ(A))]quad =
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Returning to the traces in (6.5) and (6.6), we obtain from (6.12) for d > 3

52

e o _
M =vay 3k [ dx xRk (6.15)
0
a 2’ a
Nrg ' = Ud 2 - k2
® d-82 -
xfo dxx {xfk(x)[l e } . (6.16)

Here we made use of (6.3) with (6.4):
d (1,ID 1 2, (1,10
k—kln My = —E.QB Ng . (617)

In four dimensions, eq. (6.13) gives rise to

2 k?

I — —,
24?2 m? + k>

Nr

(6.18)

¢ = -
£ 2471'2 g=1 2472

(6.19)

We observe that for 7% =0 both measures yield the same anomalous dimension
&2 /242 This quantity is universal: It depends neither on the precise definition of
the measure nor on the average scheme (the precise form of f,(x)). Note also that
it is only for B = 1 that n{P produces the correct result. This is consistent with the
general discussion in sect. 2.

In two dimensions one obtains with the help of eq. (6.14)

2

o g2 1 k? 690

T e k2 \ k2 + (6.20)
g2 a

an_ —_ 6.21

The results differ for a # 1 even at # = 0. In fact, looking at (6.15) and (6.16), it is
clear that for d #4 7% and #¢ will not coincide in general. In particular, any
explicit dependence of n¢” on k will always involve the ratio k%/a. We note that
7 is well defined only for d < 6, whereas n{¥ can be used for arbitrary d. (The
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measure p{¥ (2.24) can easily be generalized for m* > 0.) For completeness, we
also give the result for three dimensions:

a2 K2\
M — _ 6.22
M 2417k(k2+m2 (6.22)
We finally introduce the dimensionless renormalized gauge coupling
e2(k) =k9%ei(k)=k¢4Z;1e2. 6.23
R F.k

(The physical renormalized charge is e = Zj ;/?2.) Then the evolution of e*(k) is
governed by the g-function

d
—e

=k
Bez dk

(k) =(d—4+mnz)e*(k). (6.24)

We use renormalization group improvement and replace in 7, the bare cou-
pling & by the k-dependent coupling ex(k) and also the scalar mass term by the
running mass as given by the second derivative of U, at the origin,

m*—>m?(k). (6.25)
The B-function can then be written in the generic form
B.=(d—4)e* + $v,lisd(m? /k*)e*. (6.26)

Here the threshold functions s¢ only depend on the dimensionless ratio m?>/k?

and are normalized such that sg(O) = 1. They have a particularly simple form for

the choice (2.23),
2
Sdm( m_) _
g kZ

The constants lg depend in general on the averaging scheme and the choice of u,
except for d = 4 where

(6.27)

=1 (6.28)
For the particular choice (2.23) one has

2O=1, [PO< iy (6.29)

In three dimensions one has v; = 1/87? and (6.26) coincides with (1.13).
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7. The regime with spontaneous symmetry breaking

So far we have concentrated on the symmetric regime where the minimum of U,
occurs at ¢ = 0. For a study of spontaneous symmetry breaking we need, however,
the running of the gauge coupling in the spontaneously broken regime where the
potential minimum occurs for a nonvanishing scalar field ¢y(k),

2 d 2
po(k) =|eo(K) [, 5;Uk(po)=0, p=lel". (7.1)

Two changes in the formulation become necessary: First we define the constraint
(2.4) with m? = 0. In the spontaneously broken regime the mass term at the origin
(¢ = 0) is negative and has no direct physical relevance. The masses entering the
computation should rather be given by an expansion around p,. This also dictates
the second change, namely the definition of 5, through the k-dependence of the
wave function renormalization at py(k),

d
Nr= —kaln[ZF,k(pO(k))]' (7.2)

Neglecting terms ~ dZ /dp, we can omit here the implicit k-dependence through
the k-evolution of the minimum py(k).

In the spontaneously broken regime the masses of the relevant physical excita-
tions are the radial scalar mass m and the photon mass M as given by

m?=2\p,, M?=28&%,. (7.3)

In the limit m? = M? = 0 the running of the gauge coupling should be the same as
for the symmetric regime with m? — 0. One concludes the general form of the
evolution equation for the gauge coupling in the spontaneously broken regime,

B=(d—4)e?+ 3v,1%% (2K, 2e%k)e*. 7.4)
e 3%d'g

g

The threshold functions s'g are again normalized as
s‘g(O, 0)=1. (7.5)
They depend on the dimensionless ratios of renormalized mass over £, i.e.

MAk) ., m’(k)

=2e’k, 2 =2AK, (7.6)

where

k=k2>Z,po(k), A=k4Z;2A(k). (7.7)



M. Reuter, C. Wetterich / Running gauge coupling 115

In three dimensions eq. (7.4) gives the evolution equation (1.13) in the regime with
spontaneous symmetry breaking.

We have computed in Appendix C the threshold function in the limit e« — 0.
One finds

19542k, 0) = k>~ dak J(21p,), (7.8)
with
1 V(.. 9 7
- 4/2-1 3P+ —xP®+ —————x?P®
J(w) = - [ dxx (P+w P) a* T dd+y” )

- 1 1 6 . 60 -
—[dxx??| ——— — —|[=P*+ ———xP?P
Jy oxs (P(P+w)2 P3)(d id+2)" )

1 1) .
E———— R
P(P+w)’ P*

f dx x4/ 2(x +k2) ! (7.9)

87rvd

Here we use x = g2, P(x)=x(1 —f})~' and P=9P/dx etc.. We also observe that
the k-derivative in (7.8) acts on P with

() -2ei(2) o

and should be applied on the integrand such that all integrals in kdJ /dk are finite.
One may check the limiting case

a
li — =kd44, A
wlinokakj(w) kel (7.11)
One also expects

Ilmk J(w) 0 (7.12)

w—o o
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since the running of the physical gauge coupling e = k*~%? should stop once the
scalar mass is much bigger than k. We refer for a detailed evaluation of s”g to a
future publication. Here we demonstrate the generic behaviour only for a “test
function”

FA(x) =k?/(x+k?), P(x)=x+k2 (7.13)

We have evaluated (7.8) for this particularly simple form in Appendix C and find
ford<4

12 w
1858 = ————(1+2x) 72 [ dy{y42(1 +y) -2
eSe d(d+2)( K) j;) y{y (1+y) "(1+y+2Aky)

X [(d=2)y+d+2][(2 - 3d)(1 +y +2xky) +2A]}

+(1+2xk) " '5,,. (7.14)

In four dimensions one obtains

2
y(y+3 1
§=2ac [ dy d (r+3) S+ (7.15)
(1+y)’ (1+y+2Aky) 1+2Ak
and verifies
lim §3=3/24, lim §f=1-2A« (7.16)
Ak — 00 AK—

8. Discussion and conclusions

The main result of this paper is the running of the gauge coupling in the abelian
Higgs model as a function of the average scale k, in arbitrary dimension d. It is
given by egs. (6.26) and (7.4) which correspond to the evolution equation (1.13)
mentioned in the introduction. In four dimensions one recovers the well-known
logarithmic running which is finally stopped once k becomes smaller than the
relevant physical particle masses. Due to strong infrared effects this behaviour
changes qualitatively in two and three dimensions. If the particle masses are small
compared to k (2Akx < 1, 2e’k < 1 in the spontaneously broken regime, m?/k?
<1 in the symmetric regime) the running of e is determined by an infrared
fixpoint

- 3(4—-d)

el =—--.
: 4o, ¢

(8.1)
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As long as this fixpoint dominates the evolution the physical gauge coupling runs
to zero with a power of %,

ek =k* %2, (8.2)

This running is much faster than the logarithmic running in four dimensions. The
running of eg ceases only once k becomes smaller than the relevant particle
masses.

In any model with a genuine long-distance behaviour, i.e. where the physical
particle masses are much smaller than the ultraviolet cutoff (the inverse lattice
distance in statistical mechanics) the evolution equation implies an upper bound
on the renormalized gauge coupling. The massless evolution equation (¢ = In(k /A))

2
e
a_t =(d—4)e2+be4, b=%Udlg, (83)

is easily solved:

e?(k) = zeZ(A) for d=4,
1+ be’(A) In(A/k)

, 4—d 4—d \( kT
e(k)=T[1_(1_be2(A))(X) ] for d<4.  (8.4)

The upper bound obtains for e?(A) —

1
2
ky< —— =
e( )<bln(A/k) for d=4,

4—d
< 4—d
b[1- (k/4)*™|

e*(k) for d<4. (8.5)

In contrast to the slow logarithmic running for d = 4 the upper bound for d < 4
approaches rapidly the value given by the fixpoint e2 = (4 — d) /b,

4-d

e2(k) <e? (8.6)

1- (k/A) ™%

Of course, the validity of the bound (8.5) depends on the reliability of the evolution
equation for large values of e It could be invalidated, however, only if B.:
exhibits an (approximative) ultraviolet fixpoint for large values of e%. We see no
indication of such a fixpoint in our approach. In view of the surprisingly good
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description of nonperturbative phenomena like critical indices in the three-dimen-
stonal scalar theory or the Kosterlitz—Thouless phase transition in two dimensions
we are actually quite confident that the bounds derived from our one-loop
computation are even quantitatively correct.

The running of e} is finally stopped once k becomes smaller than physical
particle masses as for example m. This effect is due to the threshold functions sg

or §¢. One approximately obtains

er(0) = ex(k.) = er(cm), (8.7)

where the proportionality constant ¢ = k_/m depends on details of the averaging.
We note that for k> m the coupling egx(k) is not directly related to a physical
vertex. The dependence of the evolution equation (b ~ lg) on the average scheme
is therefore not unexpected. On the other hand, ep(k) should be in a direct
relation with physical vertices for k£ << m. The average scheme dependence of lg
and of ¢ should therefore cancel if our approximations are valid. If the original
coupling e*(A) is not too small, the scale of the physical coupling in two and three
dimensions is always set by the relevant particle mass, i.e.

3(4—-4d)
er(0) = T

g

(cm)*™*. (8.8)

(This formula holds for e?(A) > e2 up to corrections ~ cm /A.)
We finally observe that for small e?(A) there is first a regime of slow running of
eg before it “feels” the attraction of the infrared fixpoint for d < 4. As long as

e?(k) <e? (8.9)

the evolution equation for d < 4 has the approximate solution for eg,

ex(k) = ¢x(4) (8.10)
R 1+bek(A)k?~*/(4—d)" |
This regime of slow decrease of ey holds for
k4> bek(A)/(4—-d). (8.11)

This remark is of immediate relevance for the four-dimensional abelian Higgs
model at nonzero temperature T. Near the phase transition one expects particle
masses much smaller than 7. This implies a region of effective three-dimensional
running for the couplings. Identifying the cutoff A with the onset of the three-di-
mensional running A = T/ (with 8 = 0.2 in analogy to ref. [10]) and the three-di-
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mensional coupling eZ(A) =47Ta (with a the four-dimensional fine structure
constant), one finds that the running of e can be neglected only for

k> LaT. (8.12)

For masses of the order a7 or smaller the three-dimensional running of the gauge
coupling will be an important effect. A qualitatively similar remark applies to
non-abelian gauge theories as the standard model. Here b should be replaced in
(8.11) by the appropriate coefficient of the three-dimensional nonabelian B-func-
tion.

Indeed, one expects for the running of the dimensionless gauge coupling g in a
nonabelian SU(M) gauge theory in d < 4 the behaviour

ad
a—tg2 =Be2=(d —4)g? — (4M — 3)v,l{a58a(20k, 378%)g*  (8.13)
(and similar in the symmetric regime). Here /¢, are numerical coefficients of
order one to be computed, with /§, =1 for one M-component complex scalar
coupled to the gauge fields. For a vanishing expectation value « = 0 at the origin of
the scalar potential the gauge fields are massless and §%, =1*. For d <4 one
obtains the solution

g2 (A)(A/k)*
1— (44M = 2)u,l8,2(MN)](A/k) " =1] /34— d)

g*(k) = (8.14)

Identifying the confinement scale with the value of k where g2(k) diverges vields

—d)
Bgz(A) 1/4-d
AD A ——— 1
conf (4_d+Bg2(A) > (8 5)
B= (%M~ 2)u,ld,. (8.16)

We may apply these findings directly to the electroweak phase transition (with
M = 2). At the origin of the scalar potential the running of ga(k)=g*(k)k leads
to three-dimensional confinement with

-1

43 l(3)

<) J
A= 37 awT

(8.17)

43]3 )

1+ —a,0
3 oW

* If the scalar field is massive with m?/k? > 1, the effective coefficient /&, is somewhat enhanced by
the decoupling of the scalar degree of freedom.
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Here we have made again the identification A =T/8, ga(A)= 4mrawT. For
realistic values a,, ~ 3; the three-dimensional confinement scale is around a tenth
of the temperature:

A® = 0.1T. (8.18)

conf

We emphasize that “three-dimensional confinement” relates here to the behaviour
of time-averaged space-like correlation functions in the thermodynamic equilib-
rium and not directly to time-like correlation functions. Also, gz is the gauge
coupling of the transversal three-dimensional gauge bosons. The zero component
A, of the gauge field behaves as a three-dimensional scalar field in the adjoint
representation. It acquires a mass directly from the usual temperature effects for
scalar fields with an additional contribution from three-dimensional confinement.
For space-like momenta of the order A®) . (and g,=0) this scalar is strongly
interacting. For space-like correlations and for ¢ =0 we conclude that the high
temperature phase of the electroweak gauge theory behaves as a strong coupling
theory with a three-dimensional confinement scale only moderately below the
temperature.

The order of the phase transition can be characterized by the behaviour of the
space-like correlations. In particular, a second-order phase transition corresponds
to an infinite correlation length in the space-like direction. In consequence, the
electroweak phase transition is described by the three-dimensional confinement /
Higgs transition with strong gauge coupling unless a first-order transition induces a
minimal value of spontaneous symmetry breaking p, at T=T, such that the
induced gauge boson mass (3g4p.)!/? is substantially higher than 0.17,. If the
transition occurs in the regime of strong coupling gy it could actually be a smooth
analytic continuation rather than a genuine phase transition [13]. If confinement
operates, all bosons except for the photon will acquire a (three-dimensional) mass
proportional to the confinement scale. (This is the only mechanism by which the
transverse gauge bosons can acquire a mass without spontaneous symmetry break-
ing. Three-dimensional gauge invariance forbids the appearance of a transverse
mass term which is not related to confinement.) Three-dimensional confinement
therefore excludes that the electroweak phase transition is second order! A
second-order phase transition necessitates at the critical temperature a massless
scalar field with vanishing expectation value, in direct contradiction to confine-
ment. We conclude that the scalar field is always massive at the transition where
spontaneous symmetry breaking sets in. It remains an open question if there is a
jump in some quantities (e.g. masses) indicating a first-order transition or if the
behaviour is smooth such that no real phase transition occurs. The answer may
depend critically on the ratio between the quartic scalar coupling and the gauge
coupling, i.e. the (zero temperature) Higgs mass in units of the W-boson mass.
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One last remark concerns QCD at high temperatures. Relation (8.18) is re-
placed for strong interactions (M = 3) by

A® = 5a,(5T)T, (8.19)

where «, is the four-dimensional strong gauge coupling evaluated at the scale
T/0 a 5T. The scale A®) . is of the same order as the temperature or even
somewhat larger for the interesting range in 7. In a theory without quarks the
following qualitative picture for the behaviour of the space-like correlation func-
tions emerges: As long as the temperature is small enough such that the value of
the four-dimensional (zero temperature) confinement scale A . is larger than
T /8, the three-dimensional running of the gauge coupling is ineffective. For higher
temperatures, however, three-dimensional confinement replaces four-dimensional
confinement and A®) ; sets the relevant mass scale for the theory.

Such a transition seems to indicate a smooth behaviour for the space-like
correlation functions (compare ref. [14] for the behaviour of Wilson loops in
space-like directions.) For very high temperatures (7 > A®) ) the infrared be-
haviour in the space-like directions is described by three-dimensional confinement.
The relevant degrees of freedom in the momentum range g% < T? are not weakly
interacting gluons but rather the glueballs of a three-dimensional confining theory.
Their mass scale is set by the temperature.

In the presence of quarks the picture of the transition is somewhat modified. As
a consequence of three-dimensional confinement one expects at very high temper-
atures that the quark degrees of freedom are described by mesons and hadrons as
far as the space-like correlations are concerned. (The picture of weakly interacting
quark degrees of freedom applies here to momenta much higher than the tempera-
ture.) As a new ingredient, however, the spontaneous breaking of the chiral
symmetry should disappear for sufficiently high 7. According to ref. [15], this
transition would be of second-order in the case of massless up and down quarks.
On the other hand, the observed value of the zero temperature pion mass seems to
imply a rather smooth transition.

Note added

Recently, the finite temperature mass of the transversal weak gauge bosons was
computed [17] within resummed perturbation theory by solving gap equations. The
value M; = jay,T is about a factor of three below the three-dimensional confine-
ment scale AS); (8.17). The reliability of high temperature perturbation theory for
processes involving transversal gauge bosons seems therefore questionable in its
present form.
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Appendix A

In this appendix we show that the measures uP[ 4] and u{™[ 4] defined in egs.
(2.23) and (2.25), respectively, coincide for weak and slowly varying gauge fields
A,. The calculation will be performed for a constant magnetic field B with
2B < k2, using methods of ref. [16]. In this limit the equality of u{ and u{™
becomes exact. (For simplicity we fix d = 4 and omit the bars from e and m.)

Using the proper time representation of the logarithm and the explicit form of
the spectrum of —D?(A4), egs. (6.7) and (6.8), we obtain from (2.25)

wd
In u§'V = —f TsTr{ﬂ( —D?—k?) exp| —s(—D*+m?)]}
0

__ fwﬁexp( — ) Z f dx 6(x + (2n + 1)eB — k%)

x exp{—s[x + (2n + 1)eB]}. (A.1)

After shifting x > x — (2n + 1)eB, the integration is easily performed with the
result

eB .«ds

In puf» = —Qg——zf —exp(—m?s) 2 C,, (A2)
n=0

where
C,=exp[—s(2n + 1)eB]6((2n + 1)eB — k*) + exp( —sk?)0(k* — (2n + 1)eB).
(A3)

Because of the step functions, In u, suffers from discrete jumps whenever k?
crosses one of the Landau levels (2n + DeB. Therefore I'(P=1In p, (for any
definition of the measure) is not a sensible effective action for strong fields
eB = k2. For weak fields eB < k? the Landau levels form a quasi-continuum (i.e.
there are very many levels below &£2) so that a smooth dependence on B and k?
results. This is seen as follows. Assume that eB < k2 and define

N=[k%/2¢B] > 1,

where [ x] denotes the largest integer contained in x. Then

o0

o N
Y C,= Y exp[-s(2n+1)eB] + ) exp(—sk?)
n=0 n=N+1 n=0

—k2s k2

e
3 exp( —k?s). (A4)

= +
2 sinh(eBs)
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To arrive at the second line of eq. (A.4) we summed the geometric series and
approximated N by k?/2eB. This leads to the desired smooth (averaged) depen-
dence on k? and B. Inserting (A.4) into (A.2) yields, up to an irrelevant constant,

) ods eBs
In w0 = — - (P + k)| ———
el 1&72[0 s3 exp| = (m )s] sinh( eBs)

(A.5)

The RHS of (A.5) is precisely the integral representation of the Heisenberg—Euler
effective action I'yglA4; m?]=In det(—D?+m?) of scalar QED [16] with m?
replaced by m? + k2. Thus, recalling the definition (2.23) of u{, we arrive at the
conclusion that for weak and (almost) constant fields

([ AT) = Iigel 43 m® + 2] = In( [ 4]). (A6)
This illustrates the points made in sect. 2 in the kinematical region where

Y =Inp, is a good effective action, many different forms of the measure u, are
physically equivalent.

Appendix B

Functional determinants like those appearing in eq. (5.6) cannot be computed
exactly for a generic gauge field A,. Often it is sufficient to know the first few
terms of an expansion in powers of A “(x). In this appendix we describe a general
strategy to obtain this expansion in powers of A4, for an arbitrary function
M(—D?(A)) of the covariant derivative operator

—D*(A) =4, +4,,
4,=-9% A,= —2ieA"d, —ie(d, A*) +e’A, A" (B.1)
Because 4, and 4, do not commute, one has to be careful in keeping track of

commutator terms ~ [A}, AT]. We assume that the function M has a Fourier
representation

M(x)= [ dy M(y) exp(izy) (B2)

so that

M(=D*(A)) = [~ dy M(y) expliv(4, +4,)]. (B.3)
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For any pair of (non-commuting) operators 4 and B we can write down a
“Dyson series”

et =eAT exp(fldt e‘A‘BeA’), (B.4)
0

where T denotes the f-ordering operator. Applying this formula to (B.3), one
obtains the following expansion in powers of B =iy4A,:

M(—D*(A))=My+M, + M, + ...

bt ~ . .1 . .
= f dy M(y) exp(tyAl)(l +zyj;) dt exp( —iyd,t)4, exp(iva,t)
1 1 . .
—%ﬁfo dtlfo dt, T{exp(~ivA,1,) 4, exp[ivA(t, —1,)] 4,

X exp(iyd,t,)} + ) (B.5)

Here M, contains n factors of 4,, i.e. the number of A4,’s contained in the
various terms of M, ranges from n to 2n. If we are interested in an expansion up
to order Ai, we have to retain the terms up to M,. They are given by

M0=M("32)’

M, =M+ M4,

M =2efoo dy M(y)yfldt exp| —iy9*(1 —t)]A’*an exp( —iyd’t),
o 0
M4 =i [ dy M(y)y [ —iyo*(1—1)] A% —iyd?
A4 =ie f_m yM(y)y/0 dt exp[ iyd*( t)] ‘A, exp(—iyd®t),

M, — 4e2f_:dy M(y)yzfoldtlfo"dtz exp| —iy(1 — 1,)9%] 4%3,

X exp| —iyd®(t, — 1,)] A*3, exp(—iyd*t,) + O( 43). (B.6)

Here we have taken for simplicity a transversal gauge field 9,A4% =0.

In order to further simplify these equations, one either expands in the number
of derivatives acting on A4, and truncates this series at a certain stage, or one
assumes that A4 ,(x) has some particularly simple form. We shall do the latter and
assume that A4 “(x) is a transverse plane wave with momentum Q*:

A (x)=a, exp(iQ,x"), «,0"=0. (B.7)
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(The extension to complex A4 . Pposes no problem in our context.) For this form of

the gauge field it is easy to commute operators like exp(—iyd?t) through A %), so
that M, say, becomes

MA = 2eAu[:°dy M(y)y exp| —iy(3+iQ)| /Oldt exp{iyt[(a +iQ)* - az]}ap.
(B.8)

Now the t-integration can be performed and the Fourier transformation can be
inverted. In this way one finds to second order in A, (and all orders in Q*):

M(~D*(A)) = M(—3*) - 2ied*d,M\(3, Q)

+ %4, A*M (9, 2Q) — 4e2449, My(3, Q) A%, + O(A%), (B.IY)

with
, | M(=3%) ~M(~(3+iQ))
M,(3, Q) = (3+iQ)* - a* ’
V ) . M(~3) _M(_(a+iQ)2)
M,(3,Q) = e i0):— 3 ( BECES iQ)2 — 92

_ M(=(3-iQY’) - M(~(31iQ)")
4iQd

. (B.10)

In the limit Q — 0 the operators A, and 4, commute, so that (B.9) should reduce
to the naive Taylor series. Indeed, from (B.10) it is easy to verify that

éimoﬁl(a, Q) =M(-), QanMZ(a, Q) = tM(-8%), (B.11)
where the dot denotes a derivative with respect to —a.
As a first application we now use the expansion (B.9) to establish eq. (5.8) of

sect. 5. Let us evaluate AI'{"[ A, ] for A, given by (B.7). Egs. (B.1) and (5.3) imply
that

—D*(a™") = —-D?*(A) + 6, +9,,

8, =2ie[1-f(Q})] 4%, &,=—e2[1-f2(Q?)]|A*4,. (B.12)
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Inserting this into ATV as defined in eq. (5.8) we obtain

ATO[ A} =Tr n[1 +M(=D*(A))(5, +8,)], (B.13)
with
M(x)= 1—;_{—1(’_'(%)— (B.14)

Expanding up to second order in A4, one finds
AT[A]=G,+G,+ G+ O(A4}),
G, =2ie[1 — £,(Q?)| Tr[ M(-D*(A))A*3,],

G,

il

—e?[1~£2(Q%)] Tr[M(-D*(A))4*4,],
Gy =2¢[1~£,(Q%)] Tr[ M(—-D*(A))A*3, M(~D*(A4))A%,]. (B.15)

In G, and G; we may replace M(—D?(A)) by M(—3?) immediately. Because
1 - £(0%) ~ (Q?/k*), we observe that these terms are of the order of (Q%/k?)?.
In G, we use (B.9), so that

G, = 4e*[1 - £,(0)] Tr[ My(5, 0)(4+3,)]. (B.16)

Eq. (B.11) shows that M, becomes independent of Q for Q? < k2. Hence G, is of
order (Q*/k?)®. Invoking gauge invariance, this implies that AT{" has an expan-
sion of the form anticipated in eq. (5.8).

Appendix C

In this appendix we calculate the one-loop contribution to the anomalous
dimension 7 in the regime with spontaneously broken gauge symmetry: —mi’ = u?
> 0. Because the relevant renormalization constant is Z{" = Z{) () where @3 =
po = Ji2/A is the minimum of the classical potential, we will evaluate I',[¢, 4 ] for
@ = ¢, = const. and for a plane wave 4,(x) with momentum Q7 < k?, We make
the approximation of keeping only the terms of order 22. This simplifies the
calculation considerably, since the relevant term in eq. (5.1), %Z}I)F“,,F “ with
Z{P ~ &%, contains & only in the combination &4,. Therefore we are allowed to
drop from the integrand of the functional integral all terms containing factors of &
which are not accompanied by corresponding factors of A,. For the field configu-
ration at hand the minimum of §;, = § + S, is given by x™"(x) = @4, a;" =4,,.
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The quadratic action for small fluctuations around this solution can be read off
from ref. [9], Appendix B. For our approximation the part which depends on &4,
reduces to

828, = f ddx[U(Psym + ZXpO)a + wPn0+ 2a)PaSO'] +..., (C.1)
where
P, =3[ P(-D*(A4))+P(-D*(-A4))],

1
P = 2:[P(=D*(4)) - P(-D*(-4))],

x[1-f2(0)] 7" (C2)

Eq. (C.1) is obtained by expanding S, around its minimum up to second order in
dx=2""*o+iw) and da,. In (C.1) the terms containing da, are either of
higher order in & or they decouple from A,. They can be omitted in our
approximation. (For details we refer to ref. [9].) The one-loop approximation of
™ as defined in (2.3) is given by a gaussian integral over o and w. Using (C.1),
we find

P(x)

P +2A ~P,
o= 1Ty ln[ > Po . “5}. (C3)
as sym

Because A4,(x) is chosen to be a plane wave, the formalism of Appendix B can be
used in order to expand P, and P, in the number of A4,’s:

Py =P(—0%) +2%4,4"P (9, 2Q) — 48243, P)(3, Q) A3, + O( A7),
P, = —224*3,P,(3, Q) + O( 43). (C.4)

Here 151 and ﬁz are defined as in (B.10) with M replaced by P. Inserting (C.4) into
(C.3) and keeping only terms ~ 242 leads to

1o = 382 Te({[ P(=0%) + 2Rp,) '+ P(=2%) )
x| 4,4"B,(a, 20) — 44¥a, By(o, Q)A"a,,])
+28 Tr{[P( ~32) + 22po| T 443, Py(9, Q) P(—d%) " 4%, Py(4, Q)}

(C.5)

For a generic function P(x) this is a rather complicated expression.
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To get a first feeling for the qualitative properties of (C.5) we use the cutoff
function

fo(x) =k2(x+k2)7" (C.6)
which leads to a very simple form for P(x):
P(x)=x+k?2. (C.7)

In this case the infrared cutoff k2 acts precisely like a mass term. Eq. (C.5) reduces
to

un| I v ddQ iQ-(x—y
= [ dty ) A [T ) (€
with
d?p (Q.+p.)p,

Ju(@) =~ (C9)

@2m)? [(@+p)* +2%p +k*|(P2+K2)

In order to extract the F,, F*’-term from (C.8) it is sufficient to expand (C.9) to
second order in Q?: J, (Q)=22%,,0%,+ .... In terms of the scalar quantity J,
the renormalization constant is given by Zp = 4é2J,, so that n,= —4&%kdJ,/dk.
An elementary calculation leads to the formula

16&%v, k?

— T (=) Al
T d(d+2) (d-2)3p

(d—2)y+(d+2)
(1 +y)3(y+k2/M2)

+i(4- d)ksz‘ﬁfOAz/Mzdy yis?

(d=2)y+(d+2)
AFyyFE/M?) )

+2k2Rpo M4 [X/ M ay yir2 (C.10)
0

where A is an ultraviolet cutoff and M2 =2xp,+ k2 (If d <4 this expression is
finite for A — .)

Let us finally turn to the evaluation of (C.5) for a generic function P(x). Going
to momentum space, one obtains integrals similar to (C.9) but with additional
factors of ﬁl(ip, Q) and I;z(ip, Q) appearing in the numerator of the integrand.
These factors have to bé expanded up to second order in Q using the formulas
(B.11) of the previous appendix. After combining them with the Q-dependent
terms coming from the denominator and performing the (symmetric) integration
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over p*, one obtains again a result of the form (C.8) with J#V(Q) =
2€%5,,0%(2Ap,) + ... The function J is given by

2( 16 5@ 4 2 52
e N, SO U ke
0 Jy d P(P+w) d(d+2) P(P+w)

xP3 20 x2pp 8 x2p*
+ —_
(P+w)’P  d(d+2) (P+w)’P d(d+2) (P+w)’P

Sl 1)L 3 e 1)
+ +=|+= + =
(P+w p)d” (P+w P

+—l—sz(4)(_F‘iw + %)] (C.11)

Therefore I''™" contributes the piece

2
+__
d

d
(W) = —42%k—-To(w) (C.12)

to the anomalous dimension. From eq. (2.20) we see that we have to add the
contributions from —In N, and In u,, respectively. Because N, is given by (2.9)
with 7 =0, we have —In N, = —In det[ P(—D?)]. The contribution of the latter
determinant follows from (C.12) with (C.11) for w = 0. This is due to the fact that
for w = 21p, = 0 the quadratic form in (C.1) may be recombined into y *P(—D?)y.
Finally the term coming from In p, is exactly the anomalous dimension in the
symmetric phase with 77 = 0, see eq. (5.9). Denoting this contribution by n¥™, the
complete result reads -

np= 13 (2Ap0) — M (0) + mg™. (C.13)

Here ni™ is given explicitly by eq. (6.15) for m = 0, or by eq. (6.16), respectively.
Some properties of n, are discussed in sect. 7.
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