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Canonical quantization of electrodynamics in the presence of parallel plates is studied in
covariant as well as Coulomb gauges. In both cases the models of thick and thin plates are
considered. The corresponding Wightman functions are given in a closed form. They depend
strongly on the given geometry. Its structure is reflected by the fluctuations of the elec-
tromagnetic field strength as well as the components of the energy momentum tensor. In
between the two-plate system the fluctuations in x-space depend critically on the considered
space-time points. The reason is, that the correlation functions contain an infinite set of poles
corresponding to events connected by n-times reflected light signals. Whereas in most cases
the results are independent on the chosen models of the plates for special conditions of the
measuring process the fluctuations of the Casimir pressure depend on them. € 1994 Academic

Press, Inc.

1. INTRODUCTION

In the following we continue the investigation of the vacuum state in quantum
field theory. In quantum mechanics the ground state is equally well investigated
compared with other states. The wave function yields the necessary basic informa-
tion. In quantum field theory the situation is quite different. The vacuum state is
usually represented by the formal Fock space vector |0), only the Green functions
of the field operators contain further information. Already in free field theory simple
expectation values of the stress tensor or energy densities lead to divergent quan-
tities. Because this seems to be unphysical in most applications these infinities are
subtracted by the normal ordering procedure.

But this is not the right way. At least in part these infinities are direct consequen-
ces of the quantization procedure. For example, the infinities of the ground state
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energy of QED could be understood as the added-up zero-point energies of the
harmonic oscillators describing all the field modes. So possible infinities should be
handled carefully and one should look for physically interesting finite parts.

A well-known nontrivial example is the Casimir pressure. Another interesting
quantity is the fluctuation of the electromagnetic field strength [1].

Recently Barton [2] has raised the question of the fluctuations of the Casimir
pressure. Similar investigations have been performed in [3, 4]. Fluctuations of
observables are determined appropriately from correlation functions averaged with
characteristic functions describing the measuring procedure. In [2] the correlation
functions have been evaluated as matrix elements of operator products using a
complete set of intermediate states.

Here we prefer another method. We write down the complete expression for the
product of the two operators considered and then apply the standard methods of
quantum field theory. These methods allow a simultaneous treatment of different
interesting cases for which the Green functions are explicitly known.

As a case of physical importance we consider QED with one or two parallel con-
ducting plates [5-7]. We start with the treatment of ideal conductors characterized
by the vanishing of the tangential component of the electric field strength E, and
the normal component of the magnetic field strength B, on the plates. It turns out
that this characterization of the ideal conductor is not sufficient. The problem arises
from the modes propagating parallel to the plates. These modes satisfy the
boundary conditions automatically, so that formally all questions are solved.
However, from a physical point of view we must decide whether these modes
penetrate the plate or not. So we have again two idealized possibilities: the cases of
thick or thin plates. For thick plates we assume that these modes cannot penetrate
the boundary surface, whereas for thin plates these modes pass the boundary
surface unchanged. Therefore in the first case we have an additional boundary
condition and the photon field is quantized on one side of the plate only (or on
both sides of the plate independently), whereas in the second case the standard
boundary conditions are sufficient and both sides of the plate have to be taken into
account.

For this reason we analyse the canonical quantization of the photon field 4, in
the presence of two plates to clarify this question. The problem is that historically
the standard quantization procedures using the Coulomb gauge use automatically
the model of thick plates [8], whereas quantizations using covariant gauge
conditions have thin plates in mind [9,10]. We show that both gauges allow the
treatment of thin or thick plates.

Of course most of the real plates are thick plates. However, the consideration of
thin plates simplifies the calculations and in most cases it is unimportant which
model of the plates will be used as it can be seen from different calculations of the
Casimir force, mass shifts between parallel plates and other problems [5, 6, 8, 9,
11-15]. Different physical resuits can be expected in very special situations only.
For example, for the space between two parallel plates it depends on the model of
the plates whether the modes propagating parallel to them appear as a part of the
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continuous (thin plates—the modes are normalized with respect to the infinite
space) or of the discrete (thick plates—in one direction the modes are normalized
with respect to the distance between the two plates) spectrum. Such a different
behaviour of the spectrum may have physical consequences. For a one-plate system
we expect no physical consequences because of the infinite normalization volume;
in both cases the spectrum remains unchanged. For a two-plate system, indeed, the
result of special measurements of the fluctuations of the Casimir force depends on
the model of the plates.

We study the fluctuations of the components of the energy momentum tensor
and also the fluctuations of the Casimir pressure. It turns out that the fluctuations
of the components of the energy-momentum tensor depend in an essential manner
on the external conditions, i.e., whether there are one or two plates, or no plate at
all. Consequently the vacuum fluctuations constitute an important indication of the
physical situation. The Wightman functions for the considered case can be con-
structed by the help of the reflection principle. Accordingly we observe inside the
two-plate systems a resonance structure of the correlation functions. Such resonan-
ces appear if the distances between the considered events correspond to a classical
light signal that is n-times reflected at the plates. This structure concerns the fluc-
tuations of the electromagnetic field strength, the pressure, and the Casimir force.

At the beginning we study the canonical quantization for thin and thick plates in
covariant and Coulomb gauges. In the following section we derive the expression
for the fluctuations of the components of the energy-momentum-tensor using
straightforward methods of quantum field theory. The fluctuations of the pressure
and the Casimir force are discussed for different geometrical situations in the fourth
section. At this place we show that for a special measuring process of the Casimir
force the result depends on the model of the plates.

2. CANONICAL QUANTIZATION AND WIGHTMAN FUNCTIONS
IN THE PRESENCE OF PLATES

Quantum electrodynamics with boundary conditions has been used in many
calculations. There are many different approaches for the quantization of elec-
trodynamics in the presence of conductors [6, 8-10, 16-18]. Here we discuss the
canonical quantization in a covariant gauge or with the Coulomb gauge condition.
In all cases we consider ideally conducting plates. The boundary conditions
E,=B,=0 can be written in terms of the electromagnetic potentials 4, by

n? 374" s =0, (2.1)

£;4vp17

where n” denotes the normal vector.

2.1. Quantization in Covariant Gauge

A straightforward formulation within the covariant gauges has been given by the
help of the functional integration. In the perturbation theory it leads to the
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standard Feynman diagram technique with a modified photon propagator [9]. In
the present case we are interested in the Wightman functions of the electromagnetic
field. Because it is not a priori clear how to derive, especially in arbitrary gauges,
the Wightman functions from the propagators (T-products), we present a
straightforward construction based on canonical quantization.

As usual, we expand the free photon field 4, in terms of four polarization

i
vectors e . s

Afx)=3 e, fi(x). (2.2)
i=0

In order to find the boundary conditions to be fulfilled by the wave functions f;(x)
one has to choose a suitable basis e} It follows from Eq. (2.1) that the boundary
conditions act actually in the space perpendicular to the vectors n, and d, at the
surface S. Because of the triviality of the surface considered here we are able to
introduce globally the polarization vectors which satisfy the necessary conditions at
the surface. For the case that the plates are perpendicular to the x;-axis we choose

0 4,
1 -0 1 00
1 2 2 ot
S s €, = TT= (23)
! ~AL 0, # 4,4 0
0 0

with J=032=02-02—02 and 4, =02 =0>+d2. The remaining orthogonal
polarization vectors are

0 o
0 1 {7
3 O L
= , =—= 24
eu 0 e;l \/Z 62 ( )
1 0
As it should be the vectors e}, satisfy the relations
eite-\’;gij: gyv’ g““e’;‘e{= gij$ a;x.:(ap.’a})a 5u=(a09a1’a2)’
= = 3,0
2 . 0,0, o 20
Z eile{rgij=gyv_ ‘~ L] Z e:,ze{gij= 62 . (2'5)
ie 1 A i=0,3 0 -1
The boundary condition (2.1) leads to
4, 0
1 | —d,8, 1 8,07
v P aaA\‘ — R +__.-~ —~ = O 26
Ep\pan lS \/Z —0062 fl|S \/m _a]az fZIS ( )
0 0

on the plates. All the derivatives act in the (x,, x;, x,)-subspace so that we have the
Dirichlet conditions

fils=0  (i=12), (2.7)
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whereas f; and f; are free of boundary conditions. To obtain the field equation for
A, one has to start from the Lagrangian of the photon field. As is well known the
quantization of a gauge field theory demands the choice of a gauge fixing condition
or a gauge invariance breaking term in the Lagrangian. We choose the Feynman
gauge with the Lagrangian

P = —LF, F"—1(3,4") =14, 54" (2.8)

As an interesting example we consider the quantization in the presence of two
parallel plates located at x; =0 and x;=4d. The quantizations for thin and thick
plates are treated separately.

Thin Plates

As a physical situation we assume that the plates are infinitely thin and charac-
terized by the boundary conditions (2.1) only. The quantization will be performed
on both sides of the plate [9, 10]. The wave equations 0°f;=0, together with the
boundary conditions (2.7), have the normalized solutions

1 . .
C T % et ko= /k? (1=3,0), (29)
0

1 1
fi.in=2_n\/2/d\/2? +"“‘Slnndx3, 0<x;<d, (2.10)
0
k

k2 + (nn/d)?, n=1,23,. (i=1,2),

+ikx

f'i’=—2”—2(7r_)3—/27 sin kx5, x;<0 (i=1,2), (2.11)
0

1 1

S =t =
T ke

The quantization has to be performed in the full space, not only in the region
0 < x3<d. According to standard procedure the quantized field A4, reads

d*k

A (x)= T LA S
AX) i:zo_s e“j (2m)*2 | /2k0[

+{ e O(x;) O(d—x3)
i—z;z g ? ’ '[Vzkﬁ
x /2/d Z sm——m[e gk, ,n)+er* a¥k, ,n)]

n=1

+6(~x,) | 21{7;;,)—2 sin ks x;[e ™ a,(k, 1) + e " Fa(k, 1)]

e %% sin k5 (x5 —d), x;>d (i=1,2). (2.12)

e xkx (k)+e1kra*(k)]

+O(x;—d) j 5 Zﬂikl 5 sin ks(x; —d)[e -&sg (k, r)+ e *a*(k, r)]}
(2.13)
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with
La;(k), a*(q)]= —g, 5(q—k), (i=0,3),
La;(ky,n),a*(q., m)]= —g;0,,0(q, —k,) (i=1,2), (2.14)
Lai(k, s), a*(q, 1})]= —g;0..0(q — k) (i=1,2)(s=1Lr).

The difficuities of the commutation relation (2.14) with i=0 can be resolved in
the standard way using the Gupta-Bleuler method of indefinite metric [19].
Defining the Hermitian conjugate operator of a, as a] = na*n (where 7 is the metric
operator) and taking into account the special properties of this operator, it turns
out that for vacuum expectation values a formal calculation using the commutation
relations in a straightforward manner leads to the right result. With this procedure
we directly define the Wightman function (0| 4,(x) 4,(y) |0). Because the treat-
ment of the region outside the slab is quite simple, we restrict our considerations
to the space between the two plates. Taking into account Egs. (2.13), (2.14), and
(2.5) we obtain

<0l 4,(x) A,(y) 105

D 2 & ordk,  pe s hMm . nm
== X ehelsig X [ e s e
1 cd%k .
— L e.elgy (n )3f e Ty (2.15)
i=0,3
8.0 6l
=i<8ua_?>sl)5(i—?,xa,yz)+i 3 D~ (x—y) (216)
0 -1
with
D (x— y)=(2;)3jd“ke"""‘*“é(kz) O(—k,) (2.17)
and

P 2i d%k P nw nm
'D, (X—)’,xz,}’a)=mn§’f 2k0le s "Sln7x3sm7)3. (2.18)

Alternative expressions of the foregoing functions are
—i
4n’[(zo—ie)* —2°]
dk
(2n)’

D= (2)=

-~ _— .
e”‘z@(—ko)@(kz)ﬁ(e’r"wLe"m) (2.19)
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and
dk = —i - 1 1
D5 (x, — ikz __~ _ (k> —
D: (x ) J anp ¢ ar (ko) Ok ){21' sin(Id)  2i sin(l“*d)}
x [(2cos I'(x3— yy)cos I'd—2cos I'(x3+ y;—d)] (2.20)
1 1 1
= T Brdl | m v ] T gmdC s |
1 1
- el —x3+¥3) _ g - o (/AN +x3~ y3) _ 1} (2.21)
and
+ oo
Dy (x, )= 3 [D (G x;—y;+2d)—D (Z, x5+ ys+2d)], (222)
= —o0

where we have used the notations with #=%— 7, (=./(zo—ig)>—2z%, and
r =\/l.c73 (for the derivation compare Appendix A).

In the first representation of *D; (x, y) the mode summation of Eq. (2.18) is
converted into a Sommerfeld~Watson type integral using

= ‘21712— 5 (ko _JE T (mr/d)2>.
0

The representation (2.22) coincides with the elementary construction based on the
reflection principle. It comes as a surprise that “D; can be given by the closed
summed-up expression (2.21). We remark that the explicitly constructed Wightman
functions *D ~ are in accordance with the expression obtained from the earlier given
propagator [9] using the relation between the propagator ‘D¢ and the Wightman
function

cos Fd{ 1 1
r 2isin(I'd) 2isin(I"*d)

I'd=nn

*D(x, y)—*D*(x, y)="D " (x, y) —'D™(x, y). (2.23)

The Wightman function D~ is that part in D°— D°* which allows an analytic con-
tinuation zy=x,— ¥y — zo — in (1 >0) and correspondingly contains 6( —k;) in its
Fourier representation.

As a typical result for thin plates in the representation (2.18) the sum over the
eigenmodes starts with the term n= 1. The plan waves (2.9) belonging to e, and ¢,
are non-transversal and in this sense unphysical and do not have to obey the
boundary conditions. However, in the special case k; =0 the solution

1 .
A =ed ——— _ tikx (2.24)

TR @r)? Sk,

becomes transversal and fulfills automatically the boundary conditions. It describes
a physical wave propagating parallel to the plates. This wave is not restricted
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to the space between the plates and because of its normalization on an infinite
volume it is one point of the continuous spectrum. It has to be distinguished from
the discrete solution

1 o~ ~
A,=e) ——===¢"",  k?=0, (2.25)
27I 2k0d

normalized on the interval 0 < x; <d which does not appear here.

For completeness we write down the Wightman function in the presence of one
plate. Here we have to substitute in the expression (2.16) the scalar Wightman func-
tion for the slab D by the Wightman function for the case of one plate *D,

DX~ P, x5, y3)=D(X—J,x3— y3) = D7 (X~ J, x5+ 3). (2.26)

Thick Plates

For ideal thick plates we assume that electromagnetic waves cannot penetrate the
plates and that the quantization region consists of the considered side of the plate
only. For the two-plate system this is the space between the two plates. Instead of
restricting the space to this region we can adopt quantization methods used in solid
state physics. We choose the second possibility and in addition to the boundary
conditions (2.7) we impose a periodicity condition on all the other amplitudes
(among the unphysical amplitudes this concerns the questionable mode too),

FA(F, x3) = f(x x3+2;> for i=0, (2.27)

This procedure guarantees the hermiticity of the Klein—-Gordon operator. Then the
solutions (2.9) have to be replaced by

1
fro=——==e**  with k3=2?,n=0, +1, £2, ... (2.28)

2n /2kd

To avoid singular gauge contributions we drop the mode with =0 in the solutions
for f,. In fact now all modes are discrete. The mode decomposition of the photon
field reads now

A (x)= Zf

i 0| (27:)\/21( d
x [e/zkv +n3(2nrz)/d (k) _I_exkr — ix3(2nn)/d *(k)]

d*k o~ o~
— €8 | ———===[e *ag(k_.) +e*a}(k
“J.(Zn) T otk $ky)]

+‘§2e Elznffﬁsin

x [e~®a,(k,, n)+e* ®ark, ,n)].
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In this case the Wightman function takes the form

AN
sDzi,w(x, ,V)=<gﬁv_ %2 )sDz (X— 7, x3, y3)
5,3
= 0 - ~ 0 0\
+ 7 o won-bra-me(y ))pot-
0 o
(2.29)

The representation for *D; remain unchanged, only the representation (2.17) for
D~ is replaced by

i I
Di(x_y)z(z_nﬁfdk Z et(E(x—.v)—(xs\,va)(zrm)/d)(;(k2) (k).

The physical mode propagating parallel to the plates is included in the function

~ i

D& =507

f dk %59 §(R?) @(— ko). (2.30)

This quantization procedure can be extended in a straightforward manner to inter-
acting QED by the inclusion of the electron field. In the last case we have to
postulate periodicity conditions for the electron field too.

We underline that the quantization in the case of thin plates using all four com-
ponents of the photon field and the basis vectors ¢’ is completely equivalent to our
former procedure [9] which rests on the functional integral for QED in covariant
gauges.

2.2. Quantization in Coulomb Gauge

In the classical treatment of the propagation of waves it is customary to start
with the electric and the magnetic Hertz vectors (taking into account the E—B
symmetry of free electrodynamics). They are in principle defined globally and are
adapted for giving acceptable boundary conditions in the case of conducting sur-
faces [1, 16, 18]. By using these polarization vectors as elements of the vierbein
system, difficulties for the interacting QED are not excluded. The reason is that the
boundary conditions act in the space orthogonal to the normal vector n, and to the
four-dimensional gradient &,. Therefore in this case also the unphysical waves
satisfy the boundary conditions following from an inappropriate choice of the
polarization vectors. The problem is whether these additional boundary conditions
have physical consequences {207 or not.

The Coulomb gauge is besides the covariant gauge, the most fundamental gauge
in QED. Unlike to the covariant gauge one quantizes the physical degrees of
freedom only. The representation of the photon field

Ax)= 3 h;, gi(x) (2.31)

=12
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is realized with the help of two transversal polarization vectors [8]

0
1 | a0
hy=e,, h=——=| 7 232
RO # 44 0,0, ( )
_Al

defined in the space-like subspace. The zero-component of the photon field does not
have to be quantized; it is a Lagrange multiplier, defined by solving the field equa-
tions [21]. Using the representation of the photon field (2.31) then the functions
g'(x) satisfy the wave equation. The boundary condition (2.1) leads to

a4,
1 | —3,0,
A i —
#vpon 'S \/Z —0062 g1|S
0
0
1 —000,0;
—— g:ls=0. (2.33)
A4\ 000,05 2
0

This condition has to be exploited for the two cases of thick and thin plates.

Thick Plates

For thick plates (where we have to consider only one side of the plate) the con-
clusion is: the function g, satisfies the Neumann boundary condition

05 8:(x)|s=0,

whereas the first function g, satisfies the Dirichlet condition as before. For the two-
plate system the solutions for g, satisfying the Neumann condition are

t
g2‘n—_

1 1 m
— e tkx ko=Jk% + Ay, n=1,
20 - cos n— Xx;, o \/ + (nn/d)*, n 2,3,.

1~
830 =/1/Q2dko) 5", ko=1/ki. (2.34)

Here the last solution is necessary for a completion of the set of solutions satisfying
the Neumann condition. So in this case from a mathematical point of view the
discrete mode with n=0 (which is characteristic for thick plates in the case of the
two-plate system) is included in a natural way. The solutions for g, (Dirichlet
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condition) are given by (2.10). If we start the quantization procedure with the mode
expansion of the photon field we write:

A,‘(x)= O(x;) @(d— xs)

x[h'j Y sin = x;[e Fa,(k,,n)+er®Faxk,, n)]
2 d on=1

+hf, f—«l— Z cos x;Le Fay(k,, n)+e*®a¥(k, , n)]

n'—l

5 j ﬁk—\g [e~®a,(k,,0)+ e+ ark 0)]}]. (2.35)

For the Wightman function we obtain for thick plates
01 4,(x) A(¥)10) = i(h,(3.) h,(3,) "D ip(x, p)+ hy(8.) h3(8,) "Dyp(x, ¥)), (2.36)

where ‘D, (x, y) denotes here the Wightman function (2.18) satisfying the Dirichlet
boundary condition and *D,,(x, ¥) the Wightman function satisfying the Neumann
boundary condition,

‘Do((X— )7) xs’ ¥3)

—HRE= D) oo §x3 cos ; ¥s- (2.37)

(27:)2 Z Jzko

Thin Plates

The question remains: How do we treat thin plates? The answer is simple: The
solutions of the field equations have to be extended over the full space, inside and
outside the plates. In the case of the two-plate system for g, we can simply apply
the solutions £, (2.10), (2.11), (2.12), for g, the solutions (2.34) have to be extended
to the regions outside the plates. Thereby the mode propagating parallel to the
plates is no longer restricted to the region 0 < x; < d. Therefore the corresponding
discrete mode (with n=0 (2.34)) is replaced by an infinitely extended one.
Moreover, the single infinite extended mode with vanishing k, gives a vanishing
contribution (as one point with the measure zero) to the mode summation
(integral), so that it can be dropped. Therefore up to this restriction we can assume
d;#0 and we are able to write

0
1 0,0
Rog=—oee| '3 (x 2.38
,lgz \/ZATI 6203 &2 ) ( )
__AL
0

= (x)] 5 h . 2.39
m 52 g2 )l& #0 2 ( )

—4 . /0;
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Inserting this expression into the boundary condition (2.1) then it turns out that for
0% #0 the amplitude g, satisfies the Dirichlet boundary condition.

As a peculiarity of boundary conditions for more dimensional problems we see
that changed conditions can transform the Neumann problem to a Dirichlet
problem. In a very formal sense the solutions of the Neumann problem are here
equivalent to the solutions of the Dirichlet problem completed by one exceptional
mode. In cases where this additional mode does not contribute we reach the
Dirichlet condition. The change of the boundary conditions from the Neumann
problem to the Dirichlet problem, together with the change of the quantization
region, is responsible for the completeness of both systems of solutions. (For the
basic vector system (2.3), (2.4) the questionable mode is contained in the solutions
multiplied by the “unphysical” polarization vector ei which becomes transversal for
the exceptional case @3 =0 only.)

The quantization procedure starts with the mode expansion of the photon field.
For thin plates we have to treat the quantization on the full x;-axis; however, we
will hint at the differences occurring in the space between the two plates only. In
the mode expansion (2.35) the last written line is not present. For that part of the
Wightman function lying between 0 < x, < d we obtain for thin plates

O] A,(x) A,(») 10> =i(h!(8,) h(8,) +h2(6,) h¥(3,)) *Dap(x, ¥)),  (2.40)

where D, (x, y) denotes here the Wightman function (2.18) satisfying the Dirichlet
boundary condition.

In all cases the polarization vectors are defined with the help of differential
operators. In the case of the translation invariant subspace the differential operators
act on Fourier representations and therefore i corresponds to + ik and the inverse
differential operators are well defined. This is not the case for differentiations with
respect to the third direction, where the translation invariance is broken. Near the
boundary the wave equation is valid, so that 62g=A4g can be expressed by
derivatives with respect to the translation invariant subspace. But this is not the
case for 0, and consequently ¢; ' is indeed an integral operator. So it is more con-
venient to use the representation (2.36) with a modified expression (2.37) for the
scalar Wightman function *D;,(x, y). As is to be expected the mode with n=0 in
(2.37) has to be excluded in the sum over all the modes.

As an example we derive in Appendix B the special Wightman function for the
field strength (O} Fy;(x) Fo3(x") J0> using the model of thick and thin plates. Let
us remark that for the determination of A, the Green function satisfying the
Dirichlet condition has to be applied.

3. FieLD THEORETIC DESCRIPTION OF FLUCTUATIONS

In general the fluctuation of an observable 7 in the vacuum state is defined by

(A4T)* =<0 (T=T)*[0>=<0[ T2|0)>— 0| T[0)? (3.1)
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where

T=<0| T|05, T=jf(x) T(x) dx (3.2)

is determined by a local field-theoretic observable T(x) and a function f(x)
describing the measuring procedure. Therefore the essential information for the
fluctuation is contained in the expectation values

W(x, x')= <0 T(x) T(x") 105 — <01 T(x) [0> <0 T(x") [0
= (IT(x) T(x")| 5" (3.3)

For simplicity we do not symmetrize the Wightman-type function here, although
only the symmetrized functions are necessary for these considerations.

In our case we consider the diagonal T,, components of the energy-momentum
tensor. For a discussion of the Casimir pressure we need the 33-component. From
this quantity the Casimir pressure on a plate located at x,=a can be obtained as
the difference of T;; across the plates

plxy=Ty(xy=a+e)—Tylxy=a—e) (3.4)
For the energy-momentum tensor we use the symmetric tensor
~T,=FiF, —1/4g, F, F* (3.5)

with the field strength
F,=0d,A,—0,4,

As a regularization procedure we use the point-splitting technique. So we write for
the diagonal elements of the energy-momentum tensor

T,, = lim — g, [(Whe} Whet — Whes Wpo?y 35527 A (x) A(y)

= lim — 5 g,,[07 Wh? —070"?] A4,(x) A.(y). (3.6)
y—x
In the last equation the indexes uu are suppressed in part; they are included in the
definitions, which are used appropriately,
ab=aobo—a,b,—arb,, V=g 330}, 8% = Whrt 9% 37
o = gpl 6; (3'}5, 8 = Wyl a;a-‘i, 9% = a; (uihap’
whereby the matrix “’h; reads

(}liha 2{_gaﬂguua a:’éllorﬂ¢/‘l
+ga[3guu’ Cl'—‘ﬁ:[l
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Note that in accordance with the conventions (2.5) the index p runs from 0 to 2
only. The notation a° is an abbreviation for @ = h°’q,. Taking into account (3.6)
the product T,,(x, y) T, (x', y') appears as a product of four field operators,

Tx, p) T, y')
=lim lm 1[87 Wpe — §x1pre [0%Y Wpe — g¥EYYT]

XA (x) A(y) Ay (x") A (). (3.7)

Because we restrict the consideration to free field theory the Wick theorem can be
applied immediately:
0] A(x) A(y) A(x") A(y") 10
=<0} A(x) A(y) 10><0] A(x") A(y") 10>

+<0] A(x) A(x") [0><0] A(y) A(y') 10>

+ <0 A(x) A(y') [05<0] A(y) A(x") |0). (3.8)
Therefore the correlation function is reduced to a sum of products of elementary
Wightman functions. Due to the subtracted structure of the correlation function
O] T,(x, ) T, (x', ¥')|0) the first term of the r.hs. of Eq. (3.8) drops out and
the point splitting can be removed in principle.

In the following we apply covariant quantization and write down all formulae for
thin plates. In this case the Wightman function (2.16) can be rewritten in the form

<oaAy(x)Avm|0>:ig,.vu-(x—y>+f(gw—§;—5f)5-(x,y), (39)

whereby the function D defined by D~ =°D~ — D~ takes care of the boundary
condition [9]. It describes for scalar functions the deviation from the free space
Wightman function. Inserting Eqgs. (3.7), (3.8), and (3.9) into the correlation func-
tions for the stress tensor we obtain

(O] Tp(%) T, (x') 10D
={—090V[D (x,x) D (y, ¥)+ D (x,x) D~ (3, y)
+D (x,x)D (5, ¥')]
—L[0”a% PD~(x,x') D~ (y, ')+ 0% PD~(y, ) D~ (x,x)]
_1[(2— P) 0507 + 0% 0% PP+ (§70%7 + 977 99) P]
x D7 (% XY D™ (3 YD}y sy s (3.10)

P N
P ( 90 )
o oFY

where
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Now we take into account the special properties of the Wightman functions con-
sidered here, namely the reduction of these functions into a translation invariant
part D_ and an “anti” translation invariant part D, according to

D=(x, y)=D (X = §, x5~ p3) + D (X = J, x3+ ¥3), (3.11)
where each part satisfies the field equation
DD:("E_}’XS_—})Zi):O’ DD—;(X—.;’XB-I—.})S):O
So we obtain finally
O] T(x) T (X7} 10
= =00 D~ (%, x) + D= (x, X)ND (y, ¥)+ D= (3, )
+D:(x’ X')EI(}’, y’)]ly—»x,y’ax" (312)

The fluctuation of the Casimir pressure on a plate located at x;=a can be
reduced to the correlation function (3.10) due to the relation (3.4). One obtains

Ol p(x) p(x')105"] | = vy ma= <Ol T33(x) T3(x'} 10D | = =0
+ 0] Ty3(x) Taa(x') 107 | o g=ae (3.13)

for ideally conducting plates. The reason for the absence of mixed terms originates
from the fact that physical modes cannot propagate across the plates for ideal
conductors.

6. FLUCTUATION OF THE CASIMIR PRESSURE

In this section we study the correlation functions for the stress tensor and the
Casimir pressure for different physical situations. In general we assume the
covariant quantization procedure for infinitely thin plates. Modifications for thick
plates arising in the case of two plates are given additionally.

Correlation functions in the unsymmetrized version are built up from Wightman
functions of the photon field and reflect the properties of these functions. The
Wightman function of the photon field corresponding to free space given by

<Ol A,(x) A,(y) 10> =ig,, D~ (x—)

and (2.17), (2.19) has to be compared with the corresponding functions for the two-
plate system (2.18), (2.21) and for the case of one plate (2.26) derived in Section 2.

The simple power behaviour of the free function D~ (2.19) has to be contrasted
with the more complicated structure of the function *D; given in (2.21). This func-
tion is the sum of four periodic functions with a reduced Lorentz symmetry in the
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space perpendicular to the x;-axis and a power behaviour according to 1/{. The
infinite pole structure (see Eq. (2.22)) causes the correlations to be periodically
enhanced like a resonance series with running time differences between arbitrary
fixed space positions inside the plates. This is a quite different configuration space
behaviour compared with the free case or the case of one plate. The simplest
correlation functions showing these properties are the correlation functions of the
electromagnetic field strength which are usually considered in momentum space [1]
only.

In the following we study the stress-tensor fluctuations. It seems to be a general
result that fluctuations at the position of the plate are enhanced in comparison with
the free space case.

4.1. Electromagnetic Field in Free Space

As a first example we consider the correlation function of the stress tensor for the
free electromagnetic field in free space. In this case Eq. (3.12) reads

(O] Tpux) T (XY 10Y = =38 D (%, X') D™ (3, ¥ M aeyow =y (41)

pt

Inserting the explicit expression for the free field Wightman function we obtain

14(#)/101_' Y 2—,—'22
O To) Tl 103 = R0 o 2 (V)

As to be expected the correlation function is translational invariant and has a
strong Wightman-type singularity for coinciding points and a power law decreasing
behaviour for large distances.
For later use we explicitly write down the momentum space representation of the
fluctuation of the 33-component of the stress tensor at coinciding x; coordinates
QO Ts0) Tos¥) 10) |y = T2 | oz e FOU)RD (43
33X 33(X ) x3=x3 15(27'[)2 (27[)3 € ( 0 + . )

(4.2)

This describes the fluctuations of the pressure in a fixed plane perpendicular to the
xy-axis. Because of the homogeneity of the free space it does not depend on the
position of the plane.

4.2. Electromagnetic Field in the Presence of One Plate

Here we study the fluctuation of the stress tensor disturbed by one plate at
x;=0. Again we have to apply the formula (3.12), whereby the Wightman func-
tions D~ and D; = —D ™ (%— 7, x+ y;) have to be taken into account:

O] T,(x) T, (x") 10
= =090 [D (x,x)D (y, ¥')
+ D_()?—.;C, X3 +x’3) Di(_'};" )7', Vi3 + yg)]|x=y,x’=y" (44)
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An explicit evaluation leads to

COI T(x) T (x7) 10

S
[(x—x)*]°
+ [4(h7(x = x7)5 (x = X)e + WhP (x5 + x3)%)°

— (g7 (x = x); (x = x")s = (x3+ x3)*)]

x [g%%(x — x'); (x—x")e— (x5 +x3)° ]~} (4.5)

= A (X, (5 =), (= X))

In a physical picture we see contributions corresponding to the free propagation
from the point x to the point x’ and the propagation via a reflection at the plate
x3. However, there is no superposition between both types of waves. For fixed times
and large values of (x;+ x3)? the second term vanishes so that the fluctuations
reduce to those of the free field case. We remark that this is not the case if we
simultaneously consider large time differences. At last one should note that the
fluctuations of the 33-component of the energy-momentum tensor but that all are
enhanced by the presence of the plate. If we consider the fluctuations near one plate
ie. x3— 0 and xj —» 0, we obtain

2

dk
01 Ts() T 10) |y 0= 15357 | Gy

6 1
T l(x—xo—in)’ —(x—x')2 ]

e FO(ko )k

(4.6)

which coincides with the result of Barton [2]. It is twice the amount of the fluctua-
tion of the free field at x;=0.

4.3. Electromagnetic Field between Two Parallel Plates

In the case of two plates the correlation functions for the inner and the exterior
regions can be treated separately, because in the lowest order of perturbation
theory there is no correlation between the two regions. The Wightman functions for
one plate at x,=0, D, and for two plates D, at x;=0 or x,=d are identical for
the exterior region, x; <O0; therefore the corresponding correlation functions coin-
cide too.

The investigation of the inner region is more complicated. Again we start from
the general expression (3.12)

O] T,u(%) Tl x') 10’
= 698D (x, x'V+ D5 (x, XD (3, y)+ D5 (3, ¥))
+D7, (5, x) D3, (3, ¥ ) e yiwr= e 4.7)
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Besides D~ we have to insert here the functions (see (3.11), (2.21))

, — 1 1 1
lD2+(x’ )’) =D2+ = - 87 dL_‘: {e(m,r’d)(;.nyx)__ 1 + e(in,/d)(g+x3+)~3) . 1} (48)

and

1 1 1
87 dc {e(imd)(l -+ + e(im‘d)(i+x3— ¥3) _ ]} (4'9)

D (x,y}+D, (x,y)=

An explicit calculation in x-space for general positions x and x’ is possible and
leads to a very long expression. As is to be expected it contains infinitely many
poles (corresponding to the reflection principle) which are already contained in the
Wightman functions. At the position of the poles—corresponding to world distan-
ces of definite length—the fluctuations are enhanced.

Let us now discuss the fluctuation of the Casimir force. Here we investigate the
stress tensor fluctuations from the inner side of the plate at first. The fixation of the
coordinates x, = x5 =0 to the position of the right plate and the restriction to the
33-component of the energy-momentum tensor simplifies all the calculations con-
siderably. Here we will start with a momentum space representation of the
Wightman function (2.20). Taking into account (3.9), (3.11), and (4.7) we obtain,
after a straightforward calculation,

{O] T35(x) T33(x") [0)7] 1= xj=0,

& oAy~ —
=2 (2:)3f(2i)3ewp < =ILO(—po) O(57) O(—py) O(('))]

-3y - . cos Fdcos I'd
x (AP )V + (pp')) ——

K
i i 1 1
- _ . 4
% {21’ sin(/d) 2i sin(F*d)}{Zisin(I”d) 2i sin(I”*d)} (4.10)
With
cosTd[ 1 i r 1 S—
_ = _ d)?
T {2:’ sn(rd) 2 sin(F*d)} o = T O V(p1) + (anfdy),

it results
WL, d)y=<0| Tya(x) Ta(x) 10> 1= y=0.

2 2,0
jd P J d Py i(po+ pylxo Xy +ilp+p )L (x—x')L
I

o

2n)) (2n)2 ¢

n'\? - 1
— )2 . 4.11
<d> pr)]popb (411)

1
=5 X

=1 n
an\>

x —_—
d
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Further evaluation will be much simplified if we exploit the Lorentz invariance
in the (x,, x,, X,)-subspace. This allows us to put z, =0 and to use, in addition,
rotation invariance in the (p,, p,)-plane. This leads to

<01 Ty3(x) T3(x") |0>'|x3=x3=0+,u=0

1
=Gy Ao )+ Aiz0, )+ 245(z0, )} 4.12)

with

dpi — il -X')l nn ’
A’“ZJ T d)’

n=1 Po

d’p e
A=3 IT;”""“ .

n=1

2
A=Y J St L (4.13)

Po 2
and py=./p> + (nn/d)>
Taking into account the analytic properties of the Wightman functions for
zo = Zo— in, (n>0), the integrations and summations can be carried out without

problems. The final result can be written in terms of the variable

L=/ (zo—in)* = (z1),
1 (n)z ei(ch/d)+ex'(n£/d)

AL, d)=2 d) @y

n=1

2 1 2 n eltmé/d)
Az(Ca d) = (iC)3 (ei(n{/d) _ 1) ('C)Z ( ) (er(nC/d) — 1)2

1 [7\2 e/ 2ntrd) 4 oitnl/d)
+= E (ei(n:/d)_l)a s

i

d ! L(my_e? 4.14
436,00~ ey e () e @149

so that
Wa(L, d) = 0| T33(x) Tas(x") |0>’|x3=x‘3=0+

1
= Grraar A A+ A3(C d) + 243, ). (4.15)

So we have two equivalent expressions (4.11) and (4.15) for the fluctuation of
the Casimir pressure on the inner side of the plate. This result generalizes the

595/236/1-5
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corresponding investigation of Barton [2]. It is very interesting that the correlation
function W,({, d) contains infinitely many multiple poles at

(€)= (xq—x0)* — (x  —x')* =4n’d>.

In a physical interpretation these values of {? correspond to pairs of events
(X0, x,,x3=0) and (xg, x',, x3=0) connected by n-times reflected light signals.
This implies a resonance behaviour of the fluctuations for such distances {2 For the
limiting case d — oo the results for one mirror can be recovered. We use

AL Dy oo =2d)(ml?),
A, )y o = 6d/(n0*), (4.16)
A, d) g o = 2d/(r0*).

The correlation function W, has the following scaling and limiting properties (W,
denotes the correlation function (0| T'55(x) T55(x") {0, corresponding to one plate;
see Eq.(4.6)):

1
WAL, Ad) =5 Wl d)

lim W,({, d)= W,((),

d—
Wl d)

fim —22 8y
£ WD)

1 /d\?
WL, d)1§1<1=‘—1§<2> f<§>

The function f({/d) is an analytic and integrable function with poles at {/d = 2n.
Besides the already given physical interpretations we see that the correlations at
{*~0 approximately coincide with those of the one mirror problem. It can be
understood in a simple physical picture: there is not enough time to receive the
reflected signals.
As a simple consequence of the Wightman structure of the correlation functions
(the poles are located in the upper z,-plane) we conclude that

J.m deJ‘OO dxoW{{,d)=0.

If we apply this procedure to the (symmetrized) correlation function by closing the
integration path for the two contributing terms in the opposite half planes then we
see that the fluctuations of observables measured over an infinite time interval tend
to zero.
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The fluctuations of the Casimir pressure is the sum (3.13) of the fluctuations of
the stress tensor from both sides of the plates. Correlations between different sides
of the plates are unessential because the only possible mode extended over both
sides of the plate (the mode propagating parallel to the plates) gives a vanishing
contribution. On the other hand in the case of thick plates we have to take into
account this wave as a discrete mode propagating parallel to the plates. Again
starting from Eq. (3.7) and using now the representation (2.29) we obtain instead
of (3.12)

O] Tpu(x) T,u(x') 10" = —5%0%7
x [(D1(x, x')=4D~(x, D (3, ¥)— 4D~ (. ¥')
+ (D (6, x)+D-(x,x')+ 31D (x, X))
x(D~ (3, y)+D (3 Y)+3D" (1 ¥ NIy

Inserting the momentum space representations of the involved functions we obtain
for the Casimir pressure on the plate (we set x;=x5) the momentum space
representation (4.11), where now the summation includes the modes with n =0 (see

[2])
O] T3(x) T35(x") 0] x3=x3=0,

+ oo

- dp. (d'pl o~ (PO Pi)xo— Xg)+ilp+ ')y (x— X
"d,,gm; [ e

27
XK%) (73') "’”)]popz; (417)

This additional mode is in principle observable, as will be discussed in the next
subsection.

4.4. Fluctuations of the Casimir Force and the Measuring Process

Let us in conclusion of this section combine our results on correlation functions
with measuring processes, which according to (3.2) make recourse to specific func-
tions which characterize the measuring procedure. We factorize the characteristic
function f(&) according to f{¥)= g(x,) A(x,). As an example we choose

1

_2’ j‘dxoe*ipomg(xo)zeflpolr
xg+T

g(xo)—"

and A(x ) is implicitly defined by

J. dx, e Rih(x, ) = ™ /de Y rLt (nidY,
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Both functions g(x,) and A(x, ) are normalized to 1 and its Fourier transforms are
dimensionless. The parameters ¢ and a describe the duration and the spatial exten-
sion of the measurement. With the help of these functions the fluctuation (4T)? is
expressed by means of the correlation function W(X, ') = (0] T33(X) T33(X')|0)’ as

(AT)2=Jd5c dx’ f(Xy f(X') W(X, X'). (4.18)

At first we consider the case of two thin plates. Here we are interested in the fluc-
tuations of 75, on the inner side of the plate at x;=0. Combining the foregoing
equations with Eq. (4.11) we obtain

E T onm 7+ (5) ()
A 2an/d By 12 i
(4T =3¢ Z”Z_II o Gy | PP d

x exp(—2poT —2pp7) exp(—a(2y/(p, +p'L)* + (/d)’) (4.19)
with  po=./p> + (nn/d)* and py=./p>+ (n'n/d)>. According to realistic

possibilities the characteristic time T of a measuring process is large in comparison
with the time interval necessary for a light signal to traverse the plate distance d,

d<r. (4.20)

Additionally we restrict us to local measurements (a=0). Accordingly (4T)? is
dominated by the term with n=n"=1 with the corresponding modifications of p,
and pg. This yields, taking into account rotation invariance,

1 d’p, d’p',
U1 =35 | Goa | G

4
{pé P+ i+ pipt+ (g) } e~ @Npo+ o), (4.21)

In the limit (4.20) considered here the contributions from p?pi? + p2 p;? in the
bracket are non-leading, whereas the remaining contributions are equal. The final
result reads

7'[2

—A4nt/d
—aye " (4.22)

(4T)* =

We underline that this result is based essentially on the absence of the modes
with n=0. The presence of such modes would change (4.22) to a power-like
behaviour which coincides with the result obtained in [2]. These results are conse-
quences of different models for the plates.



PRESSURE FLUCTUATIONS IN QED 65

This should be compared with the fluctuations in the case of the one-plate system.
Performing the same integrations by invoking Eq. (4.6) instead of Eq. (4.11), we
obtain (for simplicity taking a =0)

2 o, 6 1\3
(4 T)z — )5 o~ HE~X) J‘ dqg 0(‘]0)( )5/2 J dx dx' f(%) f(xX)= (47[)4 (;) . (4.23)

15(2n

Of course this expression describes also the fluctuations of T5; on the outer side of
the two-plate system. Because of the inequality (4.20) the fluctuations of the inner
sides of the plates are exponentially suppressed in comparison with the fluctuation
of T, on the outer sides of the plates. As a consequence the fluctuations of the
Casimir pressure (defined by the same characteristic functions) for the one-plate
system are twice as large as the fluctuations for the two-plate system. Note that this
does not lead to a contradiction if the second plate is removed to infinity because
the inequality (4.20) cannot be maintained in this limit.

APPENDIX A: THE PHOTON WIGHTMAN FUNCTION BETWEEN PLATES

Our aim is to derive alternative representations of the expression (2.18)

SD_()?_}7 X3 y3)

_if(x— nn nm
21:)2 Z j 2k0 ¢ ”sm7x3sm — Vs

i
T (n)?d

with ko= /k3 + (mr/d)z.

With the help of

Z jd“k et FE-DQ(— ko) 5(k?) 5 (k3 —7> sin k4x; sin & s

- nn & d T i2k3 dl
Y 6 k3—7 2d Y 6(2k,d— 2mt)—; Y e

n= —x0 — 0 = —o0

this can be rewritten as
sDz‘(j— ﬁ’ X3, }'3)

_ 2i Z
S}, =,

2

l ik3(xy+ y3) —ik3(x3+ y3) _ piks(x3— v3) __ pik3(—x3+ y3) i2k3!

x % [e +e e e Je
l

j d*%k e FE-DQ(—ky) 3(Kk?)

+ o .
= Y [D (5 x3—ys+2d)—D (2, x5+ y;+2dl)].

= -
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In order to derive the representation (2.21) we exploit the restricted Lorentz
invariance in the ¥ subspace which allows us to represent =% — 7 by the vector
(zo, 0, 0). Now the p, integration can be carried out:

2
J.d Py e—ipozo=£r_e~[(zgnn/d)
Po 29

Convergence is guaranteed by the Wightman prescription zy—zo—in, >0
(analyticity in the forward tube). This property also assures the convergence of the
following infinite sum:

o
. . nm . nnm
Y e oM sin FRIELLEE

n=1

1 1 1
R D T e S B e e e e Ty

1 1
Tl — x| glimd)(zo+ =y _ ("

Taking into account this formula and using once more the restricted Lorentz

invariance by substituting zo—in—{= \/(zo —in)*—z2 we obtain directly the

representation (2.21).

APPENDIX B: SpeciaAL WIGHTMAN FUNCTION FOR
THIN AND THICK PLATES

As an instructive example concerning the result of different models for the plates
in the case of two plates we consider the correlation function of the field strength
Fg,. It is given by the photon Wightman functions by

O[] Fos(x) Fos(») 10
=0505<0] 45(x) 43(y) 10> + 0505C0] Ao(x) 4o(y) 105
— 0305<0] Ag(x) A3(x) 105> — 503<0| A5(x) Ao(¥) 0. (B.1)

Using at first the expression (2.16) we obtain (for 0 < x5, ¥y <d)

<O Foa(x) Foa(y) [0

a: 2 az 2
=i(03)* D (2) + 0303 (1 — EE(:;Z) Dyp—i EES;J (332D~ (z) (B2)
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and finally with (2.18)

0] Foa(x) Fos(y) 05

d%
(2n 2 j ke ~'f‘*-‘>cos'—'§x3cos”d ya. (B3)
0

Next we also apply the polarization vectors e/ but choose as physical space the
interval 0 < x; < L (x, unrestricted, L > d). This amounts to imposing periodicity
conditions on the solutions. For points between the plates we have the old solution
(2.10). Instead of (2.11) the solutions f,, /3 now read (2.28)

1 2nn

+ _ +ikx " -
f&s o 1/(2Lko) e* ™, Kk, 7 0, +1, +2, ...

Correspondingly, D~ is replaced by
+ o0

{ T i(k(x—F r3)(2nm
D—(x_y)=(7n)2—Ljdk Y R - s mOmmiL] §(k2) @(— k). (B.4)

Also, in this case the correlation function is given by (B.2) with D~ replaced by the

expression (B.4). Whereas in the foregoing case the first and the third terms in (B.2)
compensate each other completely, now the term with n=0 survives, so that

<Ol Fos(x) Fos(y) 10

1 d’k, , o i d e nm nm
=G o, —2 k2 {L+2,§1 COS —- X3 €08 — y3}‘ (B.5)
This formula interpolates between the first case (L - c0) and the case L =d which
we interpret as the case of thick plates.
The calculation of the same correlation function using the polarization vectors (2.32)
has to take into account the structure of the tensor th';, (compare (2.36)). Obviously
we have 0] Ay(x) Ao(y) 10> = 0] Ap(x) A3(¥) 0> = <0} A3(x) Ao(y) 10> =0 and

2

<Ol 45(x) A3(y) 10> = ~ A 62

DZN’

where ‘D, is given by (2.37). Insertion into (B.1) leads to

0| Fos(x) Foa(y) 10>

o s T nn
27:)2 z J 2k0 K COS — X3 €O — . (B.6)

Whereas this result differs from (B.3) (infinitely thin plates, four polarization vec-
tors eL), it coincides with the expression (B.5) for the special choice d= L (thick
plates). The result (B.6) is in accordance with that given in [1] if an obvious error
in their Eq. (2.17) is corrected.
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