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The renormalisation group (RG) flow for a quantum field theory in flat D dimensional space is considered. Some 
conditions are derived which ensure that the fl-functions are derivable from a potential on the space of couplings. 
This requires introducing a metric on the space of interactions and two possibilities are considered. Assuming positive 
definiteness of the metric the potential provides a function on the space of couplings which is non-increasing along the 
RG trajectories. Thus any theory which satisfies the integrability conditions also satisfies a c-theorem in D dimensions. 

I. The c-theorem and renormalisation group flow 

The question of the nature of the renormalisation 
group (RG) flow on the space of coupling constants 
for a quantum field theory is a recurrent one in 
physics. It has been shown [1] in two dimensional 
euclidean field theory, assuming certain positivity 
conditions on the Hilbert space of the theory, that 
there exists a function on the space of coupling con- 
stants which is non-increasing along the RG trajec- 
tories (the c-theorem). This has very important and 
far reaching implications for the theory because it 
puts constraints on the way that the RG flow can be 
realised, for example it can never come back to visit 
a point where it has already been, thus eliminating 
the possibility of limit cycles. The non-increasing 
function, c, can be interpreted as a measure of the 
number  of degrees of freedom of the theory and its 
decreasing nature as the length scale, 1, is increased 
as being due to "integrating out" the degrees of free- 
dom on scales less than l. At fixed points (conformal 
field theories) it is the central charge of the theory. 
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The proof of the c-theorem in [1] relies heavily 
on the special properties of two dimensions and it 
is crucial that there are only four different bilinears 
(in terms of index structure) that can be constructed 
from the stress tensor, Tu~,, in two dimensions. At- 
tempts to generalise the c-theorem to higher dimen- 
sions have met with difficulties because, for D > 2, 
there is a fifth independent bilinear which cannot be 
eliminated [2]. Other authors have tried to generalise 
Zamolodchikov's result to higher dimensions [3-7],  
but so far without complete success. 

A stronger condition than the c-theorem is that of 
potential flow. The possibility of potential flow was 
emphasised by Wallace and Zia in [8] and [9]. In the 
latter reference the three loop fl-functions for mass- 
less ~4 theory, with two ~4 couplings, were shown to 
be derivable from a potential, and it has been con- 
jectured that this property should hold to all orders 
in perturbation theory (at least in two dimensions) 
[ 10 ]. It can also be shown that a single scalar field cou- 
pled with Yukawa interactions to a four component 
fermion in four dimensions exhibits potential flow to 
sixth order in the couplings [ 11 ]. 

If the space of couplings is equipped with an invert- 
ible positive definite metric, Gab, and the fl functions 
are derivable from a potential, V (g) ,  in coupling con- 
stant space, 
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flbGba:= fla-- a V(g ) ,  (1) 
O g a 

then a c-theorem follows easily. (Here a = 1 , . . . , n  
labels the dimensionless couplings ga which can be 
thought of  as real co-ordinates on the n dimensional  
space of  interactions, denoted by G.) The metric is 
necessary since the fl-functions are naturally defined 
as vectors, 

fla = l ~T ga d a, = ~-~g (2) 

where t = In l, and a gradient is necessarily a co- 
vector. Note that the fl-functions in (2) are defined 
by differentiation with respect to a length rather than 
a momentum and so have the opposite sign to the 
usual field theoretic definition. 

The c-theorem follows from ( 1 ) by differentiation 
of  the potential,  

dV flaoa V -Gabflafl b ~ O, (3) 
dt 

where the last inequali ty follows when positive defi- 
niteness of  the metric is assumed. Hence the potential,  
V (g) ,  is i tselfa  function on 9 which is non-increasing 
along the RG flow. 

Of  course the above statement of  the c-theorem de- 
pends crucially on the choice of  metric, [1,8,9,12- 
14]. In [9] a metric was constructed by assumming 
potential flow and using this as a criterion for defin- 
ing a metric. But there are other considerations which 
might go into the definit ion of  a physically reason- 
able metric, [12-14] .  In this work both the metrics 
of  Zamolodchikov [14] and that of  O 'Connor  and 
Stephens [13] will be considered. In both cases con- 
ditions that the trace of  the stress operator  must sat- 
isfy, in order  for the RG flow to be a potential  flow, 
are obtained. 

Before discussing the condit ions for potential  flow, 
in section 4, some relevant properties of  the space of  
local interactions 9 and the renormalised stress op- 
erator are discussed in section 2. The two candidates 
for a metric function are described in section 3 and 
section 5 gives a summary and conclusions. 

2. The trace of the stress tensor 

Consider a field theory in D dimensions which is 
described by an action, 

S[g,~o] = f H(g,~o(x),a,,~,(x))d°x, 
RD 

(4) 

which depends on some set of  fields, ~0 (x) ,  and their 
first derivatives, together with a finite set of  real cou- 
plings, ga. The couplings are all taken to be dimen-  
sionless. If  there are any massive couplings in the the- 
ory these can always be made massless by multiplying 
by appropriate  powers of  the renormalisation length, 
l. Thus, for example, the dimensionless coupling as- 
sociated with a mass, m 2, would be 12m 2 giving rise 
to a fl-function fl = (2 - ~ ) m  2, where ~ is the usual 
beta function associated with a mass. It will be as- 
sumed that the theory can be renormalised and that 
a quantum stress operator  Tu~, satisfying Ou Tu~ = 
0 and ( ~ u )  = 0, can be defined. Of  course, quan- 
tum mechanically, the trace of  the stress operator  can 
be a non-zero operator,  TU u = - O  ~ 0, even when 
its classical counterpart  vanishes. This happens when 
there is a conformal anomaly. 

Following ref. [1], we consider the renormalised 
operators 

~o(x)-  o~ (5) 

~ constitute a basis for all relevant or marginal op- 
erators of  the theory, i.e. any relevant or marginal op- 
erator, which is a scalar in R D, can be written as a 
linear combinat ion of  ~ (x)  and the identity. These 
can be related to their bare counterparts,  ~o~, using 
the matrix of  renormalisation constants, Za b, 

~oa(x) = Zao~b(x), 

where ~o~(X) - OkI(x)  [ O k I ( x )  I 
Ogg - \ Og a ' (6) 

go a being the bare couplings. H ( x )  here is the bare 
hamil tonian which can be thought of  either as a 
function of  the bare couplings or the renormalised 
couplings (the latter interpretat ion requires counter- 
terms, of  course). In this way of  looking at things the 
bare and renormalised couplings can be considered 
to be two different co-ordinate sytems on the space 
of  couplings and Za b = dgO/dg a plays the r61e of  
a co-ordinate transformation matrix, telling us how 
to transform tensors between the two co-ordinate 

98 



Volume 312, number 1,2 PHYSICS LETTERS B 5 August ! 993 

systems. This co-ordinate transformation is singu- 
lar when the regulator is removed but, provided the 
theory is renormalisable, this is not a problem. 

To incorporate tensor (or spinor) operators would 
require a larger basis but this will not be necessary 
here. A consequence of  the definition of  ~a (x) is 

Oa~b = Ob~a. (7) 

Note that, in terms of  the "simple" fields ~0 (x), 
which one might use in a functional integral to do per- 
turbation theory for example, t~a (x) include compos- 
ite operators and therefore must also be regularised, 
e.g. by introducing a cut-off L << l. We shall assume 
that this can be done. The ~a are defined so that 
(~a(x)) = 0. This does not require that the renor- 

malised OakI (x) have zero expectation value, though 
it should be finite and independent of  x from trans- 
lation invariance. The operators Oa~I (x) will appear 
below and they will be denoted by Ha (x).  They can be 
extended to include the identity operator, H0 = 1, and 
will then be denoted by ~t~a (x)  where ~ = 0, 1 . . . . .  n. 

Since ~a (x) are a basis for scalar operators ~ ( x )  
can be expanded as 

~(X) = fla(g)~a(X) (8) 

where £p is the Lie derivative with respect to the vec- 
tor field fl on the space of  couplings G, 

£ g ~  = (di/~ + i f d ) ~  

= (Oaflb)~bdg a + flb(Ob~a)dga 

= dO (12) 

(d and i~ are respectively the exterior derivative on 

Tj (~) and contraction with the vector if). 
These equations can then be summarised as 

d ~  = 0, 

£ ~  = d g  = -lff--~ gt~, 

£~O = -lff-- 7 g ~ .  (13) 

Note that 

l~--~ g~a(A')= Oa([~ g [ I ( x ) ) - l ~  g (Oa[[(X))" 

(14) 

Expressions for l ( 0 / 0 l ) l g H  ix)  for scalar field theory 
are considered in [ 15 ] and [ 16 ]. 

for some set of  functions fla. It can be shown, e.g. 
[14], that the fla in (8) are just the fl functions of  

Note that (O)  = 0 because it is defined eq. (2). to 
be, as is usual for renormalisation of  the stress tensor 
in fiat space. 

Now the operator O should not depend on the 
renormalisation length, 1, therefore 

l d o  = l O g O  + fl~0aO = 0. (9) 

In terms of  differential forms on T~ (G) the quantities 

~(x) = ~a(x)dg a (10) 

can be thought of  as operator valued one-forms. These 
also should be independent o f / g i v i n g  

=0,  Il l)  
g 

3. The metric 

In this section two possible candidates for a metric 
on G are briefly described. Firstly, following Zamolod- 
chikov [ 1,14 ], a dimensionless metric on G can be ob- 
tained from the two point correlators (t~ a (x)t~ b (y)) 
by defining 

Gab (g)  = t2~ (~a (x),~b (y)) [ ix_~t=, (15) 
and the assumption of  positivity of  the theory en- 
sures that Gas (g) is a positive definite metric on 9. 
Note that Gas(g), being dimensionless, has no ex- 
plicit l dependence and depends on the renormali- 
sation point only implicitly, through g dependence 
i.e. l(O/Ol)]g-Gab(g) = 0. This metric can be under- 
stood in terms of  the operator product expansion co- 
efficients [ 17 ], 

t ~ a ( X ) t ~ b ( y )  = CabO(lx-yl)l --t- . . . ,  (16) 
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where the dots represent operators with zero expecta- 
tion value. For small separations, 

Gb°(I x yl) ~ (~)0 _ - = C2b (g) lx  -- YI', 
s= -2D 

(17) 

and 

Gab(g) = _/of dD i t ~i~2W(x ) j Y ssa ,Y ,J  b = O" (20) 

(s)0 _ where C~b (g j  are independent of  Ix -Yl .  Thus, for 
small l, G~b is essentially Ct-~ m° (g)  i.e. the leading 
term in the operator product expansion. 

An alternative metric, that of  O 'Connor  and 
Stephens [13], is obtained by integrating the two 
point functions over all space, rather than evaluating 
them at a specific separation, 

Gab (g)  = ID f dOy ( ~ a ( Y ) ~ b ( X ) ) .  ( 1 8 )  

From translational invariance Gab (g)  is independent 
of  the point x but it must be regularised, due to the 
singularity at y ~ x. 

The regularisation of  composite operators is not 
straightforward, and contains many pitfalls and sub- 
tleties. Some specific examples have been worked out 
in detail, e.g. in [18,19] and a general formalism is 
presented in [20,21 ]. In general [(Pa (x) (~b (Y) ] R is 
not the same as [~ , (X)]R[~b(Y)]R,  where the sub- 
script R denotes renormalised quantities. They differ 
by terms involving 6 (x - y)  and its derivatives with 
infinite co-efficients, in general. This is not a problem 
for the definition of  the metric in eq. (15) since l > 0 
but in the next section it will be necessary to differen- 
tiate this quantity with respect to the couplings and 
then it will be important to use [ (~a (.x) ~b (Y) ] g in the 
definition rather than [(~a (x) ]R [(ibb (y) ]R. However 
for the other metric eq. (18) must be understood as 
involving [(~, (X)~b (y)  ]R from the start, otherwise 
it is infinite and not a sensible candidate for a metric. 

The two point functions appearing here can be ob- 
tained from variation of  a source for the operators 
~a (x) in a generating functional for composite oper- 
ators, as described in [21 ]. Denote the renormalised 
sources for the operators ~ a ( x )  by j a ( x )  and let 
W [g, j ] = - In Z [g, j ] be the generating functional 
for connected amplitudes. Then 

-Gab (g)  = - l 2D 5 2 W J 
a j a ( x ) j b ( y )  = 0 ; IX--y]  = l 

(19) 

4. Integrability conditions for potential flow 

Integrability conditions on the fl-functions for the 
RG flow to be a potential flow will now be derived. 
Potential flow requires that the one form fl = fl~dg a 
on T* (G) is closed and hence locally exact (as stated 
before, questions concerning the global structure of  
T~ are not addressed here). 

Consider first the fla obtained from the metric (15). 
We have 

oop  = t : "oo  

=  2"Oa tg(Y)l.)] 

_ [2Dfl c 

× / d"z( ['~a (-:)]R I'Ve (X)IR ['~ (Y) ]R)[ Ix-yl=l . 

(21) 

The last term in eq. (21) can be understood by using 
a path integral formalism for the calculation of  am- 
plitudes and  taking into consideration the variation 
of  the couplings in the action [14]. Of  course it re- 
quires regularisation, due to singularities when z ,,~ x 
and z ~ y but we shall see below that, when a and b 
are antisymmetrised, the three point function appear- 
ing in (21) is finite. Note that, even without antisym- 
metrising on a and b, the right hand side of  (21) must 
be finite since the left hand side is, thus the infinities 
in the three terms on the right hand side must cancel 
(in general the operator 0a [(~b (X)]a has infinities). 

It is important here that the three point correlator 
dies off sufficiently fast at large separations for the 
integral in (21) to converge. This requires that it falls 
off faster than [z - x[ -D. 

Now define 
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Sabc(I x - y]) 

:= 12°fdVz ([~a(Z)]R['~b(X)IR[~c(y)]~).  
(22) 

Making use of  (7), eq. (21) now yields 

O[aflb] = --12D ( [ ~ t a ( x )  lROb ] [O(y)IR) l lx-yl=t  

- S iaak( l ) f l  c. (23) 

The vanishing of  the right hand side of  this equation 
provides integrability conditions for potential flow. 

These conditions can be interpreted as follows. 
Since ~ (x) are a basis for scalar operators of  di- 
mension - D ,  we can expand 

Ob&(Y)  = qbC~c(y) .  (24) 

(In principle there could be a term proportional to the 
identity operator on the right hand side of  eq. (24) 
but this does not affect the ensuing analysis and will 
be omitted.) This gives 

OIaflbl = ~[abl-  S[ablcfl c' 

where the matrix q~b is defined as 

(25) 

-6ab = q~CGcb, (26) 

and Sabc is Sabc([X -- y[) evaluated at Ix - y[ = l. 
Now from (13) and (24) 

= -17-77c') ~ a ( X )  = ?]aCfl)P"c(X). (27) o.O(x) 
(J l g 

It follows that rla b can be thought of  as the linear 
transformation matrix that generates the change in 
the basis ~a (x) under an infinitesimal change in the 
renormalisation point, with the renormalised cou- 
plings kept fixed. Using the metric this linear trans- 
formation can be decomposed into a rotation, a shear 
and a dilation. Thus the condition for potential flow 
relates the rotational part ofg~b tO the antisymmetric 
part of  Sabcfl ~, 

-qt,,bl = S[,,bkfl c" (28) 

We can obtain some information about -~[abl by con- 

sidering l (O/Ol)]gO = -flaOaO, which is the full di- 
mension (canonical plus anomalous) of  the operator 

O. The anomalous dimension of  the stress operator 
vanishes because it consists of  D conserved currents, 
one for each generator of  translations in D euclidean 
dimensions, and conserved currents do not get renor- 
malised. O has canonical dimension - D ,  hence 

- - l , ~  g O  = flaOaO) = O g  = o f l a ~ a .  (29) 

This equation is derived, from general arguments, in 
[14] and it can be verified, to all orders in perturba- 
tion theory, for massive 2~04 in D ~< 4 using the tech- 
niques in [18], provided the improved stress tensor 
is used. Actually, since the stress operator is only con- 
served when the equations of  motion are used, (29) 
is only true modulo the equations of  motion. (Note 
that for the metric (15) any linear combination of  
~a which is proportional to the equations of  motion 
must be removed from our basis set anyway, since 
otherwise the metric is degenerate.) 

If  we further assume that the basis for operators t~a 
is linearly independent and that OaO are linearly inde- 
pendant operators too, and therefore also constitute 
a basis since they are the same in number as ~a, we 
can conclude from (29) that 

Oag = D ~  ~ i~ab = Dt~ab . 

It follows that 

(30) 

~ab = D-'Gab 

and so 

(31) 

qlabl = 0, (32) 

since -'Gab is symmetric by definition, i.e. qab is ir- 

rotational. The assumption that 0~O are linearly in- 
dependent does not seem to be a particularly strong 
one - for instance eq. (30) can be shown to be true 
for massive 2~04 theory in four dimensions. When this 
assumption holds the integrability conditions for the 
metric (15) reduce to the statement 

O[aflb] = Stab]cfl c = O. (33) 

The first equation here is an identity and provides the 
promised proof that S[,~blcfl c is finite, even though Sabc 
itself is not, the second equation gives the integrability 
conditions for the metric (15). 
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Now consider a similar analysis applied to the other 
metric under consideration, (18). Then we have 

O~#b = l ° f d°xOo ([~b(X)O(y)IR) 

= l"fd"x (Oa[~b(X)O(y)lR) 

-l aCfd°zfd°x 
X ( [ ~ a ( Z ) ] R t ~ b ( X ) ~ c ( Y ) ] R ) .  

We must be careful however, because 

(34) 

Oa[~b(X)O(Y) l R 

# Oa[~b(X)]R[g(y)] R -I- [~b(X)]ROa[O(Y)] R, 

(35) 

when x = y. The difference is dictated by the short 
distance behaviour of  the theory and it is shown in 
[21 ] that 

[ & ( x ) H ~ ( y ) ]  R = [ & ( X ) ] R [ ~ ' c ( y ) l  R 

)}, "+ ~bc Vx ° i  -- Y (36) 

or 

[~b(X)~c(Y)] R = [ ~ a ( X ) 1 R [ ~ ( Y ) ] R  

L `p'q)~'~p'qq {~'~-(X )a (X y ) } .  (37) + bc ~x '--'y 

Here Ha = OaH and d" = 0 . . . . .  n so as to include the 

identity operator, r (P,q)2" ~bc are independent of  position, 
but depend on the renormalised couplings and on the 
regularisation parameter. For example in dimensional 

(p q)~ 
regularisation, Lt, c' would consist of  a series of  poles 
in e. The notation on the right hand side ofeq.  (37), 
involving p and q, is a condensed notation for the sum 
over all possible derivatives with respect to x and y, 
with all possible contractions that are consistent with 
the fact that the left hand side is a scalar. That the fi- 
function terms involve only ~a and the identity, rather 
than a larger set of  operators, is a consequence of  
dimensional analysis and is explained in [21]. Using 
eq. (37) in eq. (35) gives 

= O a [ ~ b ( X ) ] R [ O ( y ) ]  R -I- [ ~ b ( X ) ] R O a [ ~ ( y ) ] R  

f)p¢)qlo rOCL(p,q)d'~, e,  " { -~x~y t  a tP  bc H ~ O [ X - - y ) ) } .  (38) 

Taking the expectation value, antisymmetrising a and 
b and integrating over x gives, with (30) and (7), 

l ° f d°x(0ta [~bl (X)6) (Y) ]R) 

= l o d ° x o ; o q l o [ o ( ~ L ~ ] ~ ' g r ~ x ) a ( x - y ) ) > .  
d 

(39) 

Performing the x integration, with y finite, the only 
term that can survive is that with p = O, i.e. no x 
derivatives. The resulting expectation value is trans- 
lationally invariant and thus independent of  y, hence 
p = q - - O a n d t h u s  

/~ f d°x (oto [~j ( x ) g ( y ) I R )  

(fl Lblc H'~> = l ° <Ota ~ 2~ 

= 

+ l°,8':Lctb e' f d D x  ( [ ~  ( x ) ] R [ ~ d ( y ) ] R ) '  

(40) 

A = L(°'°) ~- (we have used the fact that where Lbc d bc 

L(0,0)2" r(00)d'. bc = '~b' IS symmetric in b and c). 
Now consider the second term in eq. (34) 

× ]R t b(x) JRt C(y) JR) 

+--bc vx~,y ([&(-)IR (X)] --y 
(41) 

The first term on the right hand side of  this equation 
is manifestly symmetric under interchange of  a and 
b, the second term simplifies as before, giving 
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= zoacLj fd°z  
(42) 

When inserted into (34) this cancels the last term in 
eq. (40) giving 

Otaflbl = lDOia(flCLb]cd'(ff~')) = O[a(flCLb]c), 

(43) 

where we have defined the dimensionless quanti ty 

Lbc : =  l° Lbj ' (  H~-) . (44) 

Eq. (43) is of  the same form as would have been ob- 
tained had Lab i tself been used as a metric. Being sin- 
gular, however, Lab would not make a sensible met- 
ric. Eq. (44) is telling us that only the short distance 
behaviour  of  the metric (18) can prevent potential  
flow. 

It may be worth noting that 0al = 0, and, from eq. 
(20), 

Oa ( [nd  (Y)]R) -~ -- f dDx ([~a(X)Ho(y)]g) 

= - f dDx ([~a(x)~d(y) ]R) 
=- - - l - D  Gad, (45) 

Eq. (43) can be written in an al ternative manner  
by observing that oflb/Og a is related to the matr ix of  
anomalous dimensions for the theory. This is shown 
in [21], but a slight difference here is that, since 
our couplings are defined to be dimensionless,  the 
p-functions include the canonical dimensions of  the 
couplings as explained at the beginning of  section 2. 
This means that oflb/Og a include the canonical di- 
mensions as well as the anomalous dimensions.  We 
therefore define the matrix of  dimensions F~ b (canon- 
ical plus anomalous)  as 

Fa b : -  Otis (46) 
O g~ " 

The integrabili ty condit ions for the metric (18) can 
now be expressed as 

flCOIa(Lblc) + FIaCLblc = O. (47) 

Alternatively, one can avoid the introduction of  the A 
infinite quantit ies Lab c by writing (34) as 

= l" f dDxOo ([~b(X)g(y)]R)  

= c fd xOo 

+ Z°fdOxt( b(X) c(y)l.)Oa  
= --/DflCJ'dDzaD x ([~a(Z)~b(X)~c(Y)]R) 

Z°fdOx boa (48) + 

This follows by noting that, due to the definit ion of  
the basis operators ~a,  a variat ion of  the couplings in 
the action can equally well be obtained by a variat ion 
of  the sources, as in [21 ]. Thus 

f dDz ([~a(Y.)~b(X)~c(Y)lR) 

= --  J d O z  ~3W j 
Ja(z)Jb(x)jC(y) = 0 

= --0~ ([~O (X)~c(y)]R)- (49) 

The first term on the right hand side of  eq. (48) is 
manifestly symmetric under interchange of  a and b. 

The integrability condit ions for the metric (18) can 
now be expressed by the statement that the matrix 

Mab = l'aC Gcb (50) 

must be symmetric.  

5. Conclusions 

For  a local renormalisable quantum field theory in 
fiat D dimensional  space integrability condit ions on 
the fl functions for the RG flow to be a potential  flow 
have been derived. This requires the introduct ion of  
a metric on the space of  local interactions and two 
possibilities, 

-Gab(g)  = zzo ([.~o (x).~b (y) ] . )  I ~x_~t=, (51) 

and 

Gab(g) = lD f dDy([~a(Y)~b(X)]R),  (52) 
J 
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have been considered. The integrability conditions for 
the first metric are then 

S[ablcfl  c ~-- 0, (53)  

where Siablc is the three point function (22) evalu- 
ated at the renormalisation length Ix - Yl = 1. For 
the second metric they are as in eq. (47), where Lab 
are defined in eq. (44) and are determined from the 
expansion (37) and F~ b is the matrix of dimensions. 
An alternative statement for the metric (18) is that 

Mtabl = 0, (54) 

where the the matrix Mab is defined in eq. (50). 
Whether or not the integrability conditions will be 

useful in practical situations remains to be seen, but 

it is hoped that the analysis presented here goes some 
way towards exposing the structure of the two and 
three point functions of composite operators which 
seem to be an essential ingredient of any such discus- 
sion. 

The nature of the potential itself, should one ex- 
ist, has not been addressed here but this is clearly of 
prime importance since, if it could be constructed, it 
would be related to a higher dimensional analogue of 
the two dimensional concept of the central charge of 
the theory. It has been suggested that if the RG flow is 
a potential flow then the effective action should pro- 
vide the required potential [10]. A great deal more 
work must be done before this hypothesis can be ei- 
ther confirmed or refuted. 
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