
EI~qEVIER 

16 June 1994 

Physics Letters B 329 (1994) 332-337 

PHYSICS LfiTTERS B 

Spin dependence of the heavy-quark potential: a QCD lattice 
analysis 

K.D. Born a, E. Laermann b, T.F. Walsh c, P.M. Zerwas d 
a Inst. Theol'. Physik, RWTH Aachen, D-52074 Aachen, FRG 

b Fakultiitfiir Physik, Universitiit Bielefeld, D-33501 Bielefeld, FRG 
c Physics Dept., University of Minnesota Minneapolis, MN 55455, USA 

Deutsches Elektronen-Synchrotron DESY, D-22603 Hamburg, FRG 

Received 18 February 1994 
Editor: P.V. Landshoff 

Abstract 

We have investigated the spin dependence of the potential between heavy quarks in full lattice QCD, including the effects 
of light quark loops. The form of the spin-orbit, the tensor and the spin-spin forces present clear evidence for long-range 
scalar confinement supplemented by a Coulomb force at short distances. This agrees with observations from quarkonium 
spectroscopy. The QCD simulation has been carried out for Kogut-Susskind fermions with four degrees of freedom at a 
gauge coupling fl = 5.35 and a quark mass amq = 0.01 on a 163 × 24 size lattice. This corresponds to a lattice spacing 
0.12 fm, a spatial lattice size of about 2 fm and a light quark mass of 48 MeV. 

1. Basis 

The interquark forces in heavy quarkonia present a 
very interesting opportunity to study the strong inter- 
actions in a simple situation. The spectroscopy of  char- 
monium and bottonium states is sensitive to interquark 
distances between 0.1 and 1 fm [1] .  The toponium 
ground state (accessible if the top mass is not heavier 
than ,,~ 180 GeV) will probe distances down to ,-~ 0.01 
fm [2,3].  The rich spectroscopy of  charmonium and 
bottonium states is well described by potential mod- 
els that incorporate a spin-independent static potential 
at large distances and spin-dependent forces which in- 
duce the fine- and hyperfine-splitting of  the energy 
levels. From the analysis of  experimental data, a de- 

tailed picture of  confining and spin-dependent forces 
emerged some time ago. As a next step, we need to 
show that QCD can properly account for these forces. 
While perturbation theory provides an adequate in- 
strument to tackle this problem at short distances, the 
long-distance behavior can only be studied in the lat- 
tice formulation of  QCD at present. 

In a preceding note [4] ,  we have described our re- 
suits for the static confinement potential in a QCD sim- 
ulation that includes quark loops. Here we concentrate 
on the spin-dependent forces. The most general form 
of  the interquark q~/potential up to order v 2 / c  2 of  the 
expansion in the quark velocity may be written [ 5 ] 
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Table 1 
Contributions of the scalar and vector parts of the static potential 
to the spin-dependent terms 

Ktat 6Vl 61/2 6V3 6V4 

Vs - Vs 0 0 0 
Vv 0 Vv - ( V ( / -  V~/r) 2AVv 

Vv = - ~  o _~ 3_, r3 -- 8"n'e83 (r)  

In the last row, the 6~ are shown for a Coulombic vector potential. 

Vetr(r) = Vstat(r) 

( I l S l  12S2~ + \2m~ "~m~J (Vs~r(r) +ZV(~r ) )  

( 1,s2 12Sl ~ V~(r) 
-b" \ m l m 2  mlm2/  r 

+ _ _ I  [ ( rs l ) ( r s2)  s ,s2) V3(r) 
mlm2 \ r 2 3 

+ s l ~ s ~  V4(r) (1) 
3mlm2 

This is a generalization of the well-known QED 
Breit-Fermi interaction, ml,2 = m denote the quark/ 
antiquark masses, sl,2 and ll = --12 = l are the spins 
and orbital angular momenta, and r = rl - r2 is the 
distance vector between quark and antiquark. 

The potentials Vi and Vstat are not independent of 
each other. As a result of Lorentz invariance the spin- 
orbit potentials 1/1 and ½ are related to the static po- 
tential by the Gromes relation [6] 

V2 --  VI = Vstat ( 2 )  

As a consequence, the spin-orbit forces cannot be 
built-up entirely by short-distance one-gluon ex- 
change. They are intimately related to the confinement 
mechanism. 

Interpreted as the static limit of a relativistically 
invariant interaction density, the static potential can 
only be built-up by scalar and vector contributions [ 7], 

Vstat m VS "+" VV ( 3 )  

These two components contribute quite differently to 
the spin-dependent parts of the interquark potential, as 
shown in Table 1. The observed fine-splitting of the 
triplet P charmonium as well as bottonium states fa- 
vors a scalar long-range confining part o-r of the static 
potential. The spin-orbit potential lfi is then attributed 
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to the confining part of the potential [ 1,8]. The vector 
one-gluon exchange contribution to the quark interac- 
tions builds up the spin-orbit potential ½ as well as 
the tensor force ~ and the spin-spin interaction V4. 

Calculations of the spin-dependent potentials and 
evidence for scalar confinement have been reported 
from several lattice simulations. The first calculations 
[9,10] were done in the quenched approximation ne- 
glecting quark-loop effects. This valence-quark ap- 
proach is a physically appealing first step, but it is 
nevertheless important to extend the calculation to full 
QCD including light quark degrees of freedom. Only 
one attempt in this direction has been reported so far, 
Ref. [ 11 ]. Here we report results of a full QCD simu- 
lation which substantially improves the earlier calcu- 
lation in three respects. We have used a small lattice 
quark mass amq = 0.01, corresponding to a physical 
light quark mass _e _RGI o l  m q  ---- 48 MeV. Our lattice spac- 
ing is 0.12 fm, leading to an overall lattice size of 
1.9 fm. We have been able to determine the the spin- 
dependent potential off axis on the lattice diagonals 
for the first time, a necessary step in demonstrating 
rotational invariance. The statistical significance has 
been improved as well. 

2. Technique 

The spin-dependent potentials lfi to ¼ can be writ- 
ten as correlations between color-electric and color- 
magnetic fields at the positions of the quark and anti- 
quark in the color dipole, averaged over time [ 5 ] : 

r k v [ ( r )  = E iJ_ k [ f d t d t t ( f f - t )  
r 21 J J  

x (g2sBi(rl, t )Ej(r l ,  ff))w / (1)w (4) 

r = ~-~ dtdff (ff - t) 

× (~Bi(r2, t )Ej(r l ,  t '))w / (1)w (5) 

1// 
) V3(r) + V4(r) = ~ dtdff 

r 2 3 

x (g2Bi(rl, t)Bj(r2, t'))w / (1)w (6) 

The symbol ( )w denotes the expectation values of 
Wilson loops with electric and magnetic color fields 
inserted at the quark positions rl,2 at times t and t'. 
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that the self-energies of the E - B correlations can be 
subtracted according to the following rule ~ : 

1I i T - i _  

Fig. 1. Definition of the color-electric and magnetic fields on the 
lattice by cloverleaf arrangement of plaquettes. 

(1)w represents the expectation value of the Wilson 
loop itself. The integration runs over the time coordi- 
nates of the gluon field operators, 0 < t, t ' < T. Tak- 
ing the temporal extent of the Wilson loop T --~ o¢ 
projects out the dipole ground state. 

The correlation functions ( 4 ) - ( 6 )  can be evaluated 
numerically on the lattice. Following Refs. [9,10], we 
define the color field strength tensor on the lattice by a 
suitable average over the four plaquettes touching the 
space-time point x [see Fig. 1]: 

4 
i U~(x;tzv)] (7) = 1 E 

1 

The color-electric and magnetic fields read 

Ei(x) = g-g~F4i(x) (8) 

" ^ 

Bi(x) = ~iJ--ka2Fjk(x) (9) 

For distances r < 2a (a  being the lattice spacing) the 
operators partly overlap. In these cases we calculate 
the correlation between the plaquettes first and average 
subsequently. 

Quark and antiquark self-energies associated with 
the perimeter must be removed in order to extract the 
Wilson loop. For simple loops, it can be proven that 
this contribution corresponds to a multiplicative fac- 
tor [ 12]. I f  field operators are inserted, it has been 
shown up to (.9(g2~) in the pure gauge theory [10] 

((E(xl)B(x2))w / (1)w) R 
= (E(Xl)8(x2))w (1)w (lo) 

(tYn(Xl))w (VD( x2) )w 

For numerical calculations we can assume the factor- 
ization (Ut~)w = (P) (1)w, with P = Re t rUn,  so that 
finally 

( (E(Xl)B(x2))w / (1)w)R 

= (E(xl)B(x2))w (11) 
(P(xl)) (P(x2)) (1)w 

The last factor (1)w may be interpreted as the renor- 
malization of the loop itself, while the first two terms 
account for O ( ~ )  corrections in ( 7 ) - ( 9 ) .  The B - B 
correlations are normalized according to Eq. (11). We 
adopt this method in our numerical procedure; it ap- 
pears superior to ad hoc numerical renormalizations 
of the heavy quark mass. (The method can be checked 
by examining the validity of  the Gromes relation.) 

To check for restoration of rotational invariance on 
the lattice, we evaluated the correlation functions not 
only along the three lattice axes but also along the 
six plane-diagonal directions. For the plane-diagonal 
loops we varied the space directions k in the calcula- 
tion of VI and V:, Eqs. (4) , (5) ,  while in the case of 
Vs,4, in (6), we have restricted ourselves to the eval- 
uation of the diagonal tensor elements i = j .  

To determine the spin-dependent potentials 
Eqs. ( 4 ) - ( 6 )  we require a weighted average over 
all time distances. This increases the numerical ef- 
fort by a factor T 2 compared to the simple Wilson 
loop. This increase can be partly circumvented by 
working in the temporal gauge, in which the gauge 
fields in the time directions are gauge transformed to 
unity. (Excepting the last time layer.) We smeared 
the string connections along the spatial directions ac- 
cording to a variant of the APE prescription [ 14] so 
as to improve the projection on the flux tube between 

1 Since Lorentz invariance is only realized in a discrete manner 
on the lattice, relativistic ~ y D  corrections can mix with the 
static propagator through renormalization [13]. This affects the 
chromo-electric insertions only, ( B E  ) ,~ ( B D  2 ) ,',-, ( BD2are ) + 
( B ). However, because of parity invariance, ( B ) vanishes, in the 
continuum as well as on the lattice. 
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Table 2 
The results for the measurement of the potentials ~ as a function of z 
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V r ~ ' = t  t - t  

0 1 2 3 4 ~S'~r 

V~ 1 1453 (26) -2116 (37) -417 (28) -75 (18) -13 (10) -3230 (189) 
2 1256 (65) -2091 (106) -564 (76) -148 (51) -21 (25) -3753 (518) 
3 1134 (133) -1934 (212) -510 (160) -136(107) -32 (53) -3498(1069) 
4 1066 (248) -1861 (396) -520 (296) -57(202) -30 (96) -3193(1981) 

V~ 1 - 4  (24) 12077 (39) 1805 (28) 255(18) 31 (16) 16583 (188) 
2 -42 (65) 2735 (103) 961 (79) 232(51) 36 (24) 5503(5181) 
3 45 (134) 762 (215) 478 (160) -138(105) 1 (51) 2140(1059) 
4 114 (218) 110 (398) 1225 (304) 89(194) 18 (99) 697(1990) 

V3 1 22551 (113) 2933 (178) 35 (131) 85(87) 532 (43) 26138 (554) 
2 5763 (180) 1724 (289) 210 (213) 49(147) -14 (72) 7733 (910) 
3 1367 (370) 967 (601) 231 (447) 78(308) 49(144) 2695(1869) 
4 252 (697) 217(1144) 16 (848) -57(566) 8(280) 436(3538) 

114 1 -26782 (193) 3992 (304) 2000 (222) 247(148) -990 (73) -21532 (941) 
2 -7398 (268) 449 (432) 834 (290) 314(220) 81(105) -5717(1349) 
3 -1424 (556) -216 (897) 355 (673) 181(456) 125(214) -977(2796) 
4 -378(1046) -184(1718) 277(1274) 98(844) -9(418) -197(5301) 

The values are given in units of a and are multiplied by a factor of 105. The last colunm gives the (weighted) sum over ~" 

the heavy quarks. To keep the computer t ime at a 
tolerable level, the loops have been evaluated for a 
fixed time T = 4a.  The spatial extent has been varied 
from R = 0 to R = 4a. Due to l imited statistics, loops 
beyond T = 4a  did not improve the signal. 

The correlation functions in ( 4 ) - ( 6 )  depend on the 
times t and t ' ,  or equivalently ~- = t '  - t and to = 
1 ( t ,  + t ) .  For  sufficiently large T, the expectation val- 
ues should become independent of  to. This is indeed 
borne out by the data i f  the boundary values t, t '  = 0 
and T are excluded. (They are contaminated by ad- 
mixtures of  unwanted excited string states.) The cor- 
relation functions fall off very fast as a function of  the 
t ime difference r ,  so that the integral converges [ 10]. 
We demonstrate this in Table 2 where the results for 
the correlations of  on-axis loops are listed as functions 
of  ~-. 

3. Results 

To extract the spin-dependent potentials V/, the cor- 
relations of  the color-electric and magnetic fields have 
been evaluated over an ensemble of  84 configurations 
obtained by the M T c  Collaboration on a 163 × 24 lat- 

tice a t /3  = 5.35 and quark mass amq  = 0.010. This 
ensemble has been generated by means of  a hybrid 
Monte Carlo algorithm. The lattice spacing was fixed 
by fitting [4] the long-range part of  the confinement 
potential to the string tension o- = 1GeV/fm,  with the 
result a = 0.12 fm. (This value agrees roughly with 
the value extracted from the p mass when extrapolated 
to vanishing quark mass [ 15] ). The light quark mass 
in this simulation is then m R~I = 48 MeV in physical  
units, corresponding to a ~- mass of  350 MeV. 

In addition, another set of  configurations has been 
exploited. They were obtained earlier by means of  the 
pseudofermion algorithm. This ensemble was gener- 
ated at the same/3  = 5.35, but at a larger quark mass 
amq = 0.025. No striking dependence on the (smal l )  
quark mass was visible. 

Our results for the spin-dependent potentials V/( i  = 
1 . . . . .  4) for /3  = 5.35 and a m  = 0.010 are displayed 
in Fig. 2 (a)  - ( d ) .  The potentials, as well as the quark-  
antiquark separation r, are given in units of  the lattice 
spacing a. To correct for lattice artifacts, the distances 
r have been impoved at tree level in the manner ex- 
plained in Ref. [4] .  

Inspecting the figures, we can draw the fol lowing 
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Fig. 2. The four spin-dependent interquark potentials. (a) The spin-orbit force V1 is long range, dV1/dr ~ const. The result of  a fit to 
this form, excluding the data at small quark-anti quark separations, r /a  < 1.41, is indicated by the dotted line. ( b ) - ( d )  The spin-orbit 
potential V2, the tensor force V3 and the spin-spin force V4 are short range. The data are compatible with expectations from one-gluon 
exchange, as demonstrated by dotted lines which represent results from fits to dV2/dr ,,~ 1/r 2 (b) and V3 ~ l / r  3 (c) for r /a  > 1.41. V4 
is compatible with a smeared t~ 3 ( r ) .  
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conclusions. 
(i) Our measurement of the potentials in the plane- 

diagonal directions reveals the restoration of rotational 
symmetry for our simulation parameters. In particu- 
lar, the spatial separation r = v~a  provides precious 
additional information. 

(ii) The derivative of the spin-orbit potential 
dV1/dr is flat within the (admittedly somewhat large) 
error bars. This indicates that the long-range, confin- 
ing part of the potential is responsible for V1. This is 
corroborated by the fact that dV2/dr falls to zero for 
large r. A fit to the data which excludes the results 
at small distances, r/a < v/2, returns a central value 
of dV1/dr = -0 .038(3) ,  about 30% smaller than the 
slope o- of the static potential. A (scalar) 1/r piece 
correcting the linear potential in the string picture 
[ 16] is not visible in V1. 

(iii) The spin-orbit potential dV2/dr and the tensor 
force V3 clearly fall off quickly with r. In fact, they ap- 
pear to be well described by one-gluon exchange. This 
is demonstrated by the dotted lines, which are fits to 
potentials derived from the vector Coulomb piece (see 
Table 1). Thus the ½ data strongly indicate a short- 
range character. (Given the scatter in the data, we can- 
not rule out a very small constant contribution.) The 
couplings e extracted from the fits (for r/a > v~) 
come out as e = 0.21(2) for both V2 and ~ .  There 
is thus a nice agreement between the two potentials 
and with the expectation from (vector) one-gluon ex- 
change. However, the values are approximately 20 % 
lower than the value derived from the static potential. 

(iv) The spin-spin force ¼ is zero for non-zero 
distances r, from r _> v/2a onward. A large positive 
value is apparent at zero distance. This is compatible 
with a (smeared) zero range behavior ¼ (r)  ~ 63 ( r )  
as predicted by one-gluon exchange. 

(v) With the confining part residing substantially 
in Vl, and with ½ being predominantly short-ranged, 
the Gromes relation (2) is satisfied only at a level of 
20 to 30 %. As both 1,~ and ½ are smaller than the 
corresponding parts in the static potential by roughly 
the same amount, this mismatch in the Gromes identity 
might be due to the still incomplete cancellation of 
self-energy contributions in the normalization (11) of 
the field operator insertions. This would be a technical 
rather than a significant physical problem. 

4. Summary 

This QCD calculation, including quark-loop effects, 
gives clear support to the notion of scalar confinement 
between quarks and antiquarks. While the spin-orbit 
potential r~ is of long-range character, the spin-orbit 
term V2, the tensor force V3 and the spin-spin force 
V4 are short-range as expected from the one-gluon ex- 
change mechanism. This conforms with experimental 
analyses of charmonium and bottonium spectroscopy. 
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