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Abstract 

We propose spacetime uncertainty relations motivated by Heisenberg's uncertainty principle and by Einstein's theory of 
classical gravity. Quantum spacetime is described by a non-commutative algebra whose commutation relations do imply our 
uncertainty relations. We comment on the classical limit and on the first steps towards QPT over QST. 

1. Limitations on the precision of  localization in 
spacetime have appeared in the recent literature as con- 
sequences of different approaches to quantum gravity 
[ 1-3] or of  some mathematical setup [4] .  We propose 
a converse approach, where operationally motivated, 
though heuristically established, spacetime uncertainty 
relations are taken as the basis for motivating a novel 
mathematical model of  quantum spacetime. The quan- 
tum nature of  our model manifests itself in commuta- 
tion relations which are postulated on the basis of  the 
following criteria: 

(a)  They should imply our spacetime uncertainty 
relations. 

(b)  They should be Poincar~ covariant. 
(c)  The commutators should vanish in the large scale 

limit. 
In other words our philosophy is that the quantum 

deviation of  spacetime from its classical structure 
should be a consequence of the basic principles under- 
lying quantum mechanics and general relativity (point  
( a ) ) .  Moreover  those deviations should manifest 
themselves only at the Planck scale, whilst the large 
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scale structure of  quantum spacetime should be the 
same as for the usual Minkowski  space. 

For we are, in a first stage, only interested in idealized 
states describing a few interacting elementary particles 
in the absence of  very strong external gravitational 
fields. 

The group of  global motions of  the spacetime should 
then be the same symmetry group in both cases, includ- 
ing space and time reflections (points (b) ,  ( c ) ) .  

As a consequence, ordinary spacetime will appear as 
translation parameters allowing us to formulate time 
evolution and wave equations. Furthermore particles 
are still classified by irreducible representations of  the 
covering group of the restricted Poincar6 group. 

2. Our spacet ime uncertainty relations are suggested 
by Heisenberg 's  principle and by Einstein 's  theory of 
classical gravity. If we perform a very accurate mea- 
surement of the spacetime localization of  an event, up 
to uncertainties Axo . . . . .  zXx3, we must transfer to our 
testing particles energy of the order e - - h / a ,  

a = rain Axe,,/x = 0 . . . . .  3 (see footnote 1 ). We  generate 

We are interested in the regime where the rest masses of our par- 
ticles are negligible with respect to c. 
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thereby a state which at some time is localized in space 
with accuracies Axe, &r 2, Ax3 and has an energy-  
momentum tensor T~,. with total energy e. As an abso- 
lute limitation on &Xo . . . .  , Ax 3 we adopt the criterion 
that T .  ~ should not generate a gravitational field so 
strong as to trap photons. For otherwise the concentra- 
tion of energy needed for the localization experiment 
would have the catastrophic effect of  giving rise to 
black hole formation and thus putting the events under 
study out of the reach of observation. 

It might prove to be a very difficult problem to 
deduce rigorous bounds for a fairly general class of 
idealized localized states from this principle. But a heu- 
ristic estimate leads to a very reasonable ansatz, namely 

3 

A X o . ~  Axs ~> A~, (1) 
j = l  

E zXxJ "Axk>~AzP" (2) 
1 ~j<k<3 

One is led to these relations by using the linearized 
approximation to the Einstein equations with a much 
simplified choice of  T~ ~. Namely, we neglect all other 
components than the energy density Too = p and set, for 
negative times, 

p ( _ t ) = £ . ( A X l  + t ) - l . ( A X z  + t ) - I . ( A x 3  + t )  t, 

t >~O , 

if Ix~l ~<Ax~+t, i =  1, 2, 3, and p ( - t )  = 0  otherwise. 
In other words we assume uniform spreading towards 
the past with all speeds not exceeding the speed of light. 
Here and in what follows we use units h, c, G. The 
associated gravitational potential q~ at x~ = 0 can be 
written as 

~= - ( P(Y, 
lYllY- d3y, 

I) 
d 

and the condition that I q~l should be less than the order 
of unity easily leads to ( 1 ), (2).  

If  AXo is very large we can compare (2) with the 
stationary solutions of Einstein's equation. If  Ax~ ~ a, 
i =  1, 2, 3, (2) says that a should not be smaller than 
the Schwarzschild radius for the mass 1/a. If, say, 
Axl ~Ax2~r>~ ~kx3~a, the relation (2) is in agree- 
ment with the Kerr solution describing a rotating mass 
M ~  1/a with radius r, for which we must have M ~ r  
[5]. Further considerations supporting (1) ,  (2) may 
be found in [6]. 

3. According to our principles (a) ,  (b) ,  (c)  we look 
for commutation relations between the selfadj oint coor- 
dinate operators q . , / x  = 0 . . . . .  3, acting on a Hilbert 
space ~T(, which are Poincar6 covariant and imply the 
UR (1) ,  (2).  We introduce the antisymmetric tensor 
Q . ~  by 

[q~, q~] = i O u ~ ,  (3) 

and require that the two fundamental invariants which 
can be formed with Q ~ ,  namely Q~.vQ"~ and 

-5~ .~xo~ ~ , should not both be 
zero. 

The simplest further condition on our algebra is that 
q .  and QAo commute. As will become clear soon, sym- 
metry considerations lead us to the following quantum 
conditions 

Qu.Q~'~=O, (4a) 

[ ¼Qu-( * Q) u-] 2 = I ,  (4b) 

[q~,, [q~, q~]] = 0 .  (4c) 

In generic units, the identity operator on the RHS of 
(4b) would be multiplied by A 8. The square on the 
LHS is needed to guarantee the symmetry of our QST 
under time reversal or space reflection. Specific inter- 
actions could well break these discrete symmetries, but 
the basic geometry should be symmetric. 

Simplicity motivates (4c),  but more significantly it 
is essential for deducing the UR (1) ,  (2) from the 
quantum conditions (4),  as we now proceed to discuss. 
The operators Q . v  will be assumed to be (not merely 
Hermitian but also) selfadjoint and will lie in the centre 
of our algebra by (4c) (so (4c) is understood to mean 
that the spectral resolutions of q .  and Qxp commute) .  

For any state vector 05 in Y?¢', i,e. a vector 05 with 
110511 = 1, the uncertainty AA of an observable, 
described by the selfadjoint operator A acting on ~,~/~, in 
the state described by 05, is given by 

(~A)  2 = II ( a  - ( 05, A05) ) 0511 2 

= (05, A205) - (05, A05) 2 . (5) 

As is well known, the Schwarz inequality and (3) 
imply 

(Aq~,)2( Aq,,)2>~ 11(05, Q ~ 0 5 )  1 2 

= ¼(05, Q ~ 0 5 )  - ¼(AQu~)2 , (6) 

where (5) has been used. 
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Letting e and m be the "e lec t r ic"  and "magne t i c"  
part of  Q~ ~, respectively, we have ½Qu ~Q ~*~ = m 2 - -  

e 2, lQt.,, (*Q~*") = e . m ,  and (4) give 

e 2 = m  2 , (7) 

( e ' m ) 2 = I ,  (8) 

whilst (6) gives 

A q o E A q ~  >1~(q) ' e2qb) -¼ E (Aei)2,  
J J 

Aqj .~q~ >~1(4~ ,m240-¼ ~2 (am~) 2 (9) 
J 

We will first show ( 1 ), (2) for some special choice of  
q~. By (8) we may assume e .m qs= _+ q~; hence, by the 
Schwarz inequality, we have 

1 = (I q~, e . m q 0  I 

I (e~ q~, mjq01 
J 

J 

=( ,b ,  

Ile~ll ' IIm~ll 

,~1/2[ 2)1/2 
]]eJ~ll2) tj~. IlmJ~ll 

e2q0 ~/2. ( q,, m 2 q , ) , n ,  

while by (7) we have (qL e e l )  = (q~, m 2 ~ ) ,  so that 
we also have 

(qb, e2qb) >~ 1 , 

(q0, m2q0  > 1. (10) 

By virtue of  (9) and (10) ,  the UR (1) ,  (2) will hold 
in those states where the Aej-, Amk are negligible com- 
pared with unity, i.e. where qb is almost a joint eigen- 
vector of the Q .~  (and hence, as we assumed already, 
o f e . m ) .  

Now we take advantage of (4c) to remove these 
restrictions on q~. We can choose a partition of the unit 
EjE i = I, where Ej are mutually orthogonal joint spectral 
projections for the Q ~ ' s ,  associated to spectral sets 
each having a diameter ~< 6, where e is negligible com- 
pared to unity. The Ej commute with the q~, and if q0 
is any (unit length) state vector in the domain of 
[qm q~] s.t. Ei@v~0, the same will apply to ~ =  
( c19, Ejclg) - ~/Z.Eflg. The above argument applies to the 

uncertainties Ajq .  of  q~ in the state described by 
and, up to 6, (1) and (2) will hold for them. 

Now we show that 

Aq~.  Aq~>~ ~ ( 4 ,  Ej~)Aiq~,  . A j q , .  (11) 
J 

To see this, set ' - ( 4 ,  and that in q u - q ~ -  q~q~), note 
general (cf. (5 ) )  

II (A - A) gell 2 = (aA)2 + [( ge, Age) - A] 2 

>1 II ( A - ( ge, Age)) gell 2 , 

so that A j q . <  IIq~,~ II. By the definition of q~j we can 
majorize the RHS of ( 11 ) by 

(q~, E~q,)IIq~,~ll • I l q '~ l l  
J 

= ~_, IIq'~Ej~ll ' l lq'Ej~ll 
J 

= ~,  I lE jq '~ l l ' l lE jq '~ l l  
J 

~< IIE~q~qOU2 ) [ j ~ .  IIEjq'qOl[ 2) 

= A q ~ , .  A q . ,  

where q.Ej  c19= E i q . ~  (cf. (4c ) )  and the Schwarz in- 
equality have been used. 

Since ( 1 ), (2) hold (up to 6) for the q0 i and F~j( 4 ,  
Ejqb) = ( qb, qO) = 1, ( 1 ! ) implies that they hold for q~ 
too (up to the same arbitrary e and hence exactly).  

By the quantum condition (4) ,  the joint eigenvalues 
{ o-~. ~ } = (e, m)  of the commuting selfadj oint operators 
Q ~ .  lie in the manifold • = • + tO • _, where 

E+ = {o' l~%~= - o ' ~ ,  o '=  (e, m)  ; 

e2=m2,  e . m =  +1} 

are connected mani fo lds  where  the act ion ofL ~+ 
induced by that on 2-tensors is transitive; of  course L 
acts transitively on £ itself. 

If  we define a Euclidean norm on £ by 110112= 
ilel12= ilml12_, 2 - ~£~< ~0"~.~, the unit sphere E~)  in £ ~  
corresponds to the unit sphere S 2 in IR 3 by: 

o - ~ E ~ )  if ~r= (e, m) ,  e =  + m  , 

hence iff e ~ S  2. Furthermore, E+ is topologically 
equivalent to the tangent bundle TS 2 of  S 2, or to the 
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left coset space of SL(2, C) modulo diagonal matrices 
[6]. 

State vectors 05 with a very precise localization in 
spacetime, i.e. such that E~(Aqix) 2 is minimal are con- 
centrated on spectral values of the Q , , ' s  lying in £(~). 
For, if 05 is almost an eigenvector of the Qix~'s with 
eigenvalues ~r~ ~, we have 

~., (Aqix)2>~ ~_~ AqixAq, 
tx IX < ~ 

>/3'- ~ I(~, Qix.~)l ~>~11o-II, 
IX<~ 

and it is not hard to improve this inequality replacing 
the RHS by V/'2(1 + I1~r112)'/2; now if @ is any unit 
vector and Q ~ =  ~.o'ix~ dE(c0 is the spectral resolu- 
tion of the Qix~'s, one can prove from the above ine- 
qualities that [6] 

E (Aq ix )2~  l//~ f (1 + Ilcrll2) 1/2 d(05, E(o-) 05) . 
Ix 

(12) 

The minimum of the RHS of (12) is 2 and is reached 
when the measure d(05, E(o-)05) is concentrated on 
£(1 ). As discussed in [ 6], ~2 Ix (Aq Ix) 2 attains this min- 
imum for suitable states over QST. We note here that 
for the sake of very precise measurements in a given 
Lorentz frame, TS 2 effectively shrinks to S 2, that is 2£ 
shrinks to ~(1), the doubled sphere in N3 of radius A 2. 

In this context QST is described by the specific alge- 
bra of bounded operators discussed in the next section. 
In the same vein, the usual arguments in QM concern- 
ing a minimal volume and the number of states in a 
given volume of phase space carry over to our QST. 
They tell us that, if we think of the product of the 
Minkowski space Mo and £ as a phase space and ignore 
the ghost manifold ~, the minimal volume in Mo is 
( 2 ~ / ~ p )  4 . 

Furthermore, in any Lorentz frame, there are at most 
V / ( 2 ~ A p )  4 independent states over QST approxi- 
mately localized in a region in Minkowski space with 
Euclidean volume V. Thus the quantum nature of our 
spacetime automatically entails a discretization of Mo. 

4. The quantum conditions discussed in the previous 
Section are the starting point for studying quantum 
spacetime as a novel underlying geometry for QFT. 
This will be developed elsewhere [6] and here we limit 

ourselves to outlining the main ideas, the first results 
and the many problems that arise. 

Heisenberg's relations in QM are known to have 
many singular realizations because (q, p) are un- 
bounded and the same will apply to our relations (4). 
The regular realizations will be defined by requiring 
(4) to hold in the more restrictive Weylform: 

exp(iaixq Ix)exp(i/3ixq Ix) 

= exp( ½i~ix Q Ix ~/3 ~) 

xexp[i (c~+/3)  Ixqix] , (13) 

where exp(i~ixq Ix) are unitary operators continuous in 
the real four-vector c~. 

Representations fulfilling ( 1 3) correspond to (non- 
degenerate) representations ~- of a C*-algebra ~ gen- 
erated by the continuous functions F vanishing at 
infinity from ~ to Ll (~4) .  This correspondence is 
established by the equation 

7r(F) = g ( Q )  Jf(~)exp(iceixqix)d4c~ (14) 

where F :~ r~ 'Z~g(~ r ) f ,  with g ~ ' o ( £ )  and 
f E L I ( ~ 4 ) ,  

The * and product operations on ~ can be deduced 
from (14) whilst the C*-norm is given by 
sup,dl~'(F)ll. ~ describes quantum spaeetime and 
replaces the commutative C*-algebra ~'o(R 4) which 
describes the Minkowski space [R 4. 

The C*-algebra g'  can be identified with the algebra 
of all continuous functions vanishing at infinity from 

to the algebra of compact operators over a fixed 
separable infinite dimensional Hilbert space [6]. 

In the classical limit )tp ~ 0, g" reduces to the com- 
mutative algebra ~o(R4 X ~) ,  i.e. the QST reduces to 
IR 4 X { __+ 1 } X TS 2. Thus the ghost manifold ]£ survives 
in that limit but, as noted in Section 3, only the doubled 
sphere (of radius )t~) { +__ 1} X S 2 ~ £  (1) is releuantto 
uery precise measurements of localization in a specified 
Lorentz frame. This doubling of spacetime is reminis- 
cent of Alain Connes' theory of the standard model 
[ 7 ], although the context is different. 

One might wonder whether this doubling could be 
avoided in a variant of our theory, still symmetric under 
reflections, by setting Qix ~( * Q) Ix~ = 0. The arguments 
of the last Section easily show that one of the UR(1),  
(2) no longer holds in this case. However, changing 
our quantum conditions to (Qix~(*Q)ix~)2=a'L 
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a > 0, Q~ ~Q "~ = b. I would merely change the numer- 
ical values on the RHS of (1) and (2). 

The full Poincar6 group acts continuously as auto- 
morphisms 78 of~ '  so that, i fg  = (a, A),  ~-g i is induced 
by the transformation q,--* (Aq)~ + a,. The infinites- 
imal action of translations allows us to define spacetime 
derivations on $". 

The Weyl relations allow us to calculate functions of 
the quantum position operator qu by the von Neu- 
mann-Wigner-Moyal  formula 

f(q) = f f(a)exp(ia~q~')d4a, (15) 

where 

f ( ~ ) =  (2~)2 f(x)exp(--i°Lx)d4x 

is an L ~ function of  ~. These operators form a linear 
subspace which is not stable under multiplication: g" is 
spanned, as normed vector space, by elements of  the 
form (14),  i.e. 

g(Q)f(q), g ~ C o ( ~ ) ,  f~Ll(~4). 

On these elements it is possible to define spacetime 
integrals and space integrals at a fixed time. More spe- 
cifically the map 

--* ( g(Q)f(q)d3q g(Q)gf(q) 
q o  = t 

-g (Q)  f f(x, t)dax 

extends to a positive densely defined linear map of  
into Zo = {g(O) ; g ~ ~'o (~)  }- 

To get a C-values analogue of  ordinary integration, 
we may further integrate over 2£(1) with the normalized 
rotation invariant measure, as suggested by our remarks 
on localization (Section 3). But we have no Lorentz 
covariant prescription. 

This calculus allows us to introduce free fields over 
g~ as operator-valued functions of  the quantum varia- 
bles q~,. We can furthermore introduce interaction 
Hamiltonians corresponding to an ordinary Hamilto- 
nian density A :q51 (x) q52(x).., t#n(X ) : (where the sum- 
mation over spin and internal indices is implicit). 
Whilst the free Hamiltonian is unchanged by this pro- 
cedure, one finds that the Hamilton density H~(x) gives 
rise to an interaction Hamiltonian over QST given by 

H x ( t ) = A  f f d3q:ch,(q)...dpn(q): 
~,(I) q o = t  

= f d3xHeff(x)' 
x o = t  

(16) 

where Here(X) is an effective non-local Hamiltonian 
density in the free fields over the usual Minkowski 
space. 

For n = 3, e.g., in generic units, it takes the form 

Hell(X, t) = - ~  d4a d4b 

XA :q~l(x + Apa)qb2(X + Apb)c~3(x):lxo=t+ ap(b a)o 

• 6 ( a ,  b )  , 

where the fixed kernel 6(a, b) is given by 

b) = f do 'exp(-2ic tuo-~Vbv)  6(a, 
~,(1) 

sin 
- -  + 

2 I, y+ (a ,  b) y_ (a, b) 1 '  

,/+ (a, b) = 2llaob - boa +a X bll • 

The explicit calculations can be found in [6] and yield 
corrections which are at the lowest order quadratic in 
Ap (unless gravitational forces are explicitly intro- 
duced, Ap enters our theory only through the commu- 
tator [q~, q~] which depends on A2). 

The perturbative expansion of  the S-matrix based on 
(16) will of  course break Lorentz invariance, a con- 
sequence of our definition of space integrals in (16).  

One can expect that the ultraviolet divergences are 
substantially smoothed out by the non-locality intro- 
duced by the quantum nature of our spacetime. 

5. This note raises a number of  questions which will 
be investigated elsewhere. We mention the more rele- 
vant ones. 

Locality [ 8 ] becomes an asymptotic notion for free 
fields over QST [6]. Is it stable under (suitable) inter- 
actions? Is there a sharp notion of locality? 

Scattering theory should extend naturally to our QST 
since its large scale behaviour is classical and we have 
Poincar6 symmetry. What are the implications of effec- 
tive non-locality (cf. (16) )  for renormalization the- 
ory ? 
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The commutator manifold £ is a mere spectator in 
the interaction (16). Can the gravitational interaction 
give a deeper meaning and a dynamical role to £? 

Gauge theories over the QST g~ ought to be formu- 
lated in terms of Alain Connes' non-commutative 
geometry. Is it possible to formulate quantum gravity 
on ~ in a consistent way? 

Can curved spacetime be quantized in the same 
spirit? Black hole formation at a scale larger than the 
Planck length should of course not be excluded by our 
quantum conditions. 

Is there a Euclidean version of QFT over QST? 
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