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1. Introduction

Rigorous thermodynamics is {and will remain for years to come) a difficult but relevant issue. While spin
systems have been studied in some detail, not much is known about continuous systems. Only recently a
C*-dynamical model for fermions with pair-interactions was established by Narnhofer and Thirring {1,2]. It
is the aim of this article to prove that this system has exactly one equilibrium state at high temperatures
and low densities.

Let us shortly review the model and its setting:

In the algebraic framework of quantum statistical mechanics [3-7] a nonrelativistic fermion system is
described by a net of local observables,

(I xO)— I, A(DV), (1)

I an open time intervall, ¢ a bounded, open region in R*, and A(®) the corresponding C*-algebra. For
mathematical convenience this net is embedded in its C*-closure

RA) = (L AO) {2)

(IO CR

The algebra of observables A is idemtified with the self-adjoint, gauge invariant elements of a field alge-
bra F [8]. If we have only one type of fermions, then the unique {up to *-isomorphisms) C*-aligebra generated
by and a(f), f € L2(R®,€), f — a{f) antilinear, satisfying the canonical anticommutation relations,

{a(f).alg)} =0, {a(f).a*(@)} = (flpl,  fgeL*(RC), (3)

is the standard choice for 7. Operators smeared out with coherent wavefunctions! of the form
fap 1= (2m) e 0N e [2(RP, @) @

provide a convenient coordinate system in 5. Heuristically a, := a(f,) (resp. a}) can be interpreted as
the removal (resp. creation) of a particle concentrated around z = (g¢,p) in phase space T*(R"). This is
consistent with the interpretation of p, = ala. as a density operator in phase space.

~ The state? independent, dynamics of a net of local observables (R, A) is provided by a time-evolution
automorphism 7. For formions with pair-interactions such a “C*-dynramical model”, (R, A, 7), has recently
been constructed by Narnhofer and Thirring [1,2]. We give the precise formulation:

Theorem 1.1. Let 7° denote the free time evolution automorphism, 77(a(f)) = a(e "> *f), and consider
the following sequence of automorphisms,

T o = ’l’k [s] [s] o]
B =w@+Y 5 [ dtes) el Ee). Tl ae ®)
Bl o
where the interaction v,, € A is given by®
Up = f &' qd’q Epd’p af yay Vg —d'lIp— pl)ag pragp, (6)

Then 7 := s — lim, o 7" — where s — lim denotes* the strong (=pointwise) Limit in B(A) — exists for all
V{|r|,|s}) € L*(RE, d®rd®s) N C{R®) as a strongly continuous one parameter group of automorphisms of F.

1 They are characterised by minimal uncertainty with respect to the Heisenberg relation AxAp>1/2 and form a total set in L* (3.

Therefore 1 and a:=alf,), zelR® generate the unique CAR algebra over Lz(ma,C).
States are defined as positive, normalized linear functionals over A.
The integration runs over the region |ql,l¢’),|p|,|p’ | <n.

B{A) denotes the Banach space of bounded linear operators from A to A.
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The time evolution 7 is Galilei invariant and exists without reference to a special representation. In principle
one could therefore tackle problems of nonequilibrium thermodynamics. But work in this direction seems
difficult and much remains to be done. As a first result in this direction we note [9-10] that (R, A, 1) is
mixing,

Hm far (B} = llail 18],  Va,be A (7)

This means that the system behaves totally chaotic: every information gets lost since all propositions even-
tually become compatible. This clearly excludes the possibility of quasi-periodic observables. It is unknown
whether or not the system is in addition asymptotically Abelian,

zl—l—glé [l [a, r:(B)] ) =0, Va,be A (8)

This would mean that, as time passes, the disturbance due to a measurement diffuses so widely that local
observables are not affected at much later times. Roughly speaking, the system would act classically on a
magroscopic timescale.

The existence of equilibrium states for the Narnhofer-Thirring model has been established in {2]. The
algebraic framework provides an excellent framework for a rigorous discussion of equilibrium states: When
the dynamical law is changed by a local perturbation, which is slowly switched on and slowly switched off
again, then an equilibrium state returns to its original form at the end of this procedure. This condition of
adiabatic invariance is expressed [11] by the stability requirement [12],

lim t dt w({a, (6)]) = 0, Ya,b e A (9)

i—oa 1

In a pioniering work Haag, Kastler and Trych-Pohhmeyer [12] showed that the characterisation (9) of an
equilibrium state leads to a sharp mathematical criterion, first encourtered by Haag, Hugenholtz and Win-
nink [13] and more implicitly by Kubo [14], Martin and Schwinger [15]:

Definition. Let (IR, A, ) be a C*-dynamical sytem in the sense of [3]. The state w over A is defined to be a
{7, 3)-KMS state for some § € R U {+o0}, if

w(ab) = w(brip(a)) (10)

for all @, b in a norm dense, r-invariant *-subalgebra of A,, where .4, C 4 denotes the set of analytic
elements for 7.

Thus equilibrium states are characterised® by a real parameter 3, which has the meaning of inverse
temperature. The following result [4; 5.4.25] shows how the chemical potential p € R arises:

Lemma 1.2. Lei 3 € R/{0} andwg be an extremal (7, 3)-KMS state over A. Furthermore let t — ~; denote
the group of gauge automorphisms of A, v,(a(f)) = a{e™" f). Each extremal T-invariant extension ¢g,,, of wg
to F is a KMS state at value § for the *-automorphism t — 7y, where 4 € R is uniquely determined

by dp 014 = w14

The chemical potential y is related to the particle density, according to

4rn3\ 7! y
o= () [ @ [ @ wnteipen e RE (i)

We can therefore speak of the set Sy , of equilibriuin states for a given temperature T and particle densitj p.
This paper ic entirely devoted to the high-temperature-low-density regime where one expects that droplets’

4 The temperature T is defined as T=de/do; where € (resp. o) denotes the energy (resp. entropy) density. For the free fermion gas

both ¢an be easily computed and one finds #=1/kT', where k is the Bolizmann constant,
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disappear and the interacting equilibrium state differs only slightly from the equilibrium state for the free
time evolution. Nothing will be said about KMS states at low temperatures or high densities, where phase
transitions may occur.

We conclude this introduction with an identity that will be explored in detail in a more specialized
setting in the next chapter.

Theorem 1.3. Let A, N A, form a dense set in A and wg,, be a (1, 3, u})-KMS state. Then
wp,u{{a+ 75vigu(8))0) = wa u ({b, Tyvisu (@)}) + wo u (blrigvipy — Tipvisu) (@)}, (12)
for alla € A; M Are.

The second term on the right-hand side of the equation (12) can be expressed as a power series in 3, without
vonstant term, and iteration of the resulting equation will allow us to deduce the high temperature behaviour
of our system. In fact, if 7 = 7°, then iteration of the recursion relation

Wh (a4 e PR )0 (f) - alfan) = wh({a'(f3) - alfan) ale™Ho)}) 0 (13)

expresses the quasifree n-point function in terms of its two point functions ([4], p.49). In the interacting
case (12) this idea can now be combined with the perturbation expansion (3) in the coupling constant for r.

Proof. Applying the KMS relation we find

wpu{ab) = wp, . (O(Tipvisn — Tamisn)(a)) + wpu(briyvip.a))
= wp o (M7 Yisn — Tipiga)(@)) — W, (Tigrigu (@) + wp, . (1, Tiyvisu(a)}). (14)
and by linearity and reordering we find (12). |

2. High Temperature Expansion

The KMS condition connects the equilibrium state with the time evolution, allowing us to derive a high
temperature expansion for equilibrium states*. The basic strategy is to controll the n-point functions
{woulag, o b Gy pnty v Caan pan )i Qlyee oy P20 € R* n € N} by considering them as bounded func-
-Lions over the index set {¢1,.... P2 € R¥%ne IN}. More precisely, let ' denote the Banach space of bounded
complex antisymmetric functions T; ncﬁlRm" -+ [°°{IN), equipped with the supremum norm. If 1z , denotes
the family {wg .(a), ., - Qaonipan)i Q1. .- P € R n € N}, it follows that Q. € X and | Q]| = 1. The
identity (12), which is obeyed by KMS states, can be translated into an inhomogeneous integral equation
for Qg ., .
1- K.@)# - ij.!’i)gﬁ‘# = rf?,.w (15)
where I'; | seperates out the free two point function, Kg, is defined by the free time evolution and Lg ,
takes into account the difference between the free and the interacting time evolution, Hence €15, 1s uniquely

determined, and
o

ﬂﬁm = Z(Kﬁ,# + Lﬁ,#)nrfﬂ,,w (16)

=0

whenever |Kg , + Lg il < 1. Since we know that (r, 3, 1t)-KMS states exist for all densities g and tempez-
atures g, in the case of a unique {1z, the correspondence

wﬁ.#(asl,pl B a;ﬂ,p" Qgpi1,prsr + - - aq:zmp:ln) = Qﬁ,,u(‘h: rer Py @ty - rpQﬂ)a (17)

is one to one, and defines a unique (7, 7, u)-KMS state.

4 Stwilar i1deas have been applied to spin systems in the past. For the benefit of the reader familiar with spin systems we closely

follow the presentalion In [4).
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The details are are as follows. Let [' = {T';;n € N} € &, then we define®
o e_B{HO_F‘)
Fﬁ,ﬂ((Il, cePan) 1= 61,n(fq1,p1{1_qu2.p2)v

S n—l+1 e PHow)
(KguDnlgs: - p2n) 1= Z(él,n - 1) (hilm:;)-fthl) Tnei(g2, -+ s Pati=1, Grti+1s - - - P2n )y

I=1
(L,G,,ur)n((h, e :PZn = /d3 (k d3p2k Tk(Qh LI :sz QSk), ] g{?) Pk(Qg_k)? L :Pg’}?) (18)

where by = f. ., — Ziﬂal(fzﬁm]fzng)fzm;m, using the fact that in expressions of the form a(f;)...a{fn)

only the orthogonal part contributes. The functions Ty, € L} (R!?* 43¢ (k) dsp )) are pretty implicitly
defined by

[=_ =]
k k &) k
Z‘[daqg )...fpék) Trlq,- "*p?'ﬁqi et aqgk)’szc )a o p(e) - aq(k) p(k)aq(k) (k) - Qo) k) =
k=0 k et 1Ptz e P2k
n (_)t+1
+ L3 >
= Z ) aqr 10 aq'i-vi,PimlH'Q‘i+1,Pi+1 e G‘QZmPZn x
i=l
e o)
(=™ e—B(Ho—u)
x Zl — Jim. d(Oh..Bm) 75, (vn), Loy [75, (vn), 0 Fc—ﬁ(H—a—mﬁ“’p‘ - (19)
m=

{Ulrﬂ]m

This obviously leads to an expansion of the functions Ty in powers of 4. Up to order three they have been
explicitly computed in [16]. If Lg , vanishes, then K{j generates the quasifree n-point functions from the
two-point function I'y ., and the following result tells us via equation (16) and (17) that there is only one
(., 3, 1)-KMS state for given J and p.

Lemma 2.1. Let H, be a positive selfadjoint operator acting on L*(R* d*z). Then
Kgull < 1+ e, (20)
foralde RY, peR.

Proof. We have to evaluate | Kga .| = supyry<; 1KguT||- Let {hhiem D {hi}ier, . n) be a set of orthonormal
functions, then

- e~ BlHL—p) .
2 N 3 —_—
“?“121 “Kﬁ,#r” o “ilf]lzl n(i?ll'lfpzl} (Q‘:J:]j];mﬂ Z(hl} 1 + _.ﬁ(H —_u) fth,pl) T — 1((12' e ’pn+é_1'qn+!+17 N 7p2")
—-A(H, —u) )
€ 2
(th ,i?)pe]R“ ;' l| 14e- 14 e-BH Y fas, I’])l
e~ B(Ho—p) 2
< su e
B (q,p)fme 1 4 e—AHc—p} faw ,
< (14 e )2, N

O

Thus uniqueness of the KMS state is ensured if [|[Lg || < {1+ e°#)~'. Introducing an additional momentum’
cutoff, the norm of Ly, will be bounded in the next section.

5 We will show in Appendix A that the following definltion reproduces {12} in the form given in (15).
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3. The Narnhofer-Thirring Model

The knowledge of truely interacting theories like the Narnhofer-Thirring model is still scant and we can so
far only release the spatial cutoff, such that 2, becomes

= / dqd’q | Epd’ afpag Vel p—pNag gy (22)
Ja

Pmarx

We have to evaluate [Lg .| = supyry= IiLg,.T'll. By definition,

og
sup ||Lg, Il < sup sup /d3qgk)---d31}gﬂ? Telgr, 2wl 1) Telgl™, B
=1 ITI=1 (g1,...pan )eMI2n 0
o
k -
< sup sup Zfd3q§k)---d3p§£ Teldr, - Poni @i 2500, (23)
ITN=1 (g1,..pen )R 20
Let us now have a look at the definition (19) of the functions Ty. If we rewrite
- a cuk -] ctit - B_ﬁ(HOU#)
q]-ifgo / d(ﬁlﬁm) [Tﬁm(vs )1["'![Tﬁ1(Us ),0. (mﬁ;‘:ﬂﬁhpl)}u (24)

[D ,.5] "

in ferms of anticommutators, then every new order in the coupling constant introduces a product of two
creation and two annihilation operators. In the first order there are two nonvanishing anticommutators for

3 A 7 Q x x L] ™ e_ﬁ(HO_'u) .
[Eats [ Epi Viia=lio =51 75,00 005,155, (ag s, (;;-;—ﬂ——)fﬁ (25)

raz

and we are left with two products of two creation and one annihilation operators. If we expand the next
comrmutator into anticommutators, each of the 241 creation and annihilation operators has two non vanishing
anticommiztators with the interaction. Therefore in second order we have 2 - (2 4 1) - 2 terms of length (=
number of creation and annihilation operators) 5 = 2- 2+ 1. By the same line of arguments the number of
nonvanishing terms in third order is given by 2- (24 1)-2-(2-2+ 1) - 2. Taking into account the 1/m! factor
from the definition {19), we find that the pumber of terms can be estimated by

2. (2+1}-2-(2-24+1)-...-2-(m-2+1)-2
1-2.3-...-m

1 1
=2m+1_(2+1)_(2_|_§).___.{2+_T;_L-) £2m+13m, (26)

for arbitrary order m. As far as the normal ordering is concerned, we have to (anti-)commute 2m creation op-
crators from the m-th order of the interaction to the left side of the products. This can be done with only one
nonvanishing anticommutator, because, as we pointed out before, in expressions of the form a(f1)...a(fs)
anly the orthogonal part contributes®. While the normal ordering introduces new combinatorial coefficients,
the substantial putt in finding bounds for ||Lg | is unaffected by the details of this normal ordering, so we
will not dwell on this tedious point. The total number of terms is bounded by

213 x 2.(2m) < 4 x 8™ (27)

Now we have to te-cxpress all the time evolved operators in terms of the original ones. For example,

75, (Gg,p) = [ d*Gdp (fopie™™ f35) ag s (28)

b This fact wiil be illustrated in Appendix B.



The momentum cutoff introduced in (22) makes it easy to bound these integrals,

2 oo e v {202+ 60\ ( B .)
/d qdapl(fq,ple fq,p)f = (—(1+2ﬁi) ) exp “"‘*““"1 +2ﬂ1p2

< Cl (pma.x)- (29)

It remains to find a bound for the first anticommutator: For all ¢,p € R® and 0 < |8| < # < o0, we find

—H,(B—fr) “Ho(8-01) || 4r2p?
€ € T Drnax
/daq’ . dSP’Kfq’,P’iqum)l < o-Bn } p—Hop 3 /daqfdaxIfq’.p’(x)fqm(-":)|
2.3
< ﬂ%@f}i /daq’e—-}(q—q Y = C2(Pmaz)- (30)

Thus [Lg .| € Cy 3 oo_o 4 x 8™F™CT||[VI|7*, and this proves our main result:

m=0

Theorem 3.1, Let Cy < 1/8. For the Naruhofer-Thirring model with a momentum cutoff (22) there exists
one and only one KMS state for 8 < Opax(pe), i fixed, where the dependence of G, {pt} on p is given

through
1 4Cy

1= + '
1+ 6_’8""‘""'“ 1- Sﬁma.xcl ”V” 1

(31)

We believe that the momentum cutoff can be removed, but we were not able to settle this question. For a
discussion we refer the reader to [16].

Appendix A

We will now motivate the definition (18) and show how the inhomogeneous integral equation {15) can be
derived from the identity (12). Let us first consider the case n=1. Then (12} reads as follows

wp, (a* (1 + e7PHo=1) £)a"(£5)) = {a*(f2), ale P M= £1)} + we, (6 (F2)(Tipvigu — T Yigw) (@™ (1))
= (fale™P®m1) 1) 4wy (0" (fa)(1ip72.p — id)(a* (e7PH 1) £1))).(32)

Therefore by linearity and the replacement of fi by (1+ e #Ho—#))=1f  one finds

e~ BHc—p) X (=)
U.pular,- - p2) = Upm |y pan,m feera) — > ol d(Os...0m) x
me .85
' ° o . e_ﬁ(HO_ﬁ‘)
(a7 (00, Lo 50000, s e o)
=I‘E:#(q‘1"'"p2)+Ln6|.ﬂQﬁ.#(QI1"'!p2)' (33)

Let us now set z = (g, p) and consider the case n=2. Applying the same procedure we find

Qpulz1,. .- 20) =Tg (21, 23)08 u(22, 24) — T3 (21, 24008 (22, 23) + Lig w0 (21, .. -, 24)
=Kp.0s (21, 24) + Lp uOp u(21,. .., 22). (34)

A short moment of reflection will convince the reader that the second line holds true for arbitrary n. Together
with the Kronecker symbols in the definition of (18), we find {15, =T5 , + Kp,.{s , + Lg (g 4, and (15)
is a consequence of linearity.



Appendix B -

We will now show that terms of the form

{a’(f1}...a"(fu) alg)}, (35)

produce only one single operator. Let us consider the case n = 3. If the functions fy, fa, f4 are linear
dependent then (35) vanishes. The same holds true if fi, f2, fa, g are linear independent. Now assumne that
9,¢1, €2 forms an orthogonal basis for the linear space spanned by fi, fa, f3. Then

{a"{(glf)g + (ealfi)en + (e2l fr)ez)a® (gl fa)g + (ealfa)er + (el fa)e2)a* ((glfa)g + (exlfa)er + (ealfa)ez), alg)}
= {gifillelf)le2lfs){a”(g)a" (e)a™(e2), a(g)} — (glfr)(e2l fo)ler] fa){a* (g)a* (e1)a* (e2), alg)}
—{ed fiX{glf2)(ezifa){a™ (g)a” (er)a™(ea), al(g)} + (ea| Fi) (el o) (gl fa) {a* (g)a™ (e1)a* (e2), alg) }
+(eal fil(glf2) e fa{a™(g)a® (e1)a" (€2} alg) } — (eal fid(eal f2) (gl fa){a" (g)a* (e1)a* (e2), alg) }

= ((glfl)(ﬁllfz)(ﬁsza) —Aglfi){ealf2)(exlfs) — (el fidglfa)(e2|f3)
+ (e1]fi){e2| f2)(glfa) + (2l 1) (gl fa){eal f3) — (eal fr) (e lfz)(ylfa)) x a*{ev)a"(ez). (36}

The saine line of arguments holds trie for arbitrary n € N.

Acknowledgements. My gratitude is due to Prof. H. Narnhofer and Prof. W. Thirring for their encourage-
ment.
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