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A systematic classification of Feynman path integrals in quantum mechanics is 
presented and a table of solvable path integrals is given which reflects the progress 
made during the last 15 years, including, of course, the main contributions since the 
invention of the path integral by Feynman in 1942. An outline of the general theory 
is given which will serve as a quick reference for solving path integrals. Explicit 
formulas for the so-called basic path integrals are presented on which the general 
scheme to classify and calculate path integrals in quantum mechanics is 
based. 0 1995 American Institute of Physics. 

I. INTRODUCTION 

Path integrals had been introduced in physics for the first time by Feyrmum in his thesis.’ By 
means of his path integral Feynman gave a new formulation of quantum mechanics “in which the 
central mathematical concept is the analog of the action in classical mechanics. It is therefore 
applicable to mechanical systems whose equations of motion cannot be put into Hamiltonian form. 
It is only required that some sort of least action principle be available.“’ The idea to formulate 
quantum mechanics in terms of the Lagrangian instead of the Hamiltonian goes back to Dirac.* 
Feynman’s first publication on path integrals appeared in 194K3 Historically of utmost importance 
was Feynman’s generalization of the path integral to quantum electrodynamics4 from which he 
derived for the first time the “Feynman rules” providing an extremely effective method for 
performing calculations in perturbation theory. 

One of the great advantages of the path integral is that it gives a global (integral) solution of 
the quantum mechanical problem in question. This is in contrast to the standard approach to 
quantum mechanics based on the Schriidinger equation which gives a local (differential) formu- 
lation of the problem. Due to its global character, a proper definition of the path integral depends 
crucially on its regularization prescription and on the imposed boundary conditions. In the lan- 
guage of functional analysis, the question of the boundary conditions is closely related to the 
problem of finding the appropriate self-adjoint extension of a given Hamiltonian. The main point 
is that the path integral contains all this information by its very construction! Of course, in the 
evaluation of a particular path integral, one exploits information provided by functional analysis, 
the theory of special functions, and the theory of differential equations. Therefore the interplay 
between these fields and the theory of path integrals is very important to obtain useful results. 

In this contribution we restrict ourselves to path integrals in quantum mechanics. Until fairly 
recently, only a few examples of exactly solvable path integrals were known; see the books by 
Feynman and Hibbs,’ and by Schulman,6 which give a good account of the state of art at the time 
of 1965 and 1981, respectively. However, the situation has drastically changed during the last 15 
years, and it is no exaggeration to say that we are able to solve today essentially all path integrals 
in quantum mechanics which correspond to problems for which the corresponding Schrijdinger 
equation can be solved exactly. (This, of course, excludes all classically chaotic systems.) It thus 
appears to us that the time has come to look for a systematic classification of path integrals in 
quantum mechanics. Our goal therefore is to evaluate as many path integrals as possible in order 
to build up quantum mechanics from the point of view of fluctuating paths. A comprehensive 
Table of Feynman Path Integrals will appear soon’ and was already announced in Ref. 8. In this 
contribution we shall present the main ideas on how our classification scheme works and which 
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classes of path integrals are exactly solvable. By our presentation the interested reader should be 
able to treat almost every path integral in quantum mechanics by a proper combination of the 
various methods. In addition our intention is to give a quick reference guide for solving them. For 
coherent state path integrals we have to refer to the literature.“” In the following we are not able 
to give a complete list of references. A very extensive list of the literature on path integrals 
comprising more than 1500 papers will be given in our monography” which is in preparation. 

II. GENERAL THEORY 

A. Formulation of the path integral 

Let us set up the definition of the Feynman path integral. We first consider the simple case of 
a classical Lagrangian Z(x,i)=(m/2)i2-V(x) in D dimensions. Then the integral kernel 
(x’,x”&~, T=-f--t’) 

K(X”,X’;T)=(x~~le-i~(f”-~‘)/~IXr)O(tn_f,) 

of the time-evolution equation 

Y(X”,t”)= RD 
I 

K(xN,x’;tN,t’)Y(x’,t’)dx’ 

is represented in the form (Feynman path integral) 

I 
x(P)=xn E 
x(t’)=x’ .%k(t)exp( i I,:[ t i*- V(x)]dt]. 

(1) 

(2) 

(34 

CW 

Herewehaveusedtheabbreviations e=(t”-t’)lN=T/N,xj=x(tj) (tj=t’+Ej, j=O,...,N),and 
we interpret the limit N + ~0 as equivalent to’ E --+ 0, T fixed. 

The next step is to consider a generic classical Lagrangian of the form 
~(s,U=(m/2)g,b(q)~u~b- V(q) in some D-dimensional Riemannian space M with line element 
ds*=g,b(q)d@ dqb. This case, as first systematically discussed by Dewitt,‘* requires a careful 
treatment. The Feynman path integral is most conveniently constructed by considering the Weyl- 
ordering prescription in the corresponding quantum Hamiltonian. The result then is (see, e.g., 
Refs. 13-17 and references therein) 

K(q”,q’;t”,t’)=[g(q’)g(q”)l- ‘I4 ;z[ &j”“‘*ij; I, dwfi d%i? 

E g,b(Sj)A~qA4ib-eV(qj)-EAV(qj) 
II 

7 @a) 

z gab(q)4a4b-V(q)-Av(q) dt . 1 I (4b) 
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Here ~j= ~(qj+qj-l) denotes the midpoint coordinate, Aqj=(qj-qj- 1). and AV(q) is a well- 
defined “quantum potential” of order ii* having the form [P, = d, In &, g(q)=det(g,,)] 

h2 
AUs)= 8m [gabr,rb+2(gabr,),b+gab,=b]. (5) 

The midpoint prescription (MP) together with the additional potential term AV is obtained in a 
completely natural way as an unavoidable consequence of the Weyl-ordering prescription in the 
corresponding quantum Hamiltonian 

h2 ii* 
H=--ALB+V(q)=-%g 

-7 2m 
- “*d,g 1’2gabd,, + v(q) 

= i& (g”bp,Pb+2p,g”bPb+P,Pb~“b)+V(q)+~V(Q)~ (6) 

where pa= - ih(a,+ ;I?,) denotes the momentum operator conjugate to the coordinate qa in M. 
Of course, choosing another ordering pmscription leads to a different lattice definition18-20 in Eq. 
(4) and a different quantum potential AV. However, every consistent lattice definition of Eq. (4) 
can be transformed into another one by carefully expanding the relevant metric terms (integration 
measures and kinetic energy term). 

In an alternative approach the metric tensor is assumed to be given as a product according to 
gab = k&b -*’ Then we obtain for the Hamiltonian 

h2 
H=-~ALB+V(q)=~h=cp~~bhcb+AVP~q)+V(q) 

and for the path integral (PF-product-form) we obtain 

y k&Ih(S)?~b- v(q)--Avdq) dr 
I I 

(7) 

=z( &$‘*?i; 1 Q,c m  

Here AV,, denotes the well-defined quantum potential 
. 

AVw(q)=; [gab~,rb+2(gabrb),b+gab,ab+2hachbc,(lb-hac,ahbc,b-hac,bhbc,al (9) 

arising from the specific lattice formulation (8) of the path integral, respectively, the ordering 
prescription for position and momentum operators in the quantum Hamiltonian. We only use the 
lattice formulation (8) in this article unless otherwise (and explicitly) stated. 
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B. Transformation techniques 

Indispensable tools in path integral techniques are transformation rules. In order to avoid 
cumbersome notation, we restrict ourselves to the one-dimensional case. For the general case we 
refer to Refs. 12-32 and references therein. We consider the path integral (3) and perform the 
coordinate transformation x = F(q) . Implementing this transformation, one has to keep all terms of 
O(e) in Fq. (3). Expanding about midpoints, the result is 

Xexp ~ F’*(4j)(Aqj)*- EV(F(qj))- ~ ~~~j~: . 
J 

Note that the path integral (10) has the canonical form of the path integral (4). It is not difficult to 
incorporate the explicitly time-dependent coordinate transformation x = F( q,t) .21s24 Then we ob- 
tain 

(11) 

with the prefactor [F’(q,t) = dF(q,t)ldq, IQq,t) = dF(q,t)ldt, etc.] 

Xexp F 
is 11 

q” ~‘(z,t”)F(z,t”)dZ- 
I q’ F’(ZJ’)~(ZJ’)dZ 1 II (12) 

where the path integral representation for the kernel j? is given by [Fj = F( Sj , ij), ii = )( fj + tj- t )] 

&2 q* 
-- fjm F,4-Em I 

F'(z,t)~(z,t)dz . 
j II (13) 

It is obvious that the path integral representation (13) is not completely satisfactory. Whereas the 
transformed potential V(F(q,t)) may have a convenient form when expressed in the new coordi- 
nate q, the kinetic term (m/2)F’Tcj* is in general nasty. Here the so-called “time transformation” 
comes into play which leads in combination with the “space transformation” already carried out 
to general “space-time transformations” in path integrals. The time transformation is imple- 
mented (see, e.g., Refs. 13, 21, 22, 24, 26-32 and references therein) by introducing a new 
“pseudotime” s”. In order to do this, one first makes use of the operator identity 

j& =f,(-v> fl(x,i)(HIE)fr(x,f) f’(x’t)’ (14) 
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where H is the Hamiltonian corresponding to the path integral K( t”, c’ ), and fi,Jq, t) are functions 
of q and t, multiplying from the left or from the right, respectively, onto the operator (H-E). 
Secondly, one introduces a new pseudotime S” and assumes that the constraint 

I 
SW 

0 
ds fi(F(q(s),s)lf,(F(q(s),s))=T=t”-t’ (1% 

has for all admissible paths a unique solution s”>O given by 

S” = I 
t” dt 

I 

t” ds 
= 

t’ ficwlf-r(-v) t’ F’2(q(h+ 
(16) 

Here one has made the choicef,(F(q(s),s))=f,(F(q(s),s))=F’(q(s),s) in order that in the final 
result the metric coefficient in the kinetic energy term is equal to 1. A convenient way to derive the 
corresponding transformation formulas uses the energy dependent Green’s function G(E) of the 
kernel K(T) defined by 

G(q”,s’;E)=(q”l,_~_i,Iq’)=; Irn 
0 

dT ei(E+ie)n”K(q”,q’;~). (17) 

For the path integral (3) one obtains the following transformation formula (here we consider the 
time-independent one-dimensional case only) 

I m dE 
K(xN,x’;T)= 

-0s 2aie 
-iET/?iG(q~t,qr;~), 

G(q”,q’;E)= f [F’(q”)F’(q’)]“*/; ds” i(q”,q’;s”), 

(18) 

(19) 

where the transformed path integral j? is given by 

&q”,q’;d’j=;~( &) ‘“!I 1 dqk 

Xexp E (Aqj>2-eF’2(qj)(V(F(qj))-E)--AV(qj) I) 
5 4*-F’*(q)(V(F(q))-E)-AV(q) ds , 1 I 

(20) 

with the quantum potential AV defined by 

(21) 

A rigorous lattice derivation is far from trivial and has been discussed by many authors. Recent 
attempts to put it on a sound footing can be found in Refs. 25, 30-32. In terms of stochastic 
processes the time transformation is formulated as follows: 
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f , 
8(Rx,) .@WxlMd--x’hp - f It: V(x(t))dt 1 

dE = f -e iET/h m 
R 27rh f 1. 

ds” 
0 

Er[R q,) -@WqlW(q(s))-x’) 

Xexp -t 
I ‘1 

‘” [F’*(q)(v(F(q))-E)+Av(q)lds . 
I 0 

(22) 

Here flR,x’) denotes the set of paths in R which start at x’ at t’, the S functions describe the 
boundary condition, and .@lV[x] is the stochastic measure for the Feynman process in real time, 
or the Wiener process in imaginary time after a Wick rotation. 

Further refinements are possible and general formulae of practical interest and importance can 
be derived. Let us note that also an explicitly time-dependent “space-time transformation” can be 
formulated similarly, cf. Refs. 7, 11, 21, 24. 

By the same technique the separation of variables in path integrals can also be stated, cf. Ref. 
33. Let us consider a D =d+ d’ dimensional system, where x denotes the d-dimensional coordi- 
nate and z the d’-dimensional coordinate. For simplicity we consider the special case where the 
metric tensor for the x coordinates is equal to f2(z)1, and the metric tensor for the z coordinate is 
diagonal and denoted by g=g(z) with*elements gi=gii(Z), i= l,...,d’. Furthermore, we incorpo- 
rate a potential of the special form W(x,z)= W(z)+V(x)/f2(z) which also includes all quantum 
potentials arising from metric terms. Then (g = II gf) 

(z+ W(z))]dfi 

=[f(z’)f(z”)]-“‘j- dEx ‘I’;(x’)‘Ph(x’$jf;)=:fl L%(t)& 

Xexp L 
t” m 

(‘H ?i 1’ 
z (g.i)‘- W(z)- f+ 1 I dt . 

Here we assumed that the d-dimensional x-path integration has the spectral representation 

f x(t")=x" x(t')=x' $&(t)exp( f I:[ t i’-V(x)]dt} = / dEx ~~(x’)~\Irx(x~)e-~~~T’~. (24) 

C. Group path integration 

We consider the Lagrangian 5Z’(x,i)=(m/2)g,$axb- V(x) (x~Rp+*) as formulated, say, in a 
not necessarily positive definite space with signature 

(g&)=diag(+l,..., +1,-l,...) -1). 
-- 

p times q times 
(25) 

We want to evaluate the corresponding path integral in an abstract way by exploiting path inte- 
gration over group manifolds. In order to illustrate the general method, let us assume that XER~ 
and V(x)=V(lxl). W e consider the short-time kernel of (3) (e + 0) 
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(26) 

Next we introduce D-dimensional polar coordinates with polar variable r and angular variables 
4 ,...,&I-2, d. 13S34ThenwehaveV(lXjl)=V(rj) ~dXj_~.Xj=~j_~~jCOSOj-~,j,where~,-!iiS 

the angle between the two vectors xj- i and xj which can be expressed by means of the addmon 
theorem for polar coordinates in D dimensions in terms of the angular variables. We now seek an 
expansion of the function e z ‘OS @j--lj in terms of the angular variables. This expansion is con- 
structed in two steps. First we use the formula (Ref. 35, Chap. IX) 

0 

-II m 
,zcos8= 4 

2 W)C (It- 4z~+.tz)cy(cos O), 
I=0 

(27) 

with v= (D - 2)/2, where C,Y are Gegenbauer polynomials and I, a modified Bessel function. The 
addition theorem for the M linearly independent real surface (or hyperspherical) harmonics Sf” of 
degree I on the SD-‘-sphere has the form 

k sg(a,)sfYa,)= j&7 2z;“,2 cy-2)‘2(cos 01,2). /.&=I (2% 

Here fi=x/r denotes a unit vector in R D, Q(D) = 2#‘2/r(D/2) the volume of the 
D-dimensional unit sphere, and M = (21 I-D - 2)( I + D - 3) !/I! (D - 3) ! . The orthonormality re- 
lation is 

I da Sf(f&S$(a)= S,I,8PP,. (29) 

As a result we get the expansion formula 

(30) 

Insertion into the path integral yields the “partial wave expansion” 

=(yr~~y-w~ g q(a’)qyfi”) 1’ 
l=O /.L=l 

Nz( s)N,bI 1: rk drk 

N 

XII exp 2 trj++,)-ei Vrj> 11+(0-2)/2 

j=l 1. 
’ ] ($ rjrj-1) (31) 

=(r’r”)(l-D)‘2i E Sf(a’)S~(fk”)K1+cD-2j,2(r”,r’;T), 
l=O /L=l 

(32) 

where the radial path integral is given by 
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(33) 

Kl+cD-2j12(r”rr’;T) = lim t%+(D-2)/2Erprp-ll 

Xexp E (Arj)2-EV(rj) II E ~r(t)CLl+(o-2),2[r21exp (i ftr[z i2-V(r)]dt]. 

(34) 

The nontrivial functional weight is defined as 

(35) 

with zj = mrjrj- ,lieh. Therefore we have achieved a twofold result. On the one hand we have 
expanded the exponential ez ‘OS @ in terms of the spherical harmonics, i.e., the matrix elements of 
the group SO(D), and on the other we have separated the D-dimensional path integral into an 
angular part and a radial path integral. The appearance of the modified Bessel function is inter- 
preted as a nontrivial functional weight in the radial path integration of Refs. 13,34. Of course, the 
radial path integral cannot be further evaluated if the potential V(r) is not specified. An example 
is given in Sec. III B. 

This procedure can now be put into a more general context.36 We consider the generic La- 
grangian Z(x,%)=(m/2)g,~lb- V(x) (XEW+~ ) and its corresponding short-time kernel 
K(Xj ,Xj- i;~). The short-time kernel is evaluated by harmonic analysis with respect to the sym- 
metry group of the Lagrangian. This is usually a Lie group. In order to do this one seeks for an 
expansion of ezxi-1’4 in terms of representations of the group. This may be done in generalized 
polar coordinates involving generalized spherical harmonics. We assume that we can introduce a 
generalized polar variable r and a set of generalized angular variables (0) such that 
xv= 7Gy( 8, ,...) ep+q-l) (v=l,..., p + q), where the 6’s are unit vectors in some suitably chosen 
(timelike, spacelike, or lightlike) set36 with V(x) = V( r), say. To perform the integration over the 
spherical harmonics the scalar product Xj- t ax. must be rewritten in terms of a group element, say, , 
a function f(g,y?igi), such that e J- “’ “=j = ezfcg,T-‘lgj). since g=g,:Jlgj is a group element We Set 
F(g) = ezfCg). The expansion then yields 

F(g)= I dEx dk c k$-)D;(g), i+;= 
I F(g)D;*(g-‘)dg, G m 

(36) 

where dg is the invariant group (Haar) measure. J dEk stands for a Lebesgue-Stieltjes integral 
which includes discrete (J dE, -+ X,) as well as continuous representations. The summation 
index m may be a multi-index. d, denotes (in the compact case) the dimension of the represen- 
tation; otherwise we take 

dk - r D;(g)D;:*(g)dg= @LX’)&t,nt~ 
Jti 

as a definition for d, . S(X,h’) can denote a Kronecker delta or a S function, depending on whether 
the variable X is a discrete or continuous parameter. For instance, in D-dimensional polar coordi- 
nates the functions D&, (leNO, m EZ) are called associated spherical harmonics, and the Dko 
(I E No) are the zonal harmonics. For the path integral we obtain + 
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~(x”,x’;T)=K(T”J’,{~‘~,B’};T)=~ dE, dx c D;(g’-‘g”)K,&-“,#;T), (38) 
m 

Kx,,( d, 7; T) = lim N-J &) N’2F: / drki ( &) ‘p-1’2”2( &) q’2i,“(S,e-zl 

~tA~j)2-eVt~j) t (39) 

with zl=mr~71-,liefi. We see that (m/27ri&t)(P-“2)‘2 (im/2~~ti)q’2~~[z]e-z plays the role of 
a generalized functional weight in the path integral. The path integration over the group elements 
could be performed due to their orthonormality. Choosing a particular basis in the group it is then 
possible to expand the Dk(g’-’ ” g ) in terms of the wave functions Wi,({ e}), corresponding to 
the Casimir operator of the group. In Ref. 36 the authors concentrated on the cases where the 
harmonic analysis can be performed either with the D:(g) as the characters of the group or the 
zonal spherical functions. However, the method is more general. In the case of SO(D) the Casimir 
operator is the Legendre operator and the wave functions are the hyperspherical harmonics s,(n) 
which are products of Gegenbauer polynomials. 

Using the technique of group path integration it is possible to choose different coordinate 
space representations to derive various path integral identities. Examples are the path integral 
identity for the Poschl-Teller and modified Poschl-Teller potentials.36 

Another aspect of group path integration is the so-called interbasis expansion for problems 
which are separable in more than one coordinate system. In the case of potential problems, these 
potential are called superintegrable. This property is very closely connected with the necessary 
condition that such problems have several integrals of motion, and that the underlying dynamical 
symmetry group allows the representation of the problem in various coordinate space representa- 
tions. Superintegrable systems can be found in Euclidean space, as well as in spaces of constant 
curvature. The basic formula is quite simple being 

Ik)= 1 dl C&r (40) 

where Ik) stands for a basis of eigenfunctions of the Hamiltonian in the coordinate space repre- 
sentation k, and J dl is the expansion with respect to the coordinate space representation I with 
coefficients Cl,k which can be discrete, continuous, or both. The main difficulty is, in case one has 
two coordinate space representations in the quantum numbers k and 1, respectively, to find the 
expansion coefficients Cl,k. Well known are the expansions which involve Cartesian coordinates 
and polar coordinates. In the simple case of free quantum motion in Euclidean space, this means 
that exponentials representing plane waves are expanded in terms of Bessel functions and spheri- 
cal waves (a discrete interbasis expansion), see Eq. (27). 

This general method of changing a coordinate basis in quantum mechanics can now be used 
in the path integral. We assume that we can expand the short-time kernel, respectively, the expo- 
nential e”j-r”Si, in terms of matrix elements of a group according to Eq. (36). Here a specific 
coordinate basis has been chosen. We then can change the coordinate basis by means of Eq. (40). 
Due to the unitarity of the expansion coefficients Cl,k the short-time kernel is expanded in the new 
coordinate basis, and the orthonormality of the basis allows to perform explicitly the path integral, 
exactly in the same way as in the original coordinate basis. 

From the two (or more) different equivalent coordinate space representations, formulas and 
path integral identities can be derived. These identities actually correspond to integral and sum- 
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mation identities, respectively, between special functions. The case of the expansion from Carte- 
sian coordinates to polar coordinates has been studied by Peak and Inomata37 with their solution 
of the radial harmonic oscillator. The path integral solution of the radial harmonic oscillator in turn 
enables one to calculate numerous path integral problems related to the radial harmonic oscillator, 
actually problems which are of the so-called Berselian type, including the radial Coulomb prob- 
lem. 

Other expansions are not so well known. This is mostly due to the fact that either the involved 
coordinate systems are not familiar, or that the expansion coefficients have a complicated struc- 
ture. Let us, for instance, consider the following two problems: 

(i) Free motion in R2 in elliptic coordinates. One makes use of the expansion (Ref. 38, p. 185, 
h =pd/2) 

exp[ip(x cos cr+y sin a)]=2: i”ce,(cw;h2)Mk’)(p;h)ce,(v;h2) 
n=O 

+ 2 5 i-‘se,( a;h2)M’_‘i( p;h)se,( v; h*), (41) 
?I=1 

where the se,, ce, , and M, (I) are Matthieu functions and ,u>O, OS vs T the elliptic coordinates in 
R2 (x= d cash /.L cos V, y=d sinh ,X sin V, and d is the interfocus distance). Performing the group 
path integration using Eq. (41) yields the path integral identity [me,(z)=fice,(z), 
me-Jz)= -i&e,(z)] (Refs. 39 and 40) 

Bv( t)d2( sinh2 ,U + sin2 V) 

“‘(sinh2 pussin v)(fi2+ ti2)dt 1 
1 m - =- 

27r =I p dp e-i?ip2Ti2m 

n= --m 

o 

XMi’)* (,ui:$f)Mr)( ,u”;z)mez( v’;$f)men( v”;?). (42) 

(ii) Free motion in R3 in prolate spheroidal coordinates. One makes use of the expansion 
(Ref. 38, p. 315) 

exp[i pd(sinh p sin Y sin 8 cos qS+ cash ,U cos v cos e)] 

l=O h=-1 

i’+2”e’“@S;(1)(cosh p;pd)ps;(cos v;p2 d2)ps,“(cos B;p2d2). 

(43) 

@O, 0~671; 0<+<2~ are prolate spheroidal coordinates, and Sy”‘, psi are spheroidal func- 
tions. d is the interfocus distance. Again performing the group path integration in terms of the 
spheroidal wave functions yields39*40 
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I 
l*(P)=/.&” am 

I 
v(P)= Y” 

At’)=P v(f)=&, 
&(t)d3(sinh2 pussin v)sinh p sin v 

I 
f$(t”) = 4” 

40’)=4 

y d2((sinh2 p+sin2 v)(b’+ C2) 

+ sinh2 p sin’ vd2) + 
h2 

8md2 siti p sin2 v] dt } 

=io .$, p (I+n)l e 
21+ 1 (l-n)! in(4”-4r) 

1: p2 dp e-ifrp2Tt2m 

W (t) 

Xps;(cos v’;p2d2)ps;(cos vn;p2d2)S;(‘)*(cosh ,&‘,pd)S;(‘)(cosh $‘,pd). (44 

Further examples are the path integral representations (see, e.g., Refs. 39-41) 
(iii) for elliptic coordinates on the sphere s’2), 
(iv) for elliptic cylindrical coordinates on the sphere d3’, 
(v) for pseudoelliptic coordinate systems on the pseudosphere AC2’, 
(vi) for pseudoelliptic cylindrical coordinate systems on the pseudosphere Ac3’, 
(vii) for the harmonic oscillator in W2 in elliptic coordinates, and 
(viii) for the generalized Kepler-Coulomb problem in prolate spheroidal coordinates. 

D. Klein-Gordon particle 

The path integral formulation of a Klein-Gordon particle was already presented by 
Feynman42 in one of his classical articles. It goes as follows: One considers the Green function 
corresponding to the Klein-Gordon equation 

(n+M2)G(x”,x’)= - S(x”-x’), (45) 

where 0 =gp”“v,V ,,= $ - A is the Klein-Gordon operator, and S(x) the four-dimensional S 
function. M  is the mass of the particle. According to Ref. 42, 43 we can now write G(x”,x’) as 

* co 
G(x”,x’) = & 

I 
dr e-iM2~‘2AK(XS,X’;7), 

0 
(46) 

where OCs< T is a new timelike variable (“fifth parameter”). The new propagator K(x”,x’; T) 
describes time evolution in T from x’ to x” and has the following path integral representation: 

K(x”,x’;T)= 

This path integral satisfies the Schriidinger-like equation 

i 
dK(x”,x’;~) 

dr 
= - Elx.K(x”,x’; T) (48) 

together with the initial condition lim nO K(x”,x’; T) = 8(x”-x’). Therefore, the propagator can 
be seen as a usual quantum mechanical path integral, defined on a four-dimensional manifold with 
metric g,, . Potentials and magnetic fields can be incorporated in an obvious way. 
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E. Dirac particle 

We cite the path integral representation for the one-dimensional Dirac particle (Refs. 5, 46 
46) (p,= -2X(?,) 

K(x”,x’;T) = (x”lexp - i Z’(u, px+ mC2Uz+ v(x)) Ix’> 

[ I 

I 

x(t”)=x” 
= 

x(t’)=x’ 
.@vct)exp( - f jzT VOdt). (49) 

V may be a matrix-valued potential. The support property of the measure 9% is defined in such a 
way that it selects paths of N steps each of length CE (E= T/N in the lattice representation) that 
start at x’ in the direction LY, and end at x” in the direction p, where a and p take the values 
“right” and “left.” The path integration then is a summation over all reversings of directions (Ref. 
5). a, and a, are the Pauli ‘matrices. Simple applications are the free particle,‘“6 and a point 
interaction.47 

P. The fermionic path integral 

The fermionic path integral in the coherent state representation is defined as follows1o (for 
simplicity we restrict ourselves to a Fermi system with a single spin variable): 

K( ii”, $;T)= 
Xt”)=iJ 

rl(t’)= ‘I’ 
.%j(t)@~(t)exp 

N-l 

= lim n 
I dkv-k d?lN-k 

N-m k=, 

. N 

Xexp GN?JN+~ C ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ * 
j=l I 

Here ~~ and Gj denote Grassmann variables satisfying the anticommutation relations 
{ qk , v[} = { Gk , G1} = { Gk, vl} = 0 for all 1 and k. The boundary conditions are imposed by requiring 
q(t) tobefixedatt=t’, ~(t’)=~‘,and ?Jtobefixedatt=t”, ~t”)=;ij’.H(Tj,q;t) isobtained 
from a given Hamiltonian H(a+,a; t) in “normal ordered form” by replacing the fermion creation 
and annihilation operators according to a + --+ Tj, a + 77.9 

G. Perturbation expansions 

The general method for the time-ordered perturbation expansion is quite simple. Let us as- 
sume that we are given a potential W(x) = V(x) + V(x) in the path integral and suppose that W is 
so complicated that a direct path integration is not possible. However, the path integral Kcw 
corresponding to V(x) is assumed to be known. We expand the integrand of the path integral 
containing q’(x) in a perturbation expansion about V(x). The result has a simple interpretation on 
the lattice: the initial kernel corresponding to V propagates during the short-time interval E unper- 
turbed, then it interacts with f in order to propagate again in another short-time interval E unper- 
turbed, and so on, up to the final state. One then obtains the following series expansion (Refs. 5, 
47-56) (x E R): 
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K(x”,x’;T)=K(“)(x”,x’;T)+ i n=, ( -i)“(El /t:i”drj /:wdxj) 

XV(x,-,)K(“)(x,,x,-l;t,- &)v(x n )K(“)(x” x *f--t ) 9 RI n . (50 

Here we have ordered time as t’=t0<tlCt2<~~~Ct,+,= t” and paid attention to the fact that 
K( tj - tj- t ) denotes the retarded propagator and thus is different from zero only if tja tj- t . 
Several problems in path integration which are definitely non-Gaussian, non-Besselian, or non- 
Legendrian can be addressed by a perturbation expansion approach. Let us mention the incorpo- 
ration of point interactions47s5’-56 and boundary conditions at finite distances. Also llr (Refs. 48, 
52) and llr2-potentialss2 can be treated. 

A specific kind of a perturbation expansion was developed by Devreese et a1.48-50 by per- 
forming a Fourier transformation of the potential which enables one to make an exact path 
integration of the emerging quadratic Lagrangian problem. One obtains the infinite series (c> 1) 

1 
--I 

c+im %(I”)=# 
27ri 

ds esTlh 
c-i- I x(t’)=x’ 

Bc(t)exp[ - k jty[ F i2+ V(x)]dt) 

= ii (- l)nj-D (2;$j j-D c2$+ ~(W-j.D t2$‘+ hJ 
n=O 

exp(( ilh)x’ * IZy= 1 kj- (ilh)x”. k,J 

X[s+(k$2m)]***[s+(k,,+++*+k,)2/2m] 

exp[(ilh)(x’.k,-x”.kg)] 
=’ (-l)“/@ ,sDtI 1~0 (22)’ ‘(kj-kj-1)(s+k$2m)***(s+k2/2m)* n=O n 

(52) 

c(k) is the Fourier transform of the potential V(x). 

iii. BASIC PATH INTEGRALS 

In this section we present the path integrals which we consider as the basic path integrals. 

A. Path integral for the harmonic oscillator and related path integrals 

The first elementary example is the path integral for the harmonic oscillator. It has been first 
evaluated by Feynman3 We have the identity (x ER) 
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I 
x(t”)=x” 

x(t’)=x’ 
C%(t)exp 2 

r 1 

t” 
I, (i2- 02x2)dt 1 

=Jzexp( ~[(~~‘+,.‘)cot~~-~]) 

= c e-’ 

lIENO 

4.+1/2q z) “2 --L&4 ~x’jHn( g4 

X exp 
i 

- z (P+x”2) . 
1 

2367 

(53) 

(54) 

The expansion into wave functions has been achieved by means of the Mehler formula; H,(x) 
denotes the Hermite polynomials. 

The path integral for general quadratic Lagrangians can also be stated exactly as (xER~) 

J 
x(t”)=xn 
x(t’)=x’ Sx(l)exp( i Jty S(x,i)dt) 

=(~)D’2~~exp(~S,,[x.,x’]). (55) 

Here Z(x,$ denotes any classical Lagrangian at most quadratic in x and i and SCI[x”,x’] 
= J:: B’(xc, ,icl)dt the corresponding classical action evaluated along the classical solution xc1 
satisfying the boundary conditions x&t’) =x’, x&t”) =x” (here we assume that the classical 
dynamics allows only a single classical path). The determinant appearing in Eq. (55) is known as 
the van Vleck-Pauli-Morette determinant (see, e.g., Refs. 12, 57 and references therein). The 
explicit evaluation of SCI[x”,x’] may have any degree of complexity due to complicated classical 
solutions of the Euler-Lagrange equations as the classical equations of motion. The path integral 
(55) includes the following important cases: 

1. The linear potential 
2. The (time-dependent forced) harmonic oscillator 
3. A particle in a crossed time-dependent electric and magnetic field 
4. Oscillators with magnetic fields 
5. Oscillators with friction 
6. Coupled oscillators 
7. Penning trap potential 
8. Oscillators with two-time actions 
9. Second derivative Lagrangians, i.e., with a term (n/Z’)2 which can describe stiffness of 

polymers or sulfate tensions in statistical mechanics 
10. The periodic-orbit theory of Gutzwille?59 

Furthermore, the formula for the general quadratic Lagrangian (55) serves as a starting point for 
the semiclassical expansion, and the general moments formula in the path integral.60-62 Let us just 
mention the semiclassical expansion formula as derived in Refs. 60, 61. It has the form 
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K(x”,x’;T)=KW&“,x’;T) ( 

XVrn~)(tl)~~-Vcnj)(tj) 
I 

du 

R”i (2rrih)“jJ 
xnl...xnj 

Xexp & (u-a)t[W-1+W-1SC-‘i5W-‘](u-2i) 
i’ I) 

, 

where KWKB( 2’) is the semiclassical kernel as given, e.g., by Eq. (55), and 3 has been expanded 
up to second order in coordinates and velocities. The following abbreviations have been used: 

ai=(pi ,@), bi=( vi vi), (57) 

Gp(t,t’)dUi(t)dvj(t’) 

(58) 

s=v-z‘w-‘c, z:=c. (59) 

Here 4 and jj denote an average over the classical paths. p, Y are integration measures, (a,.) is a 
scalar product with respect to these measures, and 

q*J’)= 
Gad*,*‘) G(t,t’) 
G(*, *) 9 GPO,*‘) 

is the Feynman Green function, i.e., the Green function of the small disturbance operator in phase 
space. 

Based on the solution of the harmonic oscillator and the quadratic Lagrangian, respectively, it 
is possible to derive expressions for the generating functional63 in a perturbative approach which 
is also applicable in quantum field theory (Feynman graphs!). They are based on the moments 
formula for arbitrary functionals F of positions and momenta (the analog of Wick’s theorem in 
quantum mechanics).6’ Some important moments formulas can also be found in Ref. 62. 

Furthermore very satisfying expressions exist for the trace of the Euclidean time-evolution 
kernel, i.e., the partition function in terms of an effective potentia15p28*64 
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dxo K(xo,xo;-iT)=x ewEaT”= 
n 

f Z@x(r)exp[ --k /oT[T;2+V(x)]dfi 

= dxo e - TW, (x0)/b (60) 

The effective potential Wl(xo) is evaluated in the following way. One considers the smeared 
version of the potential V(x) according to 

Va2(,o)(x~) = Jim & Wr)ev( - (‘~~t2), 

a2(xo) = 
TWX,) 

2 
coth 

(61) 

(62) 

where fl(x,) is the frequency of a harmonic oscillator in the trial Lagrangian which emerges in a 
Fourier mode expansion of the partition function. Then one considers the quantity 

2 sinh (ClT/2) 
@,(x0 ,a23) = Vaqxo)(xO) - i f12(x0b2(x0) + no aT 

and minimizes it such that the equations 

@(x0) = 2 & Va2(xo) = gg v&(x0) 
0 

(63) 

are fulfilled. The emerging effective potential is denoted by W,(xo) and inserted into the expres- 
sion (60) of the partition function. The result is a generalization of Ref. 5. For details we refer to 
the literature.5’28*@ 

B. Path Integral for the radial harmonic oscillator 

In order to evaluate the path integral for the radial harmonic oscillator, one l&s to perform a 
separation of the angular variables, as discussed in Sec. II C. Here we are not going into the 
subtleties of the Besselian functional weight (35) connected with the Bessel functions which 
appear in the lattice approach,‘3*25V34737V65 which is actually necessary for a correct definition and 
explicit evaluation of the radial harmonic oscillator path integral. One obtains (modulo the above 
mentioned subtleties caused by the functional weight ph[ r2]) (r ’ , r”Z 0) 
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( L2 - 02r2)dt 1 
‘=:z( &) N’2F: 1: drkfi Zi[‘r’rll*exP( k!l [ 2 A’rj-eV(rj)]) (66) 

=$T mw 
ih sin oT 

exp - s (r’2+r”2)cot oT 
] 
I 

‘( i?z’zT) 

2y $ip c e-ioT(2n+X+l) r(nJ;+ 1) (y ,,y) 

TIENO 

(67) 

(6% 

where Z,(z) denotes the modified Bessel function, and L:*)(z) a Laguerre polynomial. The ex- 
pansion into the wave functions has been performed by means of the Hille-Hardy formula. 

C. Path integral for the Piischl-Teller potential 

There are two further basic path integral solutions based on the SU(2) (Refs. 31, 36, 66, 67) 
and SU( 1,l) (Ref. 36) group path integration, respectively. The first yields the following path 
integral identity for the Piischl-Teller potential (0 <x< 7r/2) : 

i m 

E odTe I 
iET/fr 

I 

x(P)=2 

x(t’)=*’ 
B(i)exp[ i Itf[ :X2- $ ( a:iii: + TiiP)]dt] 

m r(ml-LE)r(LE+ml+ 1) 
=m “ln 2X’ ‘In 2XN r(ml+m2+ l)T(mr-m2+ 1) 

1 - co!j 2x’ 1 - cos 2x” 
X 

1+ cos 2x’ 1 + cos 2x’ 

2 2 2 2 

X2F1 -LE+ml,LE+ml+1;m1-m2+1; 1 -cos 2x< 
2 

X2F1 -LE+mlrLE+ml+ l;ml+m2+1; 1 +cos 2x> 
2 

=c qpa)(y)@~qx”) 
PIENO 

E,-E ’ 

(69) 

(70) 
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1 n!r(a+p+n+i) 1 112 

@?“‘(x)= 2(a+P+2n+ l) r(a+n+ l)r(p+,+ 1) 

X(sin ~)~+l’~(cos ~)~+~‘~P~~~)(cos 2x), 

h2 
E,,=% (cu+p+2n+l)=, 

(71) 

(72) 

with mIj2= g/3? a), LE = - + + i-/n. Here x(,) denotes the larger, smaller of x’, x”, 
respectively. 2Fl(a,b;c;z) is the hypergeometric function, and PpB)(z) are Jacobi polynomials. 
Here we have used the fact that it is possible to state closed expressions for the (energy dependent) 
Green’s functions for the PSschl-Teller and modified Piischl-Teller potentials (see below), re- 
spectively, by summing up the spectral expansion.68 

D. Path Integral for the modified Pijschl-Teller potential 

Similarly one can derive a path integral identity for the modified PGschl-Teller potential. One 
gets (ml,= = 30 rt d-2mElh), L,=g-l+v), r>O) 

i m 

h 0 I 
dT eiET,h 

I 
dt”)=r” 

r(t’)=r’ 
.@r(t)exp[ i Ity[ F i2- g ( :Iii/r4- cii’)i]dt} 

m T(ml-L,)T(L,+ml+ 1) 
‘TET r(m,+m2+ l)r(mt-m2+ 1) 

(cash rt co& rtr)-(ml-m2)(td r’ td rn)ml+m2+1~2 

X2F1 -L,+m~,L,fm~+l;m~-m~+l;cos~~ r 
< 

X2F1(-L,+ml,L,+m~-l-l;m~+m2+l;~~2 r>) 

NM .\yjlk~ tt2)*(r’)qpjlk~ ,~z)(~N) + m 

=c 

*;I .k2)*(rr )qyl .k2)( rrr) 

n=O En-E I 
dp 

0 h2p2/2m - E ’ 

The bound states are explicitly given by 

qpl vk2J(r)=~rl ‘k2)(sih r)2k2-“2(cosh r)-2kl+3/2 

X2F1(-n,-kr+k2-~+1;2k~;-sinh~ r) 

(73) 

(74) 

(754 

1 2d(2K-i)r(2kl-n-i) li2 
= r(2k2+n)r(2kl-2k2-n) 1 (si& r)=&2- l/2 

X (cash r) 2n-2kl+3/2Xp[=k2-1.=(k~-k2-n)-ll 
n C-4 

#I AZ) - l 
2(2~-1)r(kl+kz-K)r(kl+k=+K-l) "' -- n rw2) 1 r(kl-k2-kK)r&-k2-Kf 1) ’ (75c) 

(76) 
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with k,=~l+v), k,=$(1*77), n=O,l,...,NI,<k,-k2-f, ~=k,-k,-n. The continuum 
states are [~=$(l+ip),p30] 

x2Fl(kl+k2-~,kl+k2+~-1;2k2;-sinh2 r), (774 

N(kl *q- l sinh vrp 
-- 

P Wk2) 
2,rr2 [r(k,+k=-K)r(-k,+k=+K) 

E. Path integration on the pseudo-Euclidean plane 

In this section we summarize the various path integral representations on the pseudo- 
Euclidean plane. On the pseudo-Euclidean plane there are according to Kalnins and Miller69-7’ ten 
coordinate systems which separate the Schrodinger equation. A glance on the various representa- 
tions shows that indeed various self-adjoint extensions (and new interbasis expansions) are re- 
quired. However, because a thorough treatment of the path integration on the pseudo-Euclidean 
plane will be given elsewhere,39 and in order not to make the article too lengthy, we restrict 
ourselves to the statement of the representations and some short comments. Details will be pre- 
sented elsewhere.39 

We shall use the following notation: J,(z) is Bessel function, K,(z) is the modified Bessel 
function E(“‘)( z) are even and odd parabolic cylinder functions, Ai( z) denotes the Airy function, 
and Mei(zi and Me13’(z) are Mathieu functions. In the parametric coordinate systems d is a 
positive parameter. 

The technique how to define path integrals in spaces with indefinite metric is described in Ref. 
36. In the polar system (see II, below) a similar interbasis expansion as Eq. (27) has been used 
which is known from hyperbolic geometry. In the three parabolic systems, one has used the results 
from the inverted (repelling) harmonic oscillator and the linear potential, respectively. In the 
elliptic and hyperbolic systems (VI-IX see below) an interbasis expansion similar to Eq. (41) has 
been used which generalizes Bq. (41) to pseudo-Euclidean geometry. The last system (X below) is 
the most difficult one. Here it is necessary to consider the self-adjoint extension of the inverted 
(repelling) Liouville problem. We now have 

I. Cartesian, (uo,ur)=u EIF): 

I 
v(t”)=v” 
v(t’)=v’ .G&(t)exp( $ [tF(tii-ti:)dt) = & exp( & lu”-u’/‘) (78) 

I dp ihT 
= R(l,l) 4a2 exp - 2,p2+ip.(uw-u’) . 1 

II. Polar, p>o, TER: 

-@TP(l)P (p=-/I=+=)+ $ 1 I dt 

--$- Kik( - ipp”)K,,( ipp’)e-ihp2T’=? 

(79) 

030) 
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III. Parabolic 1, 6, ~;/ER: 

2373 

J%(t) %qt(t)(12- v2)exp v2)(i2- i2)dt 1 
= I f R d[ R d!!& ,-ifrp2T12m 

x IlY( $+ $) 12E’Oi,,,i,(e-idL~P’)E(Oi12+i~,p(e-i~’4~rj’) 

(eiw’4&7f’) 
i 

i”/4~g’)E’_ol’2-i~‘~(e-id4Jzf;q’) x 

(81) 
i”/4~~r)E(1~‘2-i5/p(e-ilT/4~~‘) 

IV. Parabolic 2, 5, PER: 

dp = I f d5 
R 

R ~ ,-iiip2T/2m 

i 
Ir( i+ $) /2E’01,2-i~,p(~~r)E(Ol,2-i~tp(~~r) 

’ IlY( i+ ~)12E”ii2ii/p(~S1)E(-Liil-ilip(~gl) 

V. Parabolic 3, &~ER: 

f W’)=P am f vO”)=rl” W)=5' v(t')= )I' 
= 16f: $ fR d{e-ifiP2T’2m 

XAi - cl+& [ ( $)pzi3]Ai[ -( s”+&$)p2’3] 

XAi - $+fi-$ p [ ( p ) ‘“]Ai[ -( $+&-$)p2’3]. 

(82) 

(83) 
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VI. Elliptic 1, a ER, b>O: 

Bb( t)d’( sinh2 a - sinh2 b) 

u-sit&* b)(h2-d*)dt 

(84) 

VII. Elliptic 2, a ER, b>O: 

Bb( t)d2( sinh* a + cash* b) 

(sinh* u+cosh* b)(ti2--h*)dt 1 
=;];pdp I, dk ,-~ke-ifiP2TI*q,feik 

&+@*( &). (85) 

VIII. Hyperbolic 1, y 1 , y2 E W: 

e*(t) f (sinh y,-sinh y2) 

(sinh y,--sinh y2)(ji-$)dt 
I 

= & /f p dp fR dk e-~k,-ifiPZT~*mp,,feik( 2-i T;i $f) 

l 
IX. Hyperbolic 2, y 1 , y2 E R: 

2 m m 

=7 0 I 
dk k sinh rk 

I 0 
dp ~~~'npzT'2"~jk(~y~~)~j~(~y~~)~j~( -ieYip)Kik(ieYip). 

(87) 
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X. Hyperbolic 3, yl, y2 ER: 

1 m 

I 

k dk 
=‘;;z P dp e 

- ifrp2T12m 

0 2 sinh rrk 
Kik( ipeYi)Kik( - ipeYy) 

+ C 4nJ2,(peY~)J2,(peY~)K2n( -ipeY;)K2,(ipeY;) . 
flEN I 

F. General formulas 

2375 

038) 

For the classification of solvable path integrals, one also requires a few additional formulas 
which generalize the usual problems in quantum mechanics in a specific way. Here one has, e.g., 

(i) Explicitly time-dependent problems according to, e.g., V(x) H V(x/& t))/l*( t), 
(ii) Incorporation of 6 function perturbation according to V(x) H V(x) - ys(x--a) (one 

dimension), 
(iii) Incorporation of 8 function perturbation according to V(x) H V(x) - p#(x-u) (one 

dimension), 
(iv) Boundary problems with impenetrable walls (half space, infinite boxes) which can be 

derived from (ii) by considering the limit y + 03 (Dirichlet boundary conditions), 
(v) Boundary problems with impenetrable walls (half space, infinite boxes) which can be 

derived from (iii) by considering the limit p + 00 (Neumann boundary conditions), 
(vi) Point interactions in two and three dimensions. 
(i) For the first class of problems, there is a general solution provided l(t) has a specific 

form. For [(t)=(ut*+2bt+c)“” one finds the general formula21 

&), (89) 

with l’=c(t’), l”=lJt”), etc. Here wt2=uc-b*, and KU,,” denotes the path integral 

Kw&“,z’;s”)= o’*z*-V(z) ds . I I (90) 

Another class of time-dependent problems has a time dependence according to V(x) H V(x 
-f(t)). Here one gets (Ref. 72) (q’=x’-f’, f’=f(t’), etc.) 
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Equations (89),(91) are special cases of Eq. (11) [note that fi”(q, t) =0 in ECq. (91) and therefore 
an additional term in the prefactor A(t”,t’) appears]. 

(ii) In the second class of general formulas we consider the incorporation of point 
interactions,73 i.e., a S function as an additional potential located at X=U with strength y. This 
kind of problems can be solved by an exact summation of a perturbation expansion according to 
Sec. II G. However, in general a closed formula can only be stated for the corresponding Green’s 
function. One obtains53 

i 1: dTe’E”fif~~~~~ sx(t)exp[ f ftT[ t i2-V(x)+ 78(x-u)]dt] 

=G(“)(x” x’+E)+ 
G(“)(x”,u;E)G(“)(u,x’;~) 

, , l/y-- G(“)(u,a;E) ’ (92) 

GCc3(E) is the Green’s function for the unperturbed problem (~0). Possible bound states are 
determined by the poles of G(E), i.e., by the equation GCV)(u,u,E,)= l/y. By repeating the 
procedure it is possible to incorporate an arbitrary number of 6 function interactions. 

(iii) The third class incorporates 8 function perturbation. This is achieved by considering the 
path integral formulation of the one-dimensional Dirac particle’ together with a point interaction.47 
Taking the nonrelativistic limit one obtains for a 6’ function perturbation in the path integral 
representation 

i fom dTeiET1hl::::l’_l:” B(t)exp[ $ I,:[ Ti*-V(x)+pG’(x-a)]dt] 

=G(“)(x” x’.E)- 
G~~,Y,)(x”,u;E)G~~~(u,x’;E) 

, 9 #“) ,,,,v(wz;E)+ l/P ’ 

8”)( a u*E) = 
d2 

.XY ’ ’ m G(")(x,y;E)- $ &X-Y) 
)I 

. 
x=y=a 

(93) 

(94) 

Note that in the path integral (93) the formal expression “G~,~(u,a;E)” is automatically regular- 
ized by the removal of an “ultraviolet divergence.” This regularization prescription is not put in 
“by hand” but is a result. This example shows in a nice way how boundary conditions are 
contained in the proper definition of a path integral and can be extracted by careful analysis. By 
repeating the procedure it is possible to incorporate an arbitrary number of 6’ function interac- 
tions. 

(iv) The fourth class of general formulas is obtained if we consider in EQ. (92) the limit 
y-t --03. This has the consequence that an impenetrable wall appears at x= a. The result then is 
for the motion in the half space x>a (Refs. 54, 55) 
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i m 
K 0 f dT eiET,h f .m=x" x(t')=x' 9&~x(t)exp( i ftF[ f i*- V(x)]dt} 

=G(“)(x” x’.E)- 
G(“)(x”,u;E)G(“)(u,x’;E) 

9 I G(“)(u,u;E) * 
(95) 

Possible bound states are determined by the poles of G(E), i.e., by the equation Gcv(u,a,E,) = 0. 
Furthermore, for the motion inside a box with boundaries at x = a and x = b one obtains (a <x < b, 
Dirichlet-Dirichlet boundary conditions) 

dT eiET,i f X(t”)=XN x(t')=x' 
G(v(x”,x’;E) G(“)(x”,b;E) G(“)(x”,u;E) 

G(“)(b,x’;E) G(“)(b,b;E) G’“‘(b,u;E) 

1 G(“)(u,x’;E) G(“)(u,b;E) G(“)(u,u;E) 1 
= 

G(“)(b,b;E) G(“)(b,u;E) 

G(“)(u,b;E) G(“)(u,u;E) 

I dt 

(96) 

(v) In an obvious way, as in the previous case, we can also obtain a path integral represen- 
tation in a half space with Neumann boundary conditions at x = a by letting p -+ --oo in Eq. (93)47 

i m 

h 0 f dT eiET,fi f W)=x” x(t')=x' 5$JaJx(t)exp( f ftF[ t i*- V(x)]dt] 

cG(“)(~” x’.,F)- 
G~~,V,)(x”,u;E)G~~~(u,x’;E) 

9 9 - v G ~x~,,(~,~;E) * 
(97) 

The same procedure as for the motion in a box u<x< b with Dirichlet boundary conditions can be 
applied for Neumann boundary conditions at both boundaries 

G(“)(x”,x’;E) G!;‘(x”,b;E) G;?(x”,u;E) 

G!X?(b,x’;E) ‘&:&(b,b;E) G;$r(b,u;E) 

= 
GF;Vw)(u,x’;E) G!;),,,(u,b;E) i;~;$w;E) 1 

6 $0&E) G~;V),u(b,~;E) . 

G!;(,,,(u,b;E) d~&(u,a;E) 

(98) 

Similar results can be obtained for Dirichlet boundary conditions at one boundary, and Neumann 
boundary conditions at the other. Radial boxes and rings can be taken into account as well, and 
potentials which depend on the absolute value 1x1 by combining the results for Dirichlet and 
Neumann boundary conditions, i.e.,47 
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i ID 

h 0 f dT eiET,* f +(0=X" 
x(t’)=x’ 

!@x(t)exp( i ftF[ t X2- V([x[)]dt} 

= G(“)(Xft x’.E) - G(“‘(x”,0;E)G”)(0,x’;E) G(“t ,x, x”,O;E)Gy$O,x’;E) 
, ? 2G(“)(O,O;E) - 2+$(O,O;E) . 

(99) 

(vi) It is also possible to incorporate a two- and three-dimensional S function perturbation 
located at x=a in the path integral56173 

i m 

h 0 f dT eiET,fi f x(t”)=x” +(t')=x' @;y;x(t)exp( $ ftF[ t i2- V(x)]dt] 

fi2 X(X-1) ?jJ 
w=g 142 +m’ (101) 

r(“)W)=ago,cgl A %a 3 ’ (102) 

( fQ< $,VE R). For the notation: g(r) is a solution of the corresponding unperturbed problem, and 
LY is the (regularized) coupling. The regularizing functions go,xgt,x are defined by 

g(r) 
go,A= lim (o), gt,k= lim 

g(r)-go,AGf(r) 
r+O+ GA tr) 9 ’ 

MO+ 

(103) 

where Gf( r) denotes the asymptotic expansion of the irregular solution G,(r) of the unperturbed 
problem. Generally one has G:(r) = Gi”( r) +additional terms, where G$,” denotes the free par- 
ticle case. Two special cases of G:(r) can be stated for X=b and 1, i.e., for the Schrodinger 
operator in two and three dimensions, respectively, which will be sufficient for our purposes. Then 

G?,2(r)=G\y&r)= - 5 $ ln r, 

G:(r)=% 

(W 

(105) 

By these means, the incorporation of a point interaction in two and three dimensions located at 
x=a in the path integral is then defined by Bq. (100). By repeating the procedure it is possible to 
incorporate an arbitrary number of two- and three-dimensional S function interactions. 

IV. A TABLE OF EXACTLY SOLVABLE FEYNMAN PATH INTEGRALS 

We are now in the position to present a systematic classification and a list of exactly solvable 
Feynman path integrals. Of course, due to lack of space, an actual table cannot be presented in this 
article. We therefore list the name of the potential, i.e., the name of the quantum mechanical 
problem, and the basic path integrals to which the path integrals in question can be reduced and 
the method by which it can be solved. 

In our table we order the quantum mechanical problems according to their underlying basic 
path integral. This classification is for one-dimensional potentials closely related to the classifica- 
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TABLE I. Application of potential problems. 

Quadratic Lagrangian 
Radial harmonic 

oscillator 
Piischl-Teller 

potential 
Modified P&&l-Teller 

potential 

Infinite square well 
Linear potential 
Repelling oscillator 
Forced oscillator 

Saddle point potential 
Uniform magnetic field 

Driven coupled 
oscillators 

Two-time action 
(Polaron) 

Second derivative 
Lagrangians 

Semiclassical expansion 

Generating functional 
Momenta formula 

Effective potentials 
Anharmonic oscillator 

Liouville potential 
Morse potential 
Uniform magnetic field 
Motion in a section 

Calogero model 
Aharonov-Bohm 

problems 
Coulomb potential 

Smorodinsky-Winternit 
potentials 

Coulomb-like potentials 
in polar and parabolic 
coordinates 

Nonrelativistic 
monopoles 

Kaluza-Klein monopole 
Poincare plane 

+magnetic field 
+potentials 

Diiac Coulomb problem 
Anyons 

Scarf potentials 
Symmetric top 
Magnetic top 
Higgs oscillator 

on spheres 

Reflectionless potential 
Rosen-Morse potential 
Wood-Saxon potential 
Huh& potential 

Manning-Rosen potential 
Hyperbolic Scarf potential 

Hyperbolic barrier potential 

Hyperbolic spaces 
of rank one 

Kepler problem 
on (pseudo-) spheres 

Natanzon potentials 

Hyperbolic strip 
Higgs oscillator 

on pseudospheres 

Hermitean spaces 

tion scheme based on Schrodinger’s factorization method as reviewed by Meld and H~ll,~~ re- 
spectively, to the related classification scheme of GendenshteIn7’ based on supersymmetric quan- 
tum mechanics.76 

Path integrals on homogeneous spaces have been discussed in Ref. 36 (spheres and pseudo- 
spheres, bispherical coordinates). A comprehensive treatment of the various coordinate space 
representations can be found for two- and three-dimensional Euclidean space, and the two- and 
three-dimensional (pseudo-) sphere in Ref. 40. 

Our classification is according to the following scheme: 
(i) The general Lagrangian which is at most quadratic in x and i (the harmonic oscillator 

being the simplest and best known example), 
(ii) The radial harmonic oscillator, 
(iii) The Piischl-Teller potential, 
(iv) The modified P&&l-Teller potential, 
(v) Path integrals on homogeneous spaces (group path integration, interbasis expansions), 
(vi) Explicitly time-dependent problems, 
(vii) Path integrals with point interactions, respectively, boundary conditions, 
(viii) Path integrals with infinite boundaries at finite distances (half spaces, infinite walls, 

boxes, and rings), 
(ix) Step potentials. 
In the two tables we try to summarize our knowledge on how to solve path integrals in 

quantum mechanics. In Table I we display tbe various possibilities how the fundamental path 
integral solutions, i.e., the harmonic oscillator, the general quadratic Lagrangian, the radial har- 
monic oscillator, the Poschl-Teller and the modified Piischl-Teller potential, respectively, can be 
used to solve by path integration a wide range of other potential problems, including potential 
problems in spaces of constant curvature (i.e., Euclidean space, sphere, and pseudosphere). 
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TABLE II. Group path integration and perturbation expansion. 

Group path integration 

Euclidean space 
Pseudo-Euclidean space 
Spheres 
Single-sheeted pseudospheres 
Double-sheeted pseudospheres 
Bispherical coordinates 
Pseudobispherical coordinates 
Klein-Gordon propagator 

Perturbation expansions 

6 functions 
B functions 
Point interaction for Diiac particle 
Dirichlet boundary conditions 
Neumann boundaty conditions 
Boxes and radial rings 
Absolute value potentials 
Point interactions in RZ,RR 
Step potentials 

Also some miscellaneous results are listed. All these problems can be called either Gaussian, 
Besselian, or Legendrian, respectively. 

In Table II we list the kind of problems which are either related to path integration on group 
spaces, including their spectral expansion in more than one coordinate system, and path integral 
problems which are definitely non-Gaussian, Besselian or Legendrian at all. These problems can 
only be addressed by a perturbative approach, i.e., the exact surnrnation of a perturbation expan- 
sion. 

Of course, in the case of general quantum mechanical problems, more than just one of the 
basic path integral solutions is required. However, such problems can be conveniently put into a 
hierarchy according to which of the basic path integral is the most important one for its solution. 
For instance, in the path integral solution for the ring potential (an axially symmetric Coulomb- 
like potential), this hierarchy puts the radial harmonic oscillator path integral solution first, be- 
cause it requires a space-time transformation to transform the Coulomb terms into a radial oscil- 
lator. 

It is obvious that all potential problems can be generalized to more complicated problems, i.e., 
one can add an additional explicit time dependence, implement a S function perturbation, and 
consider problems in half spaces and infinite boxes, cf. Eqs. (89)-(96), respectively. The construc- 
tion of examples is left to the reader. 

V. DISCUSSION AND OUTLOOK 

In this contribution we have sketched our approach “How to Solve Path Integrals in Quantum 
Mechanics.” We do not claim completeness; however, we have done our best to gather as much 
information as possible. In our presentation we did not give any proofs of the formulas. This will 
be postponed to our book? Our intention was not to give a rigorous mathematical discussion of the 
existence of the path integral (cf., e.g., Refs. 57, 77-80) and the various transformation techniques 
(cf., e.g., Refs. 25, 30-32). Since Feynman’s beautiful article3 and his classic book written with 
Hibbs,’ several textbooks and reports on path integration have been published.516*28*62*63*79-85 Now 
the time seems to be ripe for a comprehensive summary and critical review including a systematic 
classification and extensive bibliography which we are going to complete soon.7’11 

Summarizing, we can cover by the mentioned methods the so-called standard path integrals 
which are based on Gaussian, Besselian, and Legendrian path integrals. The solutions of these 
path integrals actually represent the matrix elements of group representations in a particular 
coordinate space representation. In this sense these three kinds of path integrals are but a special 
kind of the general path integration on group manifolds. One has to keep in mind that the chosen 
coordinate space representation is but one possibility. Other coordinate space representations will 
give other standard path integrals and corresponding path integral identities. As examples for the 
latter we have shown how to calculate the free motion in R2 and W3 in elliptic and spheroidal 
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coordinates. As will be shown in the near future39P41 we are able by this method to perform path 
integration for numerous problems (free motion in spaces of constant curvature, potential prob- 
lems) in parametric coordinate systems. 

The very formulation of the path integral already contains a specific kind of boundary condi- 
tion. For the free motion or the standard potential problems these boundary conditions are usually 
chosen in such a way that the vanishing of the wave functions at tm is required. Boundary 
conditions at finite distances must be incorporated more explicitly in the path integral. We have 
seen that Dirichlet and Neumann boundary conditions in one dimension can be incorporated into 
the path integral by point interactions, where one makes the strength of the point interaction 
infinitely repulsive. Actually point interactions represent boundary conditions for the wave func- 
tion such that an infinite strength is but a special case. It is obvious that by this method we also can 
treat boundary conditions in D dimensions. They are incorporated by a S function according to 
- ys(a.x), where 8.x is a (D- 1)-dimensional hyperplane. Making the strength of the hyperplane 
interaction infinitely repulsive gives Dirichlet boundary conditions along the hyperplane. Of 
course, the procedure is similar for Neumann boundary conditions. 

The situation is more delicate for two- and three-dimensional point interactions. The peculiar 
feature of the self-adjoint extension of the corresponding Schrtidinger operator defines a path 
integral representation with a special kind of boundary condition at the interaction point. Here 
Aharonov-Bohm effects (with magnetic moments) and point-particle interactions can be 
modeled.73 

Mixed boundary conditions require the same kind of regularization procedure as Neumann 
boundary conditions. The latter are obtained by considering a 8 interaction in the path integral (as 
pointed out in Ref. 73, the notion of 8 must not be taken too literally, it only serves to describe 
a specific kind of boundary conditions at the location of the interaction). The 8 interaction in turn 
is derived by a regularization procedure which makes use of the path integral representation of the 
one-dimensional Dirac particle subject to a point interaction, i.e., a usual one-dimensional 6 
function. Here a four parameter family of self-adjoint extensions must be taken into account which 
covers a wide range of boundary conditions in the (then nonrelativistic, i.e., Schrodinger) limit. 

We have also listed some formulas for explicitly time-dependent problems. The special feature 
of the time dependence is such that it is possible to remove it. However, additional (and sometimes 
imaginary) potential and measure terms, respectively, appeared. The imaginary potential can be on 
the one hand understood as a source or a sink for the probability, because the transformation of a 
time-independent Hamiltonian to a time-dependent one, say, has the consequence that the new 
Hamiltonian does not conserve energy; this is now exactly balanced by the imaginary potential in 
order to guarantee energy conservation of the entire (time-independent) system. On the other hand, 
this term can be interpreted as a “path dependent measure.” 

Notwithstanding the fact that a considerable progress has been achieved in recent years to- 
wards a deeper and more comprehensive understanding of path integration, many questions re- 
main to be answered. 

The familiar coordinate systems such as Cartesian, polar, or parabolic coordinates cover only 
a very limited range of possible studies in general coordinate systems and related questions, as 
separation of variables and the study of finitely integrable systems. The known techniques cover 
path integrals in coordinate systems which are parameter free. What is desirable is a treatment of 
generic coordinate systems, by which we mean coordinate systems depending on certain param- 
eters in such a way that all standard coordinate systems can be obtained by degenerations of the 
generic ones. The elliptic and prolate spheroidal coordinates are simple examples for such sys- 
tems. Such considerations are by no means just idle doings. The study of simple systems provides 
tools for the investigation of more complicated ones. 

Let us shortly discuss the problem of the physical significance of considering the separation of 
variables in parametric coordinate systems. The free motion in a given space is, of course, the 
most symmetric one, and the search for the number of coordinate systems which allow the 
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separation of the Hamiltonian is equivalent to the investigation how many inequivalent sets of 
observables can be found. The incorporation of potentials usually removes at least some of the 
symmetry properties of the space. Well-known examples are spherical systems, and they are most 
conveniently studied in spherical coordinates. For instance, the Coulomb potential is separable in 
four coordinate systems, namely, in conical, spherical parabolic, and prolate spheroidal II coordi- 
nates (for a comprehensive review with the focus on path integration cf. Ref. 86). 

The separation of a quantum mechanical potential problem in more than one coordinate 
system has the consequence that there are additional integrals of motion and that the spectrum is 
degenerate. In the case of the isotropic harmonic oscillator one has in addition to the conservation 
of energy and the conservation of angular momentum, the conservation of the quadrupole mo- 
ment; in the case of the Coulomb problem one has in addition to the conservation of energy and 
the angular momentum, the conservation of the Runge-Lenz vector. In total these additional 
conserved quantities add up to five integrals of motion (in classical mechanics) and observables (in 
quantum mechanics), respectively. It is even possible to introduce extra terms in the pure oscillator 
and Coulomb potential in such a way that one still has all these (slightly modified) integrals of 
motion. As it turns out, the so-constructed modified harmonic oscillator and Coulomb problem 
belong to a larger class of potentials which are called superintegrable. 

Disturbing the spherical symmetry usually spoils the superintegrability. The first step consists 
of deforming the ring-shaped feature of the (superintegrable) modified oscillator and Coulomb 
potential. Here one gets in the former a ring-shaped oscillator and in the latter the Hartmann 
potential. 

Disturbing the system further, one may end up with the situation that there is only one 
coordinate system left which allows separation of variables. A constant electric field (Stark effect) 
allows only the separation in parabolic coordinates. In this case it is interesting to remark that in 
the momentum representation of the hydrogen atom the bound state spectrum is described by the 
free motion on the sphere Sc3’, to be more precise, the dynamical group O(4) describes the discrete 
spectrum, and the Lorentz group O(3,l) the continuous spectrum. There are six coordinate systems 
on Sc3’ which separate the corresponding Laplacian. The solution in spherical and cylindrical 
coordinates correspond to the spherical and parabolic solution in the coordinate space representa- 
tion. The elliptic cylindrical system on Sc3’ is of interest because it enables one to formulate a 
complete classification for the energy levels of the quadratic Zeeman effect. 

The separation in parabolic coordinates is also possible in the case of a perturbation of the 
pure Coulomb field with a potential xzlr which, however, still allows an exact solution.87 The 
two-center Coulomb problem turns out to be separable only in spheroidal coordinates. 

Another possibility to disturb the spherical symmetry is to remove the invariance under 
rotations with respect to a given axis (e.g., about a uniform magnetic field). Usually this invariance 
is used to illustrate the azimuthal quantum number m, i.e., the eigenvalue of the L, operator. The 
physical meaning of this quantum number then is that there exists a preferred axis in space. This 
symmetry can be broken if one considers a Hamiltonian of a nucleus with an electric quadrupole 
moment Q and spin J in a spatially varying electric field. Here spheroconical coordinates are most 
convenient. Also the problem of the asymmetric top, a symmetric oblate top, or the case of 
tensorlike potentials can be treated best in spheroconical coordinates. 

In order that a potential problem is separable in ellipsoidal coordinates, it is required that the 
shape of the potential resembles the shape of an ellipsoid. Of course, the anisotropic harmonic 
oscillator belongs to this class. Introducing quartic and sextic interaction terms then eventually 
allows only separation of variables in ellipsoidal coordinates. Another example is the Neumann 
model, i.e., a particle moving on a sphere subject to anisotropic harmonic forces. 

A detailed study of the coordinate space representations of SU( 1,l) is worthwhile. The group 
manifold of SU(1,l) (and its path integral representation) can be described as the free quantum 
motion on the hyperboloid 
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x:+x;-x$x?= 1, (1’36) 

where only the upper sheet is taken into account. As shown by Kalnins and Miller69 the Laplace 
operator on this hyperboloid allows separation of variables in 74 coordinate systems! The spec- 
trum of SU( 1,l) contains an infinite discrete and a continuous spectrum. For instance, in the study 
of the two-sheeted pseudosphere only the continuous part is needed, whereas in the single-sheeted 
case both contributions are necessary. Furthermore, the coordinate space representations of 
SU( 1,l) contain information about singular potentials as V(r) = - alr’( a< l/4). Here a self- 
adjoint extension is required. Path integrals on homogeneous spaces with indefinite metric are 
plagued with such problems. If it is possible to extract the necessary information from a particular 
coordinate space representation, it is possible to set up a path integral formulation by means of 
path integration on groups, and one can derive new path integral identities. 

It is our hope that a compilation of our present knowledge will help to spread the results 
achieved into the physical and mathematical community, making them available for critical con- 
sideration and further progress, with the ultimate goal of a comprehensive and complete path 
integral description of quantum mechanics and quantum field theory, including quantum gravity 
and cosmology. 
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