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Asymptotic properties of classical field electrodynamics are considered. Special
attention is paid to the long-range structure of the electromagnetic field. It is shown
that conserved Poincar6 quantities may be expressed in terms of the asymptotic
fields. Long-range variables are shown to be responsible for an angular momentum
contribution which mixes Coulomb and infrared free field characteristics; otherwise
angular momentum and energy-momentum separate into electromagnetic and mat-
ter fields contributions. C 1995 American Institute of Physics.

1. INTRODUCTION

It is well-known that the long-range character of electromagnetic field causes certain pecu-
liarities in quantum electrodynamics. Among them the infraparticle problem and breaking of the
Lorentz symmetry are the most spectacular ones, for a review see the book by Haag' and an article
by Morchio and Strocchi. These properties can be traced back, as shown most clearly by
Buchholz,3 to the fact provable within the standard system of ideas on properties of quantum
electrodynamics that the flux of electromagnetic field at spacelike infinity is an essentially classi-
cal variable supplying a label for uncountably many superselection sectors.4 Whether these are
ultimate features of the quantum theory of electromagnetic interaction or artifacts due to our
unsufficient understanding of its algebraic structure is in our opinion an open question as long as
we lack consistent, complete QED beyond Feynman graphs. Doubts about completeness of the
present-state knowledge of the long-range structure can also be raised on grounds that it tells
nothing about the quantization of charge or the magnitude of the fine-structure constant; see works
by Staruszkiewicz on this point.5 6

In the present work we try to better understand the long-range structure of electrodynamics in
classical field theory. We believe that in this way one can gain new insights into the quantum case
as well. The domain in which the classical structure is most likely to be of some relevance for the
quantum case is the asymptotic region. Rigorous results on the asymptotics of electromagnetic
field are presented in Sec. II and on the asymptotics of Dirac field in Sec. IV. The results are
relevant for the interacting theory, as argued in Secs. II and V. In that case, some additional
assumptions are made which seem plausible, but remain unproved. Our main objective, when
discussing the asymptotic fields, is the description of the specific way how matter and radiation
separate in the asymptotic regions. In this respect, the approach of the present paper differs from
that of Flato, Simon, and Taflin, who have recently described rigorous results on Cauchy problem
and scattering states in classical Maxwell-Dirac theory;7 see also a comment in Sec. V. Using
results on asymptotic fields we express energy momentum and angular momentum of the system
in terms of those fields.

We stress that our aim is not a purely mathematical study in classical field theory. Rather, with
quantization in mind, we try to get a reasonably well-founded notion of the asymptotic structure of
fields and conserved Poincar6 quantities.
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Some of the results described in the present work were reported earlier in a letter.8 Quantiza-
tion of the long-range variables within this approach in a kind of "adiabatic approximation" was
discussed in Ref. 9.

Throughout the article we use the abstract index notation,' in which the index of a geometri-
cal object rather indicates its type, then being a set of numbers. This interpretation of indices is
especially convenient when spinors are introduced: The two-valence mixed spinors p"A' are ob-
jects of the same type as complex vectors in Minkowski space, the respective structures being
isomorphic. One identifies, accordingly, the compound index AA' with the spacetime index a
(BB' with b and so on). We write therefore pa= pAA what in more traditional notation would be

written as pa = O'a, ,AA' where oAA I are the Infeld-van der Waerden symbols giving a concrete
realization of the isomorphism. In this notation the metric tensor is gab= eABA 'B", where EAB is

the fixed antisymmetric spinor (and eAW B eA 'B'). The correspondence between an antisym-
metric tensor Fab and an equivalent symmetric spinor 'PAB has the form Fab= 'PABEA'B'

+ 'PAWBCeAB. For the null vector of the spinor OA we use fixed notation la=OA
3

A', and for the
spinor (A respectively U a = (A ZA'* If below the spinor index in 5A", {A is not suppressed and there
is no danger of confusion, the bar sign will be omitted.

11. NULL ASYMPTOTICS OF THE ELECTROMAGNETIC FIELD

In this section we describe some null asymptotic properties of the electromagnetic fields.
Much of the material is not new, the null infinity methods being the standard tool in the relativity
theory. However, we do not use the Penrose's conformal compactification, as employed in similar
context in Refs. 11 and 12, and use an explicitly Lorentz-covariant description in terms of homo-
geneous functions. Moreover, we describe some global properties in Minkowski space, which are
needed in the discussion of Lorentz generators. The reason for avoiding the conformal compacti-
fication is that it contracts the timelike past and future infinity to points. This does not seem a
natural setting for the description of massive asymptotic fields living there, which is our concern
in Sec. IV.

Let us fix the origin in the affine Minkowski space and denote by x a general point-vector. Let
A (x) be a continuous field and suppose it has well defined asymptotics
limR _ RA(x + RI) =b(x,l) for every point x and null vector 1 (vector and spinor indices will be
often suppressed if no ambiguity arises). b (x, 1) is a homogeneous function of degree -1 in 1.
Suppose now that y is a vector lying in the hyperplane y -1=0. If y -l then obviously b(x+y,l)
=b(x,l). If y *1, then it is spacelike, and there always exists a null vector n such that n-y=O,
n-l=l. Then, I+ylR-(y2 /2R2 )n is a future null vector and

I 2 I 

b(x +y,l ) = lim RA (x + 2R n + R 1+ I R ni )
R k 2R R 2R//

Therefore, if A (x) is sufficiently regular, one should expect that again b(x + y,l ) = b(x, I), for all
y -1 =0. This means that

lim RA(x+Rl)=(x-ll), (2.1)
R-.o

where X(s,l) is ahomogeneous function of degree -1: X( KS,Kl)=K- IX(sl). We shall show that
(2.1) is indeed satisfied for a large class, concerning us here, of solutions of the wave equation
(both homogeneous and inhomogeneous). Instead of null vectors la = OAOA' we shall use as inde-
pendent variables the spinors o and o, adding further conditions of invariance under the change of
the overall spinor phase factor. Thus X.(so,) will satisfy

X( aas, ao,&ao) = ( aa) IX(so,5) (2.2)
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for any complex number a#O. The former notation X(s,l) will be used for functions invariant
under the overall spinor phase factor change as a shorthand.

Let A (x) E C2 be a global solution of the wave equation

ClA (x) = 0. (2.3)

By the classical Kirchhoff integral formula (see, e.g., Ref. 10) the field A(x) inside the future
lightcone may be recovered from its values on the cone itself. If these values are represented with
the use of a homogeneous function ?(p,l) according to

A(RI)=R- l (R-,Il), Y(Kp,Kl) = K l 7(p,l), (2.4)

then the formula takes on an especially simple form

A(x)= -w 7T f/( ,Ud~ (2.5)

where the dot over 71 denotes the derivative with respect to the first argument and d2 u is the
standard invariant measure on the set of null directions discussed in Appendix A. From the
homogeneity property of q it follows that the integrand is a homogeneous of degree -2 function
of u, which is the condition for the applicability of d2 u. Suppose now, that RA(RI) has a limit for
R -co for all 1 and that this limit is achieved without sharp oscillations, which can be expressed as
dR(RA(Rl))-R-R-' for some e>O. Then A(x) has the anticipated asymptotic behavior in the
whole future lightcone, and moreover a fall-off property of the asymptotic is implied. More
precisely, we have the following proposition (a t-gauge is a scaling of the spinor o for which
t - 1 = l, t' being a timelike unit vector; see Appendix A).

Proposition 2.1: If A(x) E C2 is a solution of Eq. (2.3) inside the future lightcone with the data
on the cone given by (2.4), with 77 in the t-gauge satisfying the bound

const.
Iu7(P,l)I< p-

when O<p<p, (for some e>O, p,>O).
Then for all x inside the future lightcone the asymptotics (2.1) holds with

X(sOl)=-2 s f r(t-,u d u. (2.6)

X(sl)=x(so,5) has the scaling property (2.2) andfalls off according to

const.
IX(sl)I< c (2.7)

for s>s,-2Ip, in the t-gauge.
We note that the form of the bounds on homogeneous functions as those appearing in this

proposition (and in what follows) is independent of the choice of the vector t (gauge-independent),
only the bounding constants and p, (and s,) do change. This is easily seen with the use of the
inequalities t- I - e Oe1 and i. I-- e Ot-. for any null vector I and any two unit, timelike, future-
pointing vectors t and t, where t * t=cosh q,.

Proof: Fix xa= \Z', z2
=1, zoo, and choose I and u in z-gauge. Parametrize u by (p,$C) as in

Appendix A (with z playing the role of the time-vector) and change the p variable to pu>0 by
po=(2R p2 + A)/(2R+XA). Then, by (2.5),
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RA(x+Rl)= 2Ark |2 dp I d4,(K po, u(P(P0 ),S°)) f(PA X+2R)

The integral is bounded in module by 0(p,-2/Xpo)const./(po)l'E+const. 9(2/kpo-p), hence by
the Lebesgue theorem

lim RA(x+Rl)= 2 AA2dpuJ 2d ( p2 ,u(p, P),

which is (2.1) with X (2.6) in the z gauge and (pop) parametrization. The bound for X is easily
obtained.

The next proposition gives the field itself from its asymptotic, by a slightly strengthened
fall-off condition (no sharp oscillations).

Proposition 2.2: Let X(s,l) and its derivatives with respect to s of up to the third order be
continuous functions of s and Ifor sreR. Suppose x(s,l) and k(sl) satisfy respectively (2.7) and

const.
i'x(s' ) I<01+c (2.8)s

for s>st>O in the t-gauge.
Then X(s,l) is the asymptotic (2.1) of the field

A(x)=-- f (x( ,l)d2 1, (2.9)

which satisfies the wave equation. For a given x there is IRA(x+Rl)l<const. for all RHO and I in
the t-gauge.
If in addition we demand that also x(sl) satisfies (2.8), then uniqueness of A(x) with the given
asymptotic is guaranteed.

Proof. The wave equation is obviously satisfied. Further RA(x+Rl)=(-1/27r)
Xfk(x-u+Rl-u,u)d 2 u. Choose 1 and u in the t-gauge, use (p,qO)-parametrization for u as in
Appendix A and replace the p variable by 83=2Rp2. Then RA(x+Rl)
= 11/27r)f 2dqdf2RdIlk(x-u+,8,u), where u=u(p,qp)=u( //2R,qp). For
f3>s,+|x°l+lxi the condition (2.8) implies l,(x-u+ f3,u)|<const.(,f-lx°l-Ixl)-1- . For
Oq,83s , +Ix0 J+JxJ there is -(lx°l+lxl)-x-u+,/i-2(lx0 I+lxl)+st, so, for fixed x, by continuity
Ik(x-u+3,8,u)I<const. in this case. The asymptotic (2.1) and the bound follow now easily. If (2.8)
is assumed for X(s,l), then also the field VaA(x)= -( 12 7r) fla(x-l,l)d2 1 has similar asymp-
totic properties. By the Kirchhoff formula A (x) can be uniquely recovered from the values of A on
any past-directed lightcone, such that x lies inside the cone; the formula involves the field itself on
the cone and its derivative along the generating lines of the cone. If one tends with the vertex of
the cone to the future timelike infinity, then the integrands tend to respective null asymptotics. The
dominated convergence given by the proposition gives then (2.9) as the limit of the Kirchhoff
formula, which implies uniqueness.

Up to now we have considered the null asymptotic in the future direction only. In exactly the
same way the past null asymptotic can be considered. Proposition 2.2 holds again, with (2.7),
(2.8), (2.1), and (2.9) replaced respectively by

const.
[x'(s, 1)l Isle (2.10)
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and

const.
Ix (sl|< (2.11)

for s < s' < 0 in the t-gauge,

lim RA(x-R1)=x'(x-l,1), (2.12)
Ret

I
A(x) 2- f k'(x 1,1)d2 1. (2.13)

The null asymptotics X and X' are not independent, as for any x the representations (2.9) and
(2.13) have to agree:

f Y4(x-l1l)d21= 0, (2.14)

where

V(sl)=-k(s'l) +k(s'l). (2.15)

Lemma 2.3: If X(sl) is continuous, satisfies (2.14), and |I(sl)I is bounded by some polyno-
mial in s (in some t-gauge), then Y(s,l) =2Ios kk(l) with N<- and f la la 1 k(l)d = 0.

Before giving a proof we fix our conventions for the Fourier transformations. For f(x) a
function of the spacetime point and g(s,o,5) a function of the spinor o and a real variable s we
denote

f( ) -_ f(x)e'P xdx (2.16)

view's) 2 "5) g(s o,5)e'&Js ds. (2.17)

If g(a-as, ao, &o) = aP~qg(s,o,5) then j(o/lax, ao, &4) = aP+ + lg(,o,5).
Proof of the lemma: We integrate the condition (2.14) with a function of fast decrease f(x).

The result can be rewritten as f2(w,1)f(wl)dto d21 = 0. Fix a t-gauge and assume that f(wl)
gg(o)h(l); this can be extended to a Schwartz function f(p) if h(l) is infinitely differentiable

and g(co) is a Schwartz function vanishing in some neighborhood of co=0. Going over all possible
h(l) we obtain ft(wl)g(w)dw = 0 for all 1. Thus, for every 1, (,l) is a distribution con-
centrated in cw=0, hence a finite linear combination of derivatives of 6(0w). By polynomial bound-
edness the supremum over I of the degree of the highest derivative of &(o) is finite, hence N<o.
Inserting the expansion into (2.14) one obtains the constraints on 1k(l).

The result of the lemma gives via (2.15) the relation between the future and the past null
asymptotics. We add now the physical condition that the energy of the field be finite. It will be
seen below, that it leads for the electromagnetic field to the condition which corresponds here to
the integrability of Ik(s,1)12 over all s E(- o,+ -). By the result of the lemma and the fall-off
conditions for k(s,l) and k'(s,l) it follows now that 2(s,l) vanishes identically. Thus we have

*(Sl) +f'(Sl) =0.
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This implies that both Ik(s,l)I and Ik'(s,1)I satisfy both fall-off conditions (2.8) and (2.11). This

implies also that there exist limits X x(s,l), ' x'(sl) and

x(s.I)+X'(s~l)=x(-ol)=x'(+-{). (2.18)

If we think of A(x) as an analog of the electromagnetic potential, or in fact a component of the
latter, then the fields with nonvanishing X(-=,l) are exactly those infrared singular in the usual
sense (as observed in Ref. 12). This is easily seen, when the connection between (2.9) and the
usual Fourier representation is clarified. This is simply achieved if x(x- 1,1) in (2.9) is represented
by its transform (2.17). If we write the Fourier representation of the field A(x) as

A (x)=- a(k)S(k2 )e(ko)e-iXk d4 k, (2.19)

then

awl) -*(wl)/w. (2.20)

But X(0,1)=-(l/21T)x(-xcl), as easily seen from (2.17). If this does not vanish, then
a(col)-w1~ at the origin. We note that the function X(-cc,l) is not only [as x(s,l)] Lorentz-frame
independent, but also independent of the choice of the origin in Minkowski space. It describes
uniquely the spacelike asymptotic of the field A(x):

lim RA(x+Ry)= f X(-o,l)S(y l)d 2 1, (2.21)

where a is the Dirac distribution. This is true both point-like in y for y2 ¢0 (for timelike y yielding
simply 0), and distributionally when integrated with a test function f(y), for any fixed x. One
proves this by a method similar to that used in the proof of the Proposition 2.2.

In the next step we want to take into consideration fields with nonvanishing sources, satisfying
equation

DA (x) = 4 7rJ(x). (2.22)

Some restrictions on the current density have to be assumed. As the scattering aspects are those
which concern us here, we want the free radiation field Arad=Are't-Aadv to fall into the class of
fields considered up to now. The Pauli-Jordan function D(x) = (1/2 ir) e(x 0) 6(x 2 ) can be written
in the representation (2.9) as

121
D(x) =-- f 5'(x l)d2 1.

Using it, we obtain Arad(x) in the representation (2.9) with the integrand krad(s,I)=C(s,l),

c(s l)= f 6(s-l y)J(y)d4y. (2.23)

We assume therefore that this function is well defined, and that c(s,l) satisfies the premises of
Proposition 2.2. Note, however, that c( + -,I) need not vanish, and the future null asymptotic of
A'd is given by X.fd(s,1)=c(s,1)-c(+xl). Suppose further that the support of the current is
bounded in spacelike directions, that is for everyx the set {yIy 2,0,J(x+y) 0} is bounded. This
condition can be relaxed to some decay in spacelike directions, but we dot study this problem in
detail. The asymptotics of the retarded and advanced solutions is easily found
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lim RA" t(x+Rl)= lim RAadv(x-Rl)=c(x-l,l). (2.24)
R v:, R i o

Combined with the asymptotics of the radiation field this also gives

lim RA' t(x-R1)=c(-ooJ1), lim RAadv(x+RI)=c(+oI). (2.25)
R - R- 

The incoming and outgoing fields are defined as usual by A =Ain+Aret=Aut+Aadv and they are
assumed to belong to the class of free fields considered here. Denoting X and X' the future and past
null asymptotics of A we have the relations

X'(S l)=X"i(S l)+C(-x)' X(S'l)=Xout(sl)+c(+x).

The full relation (2.18) is lost now, but it remains true, that

(2.26)

The extension of the preceding discussion to the case of the electromagnetic fields involves
some physically important modifications. The Maxwell equations in the spinor form read

VB (PAB(X) = 2 ITJb(x) (2.27)

with a real conserved current Jb. If complex Jb is admitted, its imaginary part is the magnetic
current of the generalized Maxwell equations in tensor form. To see the physical consequences of
the absence of magnetic currents in the context of asymptotic fields we take this condition only
later into account. We shall see later that in order that the radiated energy-momentum and angular
momentum be well defined not only qPAB(x) but also (PAB(X)XA, should have the asymptotic
behavior discussed above. As the latter field appears repeatedly in the present context it is conve-
nient to denote

eAA(x) = -AB(X)XA * (2.28)

This field satisfies

VB ,eAA (X) = 2 7rJBB(x)xA (2.29)

From (2.27) and (2.29) the inhomogeneous wave equations follow

n JPAB(X)= 4'rVAcJC(x) (2.30)

nLeAA (x)= 4?7TVACr(JBC(X)XA ,). (2.31)

In the free field case we demand therefore that

paxB) = 2 fAB(x-1,o,5)d21,

2 rT

eAA'(X)=-- 2 A I h ,(X - ,o,o5)d2

where IfAB(S,oo)i and IhAA'(soo)J are bounded by const.lsl-1 e for large Isl and both
IfAB(S,0,5)I and IhAA'(So0,)I vanish for s--+c-. (Here and in what follows such bounds on
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spinor and tensor functions are to be understood in some t-gauge, component-wise in some
Minkowski frame in which time axis is parallel to t, and in the associated spinor frame; for fixed
vector t the bounds do not depend on the choice of the spacelike frame.) Setting these formulas
into (2.27) and (2.29) respectively (with Jb=0) and taking null asymptotics one obtains
o fAB(so,3)=O, o hAA,(so,3)=O, i.e., fAB(SOO)=OAO~ f(S.O.O),
hAA'(S1O,6)=OAhA'(SO,6)- (These formulas follow also from the generalized Kirchhoff
formula.' 0) Contracting the above representation of 'PAB(X) with X A, and using (A8) we have

B I 
(PAB(X)XA-= 7 J OAXA'BOBf(X-,O,O)d 2

1

2IT f OA(8A'- A,)f(X.1,Oo)d 2 1

2- rf OAaAf(X , o,)d2 ,

where dA'-ldo/ and 9Af(IAX .Io,)Aftso, )ISX .
From now on we make a general assumption that the spinor derivatives of the asymptotics up

to the order which will appear in the future considerations do not spoil the fall-off properties, so
that, e.g., together with |f(s,o,o)| also IdA'f(so0,)I falls off as s e for s--+- and with
If(s,o,J)-f(--,o,j)f also IaA[f(sOO)f(-xo)I|jsI ' for s-x-c. From the homo-
geneity properties of asymptotics then follows that the differentiation with respect to s increases
the rate of fall-off by one inverse power of Is|, as, e.g., oA'dA,f+ sf= =f.

Comparing now the two above representations of 'PAB(X)XjB, and using Lemma 2.3, we have
dAAf(S,O,o)=hA'(S,O,o). Contracting this with 0 A and using homogeneity we get
5(sf )~=-oA'hA,, or sf=o hA'hg, where g=g(o,o) has the homogeneity property

g(ao,&J)=ar 2g(o,o). Differentiation on dB, yields shB'=19B (OA hA')-dB g. The left-hand
side (lhs) vanishes for js| l-, whereas the right-hand side (rhs) tends to-dB8 g for s-+ +and to

dB'(o hA'(--)-g) for s-x-. Hence daBg=df h(oA'h~,(--))=0, which implies by (AS)
g=oA hA'(-x) = 0. Therefore f= SloA hA I ~|S| I -l-e for s| I--, so there is a unique represen-
tation f= with ; vanishing for s .-*+o.

Summarizing the free electromagnetic field case we have

'PAB(X)= - r jf oAoB;(x lo,3)d2 1, (2.32)

CAA'(X) = 2X J OA dA, t(x ' 1, o,) d~ (2.33)

lim R9AB(X+RI)=OAOBt(X 1,O,0), (2.34)
R-X

lim ReAA,(x+RI)=OAaA4;(X.1,o,5). (2.35)
R -X

This class of fields admits a class of Lorentz-gauge potentials with properties characterized by
Proposition 2.2

A,,(x) =-- Va"(x * 1, I) )d21. (2.36)
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Va(s,l) is a real vector function with properties of X(s,l) of Proposition 2.2 and such that

OCVA (sl=A(~~)(2.37)

Turning now to the asymptotics of the retarded and advanced fields

(,pret~advAB(X) =4 f G redadv(X-y)VACIJB(y)d 4 y

B av Bwe observe first that the fields pretAB(x)xA, and s'advAB(x)xAr, may be obtained as respectively
retarded and advanced solutions of (2.31). This is seen as follows. Suppressing the labels "ret" or
"adv" we have

4,7Tf G(x-Y)VACt( B (yA )d'y-(sPAB(X)XA 4,T G(z) AC(B (-)A )d4Z

Using the conservation law of Jb and the rules for transforming spinor into tensor expressions one
has (all differentiations on z)

VAC'(JB =(Xz)4) =Ja(X-Z) +ZB VBc'JAC(X-Z)

(IZ V + I )Ja(XZ) + (Z[aVcl-ie acbdZV)Jc(x-Z).

As the retarded and advanced Green functions satisfy

(z V+2)G(z) =0, (ZaVb-ZbVa)G(z)=O,

the above integral vanishes, which ends the proof of our statement. This property implies that one
can attach the ret/adv labels to eAA' without risk of ambiguity. The leading asymptotic terms can
be now simply represented. If we denote

CA(S,O,O)= f O(s-x l)A4'(x)d4x °C', (2.38)

then

lim RqoreAB(x+R1)= lim RadvAB(X-R1)=o(AcB)(X lo,
R-oo R-x

lim RereAA,(x+RI)= lim ReadvAA,(x-Rl) = ACA(X. l,o,3).
R-a R c

The last two equalities follow from

dA'CA(SOO)=f {f (S-X B l)xjtogocrJA (X)-O(S-x l)Ja(x)}d x

=f r(S-X 1)(Ja+XAVBC'4)d X

= f O(S-X l)VA C(J]B(x)xj,)d4x.
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As in the case of the scalar field, the current is assumed such that 6A(SO,3 ) has the required
fall-off properties [implying the existence of limits CA( ± ,O,,)]. The formulas analogous to
(2.25) are

lim RqPrtAB(X-Rl)= lim R adV AB(x+RI) =0,
R-w ~~~~~R-0oc

lim RL0'AA1x(-Rl)= "tCA(_-co06),
R-=o

lim ReadvAA,(X+R1)=dACA(+GOO).
R--

There are further conditions on CA following from the conservation of Ja, and from its reality,
when this is the case (pure electrodynamics). From the conservation law we have

O= f (s-x.l)VaJa(x)d4X= f S'(s-x-l)Ja(x)d4Xla,

that is 3AoA=0 or CA(so,1)oA=Q=Qel-iQmag. Qel and Qmag are the electric and the magnetic
charge of the field respectively. The last equation implies also CA(S,O,5)- 0A and
A 'CA(S,O,o)-oA. To see the consequence of reality of Ja we choose an arbitrary spinor LA

complementing OA to a normalized spinor basis OA A= I and decompose in the standard null
tetrad' 0

I 8(s-x- I)Ja(x)d4X= a(sI)la+ P8(sl)ma+ y(Sl)ta+ Qna

If Ja is real, then a(s,l) and Q are real and y(s,l) = 83(s,l). The only condition implied in this
case for CA(S,O,O)=-,(S,1)OA+QLA is the reality of Q. Moreover, in that case the retarded
(advanced) Lorentz-gauge potentials Areta(x) (AadVa(x)) have the required null asymptotic behav-
ior with asymptotics characterized by

Ca(Sl)= f o5(s-x I)J0 (x)d 4 X. (2.39)

We summarize the general field case now easily obtained as a superposition of a free and the
ret/adv fields. The necessary terms of the electromagnetic field asymptotics are represented with
the use of a spinor function CA(S^O5O) with the fall-off

const.IA (S' O, ) I <IS con{s, (2.40)

for Is >ss>O, differential properties as assumed for above, homogeneity

CA( a s,aao, o)a A(S,o,o) (2.41)

and satisfying in addition

; (S,0, 5)OA = Q = Qel-iQmag (2.42)

Then,
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lim RqAB(X+Rl)=oA4B(X 1,O,5), (2.43)
REX

lim ReAA,(x+Rl)=dA",A(X-.1,0o,)oAVA,(Xl1,0,0). (2.44)
R -X

The last identity is the definition of PA,. If Ja(x) is real than there exists a class of Lorentz-gauge
potentials with null asymptotics

lim RA,,(x+R1)= V,(x 1,1), (2.45)
ROY

where Va(s,l) has the properties of X(s,l) of the scalar case and satisfies

oc,'VA4(S,)= A(S,o,o). (2.46)

Past null asymptotics are similarly given by another function VA(s^O,) with the same prop-
erties. As in the scalar case there is

FAX-XOO) = DAD -°°(°(°)- (2.47)

The future null asymptotic of the free outgoing field is given by

VA (S, 0, 15) - VA ( + -, 0, -5) O)A t(S, 07O5)7 (2.48)

which is the definition of rOut(so,5) at the same time. Similarly, the past null asymptotic of the
incoming field is supplied by

SA s�o)- A(-X000,)5oA; ;(S,0,3 ). (2.49)

One observes that the asymptotically relevant (needed for determination of the radiated angular
momentum, as will be seen later) information on the asymptotics of the electromagnetic field is
not fully contained in the free outgoing or incoming fields. The remaining terms

,A(+0,OO)=CA(+-,O,O)- lim f S(s-x.1)4'(X)d x IcJ
so +x

and

VA -0,O,3)=CA(-c ,O,3)= lim fS (s-x.l)JAj(X)d x c,

are connected with the Coulomb fields of the outgoing and incoming currents respectively.
The physical significance of the limit values VA( ± -, o,3) and ;A ( + 0,o,3) is revealed by

considering the spacelike limit of the electromagnetic field. For a free field (2.32) one obtains by
the method used already in the scalar case

lim R2 frePAB(a+Ry)= 2 f 'S'(y l)OAOB.( - xo,)d 2 1 (2.50)

for any point a and spacelike vecor y. For a general field we use a trick, which will be useful also
in the next section. Decompose the field 'PAB into the retarded and free outgoing fields
'PAB=-etAB[J'+e 'AB, where the source Ja, according to our earlier assumptions, has finite
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extension in spacelike directions. Choose an arbitrary point a and a time axis through a in the
direction of a unit timelike, future-pointing vector t. For real positive c denote by eut( - c) the
solid future lightcone with the vertex in a - ct, and by Kpast(c) the solid past lightcone with the
vertex in a+ct. Choose c such that Jb=0 in R(c) E M\{jt( - c)U~ast(c)}. The retarded
field is not influenced in R(c) by the values of the current in ct( - C). We make advantage of
this fact to replace Jb by a current Jb which is identical with Jb in the past of KUt( - c) but to
the future of Y'VaSt(c) represents a point charge Q (possibly both electric and magnetic) sitting on
the time axis. This is always possible, since the charge is the only characteristic of a current which
cannot be deformed without violation of the continuity equation. Thus in the region R(c) we can
write (PAB = VAB[J] + O°UtAB. However, if Jb belongs to the class of admitted currents, so does
Jb, and the radiated field Srad I] ret I[J] adV [J] is an admissible free field. On the
other hand adVAB[J'] is identical in R(c) with the Coulomb field of a point charge Q sitting on
the time axis. Summarizing, the field 'PAB can be represented in R(c) by 'PAB=-'QAB+fe AB,
where 'PQAB represents this Coulomb field and Z'fAB is a free field. The region R(c) is large
enough for this representation to be used for determination of (i) future null asymptotics for s < s I,
for some si, in t-gauge; (ii) past null asymptotics for S>S2 , for some s2 , in t-gauge; (iii) spacelike
asymptotics from the point a.

For the (generalized-with possible magnetic charge) Coulomb field

()([(x-a) * t]2-(x-a)2)3/2 t(A(x-a)B)c' (2.51)

one has

lim R2 P AB(a+Ry)= ((Y t)2 _Y2)112 t(AYB)C.

The null asymptotics are most easily found with the use of (2.38)

C A(S O05))=C'QA(S,0,5) = t. 1 tA Oc' . (2.52)

Using the identity

f d21 2 r
J ty *ti ((Y.t)2 _y2 )1

/
2

we find the relation

2 f '(y-l)o(A0BQ)(- ,o,5)d2 1 lim R2 pQAB(a+Ry).

Comparison with the free field case and the use of the trick described above allow us to write
in general case for any point a and spacelike vector y

lim R 2qAB(a+Ry)= -f J'O(Yy )O(AB)(--,o,35)d
2 1. (2.53)

Formulas (2.50) and (2.53) furnish the required interpretation of the limit values of asymptotics.
The limit value gA(--,oj)= A(+,o,6) describes the long-range degrees of freedom of
the total field; Out(.-oo,5) and C, in(+_,O,3) furnish the characterization of the asymptotic
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infrared degrees of freedom of the outgoing and incoming free fields respectively; vA(+-oOO)

and vA(--xo,) describe the asymptotics of the Coulomb field of the outgoing and incoming
asymptotic currents, respectively.

Further transformation of these long-range variables will prove useful. From the homogeneity
(2.41) it follows oA'aA,;A(so,3)+stA(s,oJ)=0. For the limit points s=+c± we obtain
A'AA -= %,AS05

0 0 or 0AtA o, )cc1 [as at the same time =A0A,;A(soo)=0 for all s].
The same holds true for ;,( ± xo,5). The rhs of the following equations introduce new
variables

0A, A(+-,o0,5)=-lq(o,6), (2.54)

dA,4A(-00o, )=-laq'(o,5), (2.55)

dA' ( A( -0,0,3) -A + 1olo) =OA@t ;°(-xo~o =-a0C(O,3), (2.56)

aA'(;A(+,,3)- C( - oO))=oAdA,'i"(+coo, )=-lao'(o,3). (2.57)

As a consequence of (2.47) one has a constraint

q + or= q t+ a-'. (2.58)

All of the new variables are spinor functions of the homogeneity

ftago,co) = (ac&)-2f(o,6), (2.59)

where f stands for any of q, q', o- or o. Moreover they satisfy

Y- f q(l)d2 1= - f q'(1)d21=Q, (2.60)

2 ir f Idl It _17 f '(I)d~l0 (2.61)

One calculates these means by contracting (2.54)-(2.57) with a timelike, unit, future-pointing
vector, integrating by parts (see Appendix A) and using (2.42), e.g., for q one has

1 d21 1 A d21
0, 5 t(o) t I=-4 0 ° QA(+)0 1), oQ.

Conversely, the conditions (2.59)-(2.61) are the only ones following from (2.54)-(2.57) and
the functions q, q', a, and a' satisfying them determine the long-range variables ~A(+0,0,3),

A(-ooo,), rUt(-ooo,3 ) and ;' in(+_,o,5) uniquely. For the last two of them this follows
directly from (A5). To prove the statement for the other two, we choose a vector ta and denote
/A =(t.) ItAA 'OA. Then WA(+-,o,)=QtA+LB%(+-°Oo)OA and (2.54) is equivalent to
,3A,(tA;A(+_'O'.5))= -OA,(q(o5) - [QI2(t- 1)2]). The proof now ends as for o-'s. Similarly for
the primed quantities.

The vanishing of means (2.61) implies also that there exist homogeneous functions of degree
zero

'F(aosi3)= CF(o,3), LF'(aco,&)= cP'(o,5), (2.62)

such that
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dA9AA 4)(o,6)=lao(oo_), dAdAA 4 (oo)=lao-(oo). (2.63)

These conditions determine V's up to additive constants. In view of (2.56) and (2.57), Eqs. (2.63)
are equivalent to

(9A (OO) = o-AOA ut( 0-xo,), aAD' (0,0)- OA' 0+°°,°,°)- (2.64)

Physical meaning of the additive constant in ¶D (and V') comes from the fact, that gauges of
potentials can be divided into equivalence classes, each class remaining in one to one correspon-
dence with a choice of this constant. Classes differ by their infrared contributions to symplectic
form; see Ref. 9.

With the use of the variables q,...,o-' further insight into the meaning of (2.53) is possible. We
observe first that the result of (2.53), considered as a function of y, is a free electromagnetic field
in the region y2 <0, which is homogeneous of degree -2. We denote this field 9rAB(y) (l.r.

standing for long range). Using the identity oA=o ecA=(2fy2)oCycDIyA we can represent

8'(y -)oA=(2/y2 )yA dD,(y-0). Setting this into (2.53) and integrating by parts we get

91r As(=Y) cAKB)c C(Y), (2.65)

where

1~~~~~~~~~~~1
Ka(y) VaJ sgn(y.l)(q+o)(o, )d2 1. (2.66)

The tensor form of Eq. (2.65) gives the electromagnetic field Farb corresponding to the spinor
ABWY

Fl.rab = F1r.Eab + Fl rMab, (2.67)

where the fields on the rhs are determined by

F1rEab(y)=Re Ka(Y)Yb-Re Kb(Y)Ya, (2.68)

*FI r.Mab(y)=Im K 0 (y)yb-Im Kb(Y)Ya. (2.69)

The above equations imply *FI.rEab(Y)yb = 0 and FlrMab(y)yb = 0. This can be interpreted as
follows: in any Minkowski frame the radial components of the magnetic part of the field F rEab

and of the electric part of the field Fl.rMab vanish. Equivalently formulated: F rEab has no mag-
netic multipole contributions and Fl rMab has no electric multipole contributions in any Minkowski
frame. Accordingly, FirEab and FlrMab will be called the electric- and the magnetic-type long-
range fields respectively (cf. Ref. 5). The whole above discussion applies also to the long-range
part of free asymptotic fields [q + a- replaced by or or a' in (2.66)] and of the Coulomb fields of the
asymptotic currents (q +o- replaced by q or q'). The real (imaginary) parts of q,...,o-' describe the
electric (magnetic) parts of the respective fields.

We end this section by testing our assumptions on admissible currents in two cases: a system
of charged point particles and a free Dirac field. A system of N point charges moving along
trajectories z4(r), i= 1 ,...,N, each parametrized by its proper time, corresponds to an obviously
spacelike finitely extended current density

N

Ja(x)= Qif i (X-Zi(T))Via(r)dT, (2.70)
i=1 J
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where v0 ('r)= (dza/dr)('r). The asymptotic characteristic (2.38) is easily obtained

Nl 7 i Q ( AA'() I)OA (2.71)

If the asymptotic behavior of four-velocities satisfies I(dva/dr)(r)I<const./1I+E for ix, then
cA (soo) has limits

c (+x o 3)= Q ±- viAA'(±c)OA, (2.72)

and the assumptions on the fall-off of ICA(S,oa)_CA( ±o,o,5)1 for s-*±c are satisfied. The
class of thus admitted asymptotic motions includes the typical behavior of the Coulomb scattering,
where e= 1. From (2.72) we get

N QiN 

q(o 5) = E (si(+m) IT,' q (A=1 2(vi( x) 1) (2.73)

If no magnetic monopoles are present, the q's are real.
For the discussion of a free Dirac field we use its Fourier representation in the following form

3/2f
=(X) )I (e i `XP +f(v) -e+imxVPf(v))d1u(v), (2.74)

in the notation explained in the second paragraph of Sec. IV. If we assume that f(v) is an infinitely
differentiable function of compact support, then O(x) is a regular wave packet, so it is a function
of fast decrease in all spacelike and lightlike directions.13 The current density has infinite exten-
sion in spacelike directions, but its exponential fall-off is sufficient for the extension of our results
to this case.

The definition (2.38) can be rewritten in the Fourier transformed form

A (&o3,o,)=JAA' ()OA', (2.75)

with the conventions introduced in (2.16), (2.17). From (2.74) we get

f 2ii ) 3/2 2
mv)=-) - (v2- l)(9(v0 )P+f(v)-_ (-v 0)P_f(-v))

(2i ) 3/2 2
= _ -o>(v2-I)h(v),

m m

so

2e 4m ) urIr( 24-)T)7 2mr+2)dr

Whence r)8 r + -)(r 2 ) h r 2 )

Hence
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Ja(wl) = e8(w)f vaf V f(v) dg(v) (2.76)
V.1

The asymptotic characteristic CA(S,oO) does not depend on s, as was to be expected (a free
charged field sends no radiation field)

CA(s, o, )=e f VAAA'y.vf(V) dfl (v) (2.77)
f 7.~v -, A'

Not only the charge of the field

Q=c'oA=ef y. vf(v)dpi(v) (2.78)

but also the asymptotic variables

q(o,6) =q'(o,)= e fly vf(V) du(v) (2.79)

are obviously real. The long-range electromagnetic field produced by a free Dirac field is therefore
of purely electric type

bzef fy.vf(v) ((vY )2byb)9 dja(v). (2.80)

The absence of magnetic-type long-range fields is a typical feature of the scattering processes
involving no magnetic monopoles. To produce a long-range magnetic-type field without the use of
magnetic monopoles one would need an asymptotic current of infinitely increasing magnetic
multipoles, a magnetic dipole linearly growing with time giving the simplest possibility. As the
infrared singular free fields are typically produced as radiation fields of some scattering processes
they also yield the long-range fields of electric type only.

III. ENERGY-MOMENTUM AND ANGULAR MOMENTUM TENSOR OF THE ASYMPTOTIC
ELECTROMAGNETIC FIELD

Consider now a closed dynamical system, part of which constitute the (generalized) Maxwell
equations (2.27) with the current J0 satisfying the assumptions of the previous section. Finite
spacelike extension of Ja, which we assume for simplicity, could be replaced by some fast
decrease condition, more appropriate in the case where Ja is due to some charged massive field.
Suppose further that the system is equipped with a locally conserved, symmetric energy-
momentum tensor Tab, which outside the electromagnetic sources reduces to the usual symmetric
electromagnetic tensor Tc'mab=-(1/47r)(FacFbC - _gQTFFCd), and the amount of energy-
momentum and angular momentum passing through a hypersurface Y is given as usual respec-
tively by

Pa[.' L= f Tac(x)dc-c(x), (3.1)

Mabl=I f(XaTbc(X) -XbTac(X))drc(x). (3.2)

In the context of electromagnetic fields it proves convenient to use the spinor version of Eq. (3.2).
If the symmetric angular momentum spinor IJAB is defined by
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Mab JLABEAIBr +JA1B1 EAB, (3.3)

then (3.2) is equivalent to

LABS= J zAB,(X)do (x), (3.4)

where

PABC(X)=XDr(ATB;C(X). (3.5)

We want to consider now the total energy-momentum and angular momentum of the system
and express these quantities in terms of asymptotic fields. The usual straightforward expressions,
obtained by setting for Y in (3.1) and (3.2) a Cauchy surface A, are not appropriate for our
purpose for two reasons.

(i) The asymptotic electromagnetic fields discussed in the preceding section are defined in the
null asymptotic region, whereas one should expect the asymptotic massive fields to be defined in
timelike asymptotic regions (we shall return to this question in Sec. 4). This physical picture
suggests that separation of the contributions to the conserved quantities could be possible. We
shall see that this is almost true, the reservation representing a physically important term in the
total angular momentum involving long-range Coulomb and infrared degrees of freedom. For the
demonstration of this separation the Cauchy surface integration is not well suited, as this surface
contains the whole information on the system, even if it is pushed to infinite past or future.

(ii) In the case of angular momentum an even more serious obstacle arises: the integrand of
(3.2) is not absolutely integrable for a Cauchy surface, so, strictly speaking, the integral does not
exist. This is easily seen from the spacelike asymptotic behavior of electromagnetic field, dis-
cussed in the preceding section. On a hypersurface contest. the field is O(lxi-2), so the integrand
is O(1x|1 3 ), while the measure is d3x.

With our purpose in mind we consider first the energy-momentum and the angular momentum
radiated with the electromagnetic field into future null directions. Let a be a point vector of
arbitrary point in Minkowski space and t a timelike, unit, future-pointing vector. Choose the line
a + rt, rER, as the time-axis of the origin of three-space orthogonal to t. Consider the timelike
tube given by x=a+ i-t+Rl, R =const., reR,l going over the set of all future null vectors in the
t-gauge t * 1=1. The energy-momentum and the angular momentum passing through a bounded
portion of this tube are given by

I' p~a + Tt+Rl)(t'- Ic)dr R 2dfl(1), (3.6)

where Pc = Ta, for energy-momentum and Pc =PUABc for angular momentum spinor, and integra-
tion extends over a bounded interval of retarded time T and a solid angle (3 of I directions. The
limit of the above expressions when Re-x+, if it exists, gives the respective quantities radiated into
the solid angle e over the time-span T. More general bounded measurable sets of integration B
are possible. For sufficiently large R we move into the region where sources vanish and
Tab= Teimab . In the spinor language the latter takes the form

I~m 1
rab(X) j PA X)pAB(X), (3.7)

which yields
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A A'n~sc(X)=-2 QC'(A(X)(PB)C(X), (3.8)

with PAA' defined in (2.28). We see now, that for the energy momentum and the angular momen-
tum radiated over finite time intervals to be well defined, both qsAB(x) and eAA'(X) must have the
null asymptotics of the assumed type. Then

lim R 2 Th mac(a+ rt+Rl)= 2- ACA(a-l+ roT )c, (3.9)

lim R2 IaemABc(a+Tt+Rl)=-- v(ACB)(a'l+r,o,5)lc, (3.10)

where (2.43) and (2.44) have been used (in t-gauge). This justifies our assumptions on the asymp-
totic behavior of electromagnetic field (Sec. II). Using the trick described in Sec. II after Eq. (2.50)
and a bound analogous to that following Eq. (2.9) one easily shows that for large R the quantities
under the limits on the Ihs's of (3.9) and (3.10) are bounded by const. R l on any bounded set B.
The limits may be thus performed under the integral sign in (3.6), which yields the radiated
quantities

pou- a[B]= 21ir IB{A,;A(a-l+ r,o,o-)dr daft,), (3.11)

on AB[B]= - J i'(A4B)(a .1+r,o,5)dr dfl,(I), (3.12)

n standing for null. The fall-off of asymptotics is sufficient for the integrals in (3.11) and (3.12) to
be absolutely integrable over any measurable set B, not necessarily bounded. Thus extension of
the range of integration B to all times and full solid angle is possible. The result is

pou
t
-la f_ IA'CA(SOO)dS d2 1, (3.13)

AoutBn AB _ ifv (AtB)(soO)ds d21, (3.14)

where no assumption on the gauge of spinors is needed any more and any reference to the
time-axis (the point vector a and the vector t) has been lost. Thus the total radiated quantities are
unambiguously defined.

In the next step we turn to the energy-momentum and angular momentum going out with the
massive part of the system in timelike directions. We choose again the time-axis a + Tt, fix a time
parameter r= rl and consider the future lightcone 9-fut(rl) with the vertex in a + Tl t. The amount
of energy-momentum and angular momentum passing through that cone is that contained in the
system when the quantities radiated prior to r= il are disregarded. For this interpretation to make
sense the appropriate integrals over the cone should be absolutely convergent. That this is the case
here, can be seen with the use of the trick described in the preceding section, the estimates for a
free field discussed in Appendix B and properties of the Coulomb field (2.51). In this way we
obtain quantities Pa[FlfU'(7l)] and ,uAB[Kft(rl)]. (We have tacitly assumed that there are no
nonintegrable singularities in the region of nonvanishing sources.) Due to the assumed local
conservation of the energy-momentum tensor the difference of quantities calculated on two dif-
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ferent cones Gfut(r 2 ) and KfUW(rl) is given by the integrals (3.11) and (3.12), with
B=Ir 2-rIIX{full solid angle}. The convergence of integrals (3.13) and (3.14) implies now the
existence of the limits

P.-t-t' = lim P" [ -( r)] (3.15)

A AB= lirn 1-AB[ ()] (3.16)

t standing for timelike. By a similar argument, with the use of two different time-axis, the quan-
tities thus obtained are independent of the choice of the axis. Moreover, instead of lightcones any
timelike hypersurfaces tending to them asymptotically can be used. In the case of free electro-
magnetic field one should expect that all energy momentum and angular momentum are radiated
into null directions. This is indeed the case, as shown in Appendix B, i.e., we have

POUt-t ( free) = 0, jaut-tAB( free)= 0. (3.17)

In this way we are led to unambiguous interpretation of (3.15) and (3.16) as quantities going out
with the massive part of the system. For an explicit representation in terms of dynamical asymp-
totic variables one needs more detailed knowledge of the system. We discuss this question in the
following sections.

The preceding discussion strongly suggests the identification of the total energy-momentum
and angular momentum of the system by

ptota pout-na + Poutta* (3.18)

ILtot AB= out-n AB+ Ao4 t Ut-t (3.19)

Two points in this connection have to be clarified.
(i) The connection of (3.18) and (3.19) to the quantities obtained by the Cauchy surface

integration, if it can be performed, should be understood.
(ii) The picture lying at the base of our discussion can be reflected in time, with the subse-

quent change of orientation of hypersurfaces. The radiated quantities are then replaced by the
respective quantities incoming from the past null directions, given by

Pnn I f .- 1
a=- = 'A';'A(S,,O)ds a1, (3.20)

A AB= - 2 i| v (A B)(sO,0O)ds d2 |. (3.21)

Similarly, the past timelike limits of integrals over past lightcones, Pint-' and uinft AB, replace
(3.15) and (3.16) respectively, and again

Pin-ta(free)=0, = i-AB(free)=0. (3.22)

For the consistence of physical interpretation formulas (3.18) and (3.19) should yield the same
results with in-quantities on the rhs.

To clarify the above raised points consider the situation depicted in Fig. 1. We choose an
arbitrary spacelike hyperplane I and a time-axis with the unit vector t orthogonal to E;, crossing
the plane at the point a. KfUt(-r), r>0, is the future lightcone with the vertex in a + rt; K 'f ut(-r),

r>0, is the unbounded portion of the future lightcone with the vertex in a - rt, cut off by the plane
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FIG. 1. The choice of hypersurfaces for the derivation of Eqs. (3.23) and (3.24) (two spacelike dimensions are suppressed).

Se KP`5t(-r) and K' P'st(r) are obtained from the former two cones by reflection with respect to
E. I(r) is the portion of I (a ball) closing the cut of A' fut(-r) and A' P't(r). We consider

conservation of energy momentum and angular momentum for two infinite regions: the first

contained between Ffut(r), F fut(-r) and E(r), the second contained between KPast(- r),

e" Pas't(r) and I(r). Taking the limits r-e and ro-*c we arrive at

(3.23)

(3.24)

where G stands for Pa or /AB- Conventions of hypersurface orientations are such, that positive
direction of crossing the surface is from past to future. The limits on the rhs's of Eqs. (3.23) and
(3.24) exist, since the Ihs's exist. We shall show that those limits exist indeed for each term on the

rhs's separately and the following explicit formulas hold true

(3.25)
li .J9''fu(- ) lm p g Tp4t()] O
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lirn /AB[ (-r)]=-lim A1AB[S K P(r)] = I i(A.B)(--^5)d 1. (3.26)

It is easy to see, that if these formulas are shown for the special choice of the point a =0, then they
remain true for other time axes, so we consider this special case. We observe first that for
sufficiently large r both g ' fut(-r) and F' P'St(r) enter the region where we can use the trick of
the preceding section. Contributions of the quadratic free field terms, Coulomb terms and mixed
terms can be considered separately. For the free field one easily shows with the use of Lemma C. I
that

lim PaII_(r)]Itre= Pout-laI fi,= pin-.aIft', (3.27)
Hi P. [X( )]l out-n | in-n |(.7

lim LAB[Y (r)]|f.ee=( 2 t AB+I AB)Ifree. (3.28)
r-x

Setting this into (3.23) and (3.24), taking into account (3.17) and (3.22) and using (3.13), (3.14),
(3.20), and (3.21) for free fields one arrives at (3.25) and (3.26). For mixed terms one shows by a
direct calculation demonstrated in Appendix B that (3.25) holds and the rhs of (3.26) takes the
required form

4-f ( VQ(A~fB) oxo, 0 o) + Vf" (A ;QB) oo, o,6) d21.

For the Coulomb terms all the terms in (3.25) and (3.26) vanish. This ends the proof of (3.25) and
(3.26).

We return to the physical interpretation. Consistent identification of the total energy momen-
tum by

pin =pouta =p a[] (3.29)

is always correct due to (3.25); on the rhs the proper integral replaces the limit, as the integrand is
absolutely integrable. For angular momentum we have to impose a (Poincar6 covariant) condition
on the long-range variables

f f V(A;B)('-,0,O)=o (3.30)

to be able to conclude

AFin AB=IJOUtAB= lim iAB[ (r)]. (3.31)

Crucial for the interpretation is the first equality. The Cauchy integral is not absolutely integrable,
but the second equality gives its finite regularization, which, however, has no independent direct
physical justification. [The mechanism of this regularization is the antisymmetry of the
leading asymptotic term of the integrand with respect to reflection of three-space X-this is
easily seen from (2.65) and (2.66).] In the absence of the condition (3.30) no well-founded
identification of angular momentum seems to be possible-angular momentum leaks out into the
spacelike infinity. Condition (3.30) imposes constraints on the long-range field (2.65). We
recall that OAVA'(--,0,6)=dA'tA(--,0,-)=-(q+f)l, and decompose VA(-Xo, 3 )
and VA,(- -,o,o) into their electric- and magnetic-type parts: OAVEA,(_ ,O'o)

=.AE A ( -oo, o, ) = - Re(q + ) and OAVMA'(-oo0,)=aA A( -,O,O)
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=-iIm(q+ofrlI . Then also OA' VFA( -o,=O)= aA, 'A(--,o,5) but OAVMA(0-,0,6)

= -dAA MAf( - m o,). Choose an arbitrary timelike, unit, future-pointing vector t and contract

the two last equations with the associated spinor tA . Setting the result into (3.30) and integrating
by parts we have

f tcdcC'E(A MB)(Yoo))d
2
1=0.

The electric and the magnetic parts are independent, and we know that electric-type fields may be
present. Therefore, we demand that magnetic-type fields do not occur in the theory. This condition,
as shown in the preceding section, is satisfied in the known situations of scattering phenomena. On
the other hand, for the field of freely moving charged (possibly both electrically and magnetically)

particles the Ihs of (3.30) takes the form Y
2
i<k(QiQk - QkQi)h(vi - Vk)ViC'(AVkB) , where h is

a real function [use (2.72) as asymptotic]. This vanishes identically only if the ratios of the
magnetic to the electric charge are equal for all particles. This excludes presence of magnetic
charges, as pure electric charges have to be admitted. Finally, we extend the condition of no
magnetic part also to free fields, and assume accordingly from now on

q=q, q'=q', &=, o' =o', F = (, iF'= '. (3.32)

With the knowledge gained on the long-range degrees of freedom we turn again to the
quantities radiated into or coming from null directions. With the usual definitions of outgoing and
incoming free fields (u0tAB = 'PAB- et AB , 'PAB = 'PAB - PAB) the asymptotic split according to
(2.48) and (2.49). Using these splittings in (3.13), (3.14), (3.20), and (3.21), we obtain

p out-n =_1 I to;uttout(s o )ds d 21, (3.33)

~out-nAB - ~L f O(AdB) t(SO,0)ds d2 1+ - f q0(AaB)D(o, 0)d (3.34)

pin-n a= j f Ia;in~in(S, 0,)ds d21, (3.35)

1 f .1 C
yin nAB=- V J(AaB);n(S,0,)dS d

2
1-2 IJ q'o(AaB)(D'(o,6)d

2
l, (3.36)

The first terms on the rhs's of all above equations are the pure free field quantities. However, there
are additional angular momentum contributions due to the long-range tail of the electromagnetic
field. These terms mix free electromagnetic field characteristics a, a-' with the Coulomb charac-
teristics of asymptotic currents qq'. To illustrate a possible observational consequence of these
additional terms we present a very heuristic argument based on a guess on possible asymptotic
states of the theory.

Suppose that the timelike in-asymptotic of a scattering process is characterized by a single
massive spinless particle, carrying charge Q, energy-momentum pin-ta = mv a and angular mo-
mentum Min-tab = M(yinaVb - yinbVa), where yina is a point-vector of any point on the trajec-
tory of the particle. Suppose further that the dynamics of the theory supports an "adiabatic limit"
characterized by the following statements on the scattering states. We assume that the electromag-
netic in-field is infinitely low energetic, that is ft. lItPin(s'o,)12 ds d21-*0, with the infrared
characteristic a', however, remaining finite. We guess that there is then no particle production, no
energy transfer, so PUt-ta=mva, and no radiation field, so the free electromag-
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netic out-field is identical with the in-field. Inconsequence there is a= o-' and q=q' = Q/2(v *1)2.
The scattering process, nevertheless, is not completely trivial, since according to (3.31), (3.34) and
(3.36) there is an angular momentum change of the particle

du AB i-t AB - qo(AaB)'JD(o,o)d l- I FDO(AaB)q(o,o)dl
7r f ~~~~~~~ITf

=- f O(AVB;oCD(O,O) -

or in the tensor language

MoUt-tab mM(youtaVb.yOutbU.),

where

in a=QYi d2
1

Youta=Y a+ arm la<>(D°o) (-y, 1) '(3.37)

determined up to a multiple of Va (this freedom corresponding to cD-.*'D+const.). The effect of the
scattering is thus an adiabatic translation of the trajectory of the particle. This kind of effect will
not show up in the usual scattering cross-section measurements. To get an idea about the size of
the effect let us assume that the infrared characteristic of the free incoming field is that of a field
radiated by a charge Q0 if it changes its four-velocity from u1 to u2 . In that case

; freeA(+~o~o)=QO( U2AC UAC') 'C

so that up to an arbitrary constant 'D(o,3)=Q0 ln[(u 1*1)/(u 2-1)]. One calculates then
Ay= yout-y in.( QQ01/m)(f(arcosh u2V *)u 2 -f(arcosh u1 v)u 1), where f(,8)=(sinh ,/ cosh ,/
-,B)/sinh 3 /. Assume for simplicity the following experimental arrangement: In the laboratory
system the energy of the particle producing the incoming free field remains constant and its
three-velocity is adiabatically reflected U2 = -uI; the test particle is almost at rest in laboratory, so
we neglect lvi; both particles are taken to be "electrons" (but with spin neglected). Then Ay, is a
translation in the three-space of the laboratory and ||Ay. = rcl(sinh 6 cosh 6- 6)/sinh 2 , where
cosh =u2 -V=uv-v and rci=e2/m -2.8X 1'13 cm is "the classical radius of electron." The
maximum value of the displacement is of the order of rC1 , which is not too impressive. However,
the effect cumulates by multiple sending of identical incoming fields.

The first calculation of an observable effect produced by a free zero frequency field is due to
Staruszkiewicz.14 He calculates, in the quasiclassical approximation, the change of the phase of
the wave function of a particle in an external electromagnetic field. The plane wave e - Imo (v is
a four-velocity) undergoes in the complete process of scattering by the field (2.36) the change of
phase

o()_Q I V.V(--") d27

[this is Eq. (6) of Ref. 14 in our notation]. Every gauge of Va(-c,l) can be represented by
Va&-O,I)=aAhA'(O,t3)+aAhA(o,o) with some choice of the function hA' satisfying
hA'(a0o,Ee)=ay71hA'(o,8), hA (o,o)oA =(D(o,5) (cf. Ref. 9). Using this representation and
integrating by parts we obtain
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8(v) f'(DI) d21.
6(v) = - 2iQ jfv~ 2 d (3.38)

If a wave packet is formed, then this phase induces exactly the shift of the trajectory given by
(3.37).

IV. DIRAC EQUATION IN THE FORWARD LIGHTCONE

Our aim in this section is to reformulate the Dirac equation for an electron in electromagnetic
field as an evolution equation on the set of hyperboloids x2=X2 , x0 >0, with X taking the role of
evolution parameter. We show next that, under certain assumptions, scattering states exist. The
class of admitted potentials includes those Coulomb-like as well, if an appropriate gauge trans-
formation is performed.

To fix our notation we rewrite some standard facts about free Dirac field. The Cauchy problem
for the free Dirac equation

(iy V-m)'(x)=0

is solved by

#(x)= f S(x-y) yA(y)doa(y), (4.1)

where .Y' is a spacelike hypersurface and the Fourier representation of S(x) can be written as

S(x)= m)I e- imxvy-v dotv,

where dpi(v)=28(v2 - 1)0(v0)d4 v is the invariant measure on the unit hyperboloid. If Yis not
a Cauchy surface, then Ob(x) is still uniquely determined by (4.1) in the domain of causal depen-
dence of 5<. Similarly the Fourier representation of the free Dirac field can be written as

x) = m ) -eiMX -nv BY vf(u)da(v), (4.2)

with f some complex four-component function on the unit hyperboloid. If we set x= Xz, with
Z2= 1, z0>O then the leading asymptotic term when X-+- is

P(Xz) - -iX-3/ 2 e-i(mX +r 4 ) z f(z)

To see this one only has to observe that e-iayv= ve-iaP+(v)+e+iaP-(v), with
P,(v)=!( 1y-v), and use the standard stationary phase method. We note for later use that
p2+ + P+P-= P-P+=O, P++P-=l. The above asymptotic behavior of free field will
guide us to the reformulation mentioned at the beginning of this section.

We start with some geometric preliminaries. Let x = Xz, with z2 1, Z0 >0, and let Va denote
the flat derivative with respect to xa. We denote 8 a= i(Va-Zaa s). Vi is the derivative in the
directions tangent to the hyperboloid, and [8a ,aj=o. Moreover, 8aZb=hb, where hb=gb _zzb is
the projection tensor. Every vector (and tensor) can be decomposed according to a = zaZ + Ta,

T'za = 0. In particular, the algebra of the Dirac matrices is given by

(yz)= 1, y ZyTa + yTy-z=0, yTyb + yTbyT'= 2 h.
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For all differentiable functions which fall off fast enough for the surface term in the Stokes
theorem

0 I12 -c{(X g-xbgaa)f(x)}dOrb(x)

to vanish, one has the integral identity involving only the (5a derivative:

f ( a-3Za)f(Z)d1L (z) = °. (43)

The Dirac equation

[y- (iV-eA(x)) -m]i/j(x) =0

written in terms of the variables X and Za reads now

idKX(X,z) ={- iXy.zyT.p+my.z+ey-zy-A(Xz)}X(Xz), (4.4)

where X(X,Z)=X 3122,p(Xz), and the operator

Pa=j(Sa+ 2Y*ZYTa -Za) (4.5)

has been introduced. The conserved current of the Dirac equation is now
O(X)ya~p(x)=A 3kyaX(XZ), which, when integrated over the hyperboloid x2=X2 , x0 >O, gives
the conserved quantity fx(X,z)y-z X(X,z)dja(z); bar over a four-component spinor function
denotes the usual Dirac conjugation. The integrand is easily shown to be (1/z0)(xtx+
+ Xt X-), where the dagger denotes the matrix hermitian conjugation and x =P-X. The quantity
is thus positive definite, which suggests the precise formulation of the problem as a unitary
evolution in the Hilbert space Ae of the equivalence classes of C4-valued functions on the unit
hyperboloid z2= 1, z0 >0, with the scalar product

(g,f ,=f g(z)y zf(z)dji(z). (4.6)

(We note that this cannot be achieved by a simple evolution-independent unitary transformation
within the usual formulation on hypersurface of constant time x°, as the change to the hyperboloid
mixes the space and time aspects.) Special classes (dense in .*) of such functions such as k times
continuously differentiable functions of compact support CO and the Schwartz test functions .5 are
defined as those f(z 0,z) for which the respective properties hold forf( ,ITzz) with respect to z;
the identification is time-axis independent. In the Hilbert space W the operator of multiplication
by y.z is easily seen to be a self-adjoint unitary operator and P+ become projection operators. The
operators i yT, and Pa defined in (4.5), are not bounded, but they are symmetric on each of the
special class of functions mentioned above.

The discussion of the free field case is best carried through with the use of Fourier-type
transformation on the unit hyperboloid. For functions in C' we define two integral transformations

FJf(u) (= ) 312f e iKUZvZ y. zf(z)dA(z), (4.7)

F Kf(u) = (-2) f e +iKU zr Uy.zf(z)dd( z). (4.8)
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By F,,(u) and Fx*(u) we mean functions defined on the unit hyperboloid, but the above inte-
grals are valid outside the hyperboloid as well.

Proposition 4.1: FK and F* are isometric operators from CO into 9, so they both can be
extended to isometries of X. FK and F* are then mutually conjugated, hence they are unitary.

Proof: If f E C' then FJ(u) and F*,f(u) are infinitely differentiable. Denote x(u) the ex-
tension of FK f(u) outside the hyperboloid. x(u) is a regular wave packet, in the sense of Ref. 13,
so it vanishes rapidly between (and on) the surfaces u0=O and u2 = 1, u0>O, in particular F~fE>.
Moreover, the Dirac equation (i y- V - K) x(u) = 0 is satisfied. Hence, the current conservation
gives

f FJ(u)y.uFJf(u)da(u)=f ft(0,u)X(O,u)d3 u.

By the usual Fourier transform properties the rhs is easily transformed into

f wZ (ft (Z)f (z)+f t (z)f_(z) _ft (Z)f_(Zo _Z) oft (Z)f+(Zo _Z))I

which, after some manipulation with projectors P+, gives ff(z)y-z f(z)dAs(z). This shows that
F :C'-+. isometrically, so it extends to isometry of -R. To prove the same result for F f we
assume that the support of f lies in zo< a. For zo> a + e deform the hyperboloid smoothly in such
a way, that for large Jzi it tends to z= a + 2 e, and regard f(z) as initial data on this surface for
k(z) satisfying (iy-V-K)k(z)=O. Then k(z) has compact support between this surface and
z0 =O, and moreover V(z)(eiKUzY "uyk(z))=0. Therefore, changing the surface of integration in
(4.8) to z°=O one obtains F*f(u)=P+(u)G(u)+P_(u)G(-u), where

G(u) = (i-) f e iKuz7yok(Oz)d3 z

Hence FK*f(u) is a function of fast decrease and one finds

f FK*Kf(u)-uFK*f(u)d.*(u) = f Gt(u)G(u)d3u.

This, by standard Fourier transformation properties and then by current conservation for k(u), is
again 11112. Finally, one easily proves (FJf,g) = (f,F*g) forf,g E Co, which extends to M. This
ends the proof.

The operator Uo(X2 ,X ) = Fmk 2F* can be now identified as the evolution operator of the

free Dirac field in M. Indeed, the following proposition holds.
Proposition 4.2: The families of operators FK, F* and UO(X 2 ,X1) are strongly continuous in

their parameters. For fEC C the vectors F f and UO(X22,X1)f are strongly differentiable in K, X2
and XI according to the following formulas

d
-i - Ff=F*H= K, (4.9)

ia,\ 2UO(X2AX)f =mH.,\ 2UO(X2,kl)f, (4.10)

-idaxUo(X 2 ,)f= Uo(0 2 ,X1)mHmx f, (4.11)

where HK= F(-(1/K) YT-P + 1), rf(Z) = Y Zf(Z).
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Proof Iff (e C' then Fm*Xf E .and Fmx 2 applied to the latter is therefore expressible in the
integral form (4.7). The function FmX2F*k f (z) is continuously differentiable in X2 and z, satisfies
in these variables the free version of Eq. (4.4), and for X2=1I is equal tof (z). Formulated in terms
of the original Dirac equation this means that FmX2F* )f(Z) = XA'2 V( 2z), where t<x) is the
solution (4.1) of the initial data problem for the Dirac equation with the initial data
0(x)=X" 312 f(z) on x=XIz. Both FmA2F* f(z) and its derivative on X2 are therefore jointly
continuous in X2 and z, and have compact support in z for X2 in some neighborhood of XI. The
strong continuity of U0(X2,X1), differentiability of U0 (X2 ,XI)f in X2 and Eq. (4.10) now easily
follow. FK = UO(K/m,KO/m)FKQ is then strongly continuous as well, so as is U0(A 2,kl) in XI.
Strong differentiability of UO(X 2 ,XI)f in XI forfE C' and Eq. (4.11) follow from

U0 (X 2 ,Xl)f-U0 (X\2 ,Xl)f -Ua(X 2 ,Xl)imHmxf

Uo(X\,, , X)f -fAlAl-o(X~,Xi)imHmxf f
= || Uo Xi) + U0(' A I, A l ) imH.), ,f 0l 

for X I A. In consequence (4.9) follows as well.
We are now ready to discuss evolution in the presence of the electromagnetic potential Aa(x).

Let R(X 2,Xl) be the unitary propagator generated by the family of operators VR(X)
F*AV(X)Fmk, where V(X) is the operator of multiplication by ey-zy-A(Xz). For R(X2,AI) to

be well defined it suffices to assume (which is sufficient for our purposes), that V(A) is a strongly
continuous family of bounded operators. Then R (X2A,) is jointly strongly continuous in X2 and XI
and

id) 2R(X\2,X l)f = VR(X 2)R(X 2 ,l )f, (4.12)

-idaX1R(X 2,X)f=R(X2 ,xI)VR(Xl)f (4.13)

for any f eM. If aa(z) is a measurable vector function then | yT-afl V=J|aTfJl, hence
11 yafil l ha z fI +11 VaTSfll. To satisfy the conditions on V(X) we assume therefore that
Aa(X) is continuous and both Jz-A(Xz)I and 1A2(2Xz)I have bounds independent of z.

The unitary propagator U(X2 ,Xi)=Fmx2 R(X 2 ,Xi)F*A gives the Dirac evolution at least in
the weak sense

ida 2 (fU(X 2 ,X )g)=([mHmx2+ V(X2)]f,U(X2 ,X1 )g),

where g is any vector in XW and f E C'. Moreover, for any fE C'

-idaU(AX2 ,X)f=U(X 2, X)(mHml+V(WX))f.

The scattering states of the evolution so determined are easily obtained by a simple unitary
transformation, as suggested by the asymptotics of O/(Xz) discussed at the beginning of this
section. Let us denote GK= e KF, where r is the operator defined in Proposition 4.2. GK is strongly
continuous, differentiable on every f Es, family of unitary operators. Denote further
TK=iGK+.f,4FK and W(X2 ,X1 ) = Gmx 2+ r 4 U(X2,XI)G*x+ r 4 TmA2R(X2 ,XI)TA.

Lemma 4.3: If fEC2 then ||TJ - fi! =11 TK*f - fil < (l/K)(I|hflJ + 1Ih2fIl), where
h=-iyrTp.

Proof: Let f E Ct first. Then G *f E C~' as well, so the differentiations in (did K)T*f can be
performed. Using the fact that p commutes and rT anticommutes with F one finds
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d i d
- T*f = T* - G 2Khf = T* -d K2hf,
dK K KKK K dK 

where

-ifxG du (GK_ - du)Ic iJ GU r K fJ Gu U2|

(the first form as an improper integral). From the latter form one has 11gKjII(2/K). g2Khf is again
in CO', so

d
-(Tf f-T*'g2 Khf )=T* X G

2
Kg2*Kh

2f.dK K

Integration from KI to K2 leads to

(K2 2fdu

TK*f - TK*f = TK2 g2K2hf- TKg 2 Khf+ i J T*G 2 ug*uh -

and

I I* T2f- TK* i A l( K2+ KJ)( l ihf i + l1ih if il) -

This shows that T*f has a limit; this limit has to be f, as for any g E CO there is
(g,T*f - f )-O, which is easily seen e.g. by stationary phase method. Taking the limit K1l°-
one obtains the stated result for f E C'. Any f e CO can be uniformly approximated together with
its derivatives by functions from C . vanishing outside a common compact set. This ends the
proof.

The above lemma reduces the problem of asymptotics of W(X 2 ,X1) to that of R(X 2 ,X1)

IIW(XX 2 )f- W(XX 1)fII~IIR(XX 2 )f-R(XX 1 )fII+( I + I )(IhfII+Ilh 2fII) (4.14)
MX 2 mX ; /\-

for feC'. The generator of the propagator R(X2 ,Xl) can be written in the form VR(X)
= T*X(G 2m.V0(0) + V2 (X))Tm , where six) and v2(X) are the operators of multiplication by
ieyT-A(Xz) and ez-A(Xz) respectively. Transforming (4.13) with the use of the method applied
in the proof of Lemma 4.3 one obtains

- iad{R(X,u)f- R(X,u)g 2muuv I(u)f}

=R(X,u)T*uv2 (u)Tmj-R(Xu)VR(U)g2 muuvi(u)f+R(Xu)T*uG 2 muVl(u)

d
X(Tmu-I )f+R(X,u)(T - I )G 2 muVI(u)f+R(Xu)g2 mui g- (uv(u)f).

(4.15)

The strong differentiation in the last term will be allowed under the assumptions of the following
theorem.

Proposition 4.4: Let Aa(x) be a vector function twice continuously differentiable and for
X>XO>O subject to the following bounds for some c>0
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const. 2 const.
Iz A(Xz)l Al7f . IAT(XZ)I' A

I[,9),(XAT(XZ) )]21<, C(Z(4.16)

Dz) D(z)
IbaATb(XZ)i< Xe ' I8a6bATc(JZ)l< -

where C(z) and D(z) are continuous functions and the last two estimates hold component-wise in
arbitrary fixed Lorentz frame [change of the frame results only in the change of D(z)].

Then for all fE CO

IIW(X,X 2)f-W(X,X1)fIISC(f )( a+ Xa (4.17)

where a=min{e,1} and c(f) is a constant depending on f Hence for every X>Xo the strong limit
limu_. W(X,u)f =fx exists, is strongly continuous in X and

lIIA-fil--cu )/XA. (4.18)

Proof. To prove (4.17) it remains to estimate various terms in (4.15). The successive terms
(i),...,(v) on the rhs of (4.15) are bounded in norm respectively by

IIG~)II-_IV2(u)IIIlfII,

||(ii)||G--(IIVI(U)11+lIV2(U)11)lIVI(U)II IfIA.

II(iv)Il|-(I|hv I(u)fll + |Ih2v I(u)fIl),

||(v)||%_ mIh1u |fd uIl+IU|h

1u du

for (iv) the fact was used, that v I (u)f E CO. The assumed estimates of the potential force all these
bounds below some constant depending on f times XAl. The integration of (4.15) leads there-
fore to

1 [ R (X u)f -R (XU) 92m.U V1(U)f]IU-X2II_-const.(f )(a+ a

The form of this inequality remains unchanged, if we omit the second term inside the brackets on
the lhs (this term is bounded by const.IlAf|u - 1). Taking into account (4.14) one arrives at (4.17).
The continuity of fA is evident from fx = W(X' , X)f,, and (4.18) is obtained by putting XI = X and
letting X2-*cc in (4.17). This ends the proof.

Corollary 4.5: For every f En$ the strong limit limrnW(X,u)f =fX exists. fX is strongly
continuous and IV\ -f 11- for X-A.

J. Math. Phys., Vol. 36, No. 8, August 1995

4072

Downloaded 04 Aug 2006 to 131.169.5.86. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



Andrzej Herdegen: Long-range effects and asymptotic fields

The crucial point of our discussion is the fact, that the long-range electromagnetic fields of the
Coulomb type are admitted by the premises of Proposition 4.4, provided one chooses the potential
in an appropriate gauge. Let us observe first, that if the electromagnetic field is represented as a
superposition, it suffices to satisfy (4.16) for the potentials of the superposed fields separately.
Suppose that one of the superposed fields is the asymptotic Coulomb-type field homogeneous of
degree -2: Fabb(KX)= K 

2 Fab(X). The simplest choice of the potential inside the lightcone is of
the form Aa(Xz)= X aa(z). This potential breaks the first of the bounds (4.16). Assume, how-
ever, that aa(z) is three times continuously differentiable and satisfies the bounds

la2(z)I<const., I[S(z-a(z))] 2 1<const. . (4.19)

Choose the new gauge by Atr(x) =A(x)-VS(x) with S(x) given by S(Xz) =In X z * a(z) inside
the lightcone. Then

Atb(Xz)=X'{aTb(z)-In XAb(z a(z))} (4.20)

and z * A,,(Xz) =0. The other bounds of (4.16) are satisfied for any e< 1 (with constants depending
on E).

Another class of potentials admitted by Proposition (4.4) consists of Lorentz-gauge potentials
(2.36) of free fields discussed in Sec. II. With the use of (B6) and (B7) we get

const. (zo)E ) 
IAa(XZ)l<y, lVaAb(XZ)I<<const. 2+e' IVaVbAC(Xz)l <const. .

These bounds imply the third, fourth, and fifth of the estimates (4.16), while the first bound above
is sufficient for the second estimate in (4.16) to hold, if the first one is satisfied. To prove this
remaining estimate we observe first that, as follows from (2.37), Va(s,l) =oAkA'(S,o,3 )

+compl.conj., where ockc'(s,o,6)= T(so,8). Inserting this into (2.36) we get by (A.8)

x-A(x) = f a',kA (x-l,o,5)d2l+compl. conj. .

Hence Iz-A(Xz)I<const./X'A+(z 0 )- by (B5), which ends the proof.
We stress that the transformation used here to compensate the asymptotic behavior of the

Dirac field is interaction independent, unlike in the usual Dollard treatment of the Coulomb
potential,15,13 or in a recent discussion of the Cauchy problem for the classical spinor
electrodynamics. 7

The Dirac field is expressed in terms of fox) as

O(Xz) = -iX-3/ 2 e-(m+ ir/4 )zfx(z). (4.21)

IffA(z) is a solution of the free evolution, with the corresponding Dirac field O°(Xz), then

J2 x2X) yiA(x)do-(x) foesos~ 

for X-*w. This suggests that the precise formulation of the asymptotic Dirac field in the quantum
electrodynamics be looked for as a limit of the expression on the Ihs, with 4P being a test field.

V. TOTAL CONSERVED QUANTITIES

We want to return now to the consideration of a closed system with electromagnetic interac-
tion, which has been taken up in Sec. HI. The results should not depend essentially on what kind
of massive field one couples minimally to the electromagnetic field, but we consider for definite-
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ness the Maxwell-Dirac system. The discussion of the present section will make use of the results
of the preceding sections, but in the full theory we lack rigorous results along the lines presented
here. Rigorous results on the Cauchy problem and scattering properties of the Maxwell-Dirac
theory were recently reported by Flato et al. , but the method used by these authors is quite
different, and the relation of the present work with Ref. 7 remains to be clarified. What is clear,
however, is the difference in the choice of transformation leading to asymptotic states: Our trans-
formation is interaction-independent, which is made possible by a special choice of gauge, while
the transformation of Flato et al. is a Dollard-type treatment (cf. Ref. 15), consisting of extraction
of a phase in momentum space, thus not constituting a gauge transformation in the usual sense.
Moreover, the method used in the present work aims at appropriate description of the spacetime
separation of asymptotic matter and radiation, so far as it can be achieved. We stress, however, that
no results on the Cauchy problem or asymptotic completeness are given here.

Proceeding heuristically we shall assume that the asymptotics of fields of the interacting
theory are of the type described in Sec. H for the electromagnetic and in Sec. IV for the Dirac field
respectively. When needed we shall add further assumptions on how these asymptotics are
achieved. These extrapolations seem plausible, provided (i) the full electromagnetic potential falls
into the class admitted by Proposition 4.4 and (ii) the current of the Dirac field vanishes in
spacelike directions sufficiently fast for the discussion of Sec. 2 to remain valid. Basing the
intuitions on the free Dirac field case we regard the second point as unproblematic, but for its
rigorous justification more control over the limit fX -f, and also the solution of the Dirac equation
outside the cone would be needed. As to the first point, we can only present a very simplified
argument of self-consistency type, which, however, takes care of the Coulomb term, the most
troublesome from the point of view of asymptotics of the matter field.

More explicitly, we represent the Dirac field inside the lightcone as in (4.21) and assume that
fk- Af as in Corollary 4.5. For any current density denote inside the lightcone ja(kZ)= X3Ja(XZ),
Z2 = 1, z 0>0. For the Dirac field

ja(,Z) =ZaP(Z) +(e-2 imkKa(z) +compl. conj.) + ra(X,z), (5.1)

where

p(z) = ef(z) y- zf(z),

Ka(Z) =-ieP-f(z) yTaP+f(z),

ra(Xz)=ee i(mX+ / 4 )yvzf (z)yae-i(m+± Ir/ 4)y zfx(Z)

-ee i(mX+ir/ 4 )- zf(z)y e-i(mX+1r/4 )yVzf(W)

The electromagnetic potential in the Lorentz gauge can be split into the free outgoing and ad-
vanced parts. As for the free part, its admissibility in Proposition 4.4 has been proved already in
the preceding section. The advanced field of the current Ja(x) can be written inside the future
lightcone as

Aadva~x)=J jaVx v+v~x *v)2-X2,V) dp(v)

For the Dirac density the first term of (5.1) yields a Coulomb potential

ACou b(Xz) = b(Z) (5.2)X~~~~~~~~~~~52
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with

ab(z)= IVbP(V) (v) (53)

This is a homogeneous potential of the type discussed after Corollary 4.5. All we have to show for
admissibility of its gauged form AcoUI (4.20) is the threefold differentiability of ab(z) and the
bounds (4.19). The differentiability of ab(z) follows easily by the use of the identity

r d~u(v) f d~a(v)
'Jbf h(v) ___V)__ -f [z v( 8

b-
3 Vb)+zb]h(v d

and suitable assumptions on the regularity and fall-off of p(v). [The identity follows by multipli-
cation of

s~~z) 1 ~~Zb ~ ) ZIV
o5(bz) - =kZ v) 2 -l b4

by h(v) and integration by parts according to (4.3).] From (Dl) we have

const.
Iab(Z)I <-, Iz-a(z)I<const., (5.4)z

so that the first of the bounds (4.19) is satisfied. To obtain the other one we observe first that the
components of any unit vector orthogonal to a timelike unit vector za are bounded by zo, in
particular 1(Va - z * VZa)/[ (z * ) - 1] | zo. [Proof: if w*z=0, then Iz~w0I IzJlwI, or, using
z2= W2 = 1, (IwI2-1)(z 0 )2 __wI 2((z0)2 -1), hence z0Ž'IwJ_'IwOJ.] Hence, by (D.1),

8b(z a(z))= - p(v) bZVZb dl)(v) (5.5)
(z_~ v) -1 Z-VY_ 

and JSb(z-a(z))|<const./z 0 , which implies the second of the inequalities (4.19). From now on
AC,'U replaces Ac"ul in the Dirac equation.

The remaining contributions to Aadvb(XZ) will not be discussed in detail, but we assume, what
could be achieved with some additional assumptions on uniformness of the limit fA(z) -*f(z) and
on regularity of f(z), that

IAadvb(XZ) -Acoulb(z) I< const. (5.6)

and

IFadvab(XZ) - FCOUlab(XZ) I < icons (5.7)

where

FCOU ab(Z)= fab(Z) (5.8)
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fab(Z) = p(V) ZaVbZbVa du(v) (59)

Since Z[aVbl=(Z[a-Z VV[a)Vb] we have (Zaub - ZbVa)/ (zV) 2 - 1]j < 2(vO)2 and from
(DI)

coast.
Ifab(Z)l< _jT, (5.10)

if Ip(v)J<const./(v0)4 +6.
The new gauge of the electromagnetic potential, which we use here for its simplicity, is a

nonlocal one, being reached from a Lorentz gauge by a transformation depending on the asymp-
totic current. However, the same asymptotic effect can be achieved by a local gauge transforma-
tion A(x)-*A(x)-VS(x), with S(x)=ln .F7x-A(x) inside the lightcone.

We come now to our principal aim in this section. We want to complete the discussion of Sec.
II by supplying the up to now lacking expressions for energy-momentum and angular momentum
going out in timelike directions with the massive part of the system. We recall, that these quan-
tities are determined by (3.15) and (3.16) respectively, and they do not depend on the choice of the
time axis along which the limits in those formulas are achieved. We take advantage of this
independence to chose an axis going through the origin of Minkowski space (with arbitrary
time-vector t). The total energy momentum tensor of the theory is given by

T -TDb + T7'b

a-ab ab '

where Telmab is the tensor of the total electromagnetic field (3.7) and

TDab= i{frYa(Vb-eAb) a+ compl. conj.}+ (a4--b),

where (a*-*b) stands for terms with interchanged indices. Recalling result (3.17) we see that the
contribution to the rhs's of (3.15) and (3.16) coming from the out field vanish. Also the contribu-
tions coming from the mixed adv-out terms in TClmab vanish, as shown in Appendix B.

We are left with the task of calculating the rhs's of (3.15) and (3.16) for

Tab = +T ab Taab,

where Tadvab is the electromagnetic tensor of advanced field. We want to show first that the limits
of the integrals over & fut() for r-ed may be replaced by the limits for X-Amp of the integrals over
hyperboloids W(X)=1{xJx 2 = X2 ,x0>0}. To this end consider integrals over the region contained
between fi"t (r) and -W(X) of the quantities

VcTa =FoutacJC (5.11)

and

VC(XaTbc-XbTaC) (XaFOutbc + XbFOuta,)JC. (5.12)

Since Tab gives no flow of energy momentum or angular momentum to null infinity, these inte-
grals give the differences of energy momentum and angular momentum passing through fUt(r)

and XW(A). If the above divergencies are absolutely integrable over the region x2 > 1, x0>0, then
these differences vanish in the limit and the replacement of ?2fUt(r) by X(A) is justified. If we
assume that lja(X,z)J<h(z), then by (B7) the rhs of (5.11) is bounded by
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const.[h(z)(zo)l+E/X 4 zO(X+stz0)l+E] and the rhs of (5.12) by a similar quantity multiplied by

Xzo. For x = Xz there is d4X= X33 dX dp,(z), so both these expressions are integrable over X> 1 for

h(z) such that fh(z)(zo) l + E d ,(z) < a.
The preceding discussion brings us to the following representations

pout-t = lim f X3T,(Xz )ZC d/p(z),

MOUt tab= lim X 4 (ZaTb, AZ)-ZbT.,(AZ) )z d/l(z)).

The limits here will be treated rather formally, by assuming that for large X only the leading

(constant at least) terms of the integrands contribute. In this way there is no contribution from

Tab to POut-ta and contribution to MOUt-tab comes from -(lIl67r)(zafbd(Z) Zbfad(Z))fcdZC.

This term, however, vanishes identically, since ZfJbcl=0.

Consider finally TDab, which gives the only nonvanishing contributions. Writing

q/(xz)=A-3/2X(A,z) and using the Dirac equation (4.4) we have

(iV-eAa)V(XZ) :3'2{Zaz m- - YTP+ey*A) + P2eA A ZYT}X(XZ)

where pa is the operator defined in (4.5). Now, X(X,z)= - ie -i(mX+ 7r4) v. zfx(z) and we treat X as

0(X0 ). Then

X
3

TDacZc=mZaXX+ O(X-E),

ZaTDbc-ZbTDac)Zc= 2{ZS -z(Pb- eAb+ 2-TIbYTc]P)X(a'-b)}+compl. conj..

The result of integration over the hyperboloid can be written in terms of the scalar product of Sec.

IV

f X3TDac(z)zc dg(z)=m(x,y-zzaX)+O(X-X), (5.13)

f X 4(ZaTDbc(XZ)-ZbTDac(kz))zC dp,(z)

=(X,(ZaPb-ZbPa)X)-e(X,(zaXAb(Xz)-Zb\Aa(XZ))X)

+ 4(X,[ZaYT[bYTc] ZbYT[aYTc] ,Pc]X), (5.14)

where the symmetry of operators was taken into account. The operators appearing in the averages

commute with y-z, so X can be replaced by fx, and further, up to 0(X%), by f(z). Using

[YT[bVYTc]sP]=O and [PcZa]=ihca we transform the third term in (5.14) to the form
(i/ 4 )(f[^YTaYTb]f )+O(E-f). Contributions to the second term up to O(XA) could only come

from A Coul. However,

-2e (fz[a(ab](Z)-In XA b](z * a(z))f)

JP(Z)JP\V) ZV (Za)I-I I d,(u)dp,(z) = 0,
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due to antisymmetry of the integrand with respect to interchange of integration variables zn-+ v.
Taking now the limit X--cc we finally obtain

Pout' ta=m(fy ZZaf )=m f zjf(z)da(z), (5.15)

Mout ab= ( zZaPb-ZbPa+ [YTa YTb])f )
r ~~~~~~~~~i =J fin z Zai5b Zbiaa+ -[YaYbl (z)du(z) (5.16)

which are the desired formulas for the quantities going out in timelike directions. If we define the
free outgoing Dirac field by [cf. (4.2)]

fruitx= ) eirx v y. vf(v)dII(v),

then the above expressions give the Fourier representations of the conserved quantities of this field
(in a somewhat unusual but most compact form). Similar expressions could be obtained for the
timelike past infinity.

The task of expressing the total energy momentum and angular momentum of the interacting
theory in terms of asymptotic fields has been now completed. As anticipated, the contributions of
electromagnetic and massive free fields almost separate, except for a term in the radiated angular
momentum due to the long-range part of the electromagnetic field. This term [the second one on
the rhs of (3.34)] can be now rewritten by the use of matter asymptotics. q(o,5) is now given by
formula (2.79), hence

I f e 2(_
AAAB=- I qo(AdB)f(oo)d l=-- If y Zf(z)I f(OO, )o(A8B) 2d I d1<(z)

- f fY'Zf(Z)ZC'(A;H(Z)d/_t(Z),

or in the tensor form

AMab-A^tABEABf+compl. conj.=- (f,(Za8bH-ZbaH)f)

where

e (D (1)2H(z) = d-i d21 (5.17)

If we now change the phase of f(z) by introducing

g(z)=eiH(z)f(z), (5.18)

then MoUt-tab + AMab has again the form (5.16) but with f replaced by g, while P"'a retains
its form under this replacement. With this final representation the total quantities (3.18) and (3.19)
look formally like sums of two free fields contributions. The very nonlocal transformation (5.18)
has now accommodated the mixing aspects of the asymptotics.
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It is interesting to note that H(z) acquires here the role of a phase in a very natural way. This
is rather satisfying, since the same conclusion has been reached earlier in a different way, by
considering a quantum version of an "adiabatic approximation," see Ref. 9 [for "quantum field"
(1D() definition (5.17) give's C(g,) of this reference]. Moreover, -2H(z) is identical with the
change of phase b(z) (3.38) in the external field problem calculated by Staruszkiewicz. On the
other hand H(z) is distinct from a phase variable considered by Staruszkiewicz 5 in his theory of
quantum Coulomb field. We discuss the difference in some detail. A phase field of Ref. 5 is a
homogeneous of degree 0 field in the region x2 <0, satisfying there the homogeneous wave
equation. Such a field can be represented by

S(x)= fsgnx*l fI(1)+ln -11f 2 (1)}d21+ct ,

where f1If2 are homogeneous of degree -2 functions of I and ff2 (1)d2 1=O, t is a timelike, unit,
future-pointing vector and c, is a constant; this constant changes for another choice of vector t
according to c=c,+fIln[(. l)I(t. l)f 2(l)d2 1. Consider the spherically symmetric term S,(x)
in the expansion of S(x) in spherical harmonics in a coordinate system in which z points in the
direction of the time-axis. One easily shows that

S~X)= I l(I)d I (_x _ZJ 2_X2-+ CZ.

Identifications of Staruszkiewicz are

- f I(1)d 2 1= charge, cz=phase variable.

To compare this with our identifications we use the relation of S(x) to the long-range field of Ref.
5

- eFl ab(x)xb VaS(X).

One easily shows using (2.68) and (2.66) that in our description a field S(x) which can be formed
out of the long-range variables and which satisfies this relation is given by

e 
S(x) =- 2o sgn x * 1 (q (1) + cr(l)) d21.

For this field

Sz(x) -eQ xZ

The charge part agrees with that of Staruszkiewicz, but the analog of his phase variable is absent.
Our phase variable, which is the null spherical harmonic in e<D(1), does not appear in S,(x). [The
absence of logarithmic terms in our version of S(x) is due to the conditions on null asymptotics of
fields.]

VI. CONCLUSIONS

The main results of our analysis can be summarized as follows.
(i) Despite nonintegrability of the angular momentum tensor density over a Cauchy surface,

the total angular momentum (four dimensional) can be unambiguously identified, provided (a)
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angular momentum radiated (or incoming from null directions) over finite time intervals is well
defined, and (b) the magnetic part of the spacelike asymptotic of the electromagnetic field van-
ishes.

(ii) Asymptotic Dirac field can be identified by a special choice of gauge and consideration of
the asymptotic behavior of the Dirac field on the hyperboloid x2=X2 for A-°.

(iii) The total energy momentum of the system can be expressed as a sum of independent
contributions from the asymptotic free electromagnetic field and the asymptotic Dirac field. How-
ever, in the analogous representation of the angular momentum an additional term survives, which
mixes the asymptotic Dirac field characteristic with the infrared characteristic of the free asymp-
totic electromagnetic field. This effect persists in the limit of the energy tending to zero. The
additional term can be accommodated into the matter part by a redefinition of the asymptotic Dirac
field. This is a very nonlocal transformation mixing the matter aspects with the spacelike asymp-
totics of radiation.
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APPENDIX A: HOMOGENEOUS FUNCTIONS OF A SPINOR VARIABLE

We reproduce here some facts about the invariant measure over the null directions in
Minkowski space14 "16"10 and on spin-weighted spherical harmonics.' 0

Let u denote a vector on the future lightcone. The measure d3 u/u0 is known to be Lorentz
invariant. If we define a measure over the null directions d2u by d3 u/u0 =(du0 lu0 )d2 u (in the
notation of Ref. 14), then the new measure is Lorentz invariant in the following sense: The result
of integration of a homogeneous of degree -2 function of u is manifestly Lorentz invariant.

The invariant measure has a very simple and elegant representation in the spinor language.' 0

If eA is a spinor of the null vector u, then

d2U=ieA'dCAA(Ad(A.

Here any parametrization of spinors is implied for which every null direction is represented by
exactly one spinor. The scaling behavior of d2 u is now explicit:

if --*ea, then d2 u_*(ati) 2 d2 u.

Some special scalings of spinors are useful. We say that a spinor oA is chosen in a t-gauge, if
its null vector I satisfies t- 1 = 1, where t is a fixed unit timelike vector. In this scaling the measure
d2 u is the rotationally invariant measure on the unit sphere in the three-space orthogonal to ,,,4,16
which we denote dQ,(u).

Let us choose a fixed spinor oA in a t-gauge and denote LA=tAA OA, Then {oA, A} is a
normalized spinor basis: OA A= 1. Parametrize eA with complex numbers K from the closed unit
circle by the formula

6A(lIKI2 )l/ 2 0A +KtLA. (Al)
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Then (A is in a t-gauge and df~l(u)=2i dkAdK. Setting K=pe- ", pe(0,1), qpE(0,21T) we
obtain dQ,(u)=2dp2Ad9. Finally, substituting p=sin(A/2), 6E(0,;r) we obtain the spherical
angles parametrization:

(A=cos -oA + V sin 2 e G (A2)

u= t +sin O(cos up Xa+sin up Ya)+cos ia Za, (A3)

where Xa=(lI/)(oAt2 A + LAOA') ya =(i/)(OA L -+LAoA'), Za=lata is a Cartesian basis,
and dfl(u)=sin e d Adqp.

The invariant integral is an important tool in the theory of homogeneous functions of a spinor
variable, known as the theory of spin-weighted spherical harmonics.'0 We reproduce some results
of the theory needed in the present paper.

A function f(o,0) is said to be of type {p,q} if

f(ao,&) = aPqf(o,). (A4)

Choose any timelike versor ta and denote LA =tAA oA'lt 1. Denote also dA=d/doA, 0A31-fAO.
Then one has

(i) if p-q >0 then t AgAf =*f°0;

(A5)
(ii) if p-q<0 then tA aAf=0=of=0.

For f I: {0,q }, f 2: {P2 ,0} one has by Euler theorem

9
Af, =oAg, I aAAf2=oArg2- (A6)

If quit, P2< 0 then (i) and (ii) imply that f are uniquely determined by gi (i=1,2). Moreover, if
q =p 2 = -2, so that gI and g2 are of type {-2,-2}, then

f g, d21 I g 2 d21=0. (A7)

Using this, one also easily shows that

f dAh, d2 1=0, f dAh 2 d2 1=O, (A8)

for hl: {-1,-2}, and h2: {-2,-1}.

APPENDIX B: SOME ESTIMATES AND LIMITS

We prove here various estimates of asymptotic behavior of fields and quantities appearing in
this paper. Our tool is the following simple lemma. Let a>0, b30, c>0, a>0 (all real). Then

(a c

Cc a-~~~~~I i aa(a + b) ' a>l
J (a+bu)- du< C. (B1)

I a a a+cb a< a .

To see this, represent the result of integration by [cf(a+bc)']h cobra ) for a<l and by
[c/a'_'(a+bc)]h2-,a(cb/a) for a>l, where h,8(x)=[l/(l-,6)x][x+l-(x+l)I3 ] for /3<1.
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hex) is a continuous function of x3'0, h,(0)= 1, lima, , hex) = 1/(1 -/6). Moreover, it is easy to
see that x 2 h~s(x)=Bfify(y± I)-2 dy, so h(x) is monotonous. Hence
hG(x)<max{1,l/(l-,B)}, which ends the proof of (BI).

Let Ck(x), k=0,1,2, be free fields

Ck(X)=-- ffk(x-u,u)d u,

such that for s>0 there is Ifk(s,u)I<const./(s+s,)k+E in some t gauge (s,>0). Then, using the
above lemma we obtain immediately in t gauge

[ ( ) | ~const. (2
JCo(st+RI)I< const. (B32)(s+st+2R)'

|C I t + RI) I < (+-const. ()

IC 2 (St+Rl)I< coast. 14
(S + Sd E(S + St+2R) (4

For xa inside the forward lightcone set x = za, with Z2= 1, z0>0. The above bounds imply then

lc ( Z)I< | const. (13)

IC1 (Xz) 1<const. (X+szO) E(s+zo) (6)

(Z) I) 
IC2(Xz)I <const. (X+sz 0) ITe(st+Az 0) (B7)

All bounds (B2)-(B7) hold also in other reference systems, with st and other constants depending
on vector t.

We turn now to the energy momentum and angular momentum of electromagnetic field pass-
ing through the cone future):

Pelm J[ Ut(T)]= f rima,(rt+RI)IcR2 dR dfl,(I), (B8)

Aelm A[Ut(7r)]= f /elmABc(rt+Rl)cR
2 dR dfl,(1), (B9)

where lc is in a t gauge, Tlimac and IlmABc are given by (3.7) and (3.8) respectively. We shall
show that both quantities vanish in the limit M-oo for the free field (2.32) and for the mixed terms
of the free outgoing field and the advanced field of the asymptotic Dirac current. To this end
estimates of PAC(rt+Rl)oC and eAc(Tt+Rl)oC are needed. For the free field we use the
representations (2.32), (2.33) with the spinor variable el and integrate by the use of identity

(2 +R) OAeA((rt+R1) de' d= e4(-4 dA)f((rt+R1) 1) )

,A'= tA'A OA) . Then
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WPAC(Tt+Rl)o C=- 6A2R LB' ABI 4B((Tt+R I) -u,6, I)d2U,

@AC(t±Rl)o - 'i( r+2R) f L dB,dA, ((Tt+R1)-u,6, )d 2 u.

The estimates (B3), (B2) give

const.

I| AC(rt+Rl)oCJ< T(T .2R)2 (B1)

( T+ 2R) (ll

Using these bounds in (B8) and (B9) one gets Pa[JKfut(r)] construe 1 +2E, |/1UAB[1K(T)]<const./r2 '
for the free field, which proves (3.17). For the advanced field we use (5.7)-(5.9). This yields

const.
(PadvAB(at+dR 1ou I const. (B12)

I( AA'-ecou AA')(Tt+Rl)|< const. (B13)

For estimation of eCOUIA,c(rt+R1)oC one has to use more specific algebraic property of the
Coulomb field. One shows with the use of (5.8) and (5.9) that

2 Cc AB)A B =X f p(V) tC(A'XB') dl(u)
(P AB(X)XAXB,~*- 2 p Zv) -J j27X

2(.T-X'

The integral on the rhs is estimated as the Coulomb field itself. Taking into account that

Cu AB(X)XAB XB' Ixt r+RI= (2 +R)ec A'C(Tt+Rl)oc

we get

le Ac(rt+Rl)o <const. ( (B14)

A straightforward calculation shows now that (B12)-(B14) together with (B110) and (B11) are
sufficient for vanishing of the mixed terms contributions to (B8) and (B9) in the limit Tr-*.

The last point in this appendix is the demonstration of (3.25) and (3.26) for the mixed
contributions of the free field and the (generalized) Coulomb field (2.51) to the electromagnetic
energy-momentum tensor. We give explicit calculations for the case of fUt(-r), where

Pmixa[ lUt(- r)] = dfQ,(u) fr Tmixac(-rt+Ru)uCR2 dR,

u mix AB[K t(-r)]= f df,(u) f: IL'xAB,( rt+Ru)ucR2 dR.
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We use (2.51) (with a0=) and (2.32) and (2.33) in mixed terms of (3.7) and (3.8). Integration over
R is then explicitly carried out with the use of identities

(PAC(-rt+Ru)(C=dR( -- ) foAt(-r+Rl uoo) d ' -

27T~~~ f ~oc,~c'.

We get

Pmixat r fut(-r)] Q 2 d_,(u)d _t(_) O__ (r(l u-l),o,_)+compl. conj.,

ifr f Q ' c

Y lmiAB [<Wt(-r)]= ' f df,(u)dfl,(1)Jx 7,(A-3B);(r(1 u 1),o'j)

_OCeC {D t(AOB);(r(l-u-)oo>

The energy-momentum expression vanishes in the limit r-+- by the Lebesgue theorem, while the
first term in the angular momentum expression yields

2-~- f dft(l)dfl,(u) .(Adg)0 ;( a o 3)- 1 f Q(Ai;B)(-0,o,3)d2I,

where 6 integration in the parametrization (A2) was performed. The second term in this param-
etrization after qp-integration is

8r s dflt(l)dtE sin tOAOB8(-r 8 dl(l)oAoB[ (ro,5)- (-ro,5)]

4-* ~f C(AVQB)(-°,o,o)d 2 ,

for r-*+, which ends the proof.

APPENDIX C: THREE-SPACE INTEGRALS

We prove here a lemma, from which the formulas (3.28) and (3.28) for conserved quantities
of a free electromagnetic field follow by a simple computation.

Lemma C.l: Let f1 (s,o,5) and f 2 (s,o,6) be continuously differentiable functions satisfying
scaling law f(a acs,ao,&ao)=o= 2Cz-Vf(s,o,5), such that Jf2 (s,o,6)J is bounded, Ifi(s,o,5)J,
| dAfl(s,o,o)l and 19Afl (s,o, 3)l are bounded by an integrable function (in any fixed gauge), and
there exist limits lime_+ f 2(s,o,3)=-lims -f 2 (so,3).
Then
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lirn | ta Jff(x u,6,)6A' d2
I f-f2(x.1,0,6)OAd l}d x

f~x t.X=e,(t X)2_X2_-r2}I 2ir 27r

= f f I (s,o,o)f 2(s,o,5)ds d21. (Cl)

Note that the rhs is explicitly hyperplane independent.
Proof. Choose a t-gauge t * l= t * u = 1, fix oA and parametrize el by (A2) and Xa by

Xa=Xotay Za y2(cos S( Xa+sin p Ya)-y3(sin S° Xacos S° ya).

Then x-=x. +yx u =x0 +Y2 sin &+yl cos i. Hence,

.f1X'C,0--r Ofta j1(x*u,6,~)6A' d~uf 2(x.I,o,03)oAdx

f Al(, 9)fly2+y2r2} Y Y. Y2

Xcos 2 fl(Y1 cos 1+Y2 sin &+c,g,)f 2 (y 1+co,5)

2 Y

=2f dde "J{d2+ysr2} d r2 -y -Y 2

Xcos 2f 1 (MY cos 1+Y2 sin t+c,1)f 2 (y 1+co,5).

The effect of the constant c is a translation of both functions in the first argument, so if the lemma
is proved for c =0, then it is true for all c. We set c =0 for simplicity. By the change of variables
s=yI cos i9+Y2 sin i, v =-yI sin L+Y2 cos i we get

r r ~~~ds du i9
-2| dtd d 2 2 2 COS fds(sd, 6csf2(s cos v-v sin io, 3 )

=- 2 J dsJ f f dit dep cos 2fl(s,U,()ddf2 (s cos 1-Jr2S7
2K sin to,3).

Integrating by parts over i we obtain

(27r) f fI(s,o,a)f2 (s,o,3)ds+2 ds f di dq decoys fI(s,6)

X [ 2(S COS ii+ -S2 K sin io,5)+f2 (s cos ii- K sin io,3)].

By the Lebesgue theorem the second integral vanishes in the limit, which ends the proof.
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APPENDIX D: AN ESTIMATE

We show here, that if 2a:,8/3_0, y0, a>11,+y-11 and IG(z,v)l<const./(vo)a+l for both z
and v on the unit four-velocity hyperboloid, then

I (zu)Z v)2-laG(zv) const.

The bound is then valid in any other reference system (with some other constant).
Let ta be the time-axis versor of the reference system. We show that

r ~~~~~~dl t(v) const.'~~ I ~~ (zv) - dpA~~~~v) __I_____Y

J V(~Z- VT --I ) "(Z -V + V/(Z --V)2-',) Y(t - )a (z

Choose the time-axis of the coordinate system in which integration is performed along z and set
v° = A V' 2 + 1. Then

I-2 f lvl2 dlv I 2 s2d

- vr(vT+lvi) Jo (coshXvo-sinh xIvI+sinhI JV5)a+l'

where cosh X=t-z, X-a 0. By (B1) the inside integral is bounded by

const.

(cosh Xv 0 -sinh XIvl)a(cosh Xv 0 +sinh xIvI)

By change of integration variable Iv! = sinh iA we get

cost (sinh qf)2-6 do
I<const.J0 (eO)y cosh(O+X)(cosh(q/-X))a

const. do d

(cosh X).B+Y J-x(e*) +Y-T(cosh qr)a

const. ( d q
(cosh-x)_" r J x (e0)I'r+Yl-(cosh o)a
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