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Abstract 
The application of artificial neural networks in particle physics is reviewed. The use of feed-forward nets is most common 

for event classification and function approximation. This network type is best suited for a hardware implementation and 

special VLSI chips are available which are used in fast trigger processors. Also discussed are fully connected networks of the 

Hopfield type for pattern recognition in tracking detectors. 

1. Introduction 

The sensory and cognitive abilities of biological neural 

networks, like the human brain, are still not reached by 

even the most powerful electronic computer systems. The 

fascinating features of neutral systems which are most 
distinct from the properties of the conventional “von 
Neumann” computers are: 

- the associative recognition of complex structures; 

- fault tolerance: the data may be incomplete, inconsistent 
or noisy; 

- the systems are trainable, i.e. they can learn as well as 

organize themselves; 
- algorithms and hardware are inherently parallel. 

There is an increasing interest in understanding the 

working principles of neural systems and to apply these 

principles to information processing. In this effort sci- 

entists from different fields, like biology, psychology, 
physics and mathematics, are working together. Inspired 

by the biological model, neural and evolutionary algo- 
rithms have been developed and successfully used for the 
analysis of complex problems. Together with specific 

“neural” hardware developments such algorithms now 
begin to find industrial applications for cognitive and 
sensoric tasks in image processing, robotics and process 

control. The industrial interest ensures that the hardware 
development will proceed, which is crucial for the most 
efficient use of neural algorithms. 

Neural information processing is a relatively young field 
and we are still at the stage of evaluating where artificial 
neural networks have advantages over more conventional 
methods. It is certainly important that we now follow these 
developments and try to assess the possibilities for applica- 
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tions in particle physics. For online applications in experi- 

ments we are particularly dependent on dedicated hard- 
ware. However, one should keep in mind that the available 

technology drastically limits the complexity of artificial 
neural networks-far below the level of the biological 

models we are looking at. To some extent this deficit is 

compensated by the higher speed of electronic circuits. 
In the following I want to review the application of 

Artificial Neural Networks (ANN) in particle physics [ 1] - 

sharing the enthusiasm of those engaged in this field but 
hopefully critical enough to see the current limitations of 
the method. The list of papers on ANN in particle physics 

is far too long to be covered here. I also apologize if the 

selection of examples is biased towards the work which is 

better known to me. 

2. Biological and artticial neural networks 

Biological information processing is characterized by a 
huge number of processors with highly complex con- 
nections. The processor units are the neurons which have a 
density of about lo5 per mm’ in the cerebral cortex. A 
simple model describes how neurons work a neuron 
receives the signals from many other neurons via synapses 

which weigh the signals. The neuron cell is activated by 
the sum of the weighed signals and if the activation 
exceeds a certain value the neuron sends a signal to the 
neurons it is connected to. 

The structure of an artificial neuron is based on this 
simple model (Fig. 1): The inputs x, to the neuron i are 

multiplied by the weights w,, leading to the activation z, of 
the neuron. The activation function is usually a linear 
function of the inputs: 

z, = c w,yJ - sx 7 
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Fig, 1. Left: structure of an artificial neuron; right: example for the output of a neuron with two input variables. The value d:,) = 0.5 

defines a hyperplane in the input space. 

where s; is an offset or a threshold. The neuron activation 
determines the output yi by means of the transfer function 
which could be just the step function @(z,) or more often a 
differentiable, smoothed version of the step function 
(“sigmoid” function) like the “logistic” function: 

In order to understand how neurons and neural nets 
work it is helpful to realize that the fixed value z, = 0 of 
the activation function defines a hyperplane which divides 
the input space into hemispheres with negative and posi- 
tive activations (Fig. 1). The neuron output cr(zi) is a 
measure for the distance from the hyperplane. For larger 
distances - the scale is given by the absolute values of the 
weights - the transfer function saturates, i.e. the output 
measures the neighbourhood of the hyperplane with higher 
resolution. 

In general one has to enclose volumina in the input 
space. A volume can be approximated by a combination of 
several hyperplanes, i.e. by several neurons whose output 
is processed in a subsequent step by another neuron. This 
leads to a multi-layer network, in most cases so-called 
feed-forward nets, meaning that the signals propagate only 
in one direction and in a fixed time sequence through the 
net (see Section 3). 

An important feature of neural networks is their 
trainability and the capability of self-organisation. Training 
should establish a functional dependence, i.e. correlate the 
input of a net with the output by changing the weights 
and/or the connectivity between the neurons, According to 
the “Hebb rule” the learning and structure formation in 
the brain depends on the intensity and frequency of the 
stimulus acting on a neuron and on the correlation between 
the input and the output of the neuron. At the beginning of 
the. training the input-output correlation is just random and 
then evolves with time, leading to a self-organized struc- 

ture (“unsupervised learning”). However, in many practi- 
cal applications of ANN the weights are adjusted accord- 
ing to a predefined output target (“supervised learning”), 
as is the case for the feed-forward nets discussed in the 
following. 

Self-organizing networks are often used for image 
processing, process control and robotics and they have also 
been investigated for applications in particle physics. 
However, in most cases studied in particle physics these 
networks were not found to offer any advantage over the 
feed-forward nets applied to the same problem. Given the 
restriction in the length of this paper I will therefore not 
discuss self-organizing networks and the similarly interest- 
ing techniques of the evolutionary formation of network 
structures. 

3. Feed-forward networks 

3.1. Network architecture and backpropagation training 

From the large variety of neural net models the feed- 
forward (F’F) nets are most commonly used in particle 
physics. The network has a layered structure (Fig. 2), with 
an input layer, a principally arbitrary number of “hidden” 
layers and an output layer. The signals are always sent to 
the next layer above (feed-forward). The number of hidden 
layers is mostly one or two. 

Mathematically the network maps the n-dimensional 
input vector x onto the m-dimensional output vector y 
where the mapping is defined by the structure of the 
network and the weights (w”, is the weight from the ith 
node in the ti layer to the jth node in the (k + 1)th layer): 

Y =Y(+“,). 

The network is trained with N input patterns xp (p = 
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Fig. 2. Example of a feed-forward network with one hidden layer. 

1 , . . . , N) to approximate the expected output y ” (“super- 
vised learning”). This is done by adjusting the weights 
such that the error function 

is minimized. The minimization is done in an iteration 
loop by means of the gradient descent method (0 < 77 < 1): 

The most common iteration procedure is the backpropaga- 
tion algorithm which allows to “backpropagate” the 
corrections from the output to the input layer. The algo- 
rithm is particularly well suited for implementation on 
computers because it is recursive and local which means 
that in any layer only the results from the previous layer 
are required. Since the training is in general very time- 
consuming the optimization of training algorithms is an 
intensive field of research. 

Examples of public domain software for network train- 
ing are the program packages JETNET, Aspirin/MIG- 
RAINES, SNNS (Stuttgart Neural Net Simulator) and 
many others. Information on available software and a lot 
more can be obtained via World Wide Web (WWW: 
http: //www 1 .cern.ch/NeuralNets/nnwInHep.html). 

3.2. Classijcation with feed-forward nets 

In particle physics FF nets have been mainly used to 
solve classification problems, such as separating light 
quark jets from heavy quark jets, for particle identification 
or for rejecting background by a trigger decision. In such 
cases each event, characterized by its vector n in pattern 
space, is assigned to a class C, which the net has to find 
out. The net is trained with events of known classification 
such that the expected value fj of the jth output is 1 if the 
event belongs to C,, else it is 0. 

If the classes are well separated, the trained net can 

assign the events to the proper classes with 100% ef- 
ficiency provided the net has enough degrees of freedom, 
i.e. enough neurons. The following is important for 
judging the necessary degrees of freedom of a network: by 
virtue of the non-linear transfer functions the combination 
of hyperplanes defined in the hidden layer yields smooth 
boundaries of the class volumes rather than mere polyed- 
ers. It should be emphasized that even with a smoothing 
transfer function the decision boundaries are sharp and 
well defined: FF nets are deterministic! 

Bayes discriminator: If the classes have overlapping 
distributions it is in principle no longer possible to classify 
with 100% efficiency. An FF net trained with target values 
0 and 1 assigns each event to the class for which it has the 
highest probability. If the net was trained with n; events of 
class i it can be shown that the network outputs approxi- 
mate the Bayesian discriminator: 

v,(x) 
yi(x) = xjcj=, ,m njpj(x) . 

The maximum y, belongs to the class C, for which the 
event has the highest probability. The advantage of ANN is 
that the probability densities p,(x) need not be known 
explicitly because they are learnt by training using real or 
simulated data. 

3.3. Applications of feed-forward nets 

Selection of Y(4s)+ Bl? events: An example for an 
offline application of FF nets is the selection of BB events 
at the Y(4S) resonance in e+e- reactions [3]. The back- 
ground comes mainly from continuum qq events which 
have a two-jet topology while the BB events are more 
isotropic. However, at these relatively low energies the jets 
are not very pronounced and all kinematical variables 
Uettiness, particle multiplicities, number of leptons from 
semi-leptonic decays, etc.) differ only slightly. Differences 
become only significant if the multi-dimensional correla- 
tions between the variables are exploited. In this case, a 
network with 20 inputs, 20 hidden nodes and 1 output, 
referred to as 20-20-l net configuration, leads to a good 
separation of resonance and continuum events. The net 
output of both classes is shown in Fig. 3. With the cut on 
the output the selection efficiency and background suppres- 
sion can be tuned. For an efficiency of 808, e.g., the 
background is suppressed by a factor 4, yielding a signal- 
to-background ratio of 1:l at the resonance. 

The level-2 trigger of the HI experiment: As an example 
for a real-time trigger application employing dedicated 
hardware we discuss the level-2 trigger based on FF 
networks which is currently developed for the Hl experi- 
ment at HERA [4]. Using the data available at this trigger 
level (from calorimetry, tracking and others) several neural 
nets are trained to select the wanted physics events and 
reject the background, mainly from beam-gas and beam- 
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Fig. 3. Network output for simulated Y(4S) and continuum data. 

wall interactions. The concept is to have one net for each 
physics process (e.g. charged current reaction, photo- 
production etc.) and in addition a positive background 
identification “background encapsulator”). The used hard- 
ware (based on the CNAPS chip, see Section 4) suggests 
networks of up to 64 inputs and 64 hidden nodes. 

Function approximation: The determination of the 
incident energy from the energies deposited in calorimeter 
cells is an example for the use of FF nets as function 
approximators. The network is trained to yield a continu- 
ous output. The quality of the approximation is controlled 
by the number of contributing nodes. If a smoothing 
interpolation is desired the number of nodes has to be 
restricted appropriately. 

Extensive studies have been performed to optimize the 
network architecture, the choice of variables and input data 
(real or simulated), learning strategies, efficiencies and 
many other topics [4]. Since the whole collaboration had to 
be convinced that a neural net is not a mysterious black 
box particular emphasis was put on understanding how the 
network works. Questions which have been tackled are, for 
instance, the importance of each input variable, the visuali- 
sation of the network decision, or efficiencies in 
“kinematical comers” (which may be less frequently 
trained). 

Another example for the use of FF networks for function 
approximation is the determination of the W-boson mass 
from calorimetric information in a pp collider experiment 
[8]. The determination of a-density function by network 
training is in fact also a function approximation. In these 
cases the functions are learnt from the sample events of a 
simulation. 

4. Neural net hardware 

AM~YS~S of shower clusters: There are many examples 
which demonstrate that neural nets can be very helpful for 
the analysis of calorimeter showers. The Crystal Barrel 
Collaboration, for instance, discriminates low-energy 
photons against “split-offs”, i.e. fluctuations from larger 
showers which look like single photons (51. The ANN 
algorithm is better than the previously used algorithm as 
can be demonstrated by an improved rr’ signal-to-back- 
ground ratio. 

The feed-forward network algorithm is well suited for 
hardware implementation. The processes at each node are 
local and can be executed consecutively and in parallel for 
all nodes of a layer. Dedicated VLSI chips have been 
developed which are optimized for fast matrix multiplica- 
tions as needed for the computation of the activation 
function (1) of each node. 

Another good example is the use of ANN for the 
separation of photon and hadron induced cosmic air 
showers in the HEGRA experiment [6]. 

In the Hl collaboration work is in progress to tell 
electrons from pions using the energy deposition in the 
electromagnetic (Pb) and hadronic (Fe) sections of the 

Table 1 lists some properties of a selection of analog 
and digital chips which are of interest for applications in 
particle physics. The analog processing is potentially faster 
and the I/O bandwidth can be higher for a given number 
of connection pins. On the other hand analog circuits are 
more susceptible to instabilities. For general purpose 
neuro-computer systems only digital chips offer the re- 
quired flexibility. Nemo-computers like the CNAFS II 
system or SYNAPSE- 1 (based on the MA16) are opti- 

Table 1 

Characteristic properties of a selection of neuro-chips (PU = processor unit) 

ETANN NeuroClassifier CNAPS 

liquid argon calorimeter [7]. At the same time (and with 
the same network) the deposited and incident energies are 
determined. With a 41-33-24-4 network the energy 
reconstruction is achieved without bias and with good 
resolution. Here it is particularly interesting that the 
resolution for pions is similar or better than with the 
standard Hl algorithm which aims at a software compensa- 
tion of the strongly fluctuating loss in the observed energy 
in hadronic showers. The preliminary results suggest that 
one could build “compensating calorimeters” with ANN 
processing. 

MA16 

Arithmetic 6 bit analog 5 bit analon 16 bit fix 16 bit fix 

PU chip per 

Speed [MCPS] 

Clock [MHz] 

- - 4096 426 64 16 

1300 20000 1160 800 

0.5 20 ns tot. delay 20 25 

I. PLENARY TALKS 
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mized for fast neural network training and applications 
such as image processing. 

4.1. ANN applications on the second trigger level 

Fermi-Lab activities with the ETANN chip: Neural 

network hardware has first been used for triggering in a 

high energy experiment at Fermi-Lab [9] employing the 

analog chip ETANN e.g. for real-time tracking, 
calorimetry triggers and recognition of isolated electrons. 

able to find four tracks in a cylindrical arrangement of 

tracking detectors. The 11 radial layers are divided into 64 

azimuthal sectors. One network is assigned to each sector 
searching for tracks in a region of ?2 sectors around the 

central sector. This leads to 55 inputs for each network and 

a total of 64 networks with a 55-2-l architecture. The 
decision time is only 75 ns. 

When the neural net activity started at Fermi-Lab the 

ETANN chip was the best choice. Today digital chips can 
perform similar tasks at the same speed while offering 
more stability and easier handling. Due to the fast develop- 

ment in electronics this situation could quickly change 

again. 

The NeuroClassijer: In the CPLEAR experiment the 

requirement on the tracking trigger is not too demanding 

since the multiplicities and necessary granularities are 
quite low. For more complex tasks one certainly has to use 
integrated electronics. An interesting step in this direction 
is the development of the NeuroClassifier chip at the 

University of Twente [ll] in close cooperation with the 

particle physics groups at DESY and CERN. 

The level-2 trigger of the Hl experiment: The experi- 

ments at the electron-proton storage ring HERA have to 

cope with a bunch crossing rate of 10MHz. The HI 

experiment has a four-level trigger architecture. At the 

second level the allocated decision time is 20 ps, being too 

short for a standard programmable processor but offering a 
niche for a dedicated neuroprocessor. 

The chip accepts 70 inputs at a bandwidth of 4 Gbyte/s, 

has six hidden layers and one output. The decision time is 

only 20 ns. The high speed is achieved by analog comput- 
ing while keeping moderate precision (5 bit). A group in 

the HI collaboration is currently implementing this chip 

into the first level trigger for a fast analysis of a vertex 

trigger histogram. 

In Section 3 we have discussed the general concept of 
this trigger [4]. The hardware which is designed to process 

feed-forward nets of a maximum size 64-64-l is based on 
the CNAPS chip (Table 1) available on a VME board 
environment and with very good software support. The 

trigger system will finally consist of about 10 VME 
boards, each of these “pattern recognition engines” pro- 

cessing the decision for one specific physics channel. The 
system is scheduled to be implemented in the Hl experi- 

ment by summer 1995. 

5. Pattern recognition with Hopfield nets 

4.2. ANN applications on the first trigger level 

The Hopjield model: The high connectivity of biological 

neural systems is modelled by the Hopfield net. All 
neurons of the network interact with each other according 
to their activation and the connection strength as given by 
weights and thresholds 0,. With two discrete activation 

states of a neuron, e.g. S, = 21, the system develops 
dynamics similar to spin-glasses and can be characterized 

by an energy function: 

The first generation ANN applications for triggering 

experiments work on the time scale of some 10 ps and, 
frankly speaking, still on a level of quite moderate 
complexity. However, given the speed of electronic de- 

velopments (at least if there is a commercial interest) we 
would not be surprised if a next generation of neuro- 
hardware would offer an order-of-magnitude improvement 

in speed and complexity for the same price. 

E = -3 c w,,S,S, - 2 2 6’S, 
, 1 ‘.I 

In the Hopfield model the weights or interaction strengths 
w,, are symmetric which guarantees stable minima of the 

energy function. 

Of great interest are ANN applications for high rate, 
high multiplicity experiments where complex pattern rec- 
ognition tasks (tracking, calorimetry) have to be performed 
on a first-level trigger time scale. Replacing the highly 
specialized hard-wired processors by standardized “neuro- 

hardware” could facilitate the design of triggers and 
potentially also lower the costs. A first taste of such fast 
applications is given by the following two examples. 

Associative memories: Hopfield nets can be used as 

associative memories. In the training phase the information 
will be stored into the weights by an algorithm which 
essentially accounts for the correlation between any two 
points of the pattern to be memorized. When offering in the 
memorizing phase a noisy or incomplete pattern the 
network will (most likely) settle into that stored pattern 
which is most similar to the presented sample. The fault 
tolerance of the system depends in a calculable way on the 
amount of stored information. 

A tracking trigger for the CPLEAR experiment: Lacking The recall proceeds by iteratively updating each neuron 

still a suitable, fast enough neuro-chip, standard ECL S, according to the sign of the local field at the position i. 
electronics has been employed for the design of a tracking which is the negative derivative of the energy function (7) 

trigger for the CPLEAR experiment [lo]. The trigger is with respect to S,. It can be shown that for symmetric 
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weights this update rule always minimizes the energy 
function. 

The properties of the network suggest its application in 
experiments for storing and recalling e.g. patterns in 
tracking devices. However, the feed-back, recursive ar- 
chitecture and the global minimization algorithm of such 
networks seems less suitable for hardware implementations 
than in the case of feed-forward networks. 

Solving optimization problems with the Hopfield algo- 
rithm: The Hopfield algorithm has been generalized for 
solving optimization problems, in particular problems with 
high combinatorial complexity. A well known example is 
the “travelling salesman problem” (TSP): How should N 
cities be connected for a round-trip so that the total path 
length is minimal. To solve this problem one could 
identify each link between two cities with a neuron and 
define a positive interaction between two neurons if they 
have a city in common. The additional constraints that the 
path should have no bifurcation and that all cities should 
be visited, i.e. that the number of on-neurons be N, can be 
included in the energy function by adding terms with 
Lagrange multipliers. 

Stochastic extension of the Hopjeld model: The energy 
function has to be minimized as described above by 
flipping each neuron spin S, according to the sign of the 
local field -aE/&S,. To avoid that the system settles in 
shallow local minima one can introduce thermal perturba- 
tions which cause random spin flips (“heat bath”). For the 
more complicated treatment of such stochastic systems one 
can utilize methods known from Statistical Mechanics, 
such as the “Mean Field Approximation”. 

5.1. Application to tracking 

The application of Hopfield networks for track recon- 
struction has been suggested independently by Denby and 
Peterson [12]. In their model a neuron is a link between 
two measured hits in a tracking detector. The weights are 
some power of the cosine of the angle between two links 
to ensure smooth curvatures of the tracks found. The 
energy function contains two additional constraint terms, 
one to suppress bifurcations of tracks, the other to ensure 
that all or most hits are used for a track. The importance of 
the constraint terms can be regulated by the Lagrange 
multipliers. For instance, the fraction of hits belonging to a 
track found depends on the noise level in the detector. 

The method has been applied to real data of the ALEPH 
TPC (Fig. 4) and found to be comparable in tracking 
efficiency and computing time to the standard tracking 
algorithm of ALEPH [ 131. 

A possible disadvantage is that the method does not 
produce an estimator for the quality of the track recon- 
struction. In addition the algorithm seems not to be well 
suited for a hardware implementation since it is not 
inherently parallel and local. However, one should careful- 

\ 

Fig. 4. Tracks in the ALEPH TPC reconstructed with a Hopfield 
net [13]. 

ly investigate if this statement is biased by a too conserva- 
tive notion of data processing. 

Another application of a Hopfield net for tracking is 
described in [14]. The tracking device is the DELPHI 
forward chamber consisting of three double-layers. Each 
two-hit combination in a double-layer yields up to four 
possible track elements. The network selects the optimal 
set of track elements to form a track consistent with the 
measured hits. Since the netwprk has a better efficiency 
and requires less computing time than the previously 
applied method it became the standard method in the 
DELPHI reconstruction software. 

6. Conclusion 

The investigation of neural algorithms and their applica- 
tion in soft- and hardware is currently a very active field of 
research. The application of these methods in particle 
physics has found a wide interest which seems to be 
steadily increasing as can be inferred from the very large 
number of neural net contributions to the “Artificial 
Intelligence” workshop in Pisa this year [l]. 

Feed-forward networks have proven to be valuable tools 
for data analysis (classification of events, particle identifi- 
cation, function approximation, pattern recognition). The 
advantages of feed-forward nets are: the highly parallel 
algorithm, the flexibility because of their trainability, the 
capability to solve high-dimensional problems and the 
deterministic behaviour. It is important to understand that, 
despite the word “neural”, decisions of feed-forward nets 
are clearly deterministic. The intrinsic parallelism of these 
networks make them well suited for hardware implementa- 

1. PLENARY TALKS 
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tions. Specialized analog and digital VLSI chips for neuro- 
processing are available and have found applications for 
triggering. One can expect a fast development of the speed 
and complexity of the neuro-hardware over the next years 
opening the possibility to be used for first-level triggering 
in high-luminosity experiments. 

The Hopfield algorithm seems very attractive for solving 
pattern recognition problems. Very promising studies using 
real tracking devices, e.g. of LEP experiments, have been 
carried out and partly included in the standard reconstruc- 
tion software of the experiments. However, since the state 
of the art in pattern recognition is highly developed it is 
extremely difficult to beat. In addition, the hardware 
implementation of Hopfield nets is not so straightforward 
as in the case of feed-forward nets. 

Artificial neural networks are still very far away from 
the biological model concerning the complexity of prob- 
lems which can be tackled. Given the activity in this field 
we can expect great progress in the future. The develop- 
ment of dedicated neuro-hardware is particularly essential 
for a full exploitation of neural algorithms. 
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