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1 Introduction

The intuitive approach to modeiling an accelerator is to treat the elements like drifts,
dipoles, quadrupoles and others by giving them their correct length (see {4, 5]). However, in
very large machines like for instance the LHC, a hadron collider currently in its design stage,
the curvature of the dipoles is very small and the length of individual elements is negligible
compared to the total length of the accelerator. Moreover dynamic aperture studies are very
time-consuming even on state of the art computer farms. It has therefore been desirable to
approximate the long linear elements by drifts and linear point like kicks. Of course we want
to make sure that the thin linear lens approximation in the six-dimensional case uses as few
operations as necessary while fulfilling the symplecticity conditions. The aim of this study is
to show how this approximation can be done and to demonstrate its inherent symplecticity.

In detail, the paper is organized as follows:

In the second chapter the general canonical equations of motion are derived. Using the
thin-lens approximation the equations of motion are solved for each element in chapter three.
A summary of the results 1s presented in chapter four. Appendix A treats in detail the sym-
plecticity condition and its relation to the canonical structure of the equations of motion. In
Appendix B the tracking results are compared for a thin and thick lens lattice of the LHC.
Finally Appendix C gives some useful formulae used in this paper.

2 The Canonical Equations of Motion

The aim of this chapter is to derive the canonical equations for particle motion in storage
rings by a simultaneous treatment of synchrotron and betatron oscillations, taking into account
all kinds of coupling induced by skew quadrupoles and solenoids (coupling of betatron motion
planes) and by non-vanishing dispersion in the cavities (syr.chro-betatron coupling). Starting
from the Hamiltonian in a fixed Cartesian coordinate system (section 2.1} and introducing the
natural coordinates &z, z, s, (2.2) combined with two additional variables & and 5 which de-
scribe synchrotron motion, the Hamiltonian expressed in machine coordinates may be obtained
by the application of suitable canonical transformations {section 2.3). The particle motion can
then be conveniently calculated (2.4) to various orders of approximation by expanding this
Hamiltonian into a power series. In this report we shall use an approximation in which the
effect of relative energy deviation on the focusing strengths is automatically accounted for. The
equations of motion for various kinds of magnets and for cavities are presented in section 2.5.
The solutions of these equations in the thin-lens approximation are derived in chapter 3.

2.1 The Starting Hamiltonian

The starting point of the description of classical dynamics in storage rings will be the

classical Hamiltoman', M :

2] 1/2
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'In this report we use the ('GS unit system.



where r'and P are canonical position and momentum variables and where the kinetic momentum
vector 7 is given by :

G (2.2)

The quantities A and ¢ appearing in eqn. (2.1) are the vector and scalar potentials from
which the electric field & and the magnetic field B are derived as:

g . ] (f).‘{

& o= —grad ¢ - o {2.3a)
¢ it

5 = curl 4. {2.3h)

In terms of the three unit cartesian coordinate vectors in the fixed laboratory frame,
€1, €2, €3 we can write ¥ and P as:

ST SRR . CRET I CEN. (2.4a)

= Prey+ Pyocy b Pyoely (2.4b)

ReT

With this Hamiltonianr (2.1) the orbital equations of motion are:

d aH

Sx, = L7t 2.!
- X 1 ap, (2.5a)
d Yy

— P = ... 2.5
Qe i, (2:50)

(A —1,2,3).

2.2 Reference Trajectory and Coordinate Frame

The position vector r'of the particle in eqn. (2.1} refers to a fixed coordinate system with the
coordinates Xy, Xy and X3. However, in accelerator physics, it is useful to desceribe the motion
in terms of the natural coordinates »,z,s in a suitable curvilinear coordinate system. With
this in mind we assume that an ideal closed design orbit exists deseribing the path of a particle
of constant energy Ly (neglecting of course energy variations due to cavities and radiation loss
and assuming that there are no field errors or correction magnets). We also assume that the
design orbit comprises piecewise flat enurves which lie either in the horizontal or vertical plane
so that it has no torsion. The design orbit which will be used as the reference system will in
the following be described by the vector rp(s) where s is the length along the design orbit. An
arbitrary particle orbit r{s} is then described by the deviation ar7s) of the particle orbit r{s)
from the design orbit ry(s):

r{s) ra(s) « Aris) . (2.0)

The vector & can as usual be described using an orthogonal coordinate system (“dreibein™)
accompanying the particles and comprising

4



. d . ,
a unit tangent vector  €,(s) — Is ro(s) = ro'(s);
s
a unit normal vector  en(38) ;
and a unit binormal vector  €g(s) = €,(s) - en(s).

The Serret-Frenet formulae corresponding to this dreibein read as:

d

—e, = —K(s)-en(s); (2.7a)
ds

d . o

ey = +K(s) e,(s); (2.7h)
ds

d | -
EEH = 0 . (‘2 ‘(()

In this natural coordinate system we can represent é7(s) as:
br{s) = (67 -€en) -en+ (67 €g) ¢5 (2.8)

(since the “dreibein” accompanies the design particle the &,—component of ér'is always zero by
definition).

However this representation has the disadvantage that the direction of the normal vector
¢n changes discontinuously if the particle trajectory is going over from the vertical plane to the
horizontal plane and vice versa. Therefore, it is advantageous to introduce new unit vectors ¢,
¢, and €, which change their directions continuously. This is achieved by putting

s) - +€en(s), if the orbit lies in the horizontal plane;
B —€g(s), if the orbit lies in the vertical plane;

s) = +eg(s), if the orbit lies in the horizontal plane;
¢ B +en(s), if the orbit lies in the vertical plane.

As a result of these definitions we then obtain:

+en(8) - €g(s), if the orbit lies in the horizontal plane;
—e'g(s) - fx(s), if the orhit lies in the vertical plane :

cls) (2.9)

Le. (ex(s), €.(s), ,(s)) represents a r.h. orthonormal system. whereby o lies always in the
horizontal plane and . in the vertical plane.

There is still some freedom in how to define this orthonormal system: either the tangential
coordinate ¢',(s) is chosen to move clockwise (in a right hand sense) around the machine. then
the horizontal coordinate ¢.(s) 1s directed outwards, i.e. away [rom the machine center or the
tangential coordinate ¢,(s) is chosen to move counter clockwise around the machine, then the
horizontal coordinate €,(s) is directed towards the machine center. In both cases the vertical
coordinate ¢.(s) 1s pointing upwards,

The (r, z, 5) coordinate system constructed above for bending magnets may also be used
within a straight section where R, == A, = 0. A global and continuous coordinate system
has thereby been defined under the restriction that the accelerator is torsion free.

)



Thus, the orbit-vector r{s) can be written in the form
Mo, z,8) = rolsy+ x(s) e.(s) t+ z(s) {s) {2.10)

and the Serret Frenet formulae (2.7) now read as:

{
é, Sls) = FRo(s) E(s) (2.11a)
S

(;—ié‘z(s) = +K.s) €,(5); (2.11b)
d

s eds) = —hA (s) sy  K.(s) e.ls) (2.11¢)

with
K.(s) K.(s) = 0 (2.12)

where K.(s), K.(s) denote the curvatures in the z-direction and in the z-direction respectively.
Note that the sign of A.(s) and K,(s) is fixed by eqn. (2.11) and the chotce of the direction
of the coordinates (see above).

2.3 The Hamiltonian in Machine Coordimates

The variables r and = in egn. (2.10) describe the amplitudes of transverse motion.

In order to provide an analytical description for longitudinal oscillations we introduce two
additional small and oscillating variables o and p, with

o = s—vg-t (2.13)

and *
Po T 5 M (2.14)
where the term 7 is defined in (C.1).

The variable # describes the delay in arrival time at position s of a particle and is the
longitudinal separation of the particle {rom the center of the hunch. The gquantity 5 1s the
relative energy deviation of the particle.

Starting from the orbital Hamiltonian (2.1} and introducing the length s along the design
orbit as the independent variable (instead of the time ). we can construct the Hamiltonian
of the orbital motion with respect to the new variables r, z, 7 by a4 succession of canonical
transformations and a scale transformation ‘:4, 51.

Choosing a gange with ¢ - 0 (e.g. Coulomb gauge) we then obtain

H{r. pe.zop. o pass) pe (1opy- 18 Koow o KL

o ©

*Note that in Refs. "4, 51 po ts defined without the scaling factor [

i
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where the relative momentum deviation 7 is defined in Appendix (' (see eqn. (C'.4)).

The corresponding canonical equations read as:

d OH d aOH
4 o4 _ o 2.16
ds T 7 Tapt dsPe 5z (2.16a)
LA +8H ; 4 p: = Jjﬂ ; (2.16b)
ds Jp. ds z
d IH d OH
4 o4O 2.16
ds * +(9pg R Ao (2.16¢)
or, using a matrix form :
d OH
i 2.17
ds ¥ Tody ( )
with
.ﬂ';T - (:‘31 Pry =y P2y 7 pcr) ' (218)
where the matrix S is given by:
Soo 800 0 1 .
0 0 5,

In order to utilize this Hamiltonian, the electric field & and the magnetic field 5 or the

corresponding vector potential,

A= ;Zl’(m,z, a;8),

for the cavities and for commonly occurring types of accelerator magnets must be given. Once

-4

A is known the fields & and B may be found using the relations (2.3a,b). Expressed in the
variables r, =, 35, 7, eqns. (2.3a,b) become (with ¢ . 0):

. d
R (2.20)
i
and
1 i 9
B, D S [ I T A T T SE T P
(1t Ky-o+ KN.-z2) |0z s
1 3 i
B A TS T N A 1,1 (2.21h)
(1 - K,owt K.o2) | s i |
B a7 (2.21¢)
: I mee



We assume that besides drift lengths the ring contains bending magnets, quadrupoles, skew
quadrupoles, sextupoles, octupoles®, solenoids and cavities. Then the vector potential 4 can

he written as 4, 5 :

e 4 -
Po ¢

£ 4, =

PO'C“

(£ = harmonic number) with the following abbreviations* :

N

H

In detail. one has:

a) K2+ AZ =20, g- N

b} g - O A -
c) N0 A,
dy A -0 A,
el oo O .
fy H -0 K, .
g) Voo k.

8.  Ob.

e A Y (2.22a)

(2.22h)

(2.232)

(2.23b)

{2.23¢)

(2.23d)

(2.23¢)

beuding magnet;
quadrupole;

skew quadrupole;
sext u])()i(’:
octupole:
solenoid;

(‘:1\"]1.\'.

%It has to be mentioned that the formalism can be generalized to higher order multipoles. In fact multipoles

up to 10" order are included in the SIXTRACK code.

*In the coding of SIXTRACK there is, for historical reasons. one important difference: all regular multipoles
e.g. g. A g and also K, are defined opposite in sign compared to 2.23, while the skew components like N have

the same sign.



Thus the Hamiltonian (2.15) takes the form:

.H(Iaprazvp::saspogs) = pa_(1+ﬁ){l+[{r£+ A’z':} )
{1 pe t H P lp. 2P\
(1+7)

1 - 2 1 2 2 ;
+§~[1+KI’1'+B:‘2] —i-g-(: —2°)— N .z

A

+6-(r3773:r:2)
+£; (z' — 62222 4 2%
+_1__ L eVis) [h 2 5 24
2 on b B COS'L”W}' (2.24)

Remarks:

1) If the curvatures A and A, of the design orbit appearing in (2.24) are given, the magnetic
bending field

BUrd(s) = (BEn(s), BET(s), 0)
is determined by :
Iﬁrjge“d(s) = —K.(s); (2.25a)
;;-'c Bhn(s) = L K.(s). (2.25b)

These relations may be obtained using the fact that the design orbit is a solution of the
equations of motion for constant energy Fy in the absence of cavities and correction coils '8,

2) Equation (2.24) 1s valid only for protons. For electrons we need the extra term in the
Hamiltonian

.Hrr{d (7-'1 . ih’j . 1\'33 (T (226)

. 4

‘ ,‘2 270

where (', et
300Ky

(for vg = ¢) in order to describe the energy loss by radiation in the bending magnets {7). In this
case, the cavity phase p in (2.22a) and (2.24) is determined by the need 1o replace the energy
radiated in the bending magnets. Thus:

2] .

30t L 20+ L ) . 2
f ds - eV(s) sinp - f ds- Fo- 'y K.+ K}
an L]

10

—_
[$%2
8%
=1

o

average energy uptake in the cavities average energy loss due to radiation
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Note that the H,.q term only accounts for the average energy loss. Deviations from this
average due to stochastic radiation effects and damping introduce non-symplectic terms into

the equation of motion.
For those proton storage rings where radiation effects can be neglected there is no average

energy gain in the cavities so that:
sing =0 — =0, « (2.28)
and the choice for ¢ is determined by the stability condition for synchrotron motion:

w — 0 above “tranmsition” ;

@ = 7 below “transition” .

2.4 Series Expansion of the Hamiltonian

Since

the square root

et H 2Pt p — H -2 v
i)

in (2.24) may be expanded in a series:

| Pt H 2P 4 p - H o2 i
(1 +7)?
1 qpe « H-2]P ¢« p. H-r” .
L S0 (2.29)

The power at which the series is truncated defines the order of the approximation to the particle

motion.

The second term on the r.hus. of the Hammltonian (2.24) 1s approximated as follows: firstly
only terms of (2.29) up to quadratic in (p, + I - 2) and (p.  H ) will be kept, secondly
of the resulting terms in the numerator only those are considered which are up to quadratic
in (r, =, g, (pr ~ H-zyand (p. H 1)) and thirdly the denominator (1 ¢ 5)? is retained,
whence:

Uodpe v 220 p, T -2?

oo AN
2 11+ f(p.)]

Po il‘*I\YI"F+[\’:‘:E'f(pﬁ);

11



2 I

A

g-(.;r3 “3z2h) +-%-(z4—61'2:2+ rt) 4

1 L eV (s) 2 ‘

ﬁ—g ok TEe cos [h- 7 + 'TQJ . (2.30)

We have replaced 5 by f(p,) to stress its dependence on p,. The power series of f(p,) and

its derivative f'(p,) = %ﬁil are given in Appendix C by egns. ((1.6) and (C.9) respectively.

Constant terms in the Hamiltonian with no influence on the motion have been dropped.

2.5 Equations of Motion

The Hamiltonian (2.30) now leads to the canonical equations of motion:

d . OH
S Sl
ds Ip
Pt H 2 (2.31a)
T ) o
i B OH
ds Pe = dr
p, — H - =» i .
<l R R g N K )
—%-(.1:2—22)—%-(r3 ~3r ), (2.31b)
d o +(9’H
ds ~ p.
p. - H-r (2.31¢)
L 2.31¢
L+ flps)
d (TH
ds b i)z
.1 -z R
|[ll) e ) H oK g2 Vor - K. fips)
+ Az 't(t (2 3ty (2.31d)
)
d aOH
ao i
s (_r)p(,



In (2.31) the first

et 1'_{1+h'r'x+h’1—:j'fr(pa)
L lpet Ho2f tp — H 2

_5 . [1 N f(pa)]z ’ f (PU)
= ! -[l+ K. z+ K.z fl(ps)
1 r ] A3 i o 4
=y VT fea) (2.31¢)
_ _oH
- Jo
I eV(s) . [, 2m 5
= T in [h- f.aw] . (2.311)

four equations describe betatron motion and the last two synchrotron

oscillations. Equations (2.31f) relates to energy conservation. Note that eqns. (2.3le.f) for

synchrotron motion are always nonlinear.

Remark:

If the variables (x, p., z, p., o, p,) at position s are known, one obtains the termms »'(s),

2'(s8), and n(s) by the relations:

and

s o Pt Hoz

T T ) )

N P: H-r Y 99

' s) Lk i) (2.32h)
nis) - ,."fg CPals) (2.32¢)

{see eqns. (2.31a), (2.31c¢) and (2.1.1)).
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3 Thin-Lens Approximation

The canonical equations of motion (2.31) shall now be solved for various kinds of magnets
and for cavities using the thin-lens approximation. The symplecticity condition is checked in
all cases using the Jacobian matrix.

3.1 Bending Magnet
3.1.1 Canonical Equations of Motion

For a bending magnet we have:
K+ K} /4 0; K, K. =0
and
g = N = X = p=H=V - 0.
Writing for a bending magnet at position s;:
KI.(s) = Ko:(s0) Kes(s)
and assuming A, .(s) to be taken in the form (thin-lens approximation):
Ker(s) = Kou(so) As-6(s s} .

whereby As denotes the length of the bending magnet we obtain from (2.31):

d Pz (3.1a)
— 7 = D 3 1a
&5 T i)
d . : . .
g P o= (Ko(s0)]® - As-8(s  so) -z~ Kelso) As- s so) flpa)s (3.1b})
o D
ot s 21
ds 1 fips) (3.1¢c)
d L 2 . .
E : ""LA:(SO)] Qs As - sg) o Hilsg) s As M so) - flpa): {(3.1d}
i , o . . ,
-dq-n b fiips) Re-r s Kooz - Ds-b(s sp) fiipa)
l ! 2 P21 ] .
L, TGN ) (3.1¢)
d .

14



3.1.2  Solution of the Equations of Motion
Equations {3.1) can be solved by integrating both sides from

Sop—€ to s 1 €

with
0-¢ -— 0
leading to ® :
rf I
prf —opl [KI(SD)]Z - As-rt -+ Kp(sg) As- f(p(;) ;
S
p! — pl [Kudso)]P As 2t Ko(so) As- fipl);
ot o K.or o K,z As- flipl)
pl = n,
with
yi = y(So O)&
y! y(so +0);
(y =y Pry 2y Pay T Pd) .

3.1.3 Jacobian Matrix and Symplecticity Condition

The Jacobian matrix resulting from eqn. (3.2) reads as:

el et

det p!

Upff a')plf

it ip!

R A I

A, p_jf_. Hopfoatphy et ilpl

7 bhend !‘j[.i"l. P_;L* o, Pf . pi) fi}):f (l}p:f

et dipl
el et
it “)P}
dpl o Op?

et dp!

. f
ol

(e
.")pdj{
R
ezt
(1=t
r')pr‘f
izt
Aerd
{1z
:')pr;f

i

!
ol
r‘ip‘j{
ip!
(=t
(p!
Up:f
il
erd
r')p:’
r')qu
‘Ip!

it
(fert
ip}
et
(=f
it
f‘)pf
(e
!
(i
ip]
i’

At
pl
[J‘p;f
ipl
L
ip}
r"ip!
‘1,
!
iIp}
ilp!
('fpn’

®Note that the factors in (3.1b.d.e) which multiply the & function are continuous functions of s at

15
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(3.2d)

(3.2¢)

(3.2f)
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1 0 0 00 0
- [Ka(s0)]* - As ! 0 00 +Q.
0 0 1 00 0 ‘
- 0 0 —[K.(s0)]>-As 1 0 +0Q. (3.3a)
_Qf- O _Qz D ] Q
0 0 0 00
with
Q = [KiowtK.o2 As f(p):
Q- = +HK.(s) As-f(pl); (3.3b)
Q. = FK.(s) As- f(pl).
Using eqn. (2.12) it can be verified that 7, . obeys the symplecticity condition
T , .
"—]—bend ' 5 ' lbend = 5 . (-;4)

Equation (3.4) proves that the transformation

vy g’

described by (3.2a-f) is indeed symplectic (see Appendix A).

3.2 Quadrupole
3.2.1 Canonical Equations of Motion

For a quadrupole we have:

&)
H
=

and
K, - K, — N = X+ u + H -V i .

Using thin-lens approximation we write {or a quadrupole of length As at position sq -

gis) glsg) - As - d(s s} .
Then we obtain from (2.31):

r{ Pr

PR (3.5a)
ds [] " f(pa)]
d
; Pe qlso) - As-b(s  sp) 1 (3.5h)
ds

16



d P:

ds = fpa)]

—p, — 1g(sa)- As- (s - sg) 3

d 1

N I {8

5 L+ (e s

3.2.2 Solution of the Equations of Motion

The solution of eqn. {3.5) reads as:
£ i

e o
pl - pl glse) - Ast
=1 A
pl = pltglse) As. 2
at o
] p!

3.2.3 Jacobian Matrix and Symplecticity Condition

The Jacobian matrix resulting from eqn. (3.6) takes the form

U(;rf. p;f. =7, pj, al, pﬂf)

Meaua g plls ploat, pl)
) | 0 0 0 4 6
glse) - As | 0 v
0 0 i G 00
0 0 | f]( S0 ) CAs V00
. 0 g 010
0 0 0 0 0 |

From eqn. (3.7) it can be verified that o g Obeys the symplecticity condition

) ) ] 5
CTqua - -

Yud

17
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3.3 Synchrotron—Magnet
3.3.1 Canonical Equations of Motion

For a synchrotron magnet ® we have:
g # 0; KX+ K? # 0 with K, K. - 0

and

Writing :

I{Z:(S) - I\,x‘z(SO)'[{x.z(‘s)

and assuming A, .(s) and g(s) to be taken in the form (thin-lens approximation):

Ke.(s) = Kp.(s0)  As-8(s— s0)s

g(s) = glso)  As-b(s — so)

d Pa

£ = ¥
ds (L + f(ps))
d , .
ds Pz — —Gi(so} As-8(s —so) o+ Ko(so) As- (s - s9) flps)s
4 _ P
ds = 1 *‘f(pa)] ,
! .
;;; pe = Galso)-As (s~ so) =1 K.{so) As (s  s0) fpo)
({ ; - ’
; T 1 fips) K, x4+ K. 2z - As-8(s- s9) fiips)
ds

S PRI
o 0
ds P
with
(1‘1 - I\’_.E g, (rrg 1\2 g

(3.10a)

(3.10b)

(3.10c)

(3.10d)

(3.10¢)

(3.10f)

(3.11)

®Note that due to the condition (3.9) cross terms of g and A, . exist that lead to sextupole and higher
arder terms in the Hamiltonian (2.24). This terms are considered small and are omitted in the treatment of

synchrotron magnets.
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3.3.2 Solution of the Equations of Motion
Equations (3.10) can be solved by integrating both sides from
S0 — € to sg f€

with

leading to:

oo {3.12a)
pl = pl-Gy(se) As-x' b K. (s0) As- f(pl); (3.12b)
S - (3.12¢)}
p!l = pl o Galse) As-z' s K.(so)- As- fipl); (3.12d)
o~ ¢ |K.oc4 K.z As-[(pl); (3.12¢)
Pa = Pa (3.12f)

3.3.3 Jacobian Matrix and Symplecticity Condition

The Jacobian matrix resulting from eqn. (3.12) reads as:

oz, pf, =5 pf, 0l p))

T 0w pr, 2 pl ot py)
1 Q0 ] 0 0 0
Chiso) As 1 0 00 -0,
0 0 | 00 0 -
0 0 Galso) As 1 0 - (5. 15a)
(), 0 {Q. o 1«
0 0 ) 0 0 !
with
Q- K, e Kooz As fply
(). W (sgd - As flipl) (3.13h)
(2: ‘ [\':(50) . A.‘i ' fﬂ(ll,‘r) -
Using eqn. (3.13) it can be verified that 7 obeys the symplecticity condition
g 8T L8, (3.14)

yn syn
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3.4 Skew Quadrupole

3.4.1 Canonical Equations of Motion

For a skew quadrupole we have:

and

K,

Ar_._:g:A:‘u;'_H:_

Using thin-lens approximation we write:

Then we obtain from (2.31):

d
ds *
d
ds Ps
d
ds =
d
ds P
d
ds 7
d
ds Pe

N(s) = N(so) As-8(s— sq) -

P
[1 + f(po)] ‘

N{so) As 8(s—389) z;

3.4.2 Solution of the Equations of Motion

The solution of eqn. (3.15) reads as:

! =
p! pl o N(so)  Asor!
a! e
p. P,

(3.15a)

(3.15b)

(3.15¢c)

(3.15d)

(3.16a)

(3.16h)

(3.16¢)

(3.16d)

{3.16e)

(3.16f)



3.4.3 Jacobian Matrix and Symplecticity Condition

The Jacobian matrix resulting from eqn. (3.16) takes the form:
ot pl, A p!, 0l p])

T Soxl D i)
I C Y AR AN )
1 0 ¢ 0 0 8o°
0 1 N{sg)-As 0 0 0
0 0 | 0 G 0
| N(so)-as 0 0 100
0 0 0 0 1 0
0 0 0 0 01
From eqn. {3.17) it can be verified that 7 , obeys the symplecticity condition
FT , .
EZ sqd é ' ‘:7 sqd 5— '
3.5 Sextupole
3.5.1 Canonical Equations of Motion
For a sextupole we have:
AZED
and
K., - K, g - N T H V 0.

(3.18)

Using thin lens approximation we write for a sextupole of length As at position s, :

Als) = Alsg) As s sp) .

Then we obtain from (2.31):

({ Pr
oo _
s il ! f(po],
({ ] . "
g Pr 9 Msp} - As - ds sl 7
(! N P: .
ds 1 flp.)
d
/s P c Also) - As - Ms sp) -z
(! ' 1 ) I v
LT T S
8 <
o 0
ds Po
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(3.19a)

(3.19h)

(3.19¢)

{(3.19d)

(310 )

(3.19f)



3.5.2 Solution of the Equations of Motion

The solution of eqn. (3.19) reads as:

el -2 (3.20a)
pl = pi - ;—J\(So)‘és-[(m‘)?(:’)?]; (3.20b)
g = 2 (3.20¢)
pl = pl+ Mso) As-x'z; (3.20d)
ol = ot (3.20e)
p. = pl (3.20f)

(see also Refs. [4, 5]).

3.5.3 Jacobian Matrix and Symplecticity Condition

The Jacobian matrix resulting from eqn. (3.20) takes the form:

a(.rf, pif_'g_”’:f! p:f: o.f’ paf)

Tt ot phy 3 pl ot pg)
1 0 0 0 00
“AMse)-As-xt 1 b A(se)-As-2 0 00
0 0 1 00 0 (3.21)
SA(s) As 2 0 ~Mso) As-xt 100 e
0 0 Q 6 1 0
{ 0 (0 0 01
From equ. (3.21) it can be verified that (7 obeys the symplecticity condition
g g {3.22)

~oarxt "t Yoaert

3.6 Octupole
3.6.1 Canonical Equations of Motion

For an octupole we have:
w0
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and

A,

K.

g - N )

i v

0.

Using thin- lens approximation we write for a sextupole of length As at position s

1
6[1(30) - As 6(9

3.6.2 Solution of the Equations of Motion

The solution of eqn. (3.23) reads as:

(see also Refs. 4,5

P!

(3.23a)

(3.23b)

(3.23¢)

(3.23d)

(3.23¢)

(3.23f)

{3.21a)

(3.24b)

{3.24¢)

(3.24d)

(3.24e)

{3.240)



3.6.3 Jacobian Matrix and Symplecticity Condition

The Jacobian matrix resulting from eqn. (3.24)} takes the form:

Y Y TN
Fe T Ba L, Bt ot )
| 0 0 0 0 0
S As () - (V] 1 da(se)-Asea's 00000
) 0 0 1 ¢ 0 0 (3.25)
bu(se) - As- g 2 0 +4elAs (27 (<) F o0 0
0 0 0 01 0
0 0 0 0 0 1
From eqn. (3.25) it can be verified that 7 __ obeys the symplecticity condition
TS T = S (3.26)
3.7 Solenoid
3.7.1 Canonical Equations of Motion
For a solenoid we have:
H # 0
and
K, = K, =g¢g=N=X=u~-V -0
Writing :
(H(s)]® = H(sy)- H(s) (3.27a)
and assuming H(s) to be taken in the form (thin lens approximation):
H(s) Hisy) As ds o sg) (3.27h)
we obtain from (2.31} the equations of motion for a solenoid in the form:
Ao, b Hlsod As B se)oz (3.28a)
ds 14 fips):
d p- H{sy) - x
Cpe o s T ) - AsAls o) 3,281
(1".‘; P t il +. f(p(,)j (SO) $ ( 0) ( ))
ds L flps )



d _ lpt Hiso) 2 As . ~
P T H{so) As-8s  $o); (3.28d)
d 1 s a2 / .
T [ g P ) (3.28¢)
ds

o o

o p, = 0 {3.28f)

resulting from the Hamiltonian
M - L e - H (3.29)

(see eqn. (2.31)).
In this form eqns. (3.28) cannot be solved by integrating both sides from
sp—€ to sp r¢
with
0 <« -~ 0

since the factors z(s) and z(s) of the é—function in (3.28b) and (3.28d) are not continuous, as
can be seen from (3.28a, c).

In order to simplify eqn. (3.28) we introduce a new set of canonical variables
(&) Pry 2y P2y Oy Do)

using the generating function:

F, = [ cos® - 2. 5in@O] - p, - | ~7 sinO ¢ 2 -cosOl-p. & p, {3.30)
with
1 a
O e f 43 H(3) (331
(1 a f(P(" ),' B

which leads to:

“1“3
r (
itp.
cdecos® - losin®
. (HEy
P
ar

- ppocos® - posin @]

(E
p.



e +[_

r-sin & +

z-cos0] ;

+[pz - sin® + p, - cos O] ;

X OFy
b= s
_ 0B
S
SR
o+ {
— (')F; —
Po .
or
£
Px
P:
T
Po

r-sin® +

~&-sin®@ + 2 cosO]-p, +id-cos@+ 2 sin O

Z-cosO]-p, + [T cosO +

r-cos® -+ 2-s5inB:

Pr cosO +p.-sin@ ;

F-sin®@+ 2 -cosO;

—P:-sIn® § p, - cosQ;

G+ {2 sin®+ 2-cosO] p,

+{.i"('08@'+ ism@]P:}

gl r-sin®@ + 2ocos@][p ,.-r‘ob()

Crcos® 2 osin® - -op, -

. f_’_! t{‘i- HY(;)
- f(Pﬂ)}z

Py

The new Hamiltontan reads as:

H aol

OFy

s

Hsol +

26

p-t .

Z-sin®-p.}-

I dﬁ'?(i)
1—+ fp :

sin © - ;‘

e
‘p,
1 d‘; H{s
1t f(ps)]

) f“(PO}

- sin @
ccos Q)

- f(ps) s

(3.32a)

(3.32b)

(3.32¢)

(3.32d)

(3.32¢)

(3.32f)



—

[Pf'f,_,i_ i 2}2 # [p: - H- .7:]2 . aF; 6

2 1+ f(pe)] 50 Be

Uope + H 2"t [p. H-2]?

e
{2 sin® - Z-cosO] p, t [F-cosO 1 250 O] pot JHGs) ‘
i1t flps)]
Lolpe v Ho2lf v [pe - H 2 ] | | H{s)
- [ I e Zope bt | A )
2 [1+ flps) ! U
1 Vpea ooy g2 2 2
B N T (P + P.:} = H 2t e 2
ey R EER S
1 1 :
T TEENEE P2+ pA o HE [0 v 2° 3.33
‘[1 + f(pg” .2 {{p;r z [ ]} ( )

and the corresponding canonical equations take the form :

d . + dH Sol
S A L
ds Ipz
Fe (3.34a)

i f(p)]

d._ OHsa
ds Pz = i
r . .
CUGAT [H(so)]"  As-8(s sy (3.34h)
ds - o
P: 9
TN S

T {);L:{h-“f
). ’
'{H P (1=
iy }(pﬂ : . H(s{))lz cAS - Ms o sp) (3.34d)
A - (.i}:(h'm'
T . ;
s i,
fpa)
b fipa)’



3.7.2 Solution of the Equations of Motion

Equations (3.34) can now be solved by integrating both sides from

sg — € to sp+ ¢

with
0 ¢ — 0

leading to:

o= gy

.Ei

P By el A

o= iy

5! i f’(ﬁ;A). H(se)? - As ‘1 G

L fles)l 2
plo b

Choosing 1n eqn. (3.31) the lower limit of integration s; as

s - s 0
we furthermore obtain from (3.32):
- P’
Pe o Pe
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(3.34e)

(3.34f)

(3.36a)

{3.36h)



and

with

1 _ ot
- = -
i -7
p._ p.: 1
o = a

-\l.
por - po’

B ocos AO 4 2 sin AG
pf cos AO + p/ - sin AO ;
CFsin AO 4 3 cos AD

pl sinA® | pf o cos A

) ot ds - H(E)
1+ 56

H(sy)- AS

;)
)

Hise)  As

AQ - R
1 fiph)]

whereby we have used eqns. (3.27h) and (3.31).

3.7.3 Jacobian Matrix and Symplecticity Condition

The Jacobian matrix resulting from eqns. (3.35% (3.36), and (3.37) read as:

Gt pl ol pflat phi

1 ?

N Pn )

. T

e, plodopd et pd)
e pd, 2 bl At pd

LN RN TN

MEt, ply 3P &, pl)

29

(3.36¢)

(3.36d)

(3.36€)

(3.36f)

(3.37a)

(3.37b)

(3.37¢)

(3.37d)

(3.37¢)

{3.38)



6(‘%!" 15;:;5 *?a 16;1 &17 ﬁc:) )
a(xl’ Pas 24 P2y T p(;)

- T, T, T, (3.39)
with 7
G AN TN
T A&t pd, H,pd 6t pd)
cos AG 0 sin A® 0 0 L/
0 cos A® 0 sinA@ 0 pf Z
B — 5in A® 0 cos AR 0 0 +2f Z ) (3.40a)
h 0 — sin A@ 0 cosA® 0 +pf.-Z | '
pl - Z -tz -pl-z 1.7 1 Zo
0 0 0 0 0 1
, e, pl, ,pd, 87, pf)
g, = o 1oEl 2
Nz, piy 2, pt, oY pl)
1 0 0 0 0 0
Q 1 0 00 +R,
0 0 1 00 0
- - 3.40b
0 0 Q@ 10 +R, |’ (3.405)
~-R., 0 —-R, 01 W
0 0 0 00 1
Bla pi 3 Bl & i
‘-,73 —= ('T‘)‘pxr 1Ipz7_{0 1-pg). _ l (3.40(_)
a(x, pi, =%, pi, o', pt)
and with
reaf
z “Pvlfz-n(.su).as; (3.41a)
L S

; fro- 2 e o= R
Ty - Z[f(p‘f)] _f_(if{)__[l v .f{p"f )] CH(so)- As o [#f pf 2t Pﬂ . (3.41h)

Q - . c o [H{s)t As 3.41

2 | f(p;)j {s0) { c)

R, -+ -----f--(-?f_-)--,z TH(so)l* As -0 (3.41d)
o f(pg)]

"Equations {3.39) and (3.40a, b, c} correspond to the usual factorization of the transfer matrix for solenoids
into a rotation and focussing part.
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N f'(:ﬁ;)_
[+ f(3;)]
woo o LSBT 1L S
L+ f(ps)]
Using eqn. (3.40) it can be shown that:

5 - [H(s0)]? - As 3

[H(so)* - As - [(2)7 4 (2.

4T : 7T .
il'ﬁli] — iz'_S_'L_ziﬁ;
= i{ol ' S isol 'S ’
Le. J ., = J, 0, is symplectic,
3.8 Cavity
3.8.1 Canonical Equations of Motion
For a cavity we have:
Vi 4 0
and
K, = K, =g =N=X=yp4=H - 0.

Using thin-lens approximation we write for a cavity of length As at position sp:

V(s) = Vi(sp) As-8(s~- s9).
Then we obtain from (2.31):

d Pr

Bt P

ds [1 b f(po)‘

d 0
ds Ps '

d P:

ds " N f{pa)}

d
R

d 4 1 1y 2 1y 2 i

Co e Y )
ds 2

d I eVisg) . 2w
g P ﬁg ——-E.;j—-— As b8{s - 55) sin {h- [ STt (p}
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(3.41¢)

(3.41f)

(3.42)

(3.43a)

(3.43b)

(3.43c)

(3.43d)

(3.43¢)

(3.431)



3.8.2 Solution of the Equations of Motion

The solution of eqn. (3.43) reads as:

o o= 2 (3.44a)
pl = pi; (3.44b)
Jo— (3.44c)
ol = pis (3.44d)
= & (3.44e)
P,,f = P; + é eVé:o) -As-sin |h- 2; o'+ ) (3.44f)

(see also Refs. [4, 5]).

3.8.3 Jacobian Matrix and Symplecticity Condition
The Jacobian matrix resulting from eqn. (3.44) takes the form:

a(mfa sz: zfs pzf‘.‘ Ufa p;)

J = -
e O(xt, pi, 2% pis 0% Pg)
1 000 0 O
01000 O
0 010 0O
= looo01 0 0 (3.45)
00001 0
0 000 @ 1
with
2r 1 eV(so) 2T :
= h-— = - As- h - cot . 3.
Q L A £ 5 COS [T (3.46)
From eqn. (3.45} it can be verified that 7 _,  obeys the symplecticity condition
‘;'r:Eau ’ S— ’ ‘;-r-(‘uu = S ‘ (3‘47)

3.9 Drift Space

Up to now all elements have been kicks of zero length. The actual length of the machine
is equal to the sum of the drift spaces which are in between the various kicks. Of course we
cannot ignore the length in this case. The treatment of the long drift element concludes our
chapter on magnet elements in the thin-lens approximation.
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3.9.1 Canonical Equations

For a drift space we have:

— I =

of Motion

pe
1+ f(po)]

A=pu=H
L plapl
2 {1+ f(p,))”

(3.48a)

(3.48b)

(3.48¢)

(3.48d)

(3.48e)

(3.48f)

These (nonlinear) differential equations describe the motion of the particles in the space

between the point-like lenses.

3.9.2 Solution of the Equations of Motion

The solution of eqn. (3.48) reads as:

o =

pl = pi;
2! 4
p! P,
a! at -
rl = b,

ch + RS

Py,
L+ fipy)]
P

L+ fipl)]
{1 SVATIRE
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(p1)? + (p})?

4 f(pe)?

: f’(pf,'}} Ay

{3.49a)

(3.49h)

(3.49¢)

(3.49d)

(3.49¢)

(3.49f)



3.9.3 Jacobian Matrix and Symplecticity Condition

The Jacobian matrix resulting from eqn. (3.49) takes the form:

Nty pl, 24, pf, 0!, pf)

ST (@, pl, 2, pl, 0, py)
1 - Pr VTR
1 [1+f(P;)] U 0 U [1+f(p;)]! f(pa) [
0 1 0 0 0 0
{ '
_ 0 0 1 (+7(L)] 0 !1+f(p,)i z fps)
0 0 0 1 1] 0
— Py B ! i .
0 “Tf(;ﬁf f(pa) l 0 [1+f(‘p) f(pa) l 1 Q
0 0 0 0 0 1
(3.50)
with
v iy (P (p)) 1(p:)* + ()"
Q = ~l-{f(P;)ﬁ“’—.z fps) - f"(p2) (3.51)
1+ f(pd)) | ] T2 1+ f(pd)]®
and

y! = y(so+1);

(y = Iy Pzy 2y P2y Ty pa) .

From eqn. (3.50) it can be verified that J 4rise obeys the symplecticity condition

iﬂnﬂ S _jdriﬂ = 5. (3.52)
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4 Summary

We have shown how to solve the nonlinear canonical equations of motion in the framework
of the fully the six-dimensional formalism for various kinds of magnets (bending magnets,
quadrupoles, synchrotron magnets, skew quadrupoles, sextupoles, octupoles, solenoids) and for
cavities by using symplectic kicks, taking into account the energy dependence of the focusing

strength.
We have checked in each case the symplecticity condition with the help of the Jacobian

matrix.
The equations derived are valid for arbitrary particle velocity, i.e. below and above transition

energy.
Almost all these elements including higher order kicks up to 10th order are available in
SIXTRACK using this formalism. One exception is the solenoid element which can, however,

easily be added.
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Appendix A: The Symplecticity Condition

The canonical equations of motion can be written as

d a
—F = 5. Al
ds y - 8y H( ) ( )
or in component form as:
d
Z Sk - —H s) (A.2)
Iy
with the notation
T
¥ = (Y1.¥2 Y3, ¥4, Y5, Us)

- (I1 Pzy 2y P2y Oy pa) .

We now introduce the Jacobian matrix:

Oyi(s)
J o= ((Tw)) s Tals, - - A3
T = ()5 Talsi) = i (A3)
Then it follows that :
d 3 d
a—s.ﬁk(saso) = (o) Eyi(s)
3 3]
= in H —‘r
§6yk(s°)[ Bya(s) W S)]
Ay s) a [ a . ]
= ) Sln' H N
2 Byeloe) Buls) 0 Byl
H? .
- nz‘; LTIk(Ss'SO) gtﬂ' 5‘yg(s)3yn( ;) H(ya 3)
= D S Hu T (A.4)
!
with
K O s (A.5)
n -—= R U, § -
" Ayds)yals) Y
or that
7(3130) o é ﬂ k](‘;,SD) (AG)
with
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Thus we have:

dii {TT(s050)- 5 T(s,30)} = {8 H T(s,90)7 ST +T"(s,50) S 1S -H - T(,50))

= J'(s,50) - HT-8T- 8- T+ T (s,80) S* H- T

= lT(‘ga 50) ’ ﬂ ’ _J_(S, 50) - QTT(S’ 50) ' ﬂ : l(sv 50)

=0 (A7)
where we have used the relations
st = —§;
§* = -1,
HT = H
From (A.7) we obtain:
QT(S,-SU)‘«S_'Q(S,SO) = const.

= iT(So,So) -5 l(‘sOvSO)

(see also Ref. [6]).
If the Hamiltonian is quadratic in y;, (z = 1, - - - 6), one has according to (A.3):

J(sy80) = M(s,s0) . (A.9)

In this case eqn. (A.8) reads as

MT(“;»SO)'E'M(‘SaSO) = 55 (AIO)

representing the “symplecticity--condition” for the (linear) transfer matrix M (s, sq).

We thus have proved:

Theorem I: The canonical structure of the equations of motton implies the symplecticity of
the Jacobian matrices.

We now show that the converse of theorem I is also true.

Theorem I1: The symplecticity of the Jacobian matrix implies that the equations of motion
can be written in canonical form.

37



Supposition : The Jacobian matrix 7(s, s} with

J = ((Ja));
_ B Jvyi(s)
LT!k(s)‘sO) == ayk(so)
satisfies the symplecticity condition
JT(s,%) 8- T(s,8) = S. (A.11)

Proposition : There is a function H(4g,, p:; s) so that the equations of motion can be written
in the canonical form:

d d
Lo = Bp;, H (A.12a)
d d
L= e H (A.12b)

with the notation

vT = (2, psy 2, P:, 0, Po)
= (ql, P1s 42y P2y G34 Ps) .

Proof :

From eqn. (A.11) we get:
Js Jrsg-a7'st = gs-8-7'5"
or

JsJgt = §S. (A.13)

Taking into account this relationship we obtain for the Poisson brackets ® :

i 5, . Qum(s)  Oyals)

[ym( ) Ynls )] ylse)

k=1 ayi(so) ayk(sﬂ)

8The Poisson—brackets for two arbitrary functions f[y(s)], g{y(s)] are defined by:
. . [afy(s)] [ j(s)]  Af[y(s)] Igly(s]]
R o s = |G ) s} oo
L [osiits J_agly(sn o/l oot
_ap,.,( s0)  9z(s0) dz{s0) dp.(s0)
L[] delu(s)] _ Ofl(s)] deluls ]]
| Ops(80) Oo(99) da(so) Bpo(so)

af[5(s)) 2ali(s).
dy(s0) Surlso)

Mw

Sak -

»

k=1
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3
= 3 S Toulss ) Tusls, )

k=1
= Y0 Tmilss 90) - Sk Tin(s, s0)
k=1
or .
[pi(3), Pr(8)lga0) = 0 (A.15a)
(9:(3), () g(s) = 05 (A.15b)
[pi(8)s @e(8)gis) = Sk - (A.15¢)

From (A.15) it follows by differentiation that:

[Pi(s), Pe(8)]gs0) + [Pils)s PR(8)]3t00) = 0 (A.16a)
(g:(s) a(sNgao) + [90:08), Gl g0y = 0 (A.16b)
{ ( )a Qk(s)]f(so) + [Pu( )s QL(S)Jy(ao) 0. (A'lﬁc)
Putting s = so, the relations (A.16) lead to:

COpi(s) | Omds) .
bl T Aals - O (A.17a)

Oqi(s)  q(s) .
Opi(s) - opi(s) -0 (A.175)
o0i(s) | Oakls) C
Fpe(s) + Jals) 0. (A.17¢)

Equation (A.17a) implies that the 3 functions pi(s) (z = 1,2, 3) form an irrotational
vector field in the space of the ¢, so that they can be expressed in this space as a gradient of a
function F(q, p) [8]:

a

p(s) = a—%F(q,p)- (A.18a)

Because of eqn. (A.17b) a similar expression holds for the 3 functions ¢/(s) in the space of

the py :
, 8
gls) = a—piG(q, p) . (A.18b)
Substituting {A.18a,b) into the remaining expression (A.17¢) we get :
T FrG) = o (A.18¢)
dpe O
which means that (£ + (&) can be written in the form:
(F+G) = flg)+glp) - (A.19)
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Thus in eqn. (A.18a) we can express F in terms of G:

s(s) = ;%[f(qu(p)—G(q, )
= 3(1 (f(g) - Glq, P)] -

Since eqn. (A.18b) can be replaced by

, d
ds) = o (o)~ Gla, »)
Di
we may finally write:
, %,
pi'(s) = + B_qu ;
, B d
i (3) - apl_ H

with a single function

H = f(q)—Gl(q, p)

which proves the canonical structure of the equations of motion (see also Ref. [9]).
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Appendix C: A Collection of Useful Formulae

The following abbreviations have been used:

t = time : s = longitudinal position
e = charge of the particle mp = rest mass of the particle
2

¢ = velocity of light B=4/1- (T-g.i)
1 . .

y = e vg = ¢y = design velocity
-8

E = mgy c* = energy P = Moy v = momentum

The relative energy deviation is defined as:

_ AE o
"= (C.1)

The canonical coordinates of the longitudinal oscillations are:

o = s$—ug-t (C.2)
and
1 (C.3)
Pe — - " Ja
38
The relative momentum deviation is:
- A
= P 2R 2P, (C.4)
Po Po Po
) 1 moc? 1 pc p
14+7) = —\/14— 2 L I T C.5
(i) = gy (TpSy = BEE (C:5)

To stress that 3 depends on the longitudinal canonical variable p, (see C.3) we define f(p,)
as follows:

_ _ 2 ”106'4 :
flps) 7 B;«wrn) ( B ) 1
1 2 mec? ?
= 30 J(l + 35 -p.) — (E)_) i (C.6)

A series expansion of f(p,)

flp) = S0) 4 F(0)po 4 £10) ok (C.7)
leads to:
11, _
fir) = oy grhe (C.8)
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Thus in eqn. (A.18a) we can express F in terms of G:

pis) = ;; [f{q) + 9(p) — G(q, p)]
= 6?;,- (f(g) — Glq, p)] -
Since eqn. (A.18b) can be replaced by
e
(s) = - -G
q(s) 57 [f(9) — G(q, p)]
we may finally write:
3]
pll(s) = + a_q‘ H
, B J
T (3) - ap‘_ H

with a single function

H = f(q)—G(q, P)

which proves the canonical structure of the equations of motion (see also Ref. [9]).
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Appendix C: A Collection of Useful Formulae

The following abbreviations have been used:

t = time s = longitudinal position

e = charge of the particle mo = rest mass of the particle
¢ = velocity of light B="/1- (T%ﬁ)z

v = \/1173_2 vo = ¢Bp = design velocity
E = moy c* = energy P = MYV = momentum

The relative energy deviation is defined as:

AE

The canonical coordinates of the longitudinal oscillations are:
g = $—vg-t (C.2)
and
Peo = M. C.3
5 (€3

The relative momentum deviation is:

P p—pm _ Ap

o= o l= : (C.4)
Po Do Po
. 1 moc? ' p-c p
1+4) = =@ 4n- SN AL C.5
(1-+7) Bo\/( 1) —{ E, ) 3 B (C.5)

To stress that 7 depends on the longitudinal canonical variable p, (see C.3) we define f(ps)
as follows:

T FE T i'?f!_c_f
flp,) = 7 = fij(Hn)? (Eo) |

‘;AU+%mﬁ“(?§y ¥ (C.6)
A series expansion of f(p.)
f(p) = JO)+ () p - f70) g2t (€
leads to:
fir) = m e (C.8)
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whereby we have used: ¢

Bo - (1+ﬁo Po) = 29; (C.9)
\[1+60 Pa - mE:2) ‘
F(0) = 1
and
33 1 (p)’
f”(pcr) - 0 3 = #2(%) ; (C 10)
i (Yarser- () 7
" “i
= f(0) = "
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