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Abstract

In this paper we compare recent experimental data for th& total cross section

<r(e+e~ —> hadrons) with the up-to-date theoretical prediction of perturbative QCD
for those energies where per t u r bat ion theory is reliable. The exceilent agreement
suggests the determination of the strong coupling as frorn the rneasurements in
the continuum. The precise data frorn the charm threshold region, wheri combined
with the recent evaluation of moments with three loop accurracy, lead to a direct
determination of the short distance MS charm quark mass. Our result for thestrotig
coupÜng constant o/l4' (5 GeV) - 0.235^$? corresponds to og\Mz) = 0.124i£gJJ,
for the cliarmed quark mass we find mc(me) = 1.304(27). Applying the same ap-
proach to the bottom quark we obtain mt,(mb} = 4.209(50) GeV. Whereas our result
for as(Mz) serves as a useful cross check for other more predse determinations, our
values for the charm and bottom quark masses are more accuratc than other recent
analyses.
PACS numbers: 12.38.-t 14.65.Dw H.G5.Fy

l Introduction

The strong coupling constant and the quark masses are the basic input parameters for
the theory of strong interaction. Quark masses are an essential input for the evaluation
of weak decay rates of heavy mesoiis and for quarkonium spectroscopy. The prediction of
these masses 1s an itnportant task for all variants of Grand Unified Theories. To obtain
the values in a consistent way frorn different experimcntal investigations is thus a rnust
for current phenomenology.

During the past years new and more precise data for <r(e+e~ —> hadrons) liave become
available in the low energy region between 2 and 10 GeV. At the same time ißcreasiugly
precise calculations have been performed in the framework of perturbative QCD (pQCD),
both for the cross section as a function of the center-of-mass energy 1/5, including quark
mass eUects, and for its moments which allovv for a precise determination of the quark
mass. A fresh look at the clctermination of the strong coupling and the quark masses
based on these new developments is tlms appropriate.

For the determination of as we shall use energy regions sufficiently far away frorn the
threshold where pQCD plus local duality is expected to give reliable predictioiis. For the
determination. of the quark masses we will use sum mies where the input depends heavily
on the threshold region with its rapidly varying cross sectiou.

Sum rules as tool to determine the charm quark masK have been suggested by the
ITEP group long ago {l}. Subsequently these methods have been developed further [2]
and frequently applied to the bottom quark. Most of these later analyses concentrated
on using rclatively high moments which are less sensitive to the continuum contribution
and exhibit a very strong quark mass dependence. However, this approach requires the
proper treatment of the threshold, in part the resummation of the higher order terms of
the Coulornbic binding and a defmitiori of the quark mass adopted to this Situation like
the potential- or iS-mass [3, 4], Recently improved experimental results in the charrn
threshold region have become available [5], and at the same time the moments have
been evaluated up to order o? [6, 7]. A frcsh look at the evaluation of the charm quark
rnass with the hclp of sum rules is thus an obvious task. We will concentrate on low
moments, say up to the fourth one and present the results for the ßfth to the eighth
moment just for Illustration. This is a natural route to determine directly a short distance
mass, say mc(me) or even mc(3 GeV) in the MS scheine as advocated in the original
papers [l, 8]. In the present work we coiirentrate on the mass in the MS scheme, mc(/j),
and adopt n = 3 GeV as our default value, a scale characteristic for tbe present problem
and sufficiently high to ensure convergence of the perturbative series. As already discussed
in [1], fixed order pQCD is adequate, if only low moments are used in the analysis.

Recently the determination of the charm quark mass got quite some atteution. In [9]
the pole mass Mc has been determincd from the comparison of the direct deterrnination
of the hadronic contribution to Acr(Mz) with the determination using aualytical contin-
uation. This leads to the ränge Mc — 1.33 — 1.40 GeV [9], The pole mass has also been
determined in [10] using QCD sum rules in combination with nonrelativistic QCD. Their
result reads Mc = 1.70(13) GeV and is significantly higher than the one of Ref. [9l. The



M$ mass given in [10] reads mc(mc} = 1.23(9) GeV. On the basis of so-called Chauchy
sum mies, recent experimental data and analytica] results for the three-loop photon po-
larization function the MS charm quark mass has been determined in [11] with the result
wc(77ie) — 1-37(9) GeV. In [12] pseudo-scalar sum rules have been used to determine si-
multaneously the decay constant /£> and the charm quark mass. For the iatter the value
™C("O = 1.10(4) GeV is given in the abstract of [12] which is signifir.antly lower than
the other evaluations.

We also want lo mention that there is a recent lattice evaluation of the chann quark
mass [13] with the result mc(mc) = 1.26(4)(12) GeV. The first error corresponds to the
statistical and the second one to the systematical uncertainty. Note that this result is
derived in quenched QCD and the corresponding uncertainty is not included.

In the remaining part of the Introduction we woufd like to fix the notation and dcfine
the quantities we are dealing with in the remainder of the paper.

It is convenient to normalize the radiatively corrected hadronic cross section and to
defiue the ratio

hadrons)
{11

where api = 4?ra2/(3s). As an inclusive qtiantity H(s) is conveniently obtained via the
optical theorem from the imaginary part of the polarization function of two vector currents

R(s) = 12jrlm[ll(ga = s + ic)] ,

where R(q3} is defined through

with jp being the electromagnetic currcnt.
The perturbative expansion of R(s") can he written äs

W

(2)

(3)

(4)

where the summation is performed over all active quark fiavours Q. (We ignore the small
singlet contribution at order o^.} For a comprehensive compilation of the individual pieces
we refer to [14, 15] where also explicit results are given. We want to stress that the füll
quark mass dependence is availabie up to Order a] [6, 7]. In the case of RQ the first three
terms in the high-energy expansion are known [16].

Our theoretical predictions are based on Eq. (4) where the up, down and stränge quark
masses are taken to be massless and for the charm and bottom quark the respective pole
masses are chosen äs input. If not stated otherwise we will use the foilowing iaput values

for the evaluation of R(s)

a(?(Mz) = 0.118±0.003,
Mc = (1.65 ±0.15) GeV,

A/6 = (4.75 ±0.20) GeV, (5)

which cover the füll ränge of all currently accepted results.
At several places of our analysis the renormalization group functions and the matching

conditions for the masses and the strong coupläng are needed in order to get relations
bctween different energy scales. The corresponding calculations are performed using the
package RunDec [17].

The outline of the paper is äs follows: in Section 2 we compare the experimental data
of R(s) with the theoretical prediction and determine a, frorn the continuum data below
^/s = 3.73 GeV and above i/s = 4.8 GeV. The measun:ment in the charm threshold region
is used for the determination of the charrn (niark mass in Section 3. Shnilar considerations
are used in Section 4 in order tu obtain the bottom quark mass. Section 5 contains our
couclusions.

2 The continuum region

As stated in the Introduction, we distinguish two energy regions: first, the continuum
region where pQCD and local dnality are expected to give reliable predictions for the
hadronic cross section and, second, the charm threshold regiou starting from the D meson
threshold at 3.73 GeV up to approximatcly 5 GeV, where the cross section exhibits rapid
variations, plus the J/ty and W resonances. The former will be mainly sensitive to the
value of öj. The latter will be used to evaluate moments and to determine the charm
quark mass. For the present analysis the continuum region covers the BES data points
from 2 GeV up to 3.73 GeV and the data from BES [5], MD-1 [18] and CLEO [19] betwecn
4.8 GeV and 10.52 GeV1. As is evident from Fig. l pQCD with a<5>(M?) = 0.118 provides
an excellent description of all recent results.

Below 3.73 GeV only u, d and 5 cjuarks are produced and the O(a^) approximation
for massless quarks is adequaie for a description of R. The effective number of fiavours
is chosen to be TI/ = 3 and virtual charm quark effects are taken into account (for a
compilation of the relevant formulae see Ref. [14, 15]). Above charm threshold u, d and
s quark production is calculated äs before, however, with n/ — 4. Up to O(a2,) the
prediction for the charm quark production incorporates the füll Mc dependence. Starting
from order a^ also the Mc dependence of "secondary" charm production has to be taken
into account. This includes diagrams of the type in Fig. 2(a) äs well äs those from
Fig. 2(b). Inaddition weincludeO(^) terms from the expansion in (Mc2/s)n with n — 0,1

1 We lirait this analysis to more recenl cRsuIts from BES [5], those from MD-1 [18] and from CLEO [19]
with systematic errors of typically 4.3%, 4% and 1%, respectively. Older measuremenls, in particular
those from SPEAR and DORIS, are consistent with the new results. However, with tLcir üignificantly
larger errors they do not provide additional Information.
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Figure 1: R(s) m the energy ränge between 1.8 GeV and 11.0 GeV. The solid line corre-
sponds to the theoretical predictious adopting out central values for the input parameters.
The theoretical uncertainties are indicated by the dashed curves which are obtained from
the Variation of the input parameters as described in the text. The two error bars on trhe
data points iudicate the statistical (inner) and systematical (outer) uncertainty.

u,d,s

Figiire 2: Feynrnan diagrams contributing to R(s] at order a2. A secondary charm quark
pair is produr.ed through gluon Splitting.

and 2 [14, 16]. Last not least contributions from virtual c quarks (^/s S 3.73 GeV) and b
quarks (-^/s < 10.52 GeV) have been calculated which are suppressed ^ (a,/7r}2s/(4M2)
and deconple for s <£ 4,V/3. These are included in the fifth column of Tab. 1. Pure
QED final state radiation is tiny and taken into account for cornpleteness. (For a related
anaiysis at y^ = 10-5 GeV see [20].)

The magnitude of the rnost important terrns is shown for several characteristic ener-
gies in Tab. l and compared to the experimenlal results. All uumbers are given for the

v/I (GeV)
2.000
3.730
4.800
8.900

10.520

nj
3
3
4
4
4

«>n/)(v^)
0.297
0.226
0.215
0.180
0.172

u, d, s
2.202
2.154
2.146
2.122
2.117

c, 6
0.002
0.002
1.607
1.440
1.427

Htb(s)
2.203
2.156
3.753
3.562
3.544

#"»(3)
2.180± 0.070
2.100± 0.080
3.660± 0.140
3.579± 0.066
3.560± 0.010

Table 1: In the last two columns the experimental vahies Tor R(s] are compared with the
fcheoretical prediction, ßth(s), for a selected number of energies where /i2 = s has becn
adopted (see text). For cornpleteness we list the number of active flavours, n/, and the

valvies of as

reference values as specified in Eq. (5). The band in Fig. l is obtained from the corre-
sponding errors and the theoretical uncertainty from the Variation of the renormalization
scale between /i2 = s/4 and /i2 = 4.s which have been added quadratically. The excellent
agreernent between prediction and measurement suggests that one might deterrnine et,
from this analysis.

Assigning a fully correlated systematic error of 4.3% to the BES data [2l] we find

n,(3)n fin\ - D -lßQ+O.047+0.123 /,-•>a, \ ^-evj — u.Jöy_0]046_ t )130, (f>)

from the BES data below 3.73 GeV and

(4 8-O -0.064-ü.<i57 i (7)

from the point at 4.8 GeV. The uncertainties refer to the uncorrelated (statistical) and
correlated errors, respectively. The same analysis is applicable to the MD-1 rcsults. On
the basis of the R values listed for six energies in their table 4 and assumiug fully correlated
systematic errors we find

From their average value #((8.9 GeV)2) = 3.578±0.021±0.140 as quoted in their summary
we obtain2

consistent with Eq. (8) but with smaller errors. From the CLEO value R((10.52 GeV)2) =
3.56 ±0.01 ±0.07 wededuce

tt(«)(10.52 GeV) = 0.186ig;S£«*J - (10)

sThis result disagtees from their value aS4)(8.9 GeV) = 0.174 i 0.039 as a consequeace of theit
inadequate tteatment of the quark mass effects.



We combine the results of Eqs. (6), (7), (9) and (10) by assuming uncorrelated sys-
tematic errors and evolving them to a common scale of 5 GeV. Combining the errors in
quadrature we find

a<4>(5 GeV) - 0.

Evolving this value up to

(11)

(12)

good agreement with other determinations [22, 23] is observed.

3 Charm quark mass determination from the thresh-
old region

The first method we want to use for the determination of the charm quark mass is based
on the direct coinparison of theoretical and experimental moments of the charm quark
contribution to the photon polarization function äs defined in Eq. (3). In the lirnit of
small momentum the latter can be cast into the form [7]

:ö", (13)
with Qc — 2/3 and z = q2/(4m^) where mc = rnc(fi} is the MS charni qnark mass
at the scale fi. The perturbative series for the coefficients Cn up to n = 8 is known
analytically [6, 7] up to order o2. The cocfHcients also depend on the charm quark mass
through logarithms of the form /mc = ln(m^(/i)//i3) and can be written äs

(14)

In Tab. 2 the iüdividual coefficients are given in numerical form. They essentially consti-
tute our theoretical input. We define the moments

Mn =
n! \dq2

which leads to

J-Vr- (16)

n

f^n

c[10)

ei1»
ci20)

c!21)
c¥z)

l
1.0667

2.5547

2.1333

2.4967

3.3130

-0.0889

2

0.4571

1.1096

1.8286

2.7770

5.1489

1.7524

3
0.2709

0.5194

1.6254

1.6388

4.7207

3.1831

4

0.1847

0.2031

1.4776

0.7956

3.6440

4.3713

5

0.1364

0.0106

1.3640

0.2781

2.3385

5.3990

6

0.1061

-0.1158

1.2730

0.0070

0.9553

6.3121

7

0.0856

-0.2033

1.1982

-0.0860

-0.4423

7.1390

8

0.0709

-0.2660

1.1351

-0.0496

-1.8261

7.8984

Table 2: Coefficients of the photon polarization function in tbe MS scheine äs defined in
Eqs. (13) and (14). n/ = 4 has bee.n adopted which is appropriate for the charm threshold.

Wlth the help of a dispersion relation we establish the connectlon betvveen the polar-
ization function and the experimentally accessible cross section Rc(s). In the MS scheine

ds ^ ' -i i\h allows to determine the experimental moments

ds _ ,

3 =,

;167T2
r - - )

(18)

Note, that the last term in Eq. (17) which dcfincs the renormalization scheine disappears
after taking derivatives with respect to q2. Equating Eqs. (16) and (18) leads to an
expression from which the charm quark mass can be obtained:

(19)

As a second method we consider thc ratio of two successive moments which Icads to

M: (20)

Here the nonnalization uncertainty of the experimental data is largely cancelled. Both in
Eqs. (19) and (20) one has to remember the mc dependencc of C'„.

Wc have checked t-hat the nonperturbative contribution from gluoii r.ondcrisates [l, 24]
can be neglected within the present accuracy.

Let us now turn to the extraction of the experimental values for the three different
contributions which enter the right-hand side of Eq. (18): the J/* and *' resonances
(Menxp'tls), the charm threshold region betweea 2MDo w 3.73 GeV and ^[ = 4.8 GeV äs
measured by the BES experiment [5] (,M**P'CC), and the continuum contribution above s\



The resonances are treated in the narrow width approximation which corresponds to

a

Q(S)
(21)

with a-1 = 137.0359895. For both resonances we use (a/a(s))3 ?s 0.9562 and
Mj/t = 3.09687(4) MeV, Pf/* = 5.26(37) keV, Mv = 3.68596(9) MeV and Ff =
2.12(18) keV [22].

Ln the charm threshold region we have to identify the coatribution from the charm
quark, i.e. we have to subtract the parts arising from the liglit u, d arid s quark from the
data. Teclmically this is done by determining a mean value for Kud, ~ R^ + Rj-\- R, from
the comparison of thcoretical predictions and the BES data between 2 GeV and 3.73 GeV
and using the theoretically predicted energy dependcnce to extrapolate into the region
between 3.73 GeV and 4.8 GcV [25]. This value is subtracted frorn the data before the
Integration is perfonned. Alternatively, one could adopt the massless prediction for R(s)
up to order a, without taking into account the data below ^fs ~ 3.73 GeV. We checked
that both approaches lead to the same final result.

tn the continuuni region above T/$ — 4.8 GeV there is only sparse and quite unprecise
data. On the other hand pQCD provides reliable predictions for ß(s), which is essentially
due to the knowledge of the complete mass dependence up to Order a^ [6]. Thus in this
region we will replace data by the theoretical prediction for R(s) äs discussed in Section 2.

In Tab. 3 we present the results for the moments scparaled according to the three
different contributions discussed above. The error of the resonance contribution is due to
the nncertainties of the input patametcrs. In the case of the charm threshold contribution
the uncertainty is dominated by the correlated nonnaiization error of approxirnately 4.3%
of the BES data. In the coiitinuum region we varied the input parameters as äs stated
in Eq. (5) and the renormaüzation scale äs fi — (3 ± 1) GeV. The errors of the three
contributions are added quadratically. It is illustrating to comparc the composition of the
experimcntal error for the different mornents. Generally speaking, it is dominated by the
resonance contribution, specifically by the 7% and 9% uncertainty in the leptonic widths
of the J/tf! and Vt', respectively. For the moment with n = l and to some extent the one
with n = 2 the improvernent in the cross section measurement due to BES (frorn about
10 - 20 % systematic error down to 4.3%) was important. The parametric uncertainties
(from as and Mc) and the residual ^-dependence which atTect A4™"' are small. The higher
momenta (in fact already for n above two) are increaaingly dominated by the resonance
contributions with their 7% uncertainty.

We use the results of Tab. 3 together with Eq. (19) in order to obtain in a first step
mc(3 GeV). Subsequently the result is transformed to the scaJe-invariant mass mc(mc) [17]
including the three-loop coefficients of the renormaüzation group functions. Both resnlts
can be found in Tab. 4. The starting value for os(3 GeV) = 0.254J;2!oi4 ueeded for this step
is obtained from a,(M z ) = 0.118 ± 0.003 by using the renormal i zation group equations
and the matching conditions with four loop accuracy.

The errors Hsted in Tab. 4 receive contributions from the uncertainties in the exper-
imental moments and the Variation of a, (cf. Eq. (5)) and /i = (3 ± 1) GeV in the

n

1
2
3
4
5
6
7
8

K ^". "£-.>
0.1114(82)
0.1096(79)
0.1094(79)
0.1105(79)
0.1126(80)
0.1155(82)
0.1190(84)
0.1230(87)

0.0313(15)
0.0174(8)
0.0099(5)
0.0057(3)
0.0033(2)
0.0020(1)
0.0012(1)
0.0007(0)

0.0638(10)
0.0142(3)
0.0042(1)
0.0014(0)
0.0005(0)
0.0002(0)
0.0001(0)
0.0000(0)

M™ ^

0.2065(84)
0.1412(80)
0.1234(79)
0.1175(79)
0.1164(80)
0.1176(82)
0.1202(84)
0.1237(87)

Table 3: Experimental moments äs defmed in Eq. (18) separated accordiug to the contri-
butions from the resonances, the chaim threshold region and the eofltinuum region above

"
' = 4,8 GeV

n
mc(3 GeV)
rnc(jnc}
n
mc(3 GeV)
me(mc)

1
1.027(30)
1.304(27)
5
1.094(110)
1.366(100)

2
0.994(37)
1.274(34)
6
1.184(161)
1.447(146)

3
0.961(59)
1.244(54)
7
1.253(182)
1.510(165)

4

0.997(67)
1.277(62)
8
1.307(191)
1.558(172)

Table 4: Results for mc(3 GeV) and rnc(mc) in GeV obtained from Eq. (19).

coefficients Cn which are all adcled quadratically. It is interesting to note that the un-
certainty in mc(3 GeV) induced by the experimental moments decreases from 0.028 for
n = l to 0.010 for n = 4 whereas the theoretical uncertainty from the renormalization
scale increases from 0.001 to 0.064, the one from as from 0.011 to 0.019.

The moment with n = l is evidently least sensitive to nonperturbative contributions
from condensates, to the Coulombic higher order effects, the Variation of [i and Üie para-
metric QS dependence. Hence we adopt

mc(me) = 1.304(27) GeV. (22)

as our final result. Using the two- and three-loop relation [26, 27, 28] between the pole-
and the MS-mass this corresponds to

(23)

GeV,

_ 1.691(35) GeV.

Our result agrees with'm the uncertainties with the recent determinations of mc(mc) in [10,
11] but is comparatively more precise.



Figiire 3: mc(me) for n — 1,2,3 and 4. For each value of n the rcsults from left to
right corrcspond the inclusion of terms of order 0-°, a] and a\n the coefficients Cn (cf.
Eq. (14)). Note, that for n — 3 and n = 4 the errors can not be determined with the help
of Eq. (19) in those cases where only the two-loop corrections of order es, are included
into the coefficients Cn äs the equation cannot be solved for mc(3 GeV).

In Fig. 3 we compare the results for inc(nic) (and its /.t dependence) based on the
theory moments (n = l , . . . , 4} evaluated up to ö(a°), O(ala) and ö(a}), respectively.
The improved stability with increasing order in a, is evident, and the preference for the
first moment is clearly visible.

As an alternative we also present the mass values derived from the ratio of moments
(Eq. (20)) in Tab. 5. The error ia obtained from the quaclratic combination of the un-
certainties induccd by the resonances, the Integration in the charm threshold region, the
continuum contribution and the independent Variation of aa and /i in the coefficients Cn.
It is significantly larger than the one based on the analysis of the moments. The numbers
are therefore compatible with Eq. (22) but do not improve upon this result.

4 The bottom quark mass

The same approach is also applicable to the determination of m/,. The coefficients Cn are
listed in Tab. 6. They determine the theoretical moments through Eq. (16) where Qc has
to be replaced by Qb = —1/3. The experimental results for the moments are listed in
Tab. 7. The contribution from the resonances include T(15'} up to T(65) and are given
by Mf*", The treatment of the region between ^/s = 11.075 GeV and ^=11.2 GeV

n/(n + 1)
me(3 GeV)
mc(mc)
n/(n + 1)

mc(3 GeV)
mc(mc)

1/2
0.954(64)
1.238(59)
5/6
1.434(339)
1.671(304)

Table 5: Results for m,(3 GeV)

n
~~£$r

ci10)
cl!1)
A(2D)
(.-•n

c¥l}
c(™}

1 2 3

1.0667 0.4571 0.2709
2.5547 1.1096 0.5194

2.1333 1.8286 1.6254
3.1590 3-2319 2. 0077

3.4425 5.0798 4.5815

O.OS89 1.9048 3.3185

2/3 3/4
0.876(340) 1.052(153)
1.166(318) 1.327(140)
6/7 7/8
1.574(386) 1.679(408)
1.795(344) 1.886(361)

4/5
1.259(261)
1.515(236)

-

and mc(mc) in GeV obtained from Eq. (20)

4 5 6
0.1847 0.1364 0.1061
0.2031 0.0106 -0.1158

1.4776 1.3640 1.2730
1.2204 0.7023 0.4304
3.4726 2. 1508 0.7592

4.4945 5.5127 G. 4182

7
0.0856

8

0.0709
-0.2033 -0.2660

1.1982

0.3359
-0.642f> -

7.2388

1.1351
0.3701

-2.02S3
7.9929

Table 6: Coefficients of the photon polarization functiou in the MS scheine äs defined
in Eqs. (13) and (14). nf — 5 has been adopted which is appropriate for the boUom
threshold.

follows [25]. We assurae a linear raise from zero to the pQCD predicüon /?(,((!!. 2 GeV)2)
and the take the contribution itself äs an estimate for the error. Note t hat the contribntion
to the moments, ,M*xP>lin is negligible small. Ahove 11.2 GeV we use the prediction from
pQCD for Rb(s) which results in the moments vM™nt.

The uncertainties are complctely analogous to tlie charm quark case. The only differ-
ence concerns the renormalization scale for which we adopt /i = (10 ± 5) GeV.

The resnlts for 77i{,(10 GeV) and mjfmj.) are listed in Tab. 8. A remarkable consistency
and stability is observed. For n = l the error is dorninated by the experimental input.
For n — 3 we obtain ±0.036 from the experimental input, ±0.025 from a, and ±0.020
from the Variation of fi.

The sensitivity to the inclusion of higher orders is displayed in Fig. 4. Again a siguif-
icant improvement of the stability of our prediction is observed. As our final result we
adopt

mb(mk) = 4.209(50) GeV, (24)

well consistent with evaluations based on the analysis of bottonium and high spectral
moments [29, 30, 3l, 32, 33] (s«? also [22]). Tiie MS result of Eq. (24) corresponds to a
pole rnass of [26, 27, 28]

M(*-i°°rt = 4.651(57) GeV,

GeV, (25)
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n

5

4.9

4.8

4.7

> 4.6u
Ü
X 4.5

l4-4
4.3

4.2

4.1

d

1
2
3
4
5
6
7
8

xl0^2"+l' xlO'2""1"1' xlO'2n+1^
1.508(114) 0.035(35) 2.913(21)
1.546(109) 0.028(28) 1.182(12)
1.600(106) 0.022(22) 0.634(8)
1.671(104) 0.018(18) 0.381(5)
1.761(103) 0.014(14) 0.244(3)
1.870(104) 0.012(12) 0.162(2)
1.998(105) 0.009(9) 0.111(2}
2.149(108) 0.007(7) 0.078(1)

Men'p
xiolan+1>
4.456(121)
2.756(113)
2.256(108)
2.070(105)
2.019(104)
2.044(104)
2,119(106)
2,234(109)

Table 7: Moments for the bottom quark system.

— . — F " ~ " ' ~ " '

T

-

4 .

T T

- H ,

i 1 1

\

.

{ ' l

\

-

-

1
"

Figure 4: rri(,(m(,) for n — 1,2,3 and 4. For each value of n the results from. left to
right correspond the inclusion of terms of order o£, o;̂  and c?s in the coefficients Cn (cf.
Eq. (14)). Note, that the errors for n = 3 and both the central value and the errora for
n ~ 4 can not be determined in those cases where oaly the two-loop corrections of order
Q3 are included into the coefficients Cn äs the corresponding eqtiation cannot be solved
for m6(10 GeV).

using and ö(o^) accuracy, respectively.
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Table
in the

n
rn6(10 GeV)

n
mt(10 GeV)

1
3.665(60)
4.223(58)
5
3.720(195)
4.275(188)

8: Results for m6(10 GeV) and
text.

n/(n -h 1)
mj(10 GeV)

n/ (n -H)
mt(10 GeV)

1/2
3.636(52)
4.177(51)
5/6
4.218(717)
4.737(692)

2
3.651(52)
4.209(50)
6
3.833(293)
4.385(283)

3
3.641(48)
4.199(46)
7
3.965(347)
4.511(334)

4
3.655(77)
4.213(74)
8
4.089(436)
4.630(418)

Tit(mt) in GeV obtaincd from Eq. (19) äs described

2/3
3.620(51)
4.161(50)
6/7
4.523(875)
5.028(839)

3/4
3.694(240)
4.233(233)
7/8
4.786(1.113)
5.277(1.063)

4/5
3.915(523)
4.446(507)

Table 9: Results for mt»(10 GeV) and mt(m t) in GeV obtained from Eq. (20) äs described
in the text.

5 Conclusions
Recent experimental data for the total cross section a(e+e~ ~> badvons) have beeil com-
pared with the up-to-date theoretical prediction of perturbative QCD for those energies
where perturbation theory is reliable. The excellcnt agrcement justifies the determiiiation
of the strong coupling cc, from the measurements in the energy region between 2 and
3.73 GeV below the charm threshold and the region between 4.8 and 10.52 GeV above
charm and below the bottora threshold. Our result a,(5 GeV) = 0.235loQ4j corresponds
to a,(Mz] = 0.124taoH ^^ serves äs a useful cross check in the interniediate energy
region but is less precise than those from r- or Z-boson decaya.

The direct deterrnination of the short distance MS charm quark mass is performed
with the help of the precise dala from the charm threshold region and the three loop
evaluation of moments in pQCD. Using low moments the approach is insensitive to the
Coulombic behaviour of the cross section close to threshold and to nonperturbative con-
densates, The results based on different moments are quite consistent and the moment
with n = l exhibits the least sensitivity towards the parametric dependence on a, and
the renormalization scate. As our final result we obtain me(mc) = 1.304(27) GeV. The
same approach when applied to the bottom quark gives mt(m),} = 4.209(50) GeV. These
values are compatable with but more precise than other recent analyses.
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